1
|
Wang A, Yan X, Feng G, Cao F. Shared and task-specific brain functional differences across multiple tasks in children with developmental dyslexia. Neuropsychologia 2024; 201:108935. [PMID: 38848989 DOI: 10.1016/j.neuropsychologia.2024.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
Different tasks have been used in examining the neural functional differences associated with developmental dyslexia (DD), and consequently, different findings have been reported. However, very few studies have systematically compared multiple tasks in understanding what specific task differences each brain region is associated with. In this study, we employed an auditory rhyming task, a visual rhyming task, and a visual spelling task, in order to investigate shared and task-specific neural differences in Chinese children with DD. First, we found that children with DD had reduced activation in the opercular part of the left inferior frontal gyrus (IFG) only in the two rhyming tasks, suggesting impaired phonological analysis. Children with DD showed functional differences in the right lingual gyrus/inferior occipital gyrus only in the two visual tasks, suggesting deficiency in their visuo-orthographic processing. Moreover, children with DD showed reduced activation in the left dorsal inferior frontal gyrus and increased activation in the right precentral gyrus across all of the three tasks, suggesting neural signatures of DD in Chinese. In summary, our study successfully separated brain regions associated with differences in orthographic processing, phonological processing, and general lexical processing in DD. It advances our understanding about the neural mechanisms of DD.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Psychology, Sun Yat-Sen University, China
| | - Xiaohui Yan
- Department of Psychology, the University of Hong Kong, China; State Key Lab of Brain and Cognitive Sciences, the University of Hong Kong, China
| | - Guoyan Feng
- Department of Psychology, Sun Yat-Sen University, China; School of Management, Guangzhou Xinhua University, China
| | - Fan Cao
- Department of Psychology, the University of Hong Kong, China; State Key Lab of Brain and Cognitive Sciences, the University of Hong Kong, China.
| |
Collapse
|
2
|
Yan X, Fu Y, Feng G, Li H, Su H, Liu X, Wu Y, Hua J, Cao F. Reading disability is characterized by reduced print-speech convergence. Child Dev 2024. [PMID: 39032033 DOI: 10.1111/cdev.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Reading disability (RD) may be characterized by reduced print-speech convergence, which is the extent to which neurocognitive processes for reading and hearing words overlap. We examined how print-speech convergence changes from children (mean age: 11.07+0.48) to adults (mean age: 21.33+1.80) in 86 readers with or without RD. The participants were recruited in elementary schools and associate degree colleges in China (from 2020 to 2021). Three patterns of abnormalities were revealed: (1) persistent reduction of print-speech convergence in the left inferior parietal cortex in both children and adults with RD, suggesting a neural signature of RD; (2) reduction of print-speech convergence in the left inferior frontal gyrus only evident in children but not adults with RD, suggesting a developmental delay; and (3) increased print-speech convergence in adults with RD than typical adults in the bilateral cerebella/fusiform, suggesting compensations. It provides insights into developmental differences in brain functional abnormalities in RD.
Collapse
Affiliation(s)
- Xiaohui Yan
- Department of Psychology, The University of Hong Kong, Hong Kong
- State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Yang Fu
- Department of Psychology, The University of Hong Kong, Hong Kong
- State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Guoyan Feng
- Guangzhou Xinhua University, Guangzhou, China
| | - Hui Li
- Anyang Preschool Education College, Anyang, China
| | - Haibin Su
- The Hong Kong University of Science and Technology, Hong Kong
| | - Xinhong Liu
- Department of Psychology, Sun Yat-Sen University, Guangzhou, China
| | - Yu Wu
- Department of Psychology, The University of Hong Kong, Hong Kong
- State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Jia Hua
- Instrumental Analysis and Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Fan Cao
- Department of Psychology, The University of Hong Kong, Hong Kong
- State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
3
|
Bombonato C, Del Lucchese B, Ruffini C, Di Lieto MC, Brovedani P, Sgandurra G, Cioni G, Pecini C. Far Transfer Effects of Trainings on Executive Functions in Neurodevelopmental Disorders: A Systematic Review and Metanalysis. Neuropsychol Rev 2024; 34:98-133. [PMID: 36633797 PMCID: PMC10920464 DOI: 10.1007/s11065-022-09574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/01/2022] [Indexed: 01/13/2023]
Abstract
Executive Functions are a set of interrelated, top-down processes essential for adaptive goal-directed behaviour, frequently impaired across different neurodevelopmental disorders with variable degrees of severity. Many executive-function-training studies in children with neurodevelopmental disorders have focused on near effects, investigating post-treatment improvements on directly trained processes, while enhancements of skills not directly trained, defined as far effects, are less considered, albeit these could be extremely relevant for reducing the negative impact of a disorder's core symptomatology. This systematic review and metanalysis aims to investigate the far effect outcomes after EF training in children with different types of neurodevelopmental disorders. 17 studies met the inclusion criteria for the systematic review, while 15 studies were selected in the metanalysis. An overall statistically significant effect size was found in the majority of far effect outcome measures considered in the studies. In particular, trainings on executive functions determine significant far effects on daily life functioning (0.46, 95% CI: [0.05-0.87]) and clinical symptoms (0.33, 95% CI: [0.15-0.51]). Despite a high variability of the results, intensity, frequency and the laboratory/life contexts dimension seem to be the most influential variables in determining far effects. This systematic review and metanalysis highlights the need to measure far effects of executive function training in neurodevelopmental disorders, selecting treatments not only on directly targeted processes, but also according to far impacts on the functional weakness of the disorder.
Collapse
Affiliation(s)
- Clara Bombonato
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
- Tuscan Programme of Neuroscience, University of Florence, Pisa and Siena, Italy
| | - Benedetta Del Lucchese
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
- Tuscan Programme of Neuroscience, University of Florence, Pisa and Siena, Italy
| | - Costanza Ruffini
- Department of Education, Intercultures, Literatures and Psychology (FORLIPSI), University of Florence, Languages, Florence, Italy
| | - Maria Chiara Di Lieto
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Paola Brovedani
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Giuseppina Sgandurra
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy.
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Chiara Pecini
- Department of Education, Intercultures, Literatures and Psychology (FORLIPSI), University of Florence, Languages, Florence, Italy
| |
Collapse
|
4
|
Packheiser J, Papadatou-Pastou M, Koufaki A, Paracchini S, Stein CC, Schmitz J, Ocklenburg S. Elevated levels of mixed-hand preference in dyslexia: Meta-analyses of 68 studies. Neurosci Biobehav Rev 2023; 154:105420. [PMID: 37783301 DOI: 10.1016/j.neubiorev.2023.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Since almost a hundred years, psychologists have investigated the link between hand preference and dyslexia. We present a meta-analysis to determine whether there is indeed an increase in atypical hand preference in dyslexia. We included studies used in two previous meta-analyses (Bishop, 1990; Eglinton & Annett, 1994) as well as studies identified through PubMed MEDLINE, PsycInfo, Google Scholar, and Web of Science up to August 2022. K = 68 studies (n = 4660 individuals with dyslexia; n = 40845 controls) were entered into three random effects meta-analyses using the odds ratio as the effect size (non-right-handers; left-handers; mixed-handers vs. total). Evidence of elevated levels of atypical hand preference in dyslexia emerged that were especially pronounced for mixed-hand preference (OR = 1.57), although this category was underdefined. Differences in (direction or degree) of hand skill or degree of hand preference could not be assessed as no pertinent studies were located. Our findings allow for robust conclusions only for a relationship of mixed-hand preference with dyslexia.
Collapse
Affiliation(s)
- Julian Packheiser
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Marietta Papadatou-Pastou
- School of Education, National and Kapodistrian University of Athens, Athens, Greece; BioMedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Angeliki Koufaki
- School of Education, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Clara C Stein
- Division of Forensic Psychiatry, Department of Psychiatry, Psychotherapy, and Preventive Medicine, LWL-University Hospital Bochum, Bochum, Germany
| | - Judith Schmitz
- Biological Personality Psychology, Georg-August-University Goettingen, Goettingen, Germany
| | - Sebastian Ocklenburg
- Department of Psychology, Medical School Hamburg, Hamburg, Germany; ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany; Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Slaby RJ, Arrington CN, Malins J, Sevcik RA, Pugh KR, Morris R. Properties of white matter tract diffusivity in children with developmental dyslexia and comorbid attention deficit/hyperactivity disorder. J Neurodev Disord 2023; 15:25. [PMID: 37550628 PMCID: PMC10408076 DOI: 10.1186/s11689-023-09495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Developmental dyslexia (DD) and attention deficit/hyperactivity disorder (ADHD) are highly comorbid neurodevelopmental disorders. Individuals with DD or ADHD have both been shown to have deficits in white matter tracts associated with reading and attentional control networks. However, white matter diffusivity in individuals comorbid with both DD and ADHD (DD + ADHD) has not been specifically explored. METHODS Participants were 3rd and 4th graders (age range = 7 to 11 years; SD = 0.69) from three diagnostic groups ((DD (n = 40), DD + ADHD (n = 22), and typical developing (TD) (n = 20)). Behavioral measures of reading and attention alongside measures of white matter diffusivity were collected for all participants. RESULTS DD + ADHD and TD groups differed in mean fractional anisotropy (FA) for the left and right Superior Longitudinal Fasciculus (SLF)-Parietal Terminations and SLF-Temporal Terminations. Mean FA for the DD group across these SLF tracts fell between the lower DD + ADHD and higher TD averages. No differences in mean diffusivity nor significant brain-behavior relations were found. CONCLUSIONS Findings suggest that WM diffusivity in the SLF increases along a continuum across DD + ADHD, DD, and TD.
Collapse
Affiliation(s)
- Ryan J Slaby
- Department of Psychology, Georgia State University, 140 Decatur St SE, Atlanta, GA, 30303, USA
- GSU/Georgia Tech Center for Advanced Brain Imaging, 831 Marietta St NW, Atlanta, GA, 30318, USA
- Department of Psychology, University of Milano-Bicocca, Piazza Dell' Ateneo Nuovo,1, 20126, Milan, Italy
| | - C Nikki Arrington
- Department of Psychology, Georgia State University, 140 Decatur St SE, Atlanta, GA, 30303, USA.
