1
|
Clarke S, Rogers R, Wanigasekera V, Fardo F, Pia H, Nochi Z, Macian N, Leray V, Finnerup NB, Pickering G, Mouraux A, Truini A, Treede RD, Garcia-Larrea L, Tracey I. Systematic review and co-ordinate based meta-analysis to summarize the utilization of functional brain imaging in conjunction with human models of peripheral and central sensitization. Eur J Pain 2024; 28:1069-1094. [PMID: 38381488 DOI: 10.1002/ejp.2251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND AND OBJECTIVE Functional magnetic resonance imaging, in conjunction with models of peripheral and/or central sensitization, has been used to assess analgesic efficacy in healthy humans. This review aims to summarize the use of these techniques to characterize brain mechanisms of hyperalgesia/allodynia and to evaluate the efficacy of analgesics. DATABASES AND DATA TREATMENT Searches were performed (PubMed-Medline, Cochrane, Web of Science and Clinicaltrials.gov) to identify and review studies. A co-ordinate based meta-analysis (CBMA) was conducted to quantify neural activity that was reported across multiple independent studies in the hyperalgesic condition compared to control, using GingerALE software. RESULTS Of 217 publications, 30 studies met the inclusion criteria. They studied nine different models of hyperalgesia/allodynia assessed in the primary (14) or secondary hyperalgesia zone (16). Twenty-three studies focused on neural correlates of hyperalgesic conditions and showed consistent changes in the somatosensory cortex, prefrontal cortices, insular cortex, anterior cingulate cortex, thalamus and brainstem. The CBMA on 12 studies that reported activation coordinates for a contrast comparing the hyperalgesic state to control produced six activation clusters (significant at false discovery rate of 0.05) with more peaks for secondary (17.7) than primary zones (7.3). Seven studies showed modulation of brain activity by analgesics in five of the clusters but also in four additional regions. CONCLUSIONS This meta-analysis revealed substantial but incomplete overlap between brain areas related to neural mechanisms of hyperalgesia and those reflecting the efficacy of analgesic drugs. Studies testing in the secondary zone were more sensitive to evaluate analgesic efficacy on central sensitization at brainstem or thalamocortical levels. SIGNIFICANCE Experimental pain models that provide a surrogate for features of pathological pain conditions in healthy humans and functional imaging techniques are both highly valuable research tools. This review shows that when used together, they provide a wealth of information about brain activity during pain states and analgesia. These tools are promising candidates to help bridge the gap between animal and human studies, to improve translatability and provide opportunities for identification of new targets for back-translation to animal studies.
Collapse
Affiliation(s)
- Sophie Clarke
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford, UK
| | - Richard Rogers
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford, UK
| | - Vishvarani Wanigasekera
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford, UK
| | - Francesca Fardo
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Hossein Pia
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Zahra Nochi
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Nicolas Macian
- Platform of Clinical Investigation, Inserm CIC 1405, University Hospital Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Leray
- Platform of Clinical Investigation, Inserm CIC 1405, University Hospital Clermont-Ferrand, Clermont-Ferrand, France
| | - Nanna Brix Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Gisèle Pickering
- Platform of Clinical Investigation, Inserm CIC 1405, University Hospital Clermont-Ferrand, Clermont-Ferrand, France
- Inserm 1107, University Clermont Auvergne, Clermont-Ferrand, France
| | - André Mouraux
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Ottignies-Louvain-la-Neuve, Belgium
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Luis Garcia-Larrea
- NeuroPain Lab, Lyon Centre for Neuroscience Inserm U1028 and University Claude Bernard, Lyon, France
- Pain Center Neurological Hospital (CETD), Hospices Civils de Lyon, Lyon, France
| | - Irene Tracey
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Xu H, Xu C, Guo Y, Hu Y, Fang Q, Yang D, Niu X, Bai G. Abnormal longitudinal changes of structural covariance networks of cortical thickness in mild traumatic brain injury with posttraumatic headache. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111012. [PMID: 38641235 DOI: 10.1016/j.pnpbp.2024.111012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND It is widely acknowledged that mild traumatic brain injury (MTBI) leads to either functionally or anatomically abnormal brain regions. Structural covariance networks (SCNs) that depict coordinated regional maturation patterns are commonly employed for investigating brain structural abnormalities. However, the dynamic nature of SCNs in individuals with MTBI who suffer from posttraumatic headache (PTH) and their potential as biomarkers have hitherto not been investigated. METHODS This study included 36 MTBI patients with PTH and 34 well-matched healthy controls (HCs). All participants underwent magnetic resonance imaging scans and were assessed with clinical measures during the acute and subacute phases. Structural covariance matrices of cortical thickness were generated for each group, and global as well as nodal network measures of SCNs were computed. RESULTS MTBI patients with PTH demonstrated reduced headache impact and improved cognitive function from the acute to subacute phase. In terms of global network metrics, MTBI patients exhibited an abnormal normalized clustering coefficient compared to HCs during the acute phase, although no significant difference in the normalized clustering coefficient was observed between the groups during the subacute phase. Regarding nodal network metrics, MTBI patients displayed alterations in various brain regions from the acute to subacute phase, primarily concentrated in the prefrontal cortex (PFC). CONCLUSIONS These findings indicate that the cortical thickness topography in the PFC determines the typical structural-covariance topology of the brain and may serve as an important biomarker for MTBI patients with PTH.
Collapse
Affiliation(s)
- Hui Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou 325007, China.
| | - Cheng Xu
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yunyu Guo
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yike Hu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Qiaofang Fang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Dandan Yang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xuan Niu
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
3
|
Santos Cuevas DC, Campos Ruiz RE, Collina DD, Tierra Criollo CJ. Effective brain connectivity related to non-painful thermal stimuli using EEG. Biomed Phys Eng Express 2024; 10:045044. [PMID: 38834037 DOI: 10.1088/2057-1976/ad53ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Understanding the brain response to thermal stimuli is crucial in the sensory experience. This study focuses on non-painful thermal stimuli, which are sensations induced by temperature changes without causing discomfort. These stimuli are transmitted to the central nervous system through specific nerve fibers and are processed in various regions of the brain, including the insular cortex, the prefrontal cortex, and anterior cingulate cortex. Despite the prevalence of studies on painful stimuli, non-painful thermal stimuli have been less explored. This research aims to bridge this gap by investigating brain functional connectivity during the perception of non-painful warm and cold stimuli using electroencephalography (EEG) and the partial directed coherence technique (PDC). Our results demonstrate a clear contrast in the direction of information flow between warm and cold stimuli, particularly in the theta and alpha frequency bands, mainly in frontal and temporal regions. The use of PDC highlights the complexity of brain connectivity during these stimuli and reinforces the existence of different pathways in the brain to process different types of non-painful warm and cold stimuli.