- GSU/Georgia Tech Center for Advanced Brain Imaging, 831 Marietta St NW, Atlanta, GA, 30318, USA.
- Georgia State University, Center for Translational Research in Neuroimaging and Data Science, 55 Park Place, 18th Floor, Atlanta, GA, 30303, USA.
| | - Jeffrey Malins
- Department of Psychology, Georgia State University, 140 Decatur St SE, Atlanta, GA, 30303, USA
- GSU/Georgia Tech Center for Advanced Brain Imaging, 831 Marietta St NW, Atlanta, GA, 30318, USA
| | - Rose A Sevcik
- Department of Psychology, Georgia State University, 140 Decatur St SE, Atlanta, GA, 30303, USA
| | - Kenneth R Pugh
- Yale University, Haskins Laboratories, 300 George Street, Suite 900, New Haven, CT, 06511, USA
| | - Robin Morris
- Department of Psychology, Georgia State University, 140 Decatur St SE, Atlanta, GA, 30303, USA
- GSU/Georgia Tech Center for Advanced Brain Imaging, 831 Marietta St NW, Atlanta, GA, 30318, USA
- Georgia State University, Center for Translational Research in Neuroimaging and Data Science, 55 Park Place, 18th Floor, Atlanta, GA, 30303, USA
| |
Collapse
|
6
|
Martinez-Lincoln A, Fotidzis TS, Cutting LE, Price GR, Barquero LA. Examination of common and unique brain regions for atypical reading and math: a meta-analysis. Cereb Cortex 2023; 33:6959-6989. [PMID: 36758954 PMCID: PMC10233309 DOI: 10.1093/cercor/bhad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
The purpose of this study is to identify consistencies across functional neuroimaging studies regarding common and unique brain regions/networks for individuals with reading difficulties (RD) and math difficulties (MD) compared to typically developing (TD) individuals. A systematic search of the literature, utilizing multiple databases, yielded 116 functional magnetic resonance imaging and positron emission tomography studies that met the criteria. Coordinates that directly compared TD with either RD or MD were entered into GingerALE (Brainmap.org). An activation likelihood estimate (ALE) meta-analysis was conducted to examine common and unique brain regions for RD and MD. Overall, more studies examined RD (n = 96) than MD (n = 20). Across studies, overactivation for reading and math occurred in the right insula and inferior frontal gyrus for atypically developing (AD) > TD comparisons, albeit in slightly different areas of these regions; however, inherent threshold variability across imaging studies could diminish overlying regions. For TD > AD comparisons, there were no similar or overlapping brain regions. Results indicate there were domain-specific differences for RD and MD; however, there were some similarities in the ancillary recruitment of executive functioning skills. Theoretical and practical implications for researchers and educators are discussed.
Collapse
Affiliation(s)
- Amanda Martinez-Lincoln
- Department of Special Education, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203, United States
| | - Tess S Fotidzis
- Department of Special Education, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203, United States
| | - Laurie E Cutting
- Department of Special Education, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203, United States
- Vanderbilt University Medical Center, Vanderbilt Kennedy Center, 110 Magnolia Circle, Nashville, TN 37203, United States
| | - Gavin R Price
- Department of Psychology, University of Exeter, Washington Singer Building Perry Road Exeter EX44QG, United Kingdom
| | - Laura A Barquero
- Department of Special Education, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203, United States
| |
Collapse
|
7
|
Guhan Seshadri N, Agrawal S, Kumar Singh B, Geethanjali B, Mahesh V, Pachori RB. EEG based classification of children with learning disabilities using shallow and deep neural network. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Pellegrino M, Ben-Soussan TD, Paoletti P. A Scoping Review on Movement, Neurobiology and Functional Deficits in Dyslexia: Suggestions for a Three-Fold Integrated Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3315. [PMID: 36834011 PMCID: PMC9966639 DOI: 10.3390/ijerph20043315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Developmental dyslexia is a common complex neurodevelopmental disorder. Many theories and models tried to explain its symptomatology and find ways to improve poor reading abilities. The aim of this scoping review is to summarize current findings and several approaches and theories, focusing on the interconnectedness between motion, emotion and cognition and their connection to dyslexia. Consequently, we present first a brief overview of the main theories and models regarding dyslexia and its proposed neural correlates, with a particular focus on cerebellar regions and their involvement in this disorder. After examining different types of intervention programs and remedial training, we highlight the effects of a specific structured sensorimotor intervention named Quadrato Motor Training (QMT). QMT utilizes several cognitive and motor functions known to be relevant in developmental dyslexia. We introduce its potential beneficial effects on reading skills, including working memory, coordination and attention. We sum its effects ranging from behavioral to functional, structural and neuroplastic, especially in relation to dyslexia. We report several recent studies that employed this training technique with dyslexic participants, discussing the specific features that distinguish it from other training within the specific framework of the Sphere Model of Consciousness. Finally, we advocate for a new perspective on developmental dyslexia integrating motion, emotion and cognition to fully encompass this complex disorder.
Collapse
Affiliation(s)
- Michele Pellegrino
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, 06081 Assisi, Italy
| | - Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, 06081 Assisi, Italy
| | | |
Collapse
|
9
|
Christodoulides P, Miltiadous A, Tzimourta KD, Peschos D, Ntritsos G, Zakopoulou V, Giannakeas N, Astrakas LG, Tsipouras MG, Tsamis KI, Glavas E, Tzallas AT. Classification of EEG signals from young adults with dyslexia combining a Brain Computer Interface device and an Interactive Linguistic Software Tool. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Yan X, Jiang K, Li H, Wang Z, Perkins K, Cao F. Convergent and divergent brain structural and functional abnormalities associated with developmental dyslexia. eLife 2021; 10:e69523. [PMID: 34569931 PMCID: PMC8497057 DOI: 10.7554/elife.69523] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Brain abnormalities in the reading network have been repeatedly reported in individuals with developmental dyslexia (DD); however, it is still not totally understood where the structural and functional abnormalities are consistent/inconsistent across languages. In the current multimodal meta-analysis, we found convergent structural and functional alterations in the left superior temporal gyrus across languages, suggesting a neural signature of DD. We found greater reduction in grey matter volume and brain activation in the left inferior frontal gyrus in morpho-syllabic languages (e.g. Chinese) than in alphabetic languages, and greater reduction in brain activation in the left middle temporal gyrus and fusiform gyrus in alphabetic languages than in morpho-syllabic languages. These language differences are explained as consequences of being DD while learning a specific language. In addition, we also found brain regions that showed increased grey matter volume and brain activation, presumably suggesting compensations and brain regions that showed inconsistent alterations in brain structure and function. Our study provides important insights about the etiology of DD from a cross-linguistic perspective with considerations of consistency/inconsistency between structural and functional alterations.
Collapse
Affiliation(s)
- Xiaohui Yan
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| | - Ke Jiang
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| | - Hui Li
- Department of Preschool Education, Anyang Preschool Education CollegeAnyangChina
| | - Ziyi Wang
- School of Foreign Language, Jining UniversityJiningChina
| | - Kyle Perkins
- Florida International University (Retired Professor)MiamiUnited States
| | - Fan Cao
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| |
Collapse
|
11
|
Mahmud MS, Yeasin M, Bidelman GM. Data-driven machine learning models for decoding speech categorization from evoked brain responses. J Neural Eng 2021; 18. [PMID: 33690177 DOI: 10.1101/2020.08.03.234997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/09/2021] [Indexed: 05/24/2023]
Abstract
Objective.Categorical perception (CP) of audio is critical to understand how the human brain perceives speech sounds despite widespread variability in acoustic properties. Here, we investigated the spatiotemporal characteristics of auditory neural activity that reflects CP for speech (i.e. differentiates phonetic prototypes from ambiguous speech sounds).Approach.We recorded 64-channel electroencephalograms as listeners rapidly classified vowel sounds along an acoustic-phonetic continuum. We used support vector machine classifiers and stability selection to determine when and where in the brain CP was best decoded across space and time via source-level analysis of the event-related potentials.Main results. We found that early (120 ms) whole-brain data decoded speech categories (i.e. prototypical vs. ambiguous tokens) with 95.16% accuracy (area under the curve 95.14%;F1-score 95.00%). Separate analyses on left hemisphere (LH) and right hemisphere (RH) responses showed that LH decoding was more accurate and earlier than RH (89.03% vs. 86.45% accuracy; 140 ms vs. 200 ms). Stability (feature) selection identified 13 regions of interest (ROIs) out of 68 brain regions [including auditory cortex, supramarginal gyrus, and inferior frontal gyrus (IFG)] that showed categorical representation during stimulus encoding (0-260 ms). In contrast, 15 ROIs (including fronto-parietal regions, IFG, motor cortex) were necessary to describe later decision stages (later 300-800 ms) of categorization but these areas were highly associated with the strength of listeners' categorical hearing (i.e. slope of behavioral identification functions).Significance.Our data-driven multivariate models demonstrate that abstract categories emerge surprisingly early (∼120 ms) in the time course of speech processing and are dominated by engagement of a relatively compact fronto-temporal-parietal brain network.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Department of Electrical and Computer Engineering, University of Memphis, 3815 Central Avenue, Memphis, TN 38152, United States of America
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, United States of America
| | - Mohammed Yeasin
- Department of Electrical and Computer Engineering, University of Memphis, 3815 Central Avenue, Memphis, TN 38152, United States of America
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, United States of America
| | - Gavin M Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, United States of America
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, United States of America
- University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, United States of America
| |
Collapse
|
12
|
Mahmud MS, Yeasin M, Bidelman GM. Data-driven machine learning models for decoding speech categorization from evoked brain responses. J Neural Eng 2021; 18:10.1088/1741-2552/abecf0. [PMID: 33690177 PMCID: PMC8738965 DOI: 10.1088/1741-2552/abecf0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/09/2021] [Indexed: 11/12/2022]
Abstract
Objective.Categorical perception (CP) of audio is critical to understand how the human brain perceives speech sounds despite widespread variability in acoustic properties. Here, we investigated the spatiotemporal characteristics of auditory neural activity that reflects CP for speech (i.e. differentiates phonetic prototypes from ambiguous speech sounds).Approach.We recorded 64-channel electroencephalograms as listeners rapidly classified vowel sounds along an acoustic-phonetic continuum. We used support vector machine classifiers and stability selection to determine when and where in the brain CP was best decoded across space and time via source-level analysis of the event-related potentials.Main results. We found that early (120 ms) whole-brain data decoded speech categories (i.e. prototypical vs. ambiguous tokens) with 95.16% accuracy (area under the curve 95.14%;F1-score 95.00%). Separate analyses on left hemisphere (LH) and right hemisphere (RH) responses showed that LH decoding was more accurate and earlier than RH (89.03% vs. 86.45% accuracy; 140 ms vs. 200 ms). Stability (feature) selection identified 13 regions of interest (ROIs) out of 68 brain regions [including auditory cortex, supramarginal gyrus, and inferior frontal gyrus (IFG)] that showed categorical representation during stimulus encoding (0-260 ms). In contrast, 15 ROIs (including fronto-parietal regions, IFG, motor cortex) were necessary to describe later decision stages (later 300-800 ms) of categorization but these areas were highly associated with the strength of listeners' categorical hearing (i.e. slope of behavioral identification functions).Significance.Our data-driven multivariate models demonstrate that abstract categories emerge surprisingly early (∼120 ms) in the time course of speech processing and are dominated by engagement of a relatively compact fronto-temporal-parietal brain network.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Department of Electrical and Computer Engineering, University of Memphis, 3815 Central Avenue, Memphis, TN 38152, United States of America
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, United States of America
| | - Mohammed Yeasin
- Department of Electrical and Computer Engineering, University of Memphis, 3815 Central Avenue, Memphis, TN 38152, United States of America
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, United States of America
| | - Gavin M Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, United States of America
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, United States of America
- University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, United States of America
| |
Collapse
|
13
|
Mahmud MS, Yeasin M, Bidelman GM. Speech categorization is better described by induced rather than evoked neural activity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:1644. [PMID: 33765780 PMCID: PMC8267855 DOI: 10.1121/10.0003572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Categorical perception (CP) describes how the human brain categorizes speech despite inherent acoustic variability. We examined neural correlates of CP in both evoked and induced electroencephalogram (EEG) activity to evaluate which mode best describes the process of speech categorization. Listeners labeled sounds from a vowel gradient while we recorded their EEGs. Using a source reconstructed EEG, we used band-specific evoked and induced neural activity to build parameter optimized support vector machine models to assess how well listeners' speech categorization could be decoded via whole-brain and hemisphere-specific responses. We found whole-brain evoked β-band activity decoded prototypical from ambiguous speech sounds with ∼70% accuracy. However, induced γ-band oscillations showed better decoding of speech categories with ∼95% accuracy compared to evoked β-band activity (∼70% accuracy). Induced high frequency (γ-band) oscillations dominated CP decoding in the left hemisphere, whereas lower frequencies (θ-band) dominated the decoding in the right hemisphere. Moreover, feature selection identified 14 brain regions carrying induced activity and 22 regions of evoked activity that were most salient in describing category-level speech representations. Among the areas and neural regimes explored, induced γ-band modulations were most strongly associated with listeners' behavioral CP. The data suggest that the category-level organization of speech is dominated by relatively high frequency induced brain rhythms.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Department of Electrical and Computer Engineering, University of Memphis, 3815 Central Avenue, Memphis, Tennessee 38152, USA
| | - Mohammed Yeasin
- Department of Electrical and Computer Engineering, University of Memphis, 3815 Central Avenue, Memphis, Tennessee 38152, USA
| | - Gavin M Bidelman
- School of Communication Sciences and Disorders, University of Memphis, 4055 North Park Loop, Memphis, Tennessee 38152, USA
| |
Collapse
|
14
|
Conant LL, Liebenthal E, Desai A, Seidenberg MS, Binder JR. Differential activation of the visual word form area during auditory phoneme perception in youth with dyslexia. Neuropsychologia 2020; 146:107543. [PMID: 32598966 DOI: 10.1016/j.neuropsychologia.2020.107543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/16/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
Developmental dyslexia is a learning disorder characterized by difficulties reading words accurately and/or fluently. Several behavioral studies have suggested the presence of anomalies at an early stage of phoneme processing, when the complex spectrotemporal patterns in the speech signal are analyzed and assigned to phonemic categories. In this study, fMRI was used to compare brain responses associated with categorical discrimination of speech syllables (P) and acoustically matched nonphonemic stimuli (N) in children and adolescents with dyslexia and in typically developing (TD) controls, aged 8-17 years. The TD group showed significantly greater activation during the P condition relative to N in an area of the left ventral occipitotemporal cortex that corresponds well with the region referred to as the "visual word form area" (VWFA). Regression analyses using reading performance as a continuous variable across the full group of participants yielded similar results. Overall, the findings are consistent with those of previous neuroimaging studies using print stimuli in individuals with dyslexia that found reduced activation in left occipitotemporal regions; however, the current study shows that these activation differences seen during reading are apparent during auditory phoneme discrimination in youth with dyslexia, suggesting that the primary deficit in at least a subset of children may lie early in the speech processing stream and that categorical perception may be an important target of early intervention in children at risk for dyslexia.
Collapse
Affiliation(s)
- Lisa L Conant
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Einat Liebenthal
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Anjali Desai
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mark S Seidenberg
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey R Binder
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
15
|
Abstract
UNLABELLED An accumulating body of evidence highlights the contribution of general cognitive processes, such as attention, to language-related skills. OBJECTIVE The purpose of the present study was to explore how interference control (a subcomponent of selective attention) is affected in developmental dyslexia (DD) by means of control over simple stimulus-response mappings. Furthermore, we aimed to examine interference control in adults with DD across sensory modalities. METHODS The performance of 14 dyslexic adults and 14 matched controls was compared on visual/auditory Simon tasks, in which conflict was presented in terms of an incongruent mapping between the location of a visual/auditory stimulus and the appropriate motor response. RESULTS In the auditory task, dyslexic participants exhibited larger Simon effect costs; namely, they showed disproportionately larger reaction times (RTs)/errors costs when the auditory stimulus and response were incongruent relative to RT/errors costs of non-impaired readers. In the visual Simon task, both groups presented Simon effect costs to the same extent. CONCLUSION These results indicate that the ability to control auditory selective attention is carried out less effectively in those with DD compared with visually controlled processing. The implications of this impaired process for the language-related skills of individuals with DD are discussed.
Collapse
|
16
|
Abstract
Developmental dyslexia, a severe deficit in literacy learning, is a neurodevelopmental learning disorder. Yet, it is not clear whether existing neurobiological accounts of dyslexia capture potential predispositions of the deficit or consequences of reduced reading experience. Here, we longitudinally followed 32 children from preliterate to school age using functional and structural magnetic resonance imaging techniques. Based on standardised and age-normed reading and spelling tests administered at school age, children were classified as 16 dyslexic participants and 16 controls. This longitudinal design allowed us to disentangle possible neurobiological predispositions for developing dyslexia from effects of individual differences in literacy experience. In our sample, the disorder can be predicted already before literacy learning from auditory cortex gyrification and aberrant downstream connectivity within the speech processing system. These results provide evidence for the notion that dyslexia may originate from an atypical maturation of the speech network that precedes literacy instruction.
Collapse
|
17
|
Cao F, Yan X, Spray GJ, Liu Y, Deng Y. Brain Mechanisms Underlying Visuo-Orthographic Deficits in Children With Developmental Dyslexia. Front Hum Neurosci 2018; 12:490. [PMID: 30574080 PMCID: PMC6291466 DOI: 10.3389/fnhum.2018.00490] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/21/2018] [Indexed: 01/05/2023] Open
Abstract
Multiple hypotheses have been proposed to explain the reading difficulty caused by developmental dyslexia (DD). The current study examined visuo-orthographic processing in children with dyslexia to determine whether orthographic deficits are explainable based solely on visual deficits. To identify orthographic-specific, visual perception-specific, and overlapping deficits, we included two tasks (lexical and perceptual) in three Chinese subject groups: children with DD, age-matched controls (AC), and reading matched controls (RC) using functional magnetic resonance imaging (fMRI). We found that the left precuneus showed decreased activation across both tasks for the DD group compared to the two control groups, thus reflecting visual processing deficits in children with DD, which also affects orthographic processing. Furthermore, we found that the functional connectivity between left middle occipital gyrus (LMOG) and left inferior frontal gyrus (IFG) was decreased in the DD group compared to AC and RC for only the lexical task. This suggests a weaker association between orthography and phonology for children with DD. In addition, the children with DD showed decreased functional connectivity between the LMOG and right parahippocampal gyrus for only the visual perceptual task, thereby indicating a weaker association between visual regions for DD during visual symbol processing. Taken together, our findings suggest that the observed orthographic processing deficit in DD might be driven by both a basic visual deficit, and a linguistic deficit.
Collapse
Affiliation(s)
- Fan Cao
- Department of Psychology, Sun Yat-sen University, Guangzhou, China.,Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, United States.,School of Humanities and Social Science, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Xin Yan
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, United States
| | - Gregory J Spray
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, United States
| | - Yanni Liu
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Yuan Deng
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Williot A, Blanchette I. Can threat detection be enhanced using processing strategies by police trainees and officers? Acta Psychol (Amst) 2018; 187:9-18. [PMID: 29729440 DOI: 10.1016/j.actpsy.2018.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 11/26/2022] Open
Abstract
The ability to detect threatening stimuli is an important skill for police officers. No research has yet examined whether implementing different information processing strategies can improve threat detection in police officers and police trainees. The first aim of our study was to compare the effect of strategies accentuating the processing of the emotional or the semantic dimension of stimuli on attention towards threatening and neutral information. The second aim was to consider the impact of PTSD symptoms on threat detection, as a function of processing strategies, in police officers and trainees. In a cueing paradigm, participants had to respond to a target that was presented following a threatening or neutral cue. Participants then answered a question, known beforehand, concerning the cue. The question was used to induce a more emotional or semantic processing strategy. Results showed that when the processing strategy was emotional, police trainees and officers were faster to detect the target when it followed a threatening cue, compared to a neutral cue, independently of its spatial location. This was not the case when the processing strategy was semantic. This study shows that induced processing strategies can influence attentional mechanisms related to threat detection in police trainees and police officers.