Collapse
Affiliation(s)
| | | | - Denny Daniel Collina
- Department of Electronics and Biomedical Engineering, Federal Center for Technological Education of Minas Gerais, Belo Horizonte, 30510-000, Brazil
| | | |
Collapse
|
4
|
Mandloi S, Syed M, Ailes I, Shoraka O, Leiby B, Miao J, Thalheimer S, Heller J, Mohamed FB, Sharan A, Harrop J, Krisa L, Alizadeh M. Exploring Functional Connectivity in Chronic Spinal Cord Injury Patients With Neuropathic Pain Versus Without Neuropathic Pain. Neurotrauma Rep 2024; 5:16-27. [PMID: 38249324 PMCID: PMC10797176 DOI: 10.1089/neur.2023.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
The great majority of spinal cord injury (SCI) patients have debilitating chronic pain. Despite decades of research, these pain pathways of neuropathic pain (NP) are unknown. SCI patients have been shown to have abnormal brain pain pathways. We hypothesize that SCI NP patients' pain matrix is altered compared to SCI patients without NP. This study examines the functional connectivity (FC) in SCI patients with moderate-severe chronic NP compared to SCI patients with mild-no NP. These groups were compared to control subjects. The Neuropathic Pain Questionnaire and neurological evaluation based on the International Standard Neurological Classification of SCI were utilized to define the severity and level of injury. Of the 10 SCI patients, 7 (48.6 ± 17.02 years old, 6 male and 1 female) indicated that they had NP and 3 did not have NP (39.33 ± 8.08 years old, 2 male and 1 female). Ten uninjured neurologically intact participants were used as controls (24.8 ± 4.61 years old, 5 male and 5 female). FC metrics were obtained from the comparisons of resting-state functional magnetic resonance imaging among our various groups (controls, SCI with NP, and SCI without NP). For each comparison, a region-of-interest (ROI)-to-ROI connectivity analysis was pursued, encompassing a total of 175 ROIs based on a customized atlas derived from the AAL3 atlas. The analysis accounted for covariates such as age and sex. To correct for multiple comparisons, a strict Bonferroni correction was applied with a significance level of p < 0.05/NROIs. When comparing SCI patients with moderate-to-severe pain to those with mild-to-no pain, specific thalamic nuclei had altered connections. These nuclei included: medial pulvinar; lateral pulvinar; medial geniculate nucleus; lateral geniculate nucleus; and mediodorsal magnocellular nucleus. There was increased FC between the lateral geniculate nucleus and the anteroventral nucleus in NP post-SCI. Our analysis additionally highlights the relationships between the frontal lobe and temporal lobe with pain. This study successfully identifies thalamic neuroplastic changes that occur in patients with SCI who develop NP. It additionally underscores the pain matrix and involvement of the frontal and temporal lobes as well. Our findings complement that the development of NP post-SCI involves cognitive, emotional, and behavioral influences.
Collapse
Affiliation(s)
- Shreya Mandloi
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mashaal Syed
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Isaiah Ailes
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Omid Shoraka
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Benjamin Leiby
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jingya Miao
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sara Thalheimer
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joshua Heller
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Feroze B. Mohamed
- Thomas Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ashwini Sharan
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James Harrop
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Laura Krisa
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mahdi Alizadeh
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Thomas Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Komboz F, Mehsein Z, Kobaïter-Maarrawi S, Chehade HD, Maarrawi J. Epidural Posterior Insular Stimulation Alleviates Neuropathic Pain Manifestations in Rats With Spared Nerve Injury Through Endogenous Opioid System. Neuromodulation 2023; 26:1602-1611. [PMID: 35219569 DOI: 10.1016/j.neurom.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Neuropathic pain (NP) is defined as constant disabling pain secondary to a lesion or disease of the somatosensory nervous system. This condition is particularly difficult to treat because it often remains resistant to most treatment strategies. Despite the recent diversification of neurostimulation methods, some patients still suffer from refractory pain syndromes. The central role of the posterior insular cortex (PI) in the modulation of pain signaling and perception has been repeatedly suggested. The objective of this study is to assess whether epidural insular stimulation (IS) could reverse NP behavior. MATERIALS AND METHODS A total of 53 adult Sprague-Dawley rats received left-sided spared nerve injury (SNI) or Sham-SNI to induce NP symptoms. Afterward, epidural electrodes were implanted over the right PI. After two weeks of postoperative recovery, three groups of SNI-operated rats each received a different stimulation modality: Sham-IS, low-frequency-IS (LF-IS), or high-frequency-IS (HF-IS). Behavioral and functional tests were conducted before and after IS. They comprised the acetone test, pinprick test, von Frey test, and sciatic functional index. An additional LF-IS group received a dose of opioid antagonist naloxone before IS. Intergroup means were compared through independent-samples t-tests, and pre- and post-IS means in the same group were compared through paired t-tests. RESULTS We found a significant reduction of cold allodynia (p = 0.019), mechanical hyperalgesia (p = 0.040), and functional disability (p = 0.005) after LF-IS but not HF-IS. Mechanical allodynia only showed a tendency to decrease after LF-IS. The observed analgesic effects were reversed by opioid antagonist administration. CONCLUSION These results suggest a significant reversal of NP symptoms after LF-IS and offer additional evidence that IS might be beneficial in the treatment of resistant NP syndromes through endogenous opioid secretion. Relying on our novel epidural IS model, further fine tuning of stimulation parameters might be necessary to achieve optimal therapeutic effects.
Collapse
Affiliation(s)
- Fares Komboz
- Laboratory of Research in Neuroscience, Pôle Technologie Santé, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Zeinab Mehsein
- Laboratory of Research in Neuroscience, Pôle Technologie Santé, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Sandra Kobaïter-Maarrawi
- Laboratory of Research in Neuroscience, Pôle Technologie Santé, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon.
| | - Hiba-Douja Chehade
- Laboratory of Research in Neuroscience, Pôle Technologie Santé, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Joseph Maarrawi
- Laboratory of Research in Neuroscience, Pôle Technologie Santé, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon; Department of Neurosurgery, Hôtel-Dieu de France Hospital, Beirut, Lebanon
| |
Collapse
|
6
|
Yang HJ, Wu HM, Li XH, Jin R, Zhang L, Dong T, Zhou XQ, Zhang B, Zhang QJ, Mao CP. Functional disruptions of the brain network in low back pain: a graph-theoretical study. Neuroradiology 2023; 65:1483-1495. [PMID: 37608218 DOI: 10.1007/s00234-023-03209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE The aim of this study was to investigate alterations in the topological organization of whole-brain functional networks in patients with chronic low back pain (CLBP) and characterize the relationship of these alterations with pain characteristics. METHODS Thirty-three CLBP patients and 34 matched healthy controls (HCs) underwent fMRI scans. A graph-theoretical approach was applied to identify brain network changes in patients suffering from chronic low back pain given its nonspecific etiology and complexity. Graph theory-based analysis was used to construct functional connectivity matrices and extract the features of small-world networks of the brain in both groups. Then, the whole-brain functional connectivity differences were characterized by network-based statistics (NBS) analysis, and the relationship between the altered brain features and clinical measures was explored. RESULTS At the global level, patients with CLBP showed significantly decreased gamma, sigma, global efficiency, and local efficiency and increased lambda and shortest path length compared with HCs. At the regional level, there were deficits in nodal efficiency within the default mode network and salience network. NBS analysis demonstrated that decreased functional connectivity was present in the CLBP patients, mainly in the frontolimbic circuit and temporal regions. Furthermore, aspects of topological dysfunctions in CLBP were correlated with pain severity. CONCLUSION This study highlighted the aberrant topological organization of functional brain networks in CLBP, which may shed light on the pathophysiology of CLBP and support the development of pain management approaches.