Collapse
|
19
|
Danelli L, Berlingeri M, Bottini G, Borghese NA, Lucchese M, Sberna M, Price CJ, Paulesu E. How many deficits in the same dyslexic brains? A behavioural and fMRI assessment of comorbidity in adult dyslexics. Cortex 2017; 97:125-142. [PMID: 29107746 PMCID: PMC5722195 DOI: 10.1016/j.cortex.2017.08.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/14/2017] [Accepted: 08/31/2017] [Indexed: 01/18/2023]
Abstract
Dyslexia can have different manifestations: this has motivated different theories on its nature, on its underlying brain bases and enduring controversies on how to best treat it. The relative weight of the different manifestations has never been evaluated using both behavioural and fMRI measures, a challenge taken here to assess the major systems called into play in dyslexia by different theories. We found that adult well-compensated dyslexics were systematically impaired only in reading and in visuo-phonological tasks, while deficits for other systems (e.g., motor/cerebellar, visual magnocellular/motion perception) were only very occasional. In line with these findings, fMRI showed a reliable hypoactivation only for the task of reading, in the left occipito-temporal cortex (l-OTC). The l-OTC, normally a crossroad between the reading system and other systems, did not show the same level of intersection in dyslexics; yet, it was not totally silent because it responded, in segregated parts, during auditory phonological and visual motion perception tasks. This minimal behavioural and functional anatomical comorbidity demonstrates that a specific deficit of reading is the best description for developmental dyslexia, at least for adult well-compensated cases, with clear implications for rehabilitation strategies. The reduced intersection of multiple systems in the l-OTC suggests that dyslexics suffer from a coarser connectivity, leading to disconnection between the multiple domains that normally interact during reading.
Collapse
Affiliation(s)
- Laura Danelli
- Psychology Department and Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Manuela Berlingeri
- DISTUM, Department of Humanistic Studies, University of Urbino Carlo Bo, Urbino, Italy
| | - Gabriella Bottini
- Centre of Cognitive Neuropsychology, Niguarda Ca' Granda Hospital, Milan, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Nunzio A Borghese
- AIS-Lab and Department of Computer Science, University of Milan, Milan, Italy
| | - Mirko Lucchese
- AIS-Lab and Department of Computer Science, University of Milan, Milan, Italy
| | - Maurizio Sberna
- Neuroradiology Department, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Cathy J Price
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, London UK
| | - Eraldo Paulesu
- Psychology Department and Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy; fMRI Unit-IRCCS Galeazzi, Milan, Italy.
| |
Collapse
|
20
|
Cao F, Yan X, Wang Z, Liu Y, Wang J, Spray GJ, Deng Y. Neural signatures of phonological deficits in Chinese developmental dyslexia. Neuroimage 2017; 146:301-311. [DOI: 10.1016/j.neuroimage.2016.11.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
|
21
|
Hakvoort B, van der Leij A, van Setten E, Maurits N, Maassen B, van Zuijen T. Dichotic listening as an index of lateralization of speech perception in familial risk children with and without dyslexia. Brain Cogn 2016; 109:75-83. [PMID: 27648974 DOI: 10.1016/j.bandc.2016.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
Abstract
Atypical language lateralization has been marked as one of the factors that may contribute to the development of dyslexia. Indeed, atypical lateralization of linguistic functions such as speech processing in dyslexia has been demonstrated using neuroimaging studies, but also using the behavioral dichotic listening (DL) method. However, so far, DL results have been mixed. The current study assesses lateralization of speech processing by using DL in a sample of children at familial risk (FR) for dyslexia. In order to determine whether atypical lateralization of speech processing relates to reading ability, or is a correlate of being at familial risk, the current study compares the laterality index of FR children who did and did not become dyslexic, and a control group of readers without dyslexia. DL was tested in 3rd grade and in 5/6th grade. Results indicate that at both time points, all three groups have a right ear advantage, indicative of more pronounced left-hemispheric processing. However, the FR-dyslexic children are less good at reporting from the left ear than controls and FR-nondyslexic children. This impediment relates to reading fluency.
Collapse
Affiliation(s)
- Britt Hakvoort
- Research Institute of Child Development and Education, Faculty of Social and Behavioral Sciences, University of Amsterdam, The Netherlands.
| | - Aryan van der Leij
- Research Institute of Child Development and Education, Faculty of Social and Behavioral Sciences, University of Amsterdam, The Netherlands
| | - Ellie van Setten
- Centre for Language and Cognition Groningen (CLCG) & University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Natasha Maurits
- Department of Neurology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Ben Maassen
- Centre for Language and Cognition Groningen (CLCG) & University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Titia van Zuijen
- Research Institute of Child Development and Education, Faculty of Social and Behavioral Sciences, University of Amsterdam, The Netherlands
| |
Collapse
|
22
|
Woo YJ, Wang T, Guadalupe T, Nebel RA, Vino A, Del Bene VA, Molholm S, Ross LA, Zwiers MP, Fisher SE, Foxe JJ, Abrahams BS. A Common CYFIP1 Variant at the 15q11.2 Disease Locus Is Associated with Structural Variation at the Language-Related Left Supramarginal Gyrus. PLoS One 2016; 11:e0158036. [PMID: 27351196 PMCID: PMC4924813 DOI: 10.1371/journal.pone.0158036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/09/2016] [Indexed: 01/03/2023] Open
Abstract
Copy number variants (CNVs) at the Breakpoint 1 to Breakpoint 2 region at 15q11.2 (BP1-2) are associated with language-related difficulties and increased risk for developmental disorders in which language is compromised. Towards underlying mechanisms, we investigated relationships between single nucleotide polymorphisms (SNPs) across the region and quantitative measures of human brain structure obtained by magnetic resonance imaging of healthy subjects. We report an association between rs4778298, a common variant at CYFIP1, and inter-individual variation in surface area across the left supramarginal gyrus (lh.SMG), a cortical structure implicated in speech and language in independent discovery (n = 100) and validation cohorts (n = 2621). In silico analyses determined that this same variant, and others nearby, is also associated with differences in levels of CYFIP1 mRNA in human brain. One of these nearby polymorphisms is predicted to disrupt a consensus binding site for FOXP2, a transcription factor implicated in speech and language. Consistent with a model where FOXP2 regulates CYFIP1 levels and in turn influences lh.SMG surface area, analysis of publically available expression data identified a relationship between expression of FOXP2 and CYFIP1 mRNA in human brain. We propose that altered CYFIP1 dosage, through aberrant patterning of the lh.SMG, may contribute to language-related difficulties associated with BP1-2 CNVs. More generally, this approach may be useful in clarifying the contribution of individual genes at CNV risk loci.
Collapse
Affiliation(s)
- Young Jae Woo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States of America
| | - Tao Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, United States of America
| | - Tulio Guadalupe
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Rebecca A. Nebel
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States of America
| | - Arianna Vino
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Victor A. Del Bene
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Albert Einstein College of Medicine, Bronx, United States of America
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States of America
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Albert Einstein College of Medicine, Bronx, United States of America
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States of America
| | - Lars A. Ross
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Albert Einstein College of Medicine, Bronx, United States of America
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States of America
| | - Marcel P. Zwiers
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - John J. Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Albert Einstein College of Medicine, Bronx, United States of America
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, United States of America
- The Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States of America
| | - Brett S. Abrahams
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States of America
- * E-mail:
| |
Collapse
|
23
|
Suárez-Coalla P, Cuetos F. Reading difficulties in Spanish adults with dyslexia. ANNALS OF DYSLEXIA 2015; 65:33-51. [PMID: 25836629 DOI: 10.1007/s11881-015-0101-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/04/2015] [Indexed: 05/21/2023]
Abstract
Recent studies show that dyslexia persists into adulthood, even in highly educated and well-read people. The main characteristic that adults with dyslexia present is a low speed when reading. In Spanish, a shallow orthographic system, no studies about adults with dyslexia are available; and it is possible that the consistency of the orthographic system favours the reading fluency. The aim of this study was to get an insight of the reading characteristics of Spanish adults with dyslexia and also to infer the reading strategies that they are using. For that purpose, a group of 30 dyslexics (M age = 32 years old) and an age-matched group of 30 adults without reading disabilities completed several phonological and reading tasks: phonological awareness tasks, rapid automatic naming, lexical decision, word and pseudoword reading, letter detection and text reading. The results showed that highly educated Spanish dyslexics performed significantly worse than the control group in the majority of the tasks. Specifically, they showed difficulties reading long pseudowords, indicating problems in automating the grapheme-phoneme rules, but they also seem to present difficulties reading words, which indicate problems with the lexical route. It seems that the Spanish dyslexic adults, as in deep orthographies, continue having difficulties in phonological awareness tasks, rapid naming and reading.
Collapse
Affiliation(s)
- Paz Suárez-Coalla
- Department of Psychology, Universidad de Oviedo, Pza Feijoo s/n, 33003, Oviedo, Asturias, Spain,
| | | |
Collapse
|
24
|
Paulesu E, Danelli L, Berlingeri M. Reading the dyslexic brain: multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies. Front Hum Neurosci 2014; 8:830. [PMID: 25426043 PMCID: PMC4227573 DOI: 10.3389/fnhum.2014.00830] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/29/2014] [Indexed: 02/01/2023] Open
Abstract
Developmental dyslexia has been the focus of much functional anatomical research. The main trust of this work is that typical developmental dyslexics have a dysfunction of the phonological and orthography to phonology conversion systems, in which the left occipito-temporal cortex has a crucial role. It remains to be seen whether there is a systematic co-occurrence of dysfunctional patterns of different functional systems perhaps converging on the same brain regions associated with the reading deficit. Such evidence would be relevant for theories like, for example, the magnocellular/attentional or the motor/cerebellar ones, which postulate a more basic and anatomically distributed disorder in dyslexia. We addressed this issue with a meta-analysis of all the imaging literature published until September 2013 using a combination of hierarchical clustering and activation likelihood estimation methods. The clustering analysis on 2360 peaks identified 193 clusters, 92 of which proved spatially significant. Following binomial tests on the clusters, we found left hemispheric network specific for normal controls (i.e., of reduced involvement in dyslexics) including the left inferior frontal, premotor, supramarginal cortices and the left infero-temporal and fusiform regions: these were preferentially associated with reading and the visual-to-phonology processes. There was also a more dorsal left fronto-parietal network: these clusters included peaks from tasks involving phonological manipulation, but also motoric or visuo-spatial perception/attention. No cluster was identified in area V5 for no task, nor cerebellar clusters showed a reduced association with dyslexics. We conclude that the examined literature demonstrates a specific lack of activation of the left occipito-temporal cortex in dyslexia particularly for reading and reading-like behaviors and for visuo-phonological tasks. Additional deficits of motor and attentional systems relevant for reading may be associated with altered functionality of dorsal left fronto-parietal cortex.
Collapse
Affiliation(s)
- Eraldo Paulesu
- Department of Psychology, University of Milano-Bicocca Milan, Italy ; NEUROMI- Milan Center for Neuroscience, University of Milano-Bicocca Milan, Italy ; fMRI - Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Milan, Italy
| | - Laura Danelli
- Department of Psychology, University of Milano-Bicocca Milan, Italy ; NEUROMI- Milan Center for Neuroscience, University of Milano-Bicocca Milan, Italy
| | - Manuela Berlingeri
- Department of Psychology, University of Milano-Bicocca Milan, Italy ; NEUROMI- Milan Center for Neuroscience, University of Milano-Bicocca Milan, Italy
| |
Collapse
|
25
|
Moradi S, Lidestam B, Hällgren M, Rönnberg J. Gated auditory speech perception in elderly hearing aid users and elderly normal-hearing individuals: effects of hearing impairment and cognitive capacity. Trends Hear 2014; 18:18/0/2331216514545406. [PMID: 25085610 PMCID: PMC4227697 DOI: 10.1177/2331216514545406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This study compared elderly hearing aid (EHA) users and elderly normal-hearing (ENH) individuals on identification of auditory speech stimuli (consonants, words, and final word in sentences) that were different when considering their linguistic properties. We measured the accuracy with which the target speech stimuli were identified, as well as the isolation points (IPs: the shortest duration, from onset, required to correctly identify the speech target). The relationships between working memory capacity, the IPs, and speech accuracy were also measured. Twenty-four EHA users (with mild to moderate hearing impairment) and 24 ENH individuals participated in the present study. Despite the use of their regular hearing aids, the EHA users had delayed IPs and were less accurate in identifying consonants and words compared with the ENH individuals. The EHA users also had delayed IPs for final word identification in sentences with lower predictability; however, no significant between-group difference in accuracy was observed. Finally, there were no significant between-group differences in terms of IPs or accuracy for final word identification in highly predictable sentences. Our results also showed that, among EHA users, greater working memory capacity was associated with earlier IPs and improved accuracy in consonant and word identification. Together, our findings demonstrate that the gated speech perception ability of EHA users was not at the level of ENH individuals, in terms of IPs and accuracy. In addition, gated speech perception was more cognitively demanding for EHA users than for ENH individuals in the absence of semantic context.
Collapse
Affiliation(s)
- Shahram Moradi
- Linnaeus Centre HEAD, Swedish Institute for Disability Research, Department of Behavioral Sciences and Learning, Linköping University, Sweden
| | - Björn Lidestam
- Department of Behavioral Sciences and Learning, Linköping University, Sweden
| | - Mathias Hällgren
- Linnaeus Centre HEAD, Swedish Institute for Disability Research, Department of Behavioral Sciences and Learning, Linköping University, Sweden Department of Otorhinolaryngology/Section of Audiology, Linköping University Hospital, Sweden
| | - Jerker Rönnberg
- Linnaeus Centre HEAD, Swedish Institute for Disability Research, Department of Behavioral Sciences and Learning, Linköping University, Sweden
| |
Collapse
|
26
|
Moradi S, Lidestam B, Saremi A, Rönnberg J. Gated auditory speech perception: effects of listening conditions and cognitive capacity. Front Psychol 2014; 5:531. [PMID: 24926274 PMCID: PMC4040882 DOI: 10.3389/fpsyg.2014.00531] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/13/2014] [Indexed: 11/13/2022] Open
Abstract
This study aimed to measure the initial portion of signal required for the correct identification of auditory speech stimuli (or isolation points, IPs) in silence and noise, and to investigate the relationships between auditory and cognitive functions in silence and noise. Twenty-one university students were presented with auditory stimuli in a gating paradigm for the identification of consonants, words, and final words in highly predictable and low predictable sentences. The Hearing in Noise Test (HINT), the reading span test, and the Paced Auditory Serial Attention Test were also administered to measure speech-in-noise ability, working memory and attentional capacities of the participants, respectively. The results showed that noise delayed the identification of consonants, words, and final words in highly predictable and low predictable sentences. HINT performance correlated with working memory and attentional capacities. In the noise condition, there were correlations between HINT performance, cognitive task performance, and the IPs of consonants and words. In the silent condition, there were no correlations between auditory and cognitive tasks. In conclusion, a combination of hearing-in-noise ability, working memory capacity, and attention capacity is needed for the early identification of consonants and words in noise.
Collapse
Affiliation(s)
- Shahram Moradi
- Linnaeus Centre HEAD, The Swedish Institute for Disability Research, Department of Behavioral Sciences and Learning, Linköping UniversityLinköping, Sweden
| | - Björn Lidestam
- Department of Behavioral Sciences and Learning, Linköping UniversityLinköping, Sweden
| | - Amin Saremi
- Division of Technical Audiology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
- Cluster of Excellence “Hearing4all”, Department for Neuroscience, Computational Neuroscience Group, Carl von Ossietzky University of OldenburgOldenburg, Germany
| | - Jerker Rönnberg
- Linnaeus Centre HEAD, The Swedish Institute for Disability Research, Department of Behavioral Sciences and Learning, Linköping UniversityLinköping, Sweden
| |
Collapse
|
27
|
Ben-Soussan TD, Avirame K, Glicksohn J, Goldstein A, Harpaz Y, Ben-Shachar M. Changes in cerebellar activity and inter-hemispheric coherence accompany improved reading performance following Quadrato Motor Training. Front Syst Neurosci 2014; 8:81. [PMID: 24847224 PMCID: PMC4023028 DOI: 10.3389/fnsys.2014.00081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/18/2014] [Indexed: 11/13/2022] Open
Abstract
Dyslexia is a multifactorial reading deficit that involves multiple brain systems. Among other theories, it has been suggested that cerebellar dysfunction may be involved in dyslexia. This theory has been supported by findings from anatomical and functional imaging. A possible rationale for cerebellar involvement in dyslexia could lie in the cerebellum’s role as an oscillator, producing synchronized activity within neuronal networks including sensorimotor networks critical for reading. If these findings are causally related to dyslexia, a training regimen that enhances cerebellar oscillatory activity should improve reading performance. We examined the cognitive and neural effects of Quadrato Motor Training (QMT), a structured sensorimotor training program that involves sequencing of motor responses based on verbal commands. Twenty-two adult Hebrew readers (12 dyslexics and 10 controls) were recruited for the study. Using Magnetoencephalography (MEG), we measured changes in alpha power and coherence following QMT in a within-subject design. Reading performance was assessed pre- and post-training using a comprehensive battery of behavioral tests. Our results demonstrate improved performance on a speeded reading task following one month of intensive QMT in both the dyslexic and control groups. Dyslexic participants, but not controls, showed significant increase in cerebellar oscillatory alpha power following training. In addition, across both time points, inter-hemispheric alpha coherence was higher in the dyslexic group compared to the control group. In conclusion, the current findings suggest that the combination of motor and language training embedded in QMT increases cerebellar oscillatory activity in dyslexics and improves reading performance. These results support the hypothesis that the cerebellum plays a role in skilled reading, and begin to unravel the underlying mechanisms that mediate cerebellar contribution in cognitive and neuronal augmentation.
Collapse
Affiliation(s)
- Tal Dotan Ben-Soussan
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel ; Research Institute for Neuroscience, Education and Didactics, Cognitive Neurophysiology Laboratory, Patrizio Paoletti Foundation Assisi, Italy
| | - Keren Avirame
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel ; Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Joseph Glicksohn
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel ; Department of Criminology, Bar-Ilan University Ramat-Gan, Israel
| | - Abraham Goldstein
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel ; Department of Psychology, Bar-Ilan University Ramat-Gan, Israel
| | - Yuval Harpaz
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Michal Ben-Shachar
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel ; Department of English, Linguistics Division, Bar-Ilan University Israel
| |
Collapse
|
28
|
Varvara P, Varuzza C, Sorrentino ACP, Vicari S, Menghini D. Executive functions in developmental dyslexia. Front Hum Neurosci 2014; 8:120. [PMID: 24639640 PMCID: PMC3945518 DOI: 10.3389/fnhum.2014.00120] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/18/2014] [Indexed: 11/21/2022] Open
Abstract
The present study was aimed at investigating different aspects of Executive Functions (EF) in children with Developmental Dyslexia (DD). A neuropsychological battery tapping verbal fluency, spoonerism, attention, verbal shifting, short-term and working memory was used to assess 60 children with DD and 65 with typical reading (TR) abilities. Compared to their controls, children with DD showed deficits in several EF domains such as verbal categorical and phonological fluency, visual-spatial and auditory attention, spoonerism, verbal and visual short-term memory, and verbal working memory. Moreover, exploring predictive relationships between EF measures and reading, we found that spoonerism abilities better explained word and non-word reading deficits. Although to a lesser extent, auditory and visual-spatial attention also explained the increased percentage of variance related to reading deficit. EF deficits found in DD are interpreted as an expression of a deficient functioning of the Central Executive System and are discussed in the context of the recent temporal sampling theory.