Collapse
Affiliation(s)
- Hua Juan Yang
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xi'wu Road, Xi'an, 710004, Shaanxi, China
| | - Hong Mei Wu
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xi'wu Road, Xi'an, 710004, Shaanxi, China
| | - Xiao Hui Li
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xi'wu Road, Xi'an, 710004, Shaanxi, China
| | - Rui Jin
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xi'wu Road, Xi'an, 710004, Shaanxi, China
| | - Lei Zhang
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xi'wu Road, Xi'an, 710004, Shaanxi, China
| | - Ting Dong
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xi'wu Road, Xi'an, 710004, Shaanxi, China
| | - Xiao Qian Zhou
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xi'wu Road, Xi'an, 710004, Shaanxi, China
| | - Bo Zhang
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xi'wu Road, Xi'an, 710004, Shaanxi, China
| | - Qiu Juan Zhang
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xi'wu Road, Xi'an, 710004, Shaanxi, China.
| | - Cui Ping Mao
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xi'wu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
7
|
Li Z, Zhang H, Wang Y, Li Y, Li Q, Zhang L. The distinctive role of menthol in pain and analgesia: Mechanisms, practices, and advances. Front Mol Neurosci 2022; 15:1006908. [PMID: 36277488 PMCID: PMC9580369 DOI: 10.3389/fnmol.2022.1006908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Menthol is an important flavoring additive that triggers a cooling sensation. Under physiological condition, low to moderate concentrations of menthol activate transient receptor potential cation channel subfamily M member 8 (TRPM8) in the primary nociceptors, such as dorsal root ganglion (DRG) and trigeminal ganglion, generating a cooling sensation, whereas menthol at higher concentration could induce cold allodynia, and cold hyperalgesia mediated by TRPM8 sensitization. In addition, the paradoxical irritating properties of high concentrations of menthol is associated with its activation of transient receptor potential cation channel subfamily A member 1 (TRPA1). Under pathological situation, menthol activates TRPM8 to attenuate mechanical allodynia and thermal hyperalgesia following nerve injury or chemical stimuli. Recent reports have recapitulated the requirement of central group II/III metabotropic glutamate receptors (mGluR) with endogenous κ-opioid signaling pathways for menthol analgesia. Additionally, blockage of sodium channels and calcium influx is a determinant step after menthol exposure, suggesting the possibility of menthol for pain management. In this review, we will also discuss and summarize the advances in menthol-related drugs for pathological pain treatment in clinical trials, especially in neuropathic pain, musculoskeletal pain, cancer pain and postoperative pain, with the aim to find the promising therapeutic candidates for the resolution of pain to better manage patients with pain in clinics.
Collapse
Affiliation(s)
- Ziping Li
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Haoyue Zhang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yigang Wang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Qing Li,
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Linlin Zhang,
| |
Collapse
|
8
|
Enhanced Temporal Coupling between Thalamus and Dorsolateral Prefrontal Cortex Mediates Chronic Low Back Pain and Depression. Neural Plast 2021; 2021:7498714. [PMID: 34659398 PMCID: PMC8519723 DOI: 10.1155/2021/7498714] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Numerous neuroimaging studies have demonstrated that the brain plasticity is associated with chronic low back pain (cLBP). However, there is a lack of knowledge regarding the underlying mechanisms of thalamic pathways for chronic pain and psychological effects in cLBP caused by lumbar disc herniation (LDH). Combining psychophysics and magnetic resonance imaging (MRI), we investigated the structural and functional brain plasticity in 36 patients with LDH compared with 38 age- and gender-matched healthy controls. We found that (1) LDH patients had increased psychophysical disturbs (i.e., depression and anxiety), and depression (Beck-Depression Inventory, BDI) was found to be an outstanding significant factor to predict chronic pain (short form of the McGill Pain Questionnaire, SF-MPQ); (2) the LDH group showed significantly smaller fractional anisotropy values in the region of posterior corona radiate while gray matter volumes were comparable in both groups; (3) resting state functional connectivity analysis revealed that LDH patients exhibited increased temporal coupling between the thalamus and dorsolateral prefrontal cortex (DLPFC), which further mediate the relationship from chronic pain to depression. Our results emphasized that thalamic pathways underlying prefrontal cortex might play a key role in regulating chronic pain and depression of the pathophysiology of LDH.
Collapse
|
9
|
Najafi P, Misery L, Carré JL, Ben Salem D, Dufor O. Itch Matrixes. Front Med (Lausanne) 2021; 8:636904. [PMID: 33718409 PMCID: PMC7943862 DOI: 10.3389/fmed.2021.636904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Peyman Najafi
- Univ Brest, LIEN, Brest, France.,Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique/Université Paris-Saclay, Gif-sur-Yvette, France
| | - Laurent Misery
- Univ Brest, LIEN, Brest, France.,University Hospital of Brest, Department of Dermatology, Brest, France
| | | | - Douraied Ben Salem
- Univ Brest, LATIM, INSERM UMR, Brest, France.,University Hospital of Brest, Department of Radiology, Brest, France
| | - Olivier Dufor
- Univ Brest, LIEN, Brest, France.,L@bISEN Yncréa Ouest, ISEN, Brest, France
| |
Collapse
|
10
|
Abstract
Human and animal imaging studies demonstrated that chronic pain profoundly alters the structure and the functionality of several brain regions. In this article, we conducted a longitudinal and multimodal study to assess how chronic pain affects the brain. Using the spared nerve injury model which promotes both long-lasting mechanical and thermal allodynia/hyperalgesia but also pain-associated comorbidities, we showed that neuropathic pain deeply modified the intrinsic organization of the brain functional network 1 and 2 months after injury. We found that both functional metrics and connectivity of the part A of the retrosplenial granular cortex (RSgA) were significantly correlated with the development of neuropathic pain behaviours. In addition, we found that the functional RSgA connectivity to the subiculum and the prelimbic system are significantly increased in spared nerve injury animals and correlated with peripheral pain thresholds. These brain regions were previously linked to the development of comorbidities associated with neuropathic pain. Using a voxel-based morphometry approach, we showed that neuropathic pain induced a significant increase of the gray matter concentration within the RSgA, associated with a significant activation of both astrocytes and microglial cells. Together, functional and morphological imaging metrics of the RSgA could be used as a predictive biomarker of neuropathic pain.
Collapse
|
11
|
Dai H, Jiang C, Wu G, Huang R, Jin X, Zhang Z, Wang L, Li Y. A combined DTI and resting state functional MRI study in patients with postherpetic neuralgia. Jpn J Radiol 2020; 38:440-450. [DOI: 10.1007/s11604-020-00926-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 02/02/2020] [Indexed: 11/29/2022]
|
12
|
Forstenpointner J, Binder A, Maag R, Granert O, Hüllemann P, Peller M, Wasner G, Wolff S, Jansen O, Siebner HR, Baron R. Neuroimaging Of Cold Allodynia Reveals A Central Disinhibition Mechanism Of Pain. J Pain Res 2019; 12:3055-3066. [PMID: 31807061 PMCID: PMC6857664 DOI: 10.2147/jpr.s216508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose Allodynia refers to pain evoked by physiologically innocuous stimuli. It is a disabling symptom of neuropathic pain following a lesion within the peripheral or central nervous system. In fact, two different pathophysiological mechanisms of cold allodynia (ie, hypersensitivity to innocuous cold) have been proposed. The peripheral sensitization of nociceptive neurons can produce cold allodynia, which can be induced experimentally by a topical application of menthol. An alternative mechanism involves reduced inhibition of central pain processing by innocuous cold stimuli. A model to induce the latter type of allodynia is the conduction block of peripheral A-fiber input. Patients and methods In the presented study, functional MRI was used to analyze these two different experimental models of cold allodynia. In order to identify the underlying cerebral activation patterns of both mechanisms, the application of menthol and the induction of a mechanical A-fiber blockade were studied in healthy volunteers. Results The block-induced cold allodynia caused significantly stronger activation of the medial polymodal pain processing pathway, including left medial thalamus, anterior cingulate cortex, and medial prefrontal cortex. In contrast, menthol-induced cold allodynia caused significantly stronger activity of the left lateral thalamus as well as the primary and secondary somatosensory cortices, key structures of the lateral discriminative pathway of pain processing. Mean pain intensity did not differ between both forms of cold allodynia. Conclusion Experimental cold allodynia is mediated in different cerebral areas depending on the underlying pathophysiology. The activity pattern associated with block-induced allodynia confirms a fundamental integration between painful and non-painful temperature sensation, ie, the cold-induced inhibition of cold pain.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Binder
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Rainer Maag
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Oliver Granert
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Philipp Hüllemann
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Martin Peller
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gunnar Wasner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stefan Wolff
- Institute of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Olav Jansen
- Institute of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Hartwig Roman Siebner
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Description, Copenhagen, Denmark.,Institute for Clinical Medicine, Faculty of Health and Clinical Sciences, University of Copenhagen, Description, Copenhagen, Denmark
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
13
|
King M, Carnahan H. Revisiting the brain activity associated with innocuous and noxious cold exposure. Neurosci Biobehav Rev 2019; 104:197-208. [DOI: 10.1016/j.neubiorev.2019.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
|
14
|
Knowing the Neuronal Mechanism of Spontaneous Pain to Treat Chronic Pain in the Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:115-124. [DOI: 10.1007/978-981-13-1756-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
15
|
Weyer-Menkhoff I, Lötsch J. Human pharmacological approaches to TRP-ion-channel-based analgesic drug development. Drug Discov Today 2018; 23:2003-2012. [PMID: 29969684 DOI: 10.1016/j.drudis.2018.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/07/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
The discovery of novel analgesic drug targets is an active research topic owing to insufficient treatment options for persisting pain. Modulators of temperature-sensing transient receptor potential ion channels (thermoTRPs), in particular TRPV1, TRPV2, TRPM8 and TRPA1, have reached clinical development. This requires access for TRP channels and the effects of specific modulators in humans. This is currently possible via (i) the study of TRP channel function in human-derived cell lines, (ii) immunohistochemical visualization of TRP channel expression in human tissues, (iii) human experimental pain models employing sensitization by means of topical application of TRP channel activators including capsaicin (TRPV1), menthol (TRPM8), mustard oil and cinnamaldehyde (TRPA1), and (iv) the study of phenotypic consequences of human TRP gene variants.