Collapse
Affiliation(s)
- Pamela Varvara
- Neuroscience Department, Children's Hospital Bambino Gesù Rome, Italy ; Psychology Department, Libera Università Maria Ss. Assunta Rome, Italy
| | - Cristiana Varuzza
- Neuroscience Department, Children's Hospital Bambino Gesù Rome, Italy
| | | | - Stefano Vicari
- Neuroscience Department, Children's Hospital Bambino Gesù Rome, Italy
| | - Deny Menghini
- Neuroscience Department, Children's Hospital Bambino Gesù Rome, Italy
| |
Collapse
|
29
|
Trébuchon A, Démonet JF, Chauvel P, Liégeois-Chauvel C. Ventral and dorsal pathways of speech perception: an intracerebral ERP study. BRAIN AND LANGUAGE 2013; 127:273-283. [PMID: 24028995 DOI: 10.1016/j.bandl.2013.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/29/2013] [Accepted: 04/11/2013] [Indexed: 06/02/2023]
Abstract
Recent theory of physiology of language suggests a dual stream dorsal/ventral organization of speech perception. Using intra-cerebral Event-related potentials (ERPs) during pre-surgical assessment of twelve drug-resistant epileptic patients, we aimed to single out electrophysiological patterns during both lexical-semantic and phonological monitoring tasks involving ventral and dorsal regions respectively. Phonological information processing predominantly occurred in the left supra-marginal gyrus (dorsal stream) and lexico-semantic information occurred in anterior/middle temporal and fusiform gyri (ventral stream). Similar latencies were identified in response to phonological and lexico-semantic tasks, suggesting parallel processing. Typical ERP components were strongly left lateralized since no evoked responses were recorded in homologous right structures. Finally, ERP patterns suggested the inferior frontal gyrus as the likely final common pathway of both dorsal and ventral streams. These results brought out detailed evidence of the spatial-temporal information processing in the dual pathways involved in speech perception.
Collapse
Affiliation(s)
- Agnès Trébuchon
- INS INSERM, UMR 1106, 13005 Marseille, France; Aix Marseille Université, 13000 Marseille, France; Assistance Publique-Hôpitaux Marseille, 13005 Marseille, France.
| | | | | | | |
Collapse
|
30
|
Novak V, Milberg W, Hao Y, Munshi M, Novak P, Galica A, Manor B, Roberson P, Craft S, Abduljalil A. Enhancement of vasoreactivity and cognition by intranasal insulin in type 2 diabetes. Diabetes Care 2013; 37:751-9. [PMID: 24101698 PMCID: PMC3931384 DOI: 10.2337/dc13-1672] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/01/2013] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine acute effects of intranasal insulin on regional cerebral perfusion and cognition in older adults with type 2 diabetes mellitus (DM). RESEARCH DESIGN AND METHODS This was a proof-of-concept, randomized, double-blind, placebo-controlled intervention evaluating the effects of a single 40-IU dose of insulin or saline on vasoreactivity and cognition in 15 DM and 14 control subjects. Measurements included regional perfusion, vasodilatation to hypercapnia with 3-Tesla MRI, and neuropsychological evaluation. RESULTS Intranasal insulin administration was well tolerated and did not affect systemic glucose levels. No serious adverse events were reported. Across all subjects, intranasal insulin improved visuospatial memory (P ≤ 0.05). In the DM group, an increase of perfusion after insulin administration was greater in the insular cortex compared with the control group (P = 0.0003). Cognitive performance after insulin administration was related to regional vasoreactivity. Improvements of visuospatial memory after insulin administration in the DM group (R(2)adjusted = 0.44, P = 0.0098) and in the verbal fluency test in the control group (R(2)adjusted = 0.64, P = 0.0087) were correlated with vasodilatation in the middle cerebral artery territory. CONCLUSIONS Intranasal insulin administration appears safe, does not affect systemic glucose control, and may provide acute improvements of cognitive function in patients with type 2 DM, potentially through vasoreactivity mechanisms. Intranasal insulin-induced changes in cognitive function may be related to vasodilatation in the anterior brain regions, such as insular cortex that regulates attention-related task performance. Larger studies are warranted to identify long-term effects and predictors of positive cognitive response to intranasal insulin therapy.
Collapse
|
31
|
Specht K. Neuronal basis of speech comprehension. Hear Res 2013; 307:121-35. [PMID: 24113115 DOI: 10.1016/j.heares.2013.09.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/15/2013] [Accepted: 09/19/2013] [Indexed: 01/18/2023]
Abstract
Verbal communication does not rely only on the simple perception of auditory signals. It is rather a parallel and integrative processing of linguistic and non-linguistic information, involving temporal and frontal areas in particular. This review describes the inherent complexity of auditory speech comprehension from a functional-neuroanatomical perspective. The review is divided into two parts. In the first part, structural and functional asymmetry of language relevant structures will be discus. The second part of the review will discuss recent neuroimaging studies, which coherently demonstrate that speech comprehension processes rely on a hierarchical network involving the temporal, parietal, and frontal lobes. Further, the results support the dual-stream model for speech comprehension, with a dorsal stream for auditory-motor integration, and a ventral stream for extracting meaning but also the processing of sentences and narratives. Specific patterns of functional asymmetry between the left and right hemisphere can also be demonstrated. The review article concludes with a discussion on interactions between the dorsal and ventral streams, particularly the involvement of motor related areas in speech perception processes, and outlines some remaining unresolved issues. This article is part of a Special Issue entitled Human Auditory Neuroimaging.
Collapse
Affiliation(s)
- Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; Department for Medical Engineering, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
32
|
Specht K. Mapping a lateralization gradient within the ventral stream for auditory speech perception. Front Hum Neurosci 2013; 7:629. [PMID: 24106470 PMCID: PMC3788379 DOI: 10.3389/fnhum.2013.00629] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/11/2013] [Indexed: 01/18/2023] Open
Abstract
Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory-phonetic to lexico-semantic processing and along the posterior-anterior axis, thus forming a "lateralization" gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe.
Collapse
Affiliation(s)
- Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway ; Department for Medical Engineering, Haukeland University Hospital Bergen, Norway
| |
Collapse
|
33
|
Reilhac C, Peyrin C, Démonet JF, Valdois S. Role of the superior parietal lobules in letter-identity processing within strings: FMRI evidence from skilled and dyslexicreaders. Neuropsychologia 2013; 51:601-12. [PMID: 23270676 DOI: 10.1016/j.neuropsychologia.2012.12.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 12/10/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
34
|
Monzalvo K, Fluss J, Billard C, Dehaene S, Dehaene-Lambertz G. Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status. Neuroimage 2012; 61:258-74. [PMID: 22387166 DOI: 10.1016/j.neuroimage.2012.02.035] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 01/02/2012] [Accepted: 02/14/2012] [Indexed: 11/15/2022] Open
Affiliation(s)
- Karla Monzalvo
- INSERM, Cognitive Neuroimaging Unit, Gif sur Yvette, 91191 France
| | | | | | | | | |
Collapse
|
35
|
Osnes B, Hugdahl K, Hjelmervik H, Specht K. Stimulus expectancy modulates inferior frontal gyrus and premotor cortex activity in auditory perception. BRAIN AND LANGUAGE 2012; 121:65-69. [PMID: 22377261 DOI: 10.1016/j.bandl.2012.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 01/25/2012] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
In studies on auditory speech perception, participants are often asked to perform active tasks, e.g. decide whether the perceived sound is a speech sound or not. However, information about the stimulus, inherent in such tasks, may induce expectations that cause altered activations not only in the auditory cortex, but also in frontal areas such as inferior frontal gyrus (IFG) and motor cortices, even in the absence of an explicit task. To investigate this, we applied spectral mixes of a flute sound and either vowels or specific music instrument sounds (e.g. trumpet) in an fMRI study, in combination with three different instructions. The instructions either revealed no information about stimulus features, or explicit information about either the music instrument or the vowel features. The results demonstrated that, besides an involvement of posterior temporal areas, stimulus expectancy modulated in particular a network comprising IFG and premotor cortices during this passive listening task.
Collapse
Affiliation(s)
- Berge Osnes
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
| | | | | | | |
Collapse
|
36
|
Peyrin C, Lallier M, Démonet JF, Pernet C, Baciu M, Le Bas JF, Valdois S. Neural dissociation of phonological and visual attention span disorders in developmental dyslexia: FMRI evidence from two case reports. BRAIN AND LANGUAGE 2012; 120:381-394. [PMID: 22285025 DOI: 10.1016/j.bandl.2011.12.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 09/23/2011] [Accepted: 12/24/2011] [Indexed: 05/31/2023]
Abstract
A dissociation between phonological and visual attention (VA) span disorders has been reported in dyslexic children. This study investigates whether this cognitively-based dissociation has a neurobiological counterpart through the investigation of two cases of developmental dyslexia. LL showed a phonological disorder but preserved VA span whereas FG exhibited the reverse pattern. During a phonological rhyme judgement task, LL showed decreased activation of the left inferior frontal gyrus whereas this region was activated at the level of the controls in FG. Conversely, during a visual categorization task, FG demonstrated decreased activation of the parietal lobules whereas these regions were activated in LL as in the controls. These contrasted patterns of brain activation thus mirror the cognitive disorders' dissociation. These findings provide the first evidence for an association between distinct brain mechanisms and distinct cognitive deficits in developmental dyslexia, emphasizing the importance of taking into account the heterogeneity of the reading disorder.
Collapse
Affiliation(s)
- C Peyrin
- CNRS UMR 5105, 38040 Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
37
|
Bouton S, Serniclaes W, Bertoncini J, Colé P. Perception of speech features by French-speaking children with cochlear implants. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2012; 55:139-153. [PMID: 22199195 DOI: 10.1044/1092-4388(2011/10-0330)] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PURPOSE The present study investigates the perception of phonological features in French-speaking children with cochlear implants (CIs) compared with normal-hearing (NH) children matched for listening age. METHOD Scores for discrimination and identification of minimal pairs for all features defining consonants (e.g., place, voicing, manner, nasality) and vowels (e.g., frontness, nasality, aperture) were measured in each listener. RESULTS The results indicated no differences in "categorical perception," specified as a similar difference between discrimination and identification between CI children and controls. However, CI children demonstrated a lower level of "categorical precision," that is, lesser accuracy in both feature identification and discrimination, than NH children, with the magnitude of the deficit depending on the feature. CONCLUSIONS If sensitive periods of language development extend well beyond the moment of implantation, the consequences of hearing deprivation for the acquisition of categorical perception should be fairly important in comparison to categorical precision because categorical precision develops more slowly than categorical perception in NH children. These results do not support the idea that the sensitive period for development of categorical perception is restricted to the first 1-2 years of life. The sensitive period may be significantly longer. Differences in precision may reflect the acoustic limitations of the cochlear implant, such as coding for temporal fine structure and frequency resolution.