Collapse
Affiliation(s)
- Iris Weyer-Menkhoff
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
16
|
Abstract
The sensation of pain plays a vital protecting role, alerting organisms about potentially damaging stimuli. Tissue injury is detected by nerve endings of specialized peripheral sensory neurons called nociceptors that are equipped with different ion channels activated by thermal, mechanic, and chemical stimuli. Several transient receptor potential channels have been identified as molecular transducers of thermal stimuli in pain-sensing neurons. Skin injury or inflammation leads to increased sensitivity to thermal and mechanic stimuli, clinically defined as allodynia or hyperalgesia. This hypersensitivity is also characteristic of systemic inflammatory disorders and neuropathic pain conditions. Mechanisms of thermal hyperalgesia include peripheral sensitization of nociceptor afferents and maladaptive changes in pain-encoding neurons within the central nervous system. An important aspect of pain management involves attempts to minimize the development of nociceptor hypersensitivity. However, knowledge about the cellular and molecular mechanisms causing thermal hyperalgesia and allodynia in human subjects is still limited, and such knowledge would be an essential step for the development of more effective therapies.
Collapse
Affiliation(s)
- Félix Viana
- Alicante Institute of Neurosciences, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Spain.
| |
Collapse
|
17
|
Seminowicz DA, Moayedi M. The Dorsolateral Prefrontal Cortex in Acute and Chronic Pain. THE JOURNAL OF PAIN 2017; 18:1027-1035. [PMID: 28400293 PMCID: PMC5581265 DOI: 10.1016/j.jpain.2017.03.008] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023]
Abstract
The dorsolateral prefrontal cortex (DLPFC) is a functionally and structurally heterogeneous region and a key node of several brain networks, implicated in cognitive, affective, and sensory processing. As such, the DLPFC is commonly activated in experimental pain studies, and shows abnormally increased function in chronic pain populations. Furthermore, several studies have shown that some chronic pains are associated with decreased left DLPFC gray matter and that successful interventions can reverse this structural abnormality. In addition, studies have indicated that noninvasive stimulation of the left DLPFC effectively treats some chronic pains. In this article, we review the neuroimaging literature regarding the role of the DLPFC and its potential as a therapeutic target for chronic pain conditions, including studies showing the involvement of the DLPFC in encoding and modulating acute pain and studies demonstrating the reversal of DLPFC functional and structural abnormalities after successful interventions for chronic pain. We also review studies of noninvasive brain stimulation of the DLPFC showing acute pain modulation and some effectiveness as a treatment for certain chronic pain conditions. We further discuss the network architecture of the DLPFC, and postulate mechanisms by which DLPFC stimulation alleviates chronic pain. Future work testing these mechanisms will allow for more effective therapies. PERSPECTIVE The structure and function of the DLPFC is abnormal in some chronic pain conditions. Upon successful resolution of pain, these abnormalities are reversed. Understanding the underlying mechanisms and the role of this region can lead to the development of an effective therapeutic target for some chronic pain conditions.
Collapse
Affiliation(s)
- David A Seminowicz
- Department of Neural and Pain Sciences, University of Maryland, School of Dentistry, Baltimore, Maryland; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, Maryland.
| | - Massieh Moayedi
- Faculty of Dentistry, and University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Eisenblätter A, Lewis R, Dörfler A, Forster C, Zimmermann K. Brain mechanisms of abnormal temperature perception in cold allodynia induced by ciguatoxin. Ann Neurol 2017; 81:104-116. [PMID: 27997033 DOI: 10.1002/ana.24841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Cold allodynia occurs as a major symptom of neuropathic pain states. It remains poorly treated with current analgesics. Ciguatoxins (CTXs), ichthyosarcotoxins that cause ciguatera, produce a large peripheral sensitization to dynamic cold stimuli in Aδ-fibers by activating sodium channels without producing heat or mechanical allodynia. We used CTXs as a surrogate model of cold allodynia to dissect the framework of cold allodynia-activated central pain pathways. METHODS Reversible cold allodynia was induced in healthy male volunteers by shallow intracutaneous injection of low millimolar concentrations of CTX into the dorsal skin of the forefoot. Cold and warm stimuli were delivered to the treated and the control site using a Peltier-driven thermotest device. Functional magnetic resonance imaging (fMRI) scans were acquired with a 3T MRI scanner using a blood oxygen level-dependent (BOLD) protocol. RESULTS The CTX-induced substantial peripheral sensitization to cooling stimuli in Aδ-fibers is particularly retrieved in BOLD changes due to dynamic temperature changes and less during constant cooling. Brain areas that responded during cold allodynia were almost always located bilaterally and appeared in the medial insula, medial cingulate cortex, secondary somatosensory cortex, frontal areas, and cerebellum. Whereas these areas also produced changes in BOLD signal during the dynamic warming stimulus on the control site, they remained silent during the warming stimuli on the injected site. INTERPRETATION We describe the defining feature of the cold allodynia pain percept in the human brain and illustrate why ciguatera sufferers often report a perceptual temperature reversal. ANN NEUROL 2017;81:104-116.
Collapse
Affiliation(s)
- Anneka Eisenblätter
- Department of Anesthesiology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.,Institute for Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Richard Lewis
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Arnd Dörfler
- Department of Neuroradiology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Clemens Forster
- Institute for Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Zimmermann
- Department of Anesthesiology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
19
|
Activity and connectivity changes of central projection areas revealed by functional magnetic resonance imaging in Na V1.8-deficient mice upon cold signaling. Sci Rep 2017; 7:543. [PMID: 28373680 PMCID: PMC5428718 DOI: 10.1038/s41598-017-00524-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
The voltage-gated sodium channel subtype NaV1.8 is expressed in the peripheral nervous system in primary afferent nociceptive C-fibers and is essential for noxious cold signaling. We utilized functional magnetic resonance imaging on NaV1.8-deficient (NaV1.8−/−) compared with wildtype (WT) mice to identify brain structures decoding noxious cold and/or heat signals. In NaV1.8−/− mice functional activity patterns, activated volumes and BOLD signal amplitudes are significantly reduced upon noxious cold stimulation whereas differences of noxious heat processing are less pronounced. Graph-theoretical analysis of the functional connectivity also shows dramatic alterations in noxious cold sensation in NaV1.8−/− mice and clearly reduced interactions between certain brain structures. In contrast, upon heat stimulation qualitatively quite the same functional connectivity pattern and consequently less prominent connectivity differences were observed between NaV1.8−/− and WT mice. Thus, the fact that NaV1.8−/− mice do not perceive nociceptive aspects of strong cooling in contrast to their WT littermates seems not only to be a pure peripheral phenomenon with diminished peripheral transmission, but also consists of upstream effects leading to altered subsequent nociceptive processing in the central nervous system and consequently altered connectivity between pain-relevant brain structures.
Collapse
|
20
|
Barati Z, Zakeri I, Pourrezaei K. Functional near-infrared spectroscopy study on tonic pain activation by cold pressor test. NEUROPHOTONICS 2017; 4:015004. [PMID: 28386576 PMCID: PMC5358549 DOI: 10.1117/1.nph.4.1.015004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/28/2017] [Indexed: 05/05/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) has recently been suggested for monitoring cortical hemodynamic response to experimental and clinical acute pain. However, the hemodynamic response to a tonic, noxious cold stimulus, and its relation with subjective pain sensation is not fully characterized. We investigated the relationship between pain threshold and tolerance and the evoked hemodynamic response to cold pressor tests (CPTs) at varying intensities and explored the gender effect. Twenty-one healthy individuals (10 males and 11 females) performed four CPTs at 1°C, 5°C, 10°C, and 15°C. Deoxyhemoglobin (HHb) and oxyhemoglobin ([Formula: see text]) were measured continuously on the forehead by two "far" and two "near" channels in addition to pain scores, threshold, and tolerance. We found a significant within-subject correlation between pain threshold and the immediate [Formula: see text] response at the right frontal region. Gender difference and asymmetrical activation were observed in the "far" channels but not the "near" channels, suggesting a hemispheric preference in response to noxious cold stimuli. No gender difference was found in pain threshold, tolerance, or scores. This research adds to the body of literature suggesting the use of fNIRS for bedside assessment of pain in addition to behavioral and subjective measures for comprehensive, multimodal pain management.
Collapse
Affiliation(s)
- Zeinab Barati
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, Pennsylvania, United States
- Address all correspondence to: Zeinab Barati, E-mail:
| | - Issa Zakeri
- Drexel University, Department of Epidemiology and Biostatistics, School of Public Health, Philadelphia, Pennsylvania, United States
| | - Kambiz Pourrezaei
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, Pennsylvania, United States
| |
Collapse
|
21
|
Alomar S, Bakhaidar M. Neuroimaging of neuropathic pain: review of current status and future directions. Neurosurg Rev 2016; 41:771-777. [DOI: 10.1007/s10143-016-0807-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/24/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
22
|
Altmann C, Hardt S, Fischer C, Heidler J, Lim HY, Häussler A, Albuquerque B, Zimmer B, Möser C, Behrends C, Koentgen F, Wittig I, Schmidt MH, Clement AM, Deller T, Tegeder I. Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy. Neurobiol Dis 2016; 96:294-311. [DOI: 10.1016/j.nbd.2016.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/26/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022] Open
|
23
|
Naro A, Milardi D, Russo M, Terranova C, Rizzo V, Cacciola A, Marino S, Calabro RS, Quartarone A. Non-invasive Brain Stimulation, a Tool to Revert Maladaptive Plasticity in Neuropathic Pain. Front Hum Neurosci 2016; 10:376. [PMID: 27512368 PMCID: PMC4961691 DOI: 10.3389/fnhum.2016.00376] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022] Open
Abstract
Neuromodulatory effects of non-invasive brain stimulation (NIBS) have been extensively studied in chronic pain. A hypothetic mechanism of action would be to prevent or revert the ongoing maladaptive plasticity within the pain matrix. In this review, the authors discuss the mechanisms underlying the development of maladaptive plasticity in patients with chronic pain and the putative mechanisms of NIBS in modulating synaptic plasticity in neuropathic pain conditions.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi "Bonino-Pulejo" Messina, Italy
| | - Demetrio Milardi
- IRCCS Centro Neurolesi "Bonino-Pulejo"Messina, Italy; Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy
| | | | - Carmen Terranova
- Department of Clinical and Experimental Medicine, University of Messina Messina, Italy
| | - Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina Messina, Italy
| | - Alberto Cacciola
- IRCCS Centro Neurolesi "Bonino-Pulejo"Messina, Italy; Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino-Pulejo" Messina, Italy
| | | | - Angelo Quartarone
- IRCCS Centro Neurolesi "Bonino-Pulejo"Messina, Italy; Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy
| |
Collapse
|
24
|
Tanasescu R, Cottam WJ, Condon L, Tench CR, Auer DP. Functional reorganisation in chronic pain and neural correlates of pain sensitisation: A coordinate based meta-analysis of 266 cutaneous pain fMRI studies. Neurosci Biobehav Rev 2016; 68:120-133. [PMID: 27168346 PMCID: PMC5554296 DOI: 10.1016/j.neubiorev.2016.04.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 12/19/2022]
Abstract
Maladaptive mechanisms of pain processing in chronic pain conditions (CP) are poorly understood. We used coordinate based meta-analysis of 266 fMRI pain studies to study functional brain reorganisation in CP and experimental models of hyperalgesia. The pattern of nociceptive brain activation was similar in CP, hyperalgesia and normalgesia in controls. However, elevated likelihood of activation was detected in the left putamen, left frontal gyrus and right insula in CP comparing stimuli of the most painful vs. other site. Meta-analysis of contrast maps showed no difference between CP, controls, mood conditions. In contrast, experimental hyperalgesia induced stronger activation in the bilateral insula, left cingulate and right frontal gyrus. Activation likelihood maps support a shared neural pain signature of cutaneous nociception in CP and controls. We also present a double dissociation between neural correlates of transient and persistent pain sensitisation with general increased activation intensity but unchanged pattern in experimental hyperalgesia and, by contrast, focally increased activation likelihood, but unchanged intensity, in CP when stimulated at the most painful body part.
Collapse
Affiliation(s)
- Radu Tanasescu
- Clinical Neurology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK; Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
| | - William J Cottam
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK; Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
| | - Laura Condon
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK; Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
| | - Christopher R Tench
- Clinical Neurology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Dorothee P Auer
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK; Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
25
|
Russo A, Esposito F, Conte F, Fratello M, Caiazzo G, Marcuccio L, Giordano A, Tedeschi G, Tessitore A. Functional interictal changes of pain processing in migraine with ictal cutaneous allodynia. Cephalalgia 2016; 37:305-314. [DOI: 10.1177/0333102416644969] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective A prospective clinical imaging study has been conducted to investigate pain processing functional pathways during trigeminal heat stimulation (THS) in patients with migraine without aura experiencing ictal cutaneous allodynia (CA) (MwoA CA+). Methods Using whole-brain BOLD-fMRI, functional response to THS at three different intensities (41°, 51° and 53℃) was investigated interictally in 20 adult MwoA CA+ patients compared with 20 MwoA patients without ictal CA (MwoA CA−) and 20 healthy controls (HCs). Secondary analyses evaluated associations between BOLD signal change and clinical features of migraine. Results During moderate-noxious THS (51℃), we observed a significantly greater activation in (a) the anterior cingulate cortex in MwoA CA+ patients compared to HCs and (b) the middle frontal gyrus in MwoA CA+ patients compared to both MwoA CA− patients and HCs. Furthermore, during high-noxious THS (53℃) a significantly decreased activation in the secondary somatosensory cortices was observed in (a) MwoA CA− patients compared to both MwoA CA+ patients and HCs and (b) MwoA CA+ patients compared to HCs. CA severity was positively correlated with the secondary somatosensory cortices activation. Conclusions Our findings suggest that CA may be subtended by both a dysfunctional analgesic compensatory mechanism and an abnormal internal representation of pain in migraine patients.