Collapse
|
38
|
Maïonchi-Pino N, de Cara B, Écalle J, Magnan A. Are French dyslexic children sensitive to consonant sonority in segmentation strategies? Preliminary evidence from a letter detection task. RESEARCH IN DEVELOPMENTAL DISABILITIES 2012; 33:12-23. [PMID: 22093643 DOI: 10.1016/j.ridd.2011.07.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 07/29/2011] [Accepted: 07/29/2011] [Indexed: 05/31/2023]
Abstract
This paper aims to investigate whether--and how--consonant sonority (obstruent vs. sonorant) and status (coda vs. onset) within syllable boundaries modulate the syllable-based segmentation strategies. Here, it is questioned whether French dyslexic children, who experience acoustic-phonetic (i.e., voicing) and phonological impairments, are sensitive to an optimal 'sonorant coda-obstruent onset' sonority profile as a cue for a syllable-based segmentation. To examine these questions, we used a modified version of the illusory conjunction paradigm with French dyslexic children compared with both chronological age-matched and reading level-matched controls. Our results first showed that the syllable-based segmentation is developmentally constrained in visual identification: in normally reading children, it appears to progressively increase as reading skills increase. However, surprisingly, our results also showed that dyslexic children were able to use syllable-sized units. Then, data highlighted that a syllable-based segmentation in visual identification basically relies on an optimal 'sonorant coda-obstruent onset' sonority profile rather than on phonological and orthographic statistical properties in normally reading children as well as, surprisingly, in dyslexic children. Our results are discussed to support a sonority-modulated prelexical role of syllable-sized units in visual identification in French, even in dyslexic children who exhibited a developmentally delayed profile. We argue that dyslexic children have deficits in online phonetic-phonological processing rather than degraded or underspecified phonetic-phonological representations.
Collapse
Affiliation(s)
- Norbert Maïonchi-Pino
- Laboratoire d'Étude des Mécanismes Cognitifs, EA 3082/Université Lyon 2, Bron, France.
| | | | | | | |
Collapse
|
39
|
Peyrin C, Démonet JF, N'Guyen-Morel MA, Le Bas JF, Valdois S. Superior parietal lobule dysfunction in a homogeneous group of dyslexic children with a visual attention span disorder. BRAIN AND LANGUAGE 2011; 118:128-38. [PMID: 20739053 DOI: 10.1016/j.bandl.2010.06.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 06/14/2010] [Accepted: 06/30/2010] [Indexed: 05/07/2023]
Abstract
A visual attention (VA) span disorder has been reported in dyslexic children as potentially responsible for their poor reading outcome. The purpose of the current paper was to identify the cerebral correlates of this VA span disorder. For this purpose, 12 French dyslexic children with severe reading and VA span disorders and 12 age-matched control children were engaged in a categorisation task under fMRI. Two flanked and isolated conditions were designed which both involved multiple-element simultaneous visual processing but taxed visual attention differently. For skilled readers, flanked stimuli processing activated a large bilateral cortical network comprising the superior and inferior parietal cortex, the inferior temporal cortex, the striate and extrastriate visual cortex, the middle frontal cortex and the anterior cingulate cortex while the less attention-demanding task of isolated stimuli only activated the inferior occipito-temporal cortex bilaterally. With respect to controls, the dyslexic children showed significantly reduced activation within bilateral parietal and temporal areas during flanked processing, but no difference during the isolated condition. The neural correlates of the processes involved in attention-demanding multi-element processing tasks were more specifically addressed by contrasting the flanked and the isolated conditions. This contrast elicited activation of the left precuneus/superior parietal lobule in the controls, but not in the dyslexic children. These findings provide new insights on the role of parietal regions, in particular the left superior parietal lobule, in the visual attention span and in developmental dyslexia.
Collapse
Affiliation(s)
- C Peyrin
- Laboratoire de Psychologie et NeuroCognition (UMR 5105 CNRS), Université Pierre Mendès France, 38040 Grenoble Cedex 09, France
| | | | | | | | | |
Collapse
|
40
|
Rong F, Holroyd T, Husain FT, Contreras-Vidal JL, Horwitz B. Task-specific modulation of human auditory evoked response in a delayed-match-to-sample task. Front Psychol 2011; 2:85. [PMID: 21687454 PMCID: PMC3110394 DOI: 10.3389/fpsyg.2011.00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/21/2011] [Indexed: 12/01/2022] Open
Abstract
In this study, we focus our investigation on task-specific cognitive modulation of early cortical auditory processing in human cerebral cortex. During the experiments, we acquired whole-head magnetoencephalography data while participants were performing an auditory delayed-match-to-sample (DMS) task and associated control tasks. Using a spatial filtering beamformer technique to simultaneously estimate multiple source activities inside the human brain, we observed a significant DMS-specific suppression of the auditory evoked response to the second stimulus in a sound pair, with the center of the effect being located in the vicinity of the left auditory cortex. For the right auditory cortex, a non-invariant suppression effect was observed in both DMS and control tasks. Furthermore, analysis of coherence revealed a beta band (12∼20 Hz) DMS-specific enhanced functional interaction between the sources in left auditory cortex and those in left inferior frontal gyrus, which has been shown to be involved in short-term memory processing during the delay period of DMS task. Our findings support the view that early evoked cortical responses to incoming acoustic stimuli can be modulated by task-specific cognitive functions by means of frontal–temporal functional interactions.
Collapse
Affiliation(s)
- Feng Rong
- Brain Imaging and Modeling Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
41
|
Bedoin N, Ferragne E, Lopez C, Herbillon V, De Bellescize J, des Portes V. Atypical hemispheric asymmetries for the processing of phonological features in children with rolandic epilepsy. Epilepsy Behav 2011; 21:42-51. [PMID: 21470917 DOI: 10.1016/j.yebeh.2011.02.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
Abstract
We assessed language lateralization in 177 healthy 4- to 11-year-old children and adults and atypical asymmetries associated with unilateral epileptic foci in 18 children with benign epilepsy with centrotemporal spikes (BECTS). Dichotic listening results revealed two indices of immature functional asymmetry when the focus was left-sided (BECTS-L). First, children with BECTS-L did not show left hemisphere dominance for the processing of place of articulation, which was recorded in children with BECTS-R and control children. On the contrary, healthy children exhibited a gradual increase in left hemisphere dominance for place processing during childhood, which is consistent with the shift from global to finer-grained acoustic analysis predicted by the Developmental Weighting Shift model. Second, children with BECTS-L showed atypical left hemisphere involvement in the processing of the voiced value (+V), associated with a long acoustic event in French stop consonants, whereas right hemisphere dominance increased with age for +V processing in healthy children. BECTS-L, therefore, interferes with the development of left hemisphere dominance for specific phonological mechanisms.
Collapse
Affiliation(s)
- Nathalie Bedoin
- Laboratoire Dynamique du Langage, CNRS UMR 5596, Lyon, France.
| | | | | | | | | | | |
Collapse
|
42
|
Vandermosten M, Boets B, Luts H, Poelmans H, Wouters J, Ghesquière P. Impairments in speech and nonspeech sound categorization in children with dyslexia are driven by temporal processing difficulties. RESEARCH IN DEVELOPMENTAL DISABILITIES 2011; 32:593-603. [PMID: 21269803 DOI: 10.1016/j.ridd.2010.12.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 12/14/2010] [Indexed: 05/30/2023]
Abstract
Auditory processing problems in persons with dyslexia are still subject to debate, and one central issue concerns the specific nature of the deficit. In particular, it is questioned whether the deficit is specific to speech and/or specific to temporal processing. To resolve this issue, a categorical perception identification task was administered in thirteen 11-year old dyslexic readers and 25 matched normal readers using 4 sound continua: (1) a speech contrast exploiting temporal cues (/bA/-/dA/), (2) a speech contrast defined by nontemporal spectral cues (/u/-/y/), (3) a nonspeech temporal contrast (spectrally rotated/bA/-/da/), and (4) a nonspeech nontemporal contrast (spectrally rotated/u/-/y/). Results indicate that children with dyslexia are less consistent in classifying speech and nonspeech sounds on the basis of rapidly changing (i.e., temporal) information whereas they are unimpaired in steady-state speech and nonspeech sounds. The deficit is thus restricted to categorizing sounds on the basis of temporal cues and is independent of the speech status of the stimuli. The finding of a temporal-specific but not speech-specific deficit in children with dyslexia is in line with findings obtained in adults using the same paradigm (Vandermosten et al., 2010, Proceedings of the National Academy of Sciences of the United States of America, 107: 10389-10394). Comparison of the child and adult data indicates that the consistency of categorization considerably improves between late childhood and adulthood, particularly for the continua with temporal cues. Dyslexic and normal readers show a similar developmental progress with the dyslexic readers lagging behind both in late childhood and in adulthood.
Collapse
Affiliation(s)
- Maaike Vandermosten
- Parenting and Special Education Research Group, Laboratory for Experimental ORL, Department of Neurosciences, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
43
|
Osnes B, Hugdahl K, Specht K. Effective connectivity analysis demonstrates involvement of premotor cortex during speech perception. Neuroimage 2011; 54:2437-45. [DOI: 10.1016/j.neuroimage.2010.09.078] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/21/2010] [Accepted: 09/27/2010] [Indexed: 10/19/2022] Open
|
44
|
Osnes B, Hugdahl K, Hjelmervik H, Specht K. Increased activation in superior temporal gyri as a function of increment in phonetic features. BRAIN AND LANGUAGE 2011; 116:97-101. [PMID: 21055799 DOI: 10.1016/j.bandl.2010.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 09/24/2010] [Accepted: 10/01/2010] [Indexed: 05/30/2023]
Abstract
A common assumption is that phonetic sounds initiate unique processing in the superior temporal gyri and sulci (STG/STS). The anatomical areas subserving these processes are also implicated in the processing of non-phonetic stimuli such as music instrument sounds. The differential processing of phonetic and non-phonetic sounds was investigated in this study by applying a "sound-morphing" paradigm, where the presence of phonetic features were parametrically varied, creating a step-wise transition from a non-phonetic sound into a phonetic sound. The stimuli were presented in an event-related fMRI design. The fMRI-BOLD data were analysed using parametric contrasts. The results showed a higher sensitivity for sounds containing phonetic features compared to non-phonetic sounds in the middle part of STG, and in the anterior part of the planum temporale (PT) bilaterally. Although the same areas were involved in the processing of non-phonetic sounds, a difference in activation was evident in the STG, with an increase in activation related to increment of phonetic features in the sounds. The results indicate a stimulus-driven, bottom-up process that utilizes general auditory resources in the secondary auditory cortex, depending on specific phonetic features in the sounds.
Collapse
Affiliation(s)
- Berge Osnes
- Department of Biological and Medical Psychology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| | | | | | | |
Collapse
|
45
|
Samson F, Zeffiro TA, Toussaint A, Belin P. Stimulus complexity and categorical effects in human auditory cortex: an activation likelihood estimation meta-analysis. Front Psychol 2011; 1:241. [PMID: 21833294 PMCID: PMC3153845 DOI: 10.3389/fpsyg.2010.00241] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/23/2010] [Indexed: 11/13/2022] Open
Abstract
Investigations of the functional organization of human auditory cortex typically examine responses to different sound categories. An alternative approach is to characterize sounds with respect to their amount of variation in the time and frequency domains (i.e., spectral and temporal complexity). Although the vast majority of published studies examine contrasts between discrete sound categories, an alternative complexity-based taxonomy can be evaluated through meta-analysis. In a quantitative meta-analysis of 58 auditory neuroimaging studies, we examined the evidence supporting current models of functional specialization for auditory processing using grouping criteria based on either categories or spectro-temporal complexity. Consistent with current models, analyses based on typical sound categories revealed hierarchical auditory organization and left-lateralized responses to speech sounds, with high speech sensitivity in the left anterior superior temporal cortex. Classification of contrasts based on spectro-temporal complexity, on the other hand, revealed a striking within-hemisphere dissociation in which caudo-lateral temporal regions in auditory cortex showed greater sensitivity to spectral changes, while anterior superior temporal cortical areas were more sensitive to temporal variation, consistent with recent findings in animal models. The meta-analysis thus suggests that spectro-temporal acoustic complexity represents a useful alternative taxonomy to investigate the functional organization of human auditory cortex.
Collapse
Affiliation(s)
- Fabienne Samson
- Centre d'Excellence en Troubles Envahissants du Développement de l'Université de Montréal Montréal, QC, Canada
| | | | | | | |
Collapse
|
46
|
Martin J, Colé P, Leuwers C, Casalis S, Zorman M, Sprenger-Charolles L. Reading in French-speaking adults with dyslexia. ANNALS OF DYSLEXIA 2010; 60:238-264. [PMID: 20872102 DOI: 10.1007/s11881-010-0043-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 08/03/2010] [Indexed: 05/29/2023]
Abstract
This study investigated the reading and reading-related skills of 15 French-speaking adults with dyslexia, whose performance was compared with that of chronological-age controls (CA) and reading-level controls (RL). Experiment 1 assessed the efficiency of their phonological reading-related skills (phonemic awareness, phonological short-term memory, and rapid automatic naming (RAN)) and experiment 2 assessed the efficiency of their lexical and sublexical (or phonological) reading procedures (reading aloud of pseudowords and irregular words of different lengths). Experiment 1 revealed that adults with dyslexia exhibited lower phonological reading-related skills than CAs only, and were better than RL controls on the RAN. In experiment 2, as compared with RL controls, only a deficit in the sublexical reading procedure was observed. The results of the second experiment replicated observations from English-language studies but not those of the first experiment. Several hypotheses are discussed to account for these results, including one related to the transparency of orthographic systems.
Collapse
|
47
|
Adults with dyslexia are impaired in categorizing speech and nonspeech sounds on the basis of temporal cues. Proc Natl Acad Sci U S A 2010; 107:10389-94. [PMID: 20498069 DOI: 10.1073/pnas.0912858107] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Developmental dyslexia is characterized by severe reading and spelling difficulties that are persistent and resistant to the usual didactic measures and remedial efforts. It is well established that a major cause of these problems lies in poorly specified representations of speech sounds. One hypothesis states that this phonological deficit results from a more fundamental deficit in auditory processing. Despite substantial research effort, the specific nature of these auditory problems remains debated. A first controversy concerns the speech specificity of the auditory processing problems: Can they be reduced to more basic auditory processing, or are they specific to the perception of speech sounds? A second topic of debate concerns the extent to which the auditory problems are specific to the processing of rapidly changing temporal information or whether they encompass a broader range of complex spectro-temporal processing. By applying a balanced design with stimuli that were adequately controlled for acoustic complexity, we show that adults with dyslexia are specifically impaired at categorizing speech and nonspeech sounds that differ in terms of rapidly changing acoustic cues (i.e., temporal cues), but that they perform adequately when categorizing steady-state speech and nonspeech sounds. Thus, we show that individuals with dyslexia have an auditory temporal processing deficit that is not speech-specific.
Collapse
|
48
|
Serniclaes W, Sprenger-Charolles L. A Multiform Approach of Reading Disorders. AMERICAN JOURNAL OF PSYCHOLOGY 2010. [DOI: 10.5406/amerjpsyc.123.1.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Willy Serniclaes
- Laboratoire Psychologie de la Perception CNRS et Université Paris Descartes UFR Biomédicale des Saints Pères 45 Rue des Sts. Peres 75270 Paris Cedex 06, France
| | - Liliane Sprenger-Charolles
- Laboratoire Psychologie de la Perception CNRS et Université Paris Descartes UFR Biomédicale des Saints Pères 45 Rue des Sts. Peres 75270 Paris Cedex 06, France
| |
Collapse
|
49
|
Sun YF, Lee JS, Kirby R. Brain imaging findings in dyslexia. Pediatr Neonatol 2010; 51:89-96. [PMID: 20417459 DOI: 10.1016/s1875-9572(10)60017-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/07/2009] [Accepted: 07/28/2009] [Indexed: 01/18/2023] Open
Abstract
Dyslexia is a brain-based disorder that has been intensively studied in the Western world for more than a century because of its social burden. However, affected individuals in Chinese communities are neither recognized nor formally diagnosed. Previous studies have concentrated on the disadvantages of reading deficits, and few have addressed non-linguistic skills, which are included in the symptoms. In addition, certain dyslexics possess visual spatial talents that have usually been ignored. In this review, we discuss the available information regarding brain imaging studies of dyslexia based on studies in Caucasian subjects. Gray matter deficits have been demonstrated in dyslexics using structural magnetic resonance imaging. Reduced neural activities in the left temporal and left parietal cortices, and diffuse widespread activation patterns in the cerebellum could be detected using functional magnetic resonance imaging. Changes in lactate levels, N-acetylaspartate/choline-containing compounds and N-acetylaspartate/creatine ratios, and phosphomonoester peak area were detected in magnetic resonance spectroscopy studies. Lower fractional anisotropy values in bilateral white matter tracts have been demonstrated by diffusion tensor imaging. Abnormal Broca's area activation was found using positron emission tomography imaging. Increased activities in the right frontal and temporal brain regions were detected using electroencephalography. Reduced hemispheric asymmetry and increased left inferior frontal activation were reported following magnetoencephalography. Although these imaging modalities are not currently diagnostic or prognostic, they are able to provide information on the causes of dyslexia beyond what was previously provided by behavioral or cognition studies.
Collapse
Affiliation(s)
- Ying-Fang Sun
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.
| | | | | |
Collapse
|
50
|
Yoncheva YN, Zevin JD, Maurer U, McCandliss BD. Auditory selective attention to speech modulates activity in the visual word form area. Cereb Cortex 2010; 20:622-32. [PMID: 19571269 PMCID: PMC2820701 DOI: 10.1093/cercor/bhp129] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Selective attention to speech versus nonspeech signals in complex auditory input could produce top-down modulation of cortical regions previously linked to perception of spoken, and even visual, words. To isolate such top-down attentional effects, we contrasted 2 equally challenging active listening tasks, performed on the same complex auditory stimuli (words overlaid with a series of 3 tones). Instructions required selectively attending to either the speech signals (in service of rhyme judgment) or the melodic signals (tone-triplet matching). Selective attention to speech, relative to attention to melody, was associated with blood oxygenation level-dependent (BOLD) increases during functional magnetic resonance imaging (fMRI) in left inferior frontal gyrus, temporal regions, and the visual word form area (VWFA). Further investigation of the activity in visual regions revealed overall deactivation relative to baseline rest for both attention conditions. Topographic analysis demonstrated that while attending to melody drove deactivation equivalently across all fusiform regions of interest examined, attending to speech produced a regionally specific modulation: deactivation of all fusiform regions, except the VWFA. Results indicate that selective attention to speech can topographically tune extrastriate cortex, leading to increased activity in VWFA relative to surrounding regions, in line with the well-established connectivity between areas related to spoken and visual word perception in skilled readers.
Collapse
Affiliation(s)
- Yuliya N. Yoncheva
- Sackler Institute for Developmental Psychobiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Jason D. Zevin
- Sackler Institute for Developmental Psychobiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Urs Maurer
- Sackler Institute for Developmental Psychobiology, Weill Medical College of Cornell University, New York, NY, USA
- Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Bruce D. McCandliss
- Sackler Institute for Developmental Psychobiology, Weill Medical College of Cornell University, New York, NY, USA
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|