Collapse
Affiliation(s)
- Antonio Russo
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
- MRI Research Center SUN-FISM, Second University of Naples, Italy
- Institute for Diagnosis and Care ‘Hermitage Capodimonte’, Italy
| | | | - Francesca Conte
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
| | - Michele Fratello
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
- Department of Medicine and Surgery, University of Salerno, Italy
| | | | - Laura Marcuccio
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
| | - Alfonso Giordano
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
- MRI Research Center SUN-FISM, Second University of Naples, Italy
| | - Gioacchino Tedeschi
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
- MRI Research Center SUN-FISM, Second University of Naples, Italy
- Institute for Diagnosis and Care ‘Hermitage Capodimonte’, Italy
| | - Alessandro Tessitore
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
- MRI Research Center SUN-FISM, Second University of Naples, Italy
| |
Collapse
|
26
|
Terrighena EL, Shao R, Lee TMC. Impact of concurrent cognitive processing on cold pain perception: Implications for pain management and its neurobiological basis. APPLIED NEUROPSYCHOLOGY-ADULT 2016; 24:81-91. [PMID: 27078504 DOI: 10.1080/23279095.2015.1100618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Findings for heat pain have shown consistent pain attenuation through concurrent cognitive task completion; but only a minimal amount of studies have explored that for cold pain. This study investigated the direct impact of two well-established cognitive tasks on cold pain tolerance. In a within-subject design, 36 female Hong Kong locals were required to complete a baseline pain tolerance measurement, induced by the well-established Cold Pressor Test. This was followed by the counterbalanced presentation of the Colour Stroop or the Judgment of Line Orientation task with and without concurrent pain administration. As suggested by the Limited Capacity, Multiple Resource, and Cognitive-Affective Models, participants were expected to tolerate pain for significantly longer durations when they perform either concurrent Colour Stroop or concurrent Judgment of Line Orientation tasks compared to baseline measures with no concurrent task. The findings clearly indicated increased pain tolerance times during task completion compared with baseline measures, providing support for the a-priori hypothesis. The results contribute to existing literature by confirming increased cold pain tolerance during selective attention to cognitive tasks and extending this finding to tasks previously established in heat pain but not for cold pain research.
Collapse
Affiliation(s)
- Esslin L Terrighena
- a Laboratory of Neuropsychology , The University of Hong Kong , Hong Kong , Hong Kong Special Administrative Region of the People's Republic of China.,b Laboratory of Social Cognitive Affective Neuroscience , The University of Hong Kong , Hong Kong , Hong Kong Special Administrative Region of the People's Republic of China
| | - Robin Shao
- a Laboratory of Neuropsychology , The University of Hong Kong , Hong Kong , Hong Kong Special Administrative Region of the People's Republic of China.,b Laboratory of Social Cognitive Affective Neuroscience , The University of Hong Kong , Hong Kong , Hong Kong Special Administrative Region of the People's Republic of China
| | - Tatia M C Lee
- a Laboratory of Neuropsychology , The University of Hong Kong , Hong Kong , Hong Kong Special Administrative Region of the People's Republic of China.,b Laboratory of Social Cognitive Affective Neuroscience , The University of Hong Kong , Hong Kong , Hong Kong Special Administrative Region of the People's Republic of China.,c The State Key Laboratory of Brain and Cognitive Sciences , The University of Hong Kong , Hong Kong , Hong Kong Special Administrative Region of the People's Republic of China.,d Institute of Clinical Neuropsychology , The University of Hong Kong , Hong Kong , Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
27
|
|
28
|
Kogler L, Müller VI, Chang A, Eickhoff SB, Fox PT, Gur RC, Derntl B. Psychosocial versus physiological stress - Meta-analyses on deactivations and activations of the neural correlates of stress reactions. Neuroimage 2015; 119:235-51. [PMID: 26123376 PMCID: PMC4564342 DOI: 10.1016/j.neuroimage.2015.06.059] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/09/2015] [Accepted: 06/21/2015] [Indexed: 12/13/2022] Open
Abstract
Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended.
Collapse
Affiliation(s)
- Lydia Kogler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany; Jülich-Aachen-Research Alliance, Translational Brain Medicine, Germany.
| | - Veronika I Müller
- Institute of Neuroscience und Medicine, INM-1, Research Centre Jülich, 52425 Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Amy Chang
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany; Scripps College, Claremont, CA, USA
| | - Simon B Eickhoff
- Institute of Neuroscience und Medicine, INM-1, Research Centre Jülich, 52425 Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr, San Antonio, TX 78229, USA; South Texas Veterans Administration Medical Center, San Antonio, TX, USA
| | - Ruben C Gur
- Neuropsychiatry Division, Department of Psychiatry, Medical School, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Birgit Derntl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany; Jülich-Aachen-Research Alliance, Translational Brain Medicine, Germany; Institute of Neuroscience und Medicine, INM-1, Research Centre Jülich, 52425 Jülich, Germany
| |
Collapse
|
29
|
Greaney JL, Alexander LM, Kenney WL. Sympathetic control of reflex cutaneous vasoconstriction in human aging. J Appl Physiol (1985) 2015; 119:771-82. [PMID: 26272321 DOI: 10.1152/japplphysiol.00527.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This Synthesis highlights a series of recent studies that has systematically interrogated age-related deficits in cold-induced skin vasoconstriction. In response to cold stress, a reflex increase in sympathetic nervous system activity mediates reductions in skin blood flow. Reflex vasoconstriction during cold exposure is markedly impaired in aged skin, contributing to the relative inability of healthy older adults to maintain core temperature during mild cold stress in the absence of appropriate behavioral thermoregulation. This compromised reflex cutaneous vasoconstriction in healthy aging can occur as a result of functional deficits at multiple points along the efferent sympathetic reflex axis, including blunted sympathetic outflow directed to the skin vasculature, reduced presynaptic neurotransmitter synthesis and/or release, and altered end-organ responsiveness at several loci, in addition to potential alterations in afferent thermoreceptor function. Arguments have been made that the relative inability of aged skin to appropriately constrict is due to the aging cutaneous arterioles themselves, whereas other data point to the neural circuitry controlling those vessels. The argument presented herein provides strong evidence for impaired efferent sympathetic control of the peripheral cutaneous vasculature during whole body cold exposure as the primary mechanism responsible for attenuated vasoconstriction.
Collapse
Affiliation(s)
- Jody L Greaney
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| | - W Larry Kenney
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
30
|
Wilcox CE, Mayer AR, Teshiba TM, Ling J, Smith BW, Wilcox GL, Mullins PG. The Subjective Experience of Pain: An FMRI Study of Percept-Related Models and Functional Connectivity. PAIN MEDICINE 2015; 16:2121-33. [PMID: 25989475 DOI: 10.1111/pme.12785] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Previous work suggests that the perception of pain is subjective and dependent on individual differences in physiological, emotional, and cognitive states. Functional magnetic resonance imaging (FMRI) studies have used both stimulus-related (nociceptive properties) and percept-related (subjective experience of pain) models to identify the brain networks associated with pain. Our objective was to identify the network involved in processing subjective pain during cold stimuli. METHODS The current FMRI study directly contrasted a stimulus-related model with a percept-related model during blocks of cold pain stimuli in healthy adults. Specifically, neuronal activation was modelled as a function of changes in stimulus intensity vs as a function of increasing/decreasing levels of subjective pain corresponding to changes in pain ratings. In addition, functional connectivity analyses were conducted to examine intrinsic correlations between three proposed subnetworks (sensory/discriminative, affective/motivational, and cognitive/evaluative) involved in pain processing. RESULTS The percept-related model captured more extensive activation than the stimulus-related model and demonstrated an association between higher subjective pain and activation in expected cortical (dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, insula, dorsal anterior cingulate cortex [dACC] extending into pre-supplementary motor area) and subcortical (thalamus, striatum) areas. Moreover, connectivity results supported the posited roles of dACC and insula as key relay sites during neural processing of subjective pain. In particular, anterior insula appeared to link sensory/discriminative regions with regions in the other subnetworks, and dACC appeared to serve as a hub for affective/motivational, cognitive/evaluative, and motor subnetworks. CONCLUSIONS Using a percept-related model, brain regions involved in the processing of subjective pain during the application of cold stimuli were identified. Connectivity analyses identified linkages between key subnetworks involved in processing subjective pain.
Collapse
Affiliation(s)
- Claire E Wilcox
- Department of Psychiatry, The University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Andrew R Mayer
- Mind Research Network, Albuquerque, NM 87131, USA.,Neurology Department, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA.,Psychology Department, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Terri M Teshiba
- Mind Research Network, Albuquerque, NM 87131, USA.,Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Josef Ling
- Mind Research Network, Albuquerque, NM 87131, USA
| | - Bruce W Smith
- Psychology Department, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Department of Dermatology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Paul G Mullins
- Bangor Imaging Center, School of Psychology, Bangor University, Gwynedd, LL57 2AS, UK
| |
Collapse
|
31
|
|
32
|
Yin K, Zimmermann K, Vetter I, Lewis RJ. Therapeutic opportunities for targeting cold pain pathways. Biochem Pharmacol 2015; 93:125-40. [DOI: 10.1016/j.bcp.2014.09.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022]
|
33
|
Ichesco E, Schmidt-Wilcke T, Bhavsar R, Clauw DJ, Peltier SJ, Kim J, Napadow V, Hampson JP, Kairys AE, Williams DA, Harris RE. Altered resting state connectivity of the insular cortex in individuals with fibromyalgia. THE JOURNAL OF PAIN 2014; 15:815-826.e1. [PMID: 24815079 PMCID: PMC4127388 DOI: 10.1016/j.jpain.2014.04.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/07/2014] [Accepted: 04/15/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED The insular cortex (IC) and cingulate cortex (CC) are critically involved in pain perception. Previously we demonstrated that fibromyalgia (FM) patients have greater connectivity between the insula and default mode network at rest, and that changes in the degree of this connectivity were associated with changes in the intensity of ongoing clinical pain. In this study we more thoroughly evaluated the degree of resting-state connectivity to multiple regions of the IC in individuals with FM and healthy controls. We also investigated the relationship between connectivity, experimental pain, and current clinical chronic pain. Functional connectivity was assessed using resting-state functional magnetic resonance imaging in 18 FM patients and 18 age- and sex-matched healthy controls using predefined seed regions in the anterior, middle, and posterior IC. FM patients exhibited greater connectivity between 1) right mid IC and right mid/posterior CC and right mid IC, 2) right posterior IC and left CC, and 3) right anterior IC and left superior temporal gyrus. Healthy controls displayed greater connectivity between left anterior IC and bilateral medial frontal gyrus/anterior cingulate cortex; and left posterior IC and right superior frontal gyrus. Within the FM group, greater connectivity between the IC and CC was associated with decreased pressure-pain thresholds. PERSPECTIVE These data provide further support for altered resting-state connectivity between the IC and other brain regions known to participate in pain perception/modulation, which may play a pathogenic role in conditions such as FM. We speculate that altered IC connectivity is associated with the experience of chronic pain in individuals with FM.
Collapse
Affiliation(s)
- Eric Ichesco
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, Michigan.
| | - Tobias Schmidt-Wilcke
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, Michigan; Department of Neurology, Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Rupal Bhavsar
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, Michigan; Neurology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Clauw
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, Michigan
| | - Scott J Peltier
- Functional MRI Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Jieun Kim
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Vitaly Napadow
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts; Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Radiology, Logan College of Chiropractic, Chesterfield, Missouri
| | - Johnson P Hampson
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, Michigan
| | - Anson E Kairys
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Colorado Denver, Denver, Colorado
| | - David A Williams
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, Michigan
| | - Richard E Harris
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
34
|
Patel R, Gonçalves L, Leveridge M, Mack SR, Hendrick A, Brice NL, Dickenson AH. Anti-hyperalgesic effects of a novel TRPM8 agonist in neuropathic rats: a comparison with topical menthol. Pain 2014; 155:2097-107. [PMID: 25083927 PMCID: PMC4220012 DOI: 10.1016/j.pain.2014.07.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 11/27/2022]
Abstract
Menthol has historically been used topically to alleviate various pain conditions. At low concentrations, this non-selective TRPM8 agonist elicits a cooling sensation, however higher concentrations result in cold hyperalgesia in normal subjects and paradoxically analgesia in neuropathic patients. Through behavioural and electrophysiological means, we examined whether this back-translated into a pre-clinical rodent model. Menthol was applied topically to the hind paws of naive and spinal nerve-ligated (SNL) rats. In behavioural assays, menthol did not affect withdrawal thresholds to mechanical stimulation and 10% and 40% menthol rarely sensitised withdrawals to innocuous cooling in naïve rats. However, in SNL rats, 10% and 40% menthol alleviated cold hypersensitivity. This was partly corroborated by in vivo electrophysiological recordings of dorsal horn lamina V/VI neurones. As several studies have implicated TRPM8 in analgesia, we examined whether a novel systemically available TRPM8 agonist, M8-Ag, had more potent anti-hyperalgesic effects than menthol in neuropathic rats. In vitro, M8-Ag activates TRPM8, expressed in HEK293 cells, with an EC50 of 44.97 nM. In vivo, M8-Ag inhibited neuronal responses to innocuous and noxious cooling in SNL rats with no effect in sham-operated rats. This effect was modality selective; M8-Ag did not alter neuronal responses to mechanical, heat or brush stimulation. In addition, M8-Ag attenuated behavioural hypersensitivity to innocuous cooling but not mechanical stimulation. These data suggest that menthol induced hyperalgesia is not consistently replicable in the rat and that the analgesic properties are revealed by injury. Systemic TRPM8 agonists might be beneficial in neuropathy without affecting normal cold sensitivity.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Leonor Gonçalves
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | | | | | | | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
35
|
Hasan M, Whiteley J, Bresnahan R, MacIver K, Sacco P, Das K, Nurmikko T. Somatosensory Change and Pain Relief Induced by Repetitive Transcranial Magnetic Stimulation in Patients With Central Poststroke Pain. Neuromodulation 2014; 17:731-6; discussion 736. [DOI: 10.1111/ner.12198] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/14/2014] [Accepted: 04/18/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammad Hasan
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
| | | | - Rebecca Bresnahan
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
- Radiology; The Walton Centre NHS Foundation Trust; Liverpool UK
| | - Kate MacIver
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
- Radiology; The Walton Centre NHS Foundation Trust; Liverpool UK
| | - Paul Sacco
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
- Radiology; The Walton Centre NHS Foundation Trust; Liverpool UK
| | - Kumar Das
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
| | - Turo Nurmikko
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
- Radiology; The Walton Centre NHS Foundation Trust; Liverpool UK
| |
Collapse
|
36
|
Olsen R, Andersen H, Møller H, Eskelund P, Arendt-Nielsen L. Somatosensory and vasomotor manifestations of individual and combined stimulation of TRPM8 and TRPA1 using topical L-menthol andtrans-cinnamaldehyde in healthy volunteers. Eur J Pain 2014; 18:1333-42. [DOI: 10.1002/j.1532-2149.2014.494.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2014] [Indexed: 11/09/2022]
Affiliation(s)
- R.V. Olsen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - H.H. Andersen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - H.G. Møller
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - P.W. Eskelund
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - L. Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| |
Collapse
|
37
|
Andrade DC, Borges I, Bravo GL, Bolognini N, Fregni F. Therapeutic time window of noninvasive brain stimulation for pain treatment: inhibition of maladaptive plasticity with early intervention. Expert Rev Med Devices 2014; 10:339-52. [PMID: 23668706 DOI: 10.1586/erd.12.90] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuromodulatory effects of noninvasive brain stimulation (NIBS) have been extensively studied in chronic disorders such as major depression, chronic pain and stroke. However, few studies have explored the use of these techniques in acute conditions. A possible use of NIBS in acute disorders is to prevent or reverse ongoing maladaptive plastic alterations, seemingly responsible for treatment refractoriness and detrimental behavioral changes. In this review, the authors discuss the potential role of NIBS in blocking maladaptive plasticity using the transition of acute to chronic pain in conditions such as postsurgical pain, central poststroke pain, pain after spinal cord injury and pain after traumatic brain injury as a model. The authors also present suggestions for clinical trial design using NIBS in the acute stage of illnesses.
Collapse
Affiliation(s)
- Dafne C Andrade
- Laboratory of Neuromodulation, Spaulding Rehabilitation Hospital, 125 Nashua Street 727, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
38
|
Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: A review. Pain 2013; 154 Suppl 1:S29-S43. [PMID: 24021862 DOI: 10.1016/j.pain.2013.09.001] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/19/2013] [Accepted: 09/02/2013] [Indexed: 01/18/2023]
|
39
|
Andersen H, Olsen R, Møller H, Eskelund P, Gazerani P, Arendt-Nielsen L. A review of topical high-concentration L-menthol as a translational model of cold allodynia and hyperalgesia. Eur J Pain 2013; 18:315-25. [DOI: 10.1002/j.1532-2149.2013.00380.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2013] [Indexed: 12/14/2022]
Affiliation(s)
- H.H. Andersen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - R.V. Olsen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - H.G. Møller
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - P.W. Eskelund
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - P. Gazerani
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - L. Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| |
Collapse
|
40
|
Mutschler I, Reinbold C, Wankerl J, Seifritz E, Ball T. Structural basis of empathy and the domain general region in the anterior insular cortex. Front Hum Neurosci 2013; 7:177. [PMID: 23675334 PMCID: PMC3648769 DOI: 10.3389/fnhum.2013.00177] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/20/2013] [Indexed: 01/10/2023] Open
Abstract
Empathy is key for healthy social functioning and individual differences in empathy have strong implications for manifold domains of social behavior. Empathy comprises of emotional and cognitive components and may also be closely linked to sensorimotor processes, which go along with the motivation and behavior to respond compassionately to another person's feelings. There is growing evidence for local plastic change in the structure of the healthy adult human brain in response to environmental demands or intrinsic factors. Here we have investigated changes in brain structure resulting from or predisposing to empathy. Structural MRI data of 101 healthy adult females was analyzed. Empathy in fictitious as well as real-life situations was assessed using a validated self-evaluation measure. Furthermore, empathy-related structural effects were also put into the context of a functional map of the anterior insular cortex (AIC) determined by activation likelihood estimate (ALE) meta-analysis of previous functional imaging studies. We found that gray matter (GM) density in the left dorsal AIC correlates with empathy and that this area overlaps with the domain general region (DGR) of the anterior insula that is situated in-between functional systems involved in emotion-cognition, pain, and motor tasks as determined by our meta-analysis. Thus, we propose that this insular region where we find structural differences depending on individual empathy may play a crucial role in modulating the efficiency of neural integration underlying emotional, cognitive, and sensorimotor information which is essential for global empathy.
Collapse
Affiliation(s)
- Isabella Mutschler
- Department of Psychology, Division of Clinical Psychology and Epidemiology, University of Basel Basel, Switzerland ; Department of Psychiatry, University of California San Diego (UCSD) La Jolla, California, USA
| | | | | | | | | |
Collapse
|
41
|
Peyron R, Faillenot I, Pomares F, Le Bars D, Garcia-Larrea L, Laurent B. Mechanical allodynia in neuropathic pain. Where are the brain representations located? A positron emission tomography (PET) study. Eur J Pain 2013; 17:1327-37. [DOI: 10.1002/j.1532-2149.2013.00307.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2013] [Indexed: 11/07/2022]
|
42
|
Abstract
Once there was a day when all type C nonmyelinated neurons were indistinguishable. That time of histologic analysis has passed, and we have entered an era of unparalleled technological insight into the mechanisms of pain and pruritus. Since the description of the capsaicin receptor, transient receptor protein vanilloid 1 (TRPV1), in 1997, we have seen the number of related sensor ion channels, G protein-coupled receptors, and signaling proteins explode. Specific nociceptive pathways have been identified based on their sensitivity to mechanical, heat, chemical, and cold stimuli. Pruritus is now recognized to have both histamine-sensitive and histamine-independent afferent arcs. Cross-talk between C-fibre systems and myelinated neural pathways has become more complex, but through complexity, a new reality of sensory coding is emerging. A multitude of novel therapeutics have been and are in planning and production stages. These will almost certainly revolutionize our understanding and treatment of pain and itch by the end of this decade.
Collapse
|
43
|
The effects of menthol on cold allodynia and wind-up-like pain in upper limb amputees with different levels of phantom limb pain. Neurosci Lett 2013; 534:52-7. [DOI: 10.1016/j.neulet.2012.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/22/2012] [Accepted: 11/05/2012] [Indexed: 12/28/2022]
|
44
|
Combined testing of autonomic and sensory dysfunction in patients with unilateral facial flushing and sweating during exercise. Neurophysiol Clin 2013; 43:1-10. [PMID: 23290171 DOI: 10.1016/j.neucli.2012.09.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 08/24/2012] [Accepted: 09/22/2012] [Indexed: 11/23/2022] Open
Abstract
AIMS OF THE STUDY Patients with unilateral facial flushing are occasionally referred to clinical neurophysiological evaluation with the question of the site of lesion. These patients may have a mixture of autonomic and sensory symptoms. We wanted to study to which extent a combined autonomic and sensory clinical neurophysiological testing before and after exercise may help in the diagnostic evaluation of the patients. PATIENTS AND METHODS Five patients were investigated at rest with quantitative sensory thresholds (QST, measurement of thermal thresholds) and quantitative sudomotor axon reflex test (QSART) in all extremities. Sweet volumes (QSWEAT) and skin temperatures were then measured after 30 to 60 minutes of exercise. RESULTS Marked side-to-side differences were observed for QST and QSART at rest as well as for QSWEAT and skin temperatures following exercise, in accordance with the patients' symptoms. However, asymptomatic abnormal findings were also demonstrated in the feet of four patients, following both crossed and non-crossed distributions. EMG/neurography and MRI-findings were normal in all patients and no aetiological explanations were found. CONCLUSION Combined autonomic and sensory testing including the legs provided evidence of unexpectedly more widespread abnormalities, including asymptomatic findings. Although the patients presented with seemingly similar symptoms, there was a striking heterogeneity in their results, suggesting different sites of dysfunction. An extracranial lesion was considered likely in one or maybe two patients, while the possibility of a central lesion had to be considered in the three other patients.
Collapse
|
45
|
Sterling M, Hendrikz J, Kenardy J, Kristjansson E, Dumas JP, Niere K, Cote J, deSerres S, Rivest K, Jull G. Assessment and validation of prognostic models for poor functional recovery 12 months after whiplash injury: A multicentre inception cohort study. Pain 2012; 153:1727-1734. [DOI: 10.1016/j.pain.2012.05.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/13/2012] [Accepted: 05/02/2012] [Indexed: 11/15/2022]
|
46
|
Vetter I, Touska F, Hess A, Hinsbey R, Sattler S, Lampert A, Sergejeva M, Sharov A, Collins LS, Eberhardt M, Engel M, Cabot PJ, Wood JN, Vlachová V, Reeh PW, Lewis RJ, Zimmermann K. Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO J 2012; 31:3795-808. [PMID: 22850668 DOI: 10.1038/emboj.2012.207] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 06/28/2012] [Indexed: 12/18/2022] Open
Abstract
Ciguatoxins are sodium channel activator toxins that cause ciguatera, the most common form of ichthyosarcotoxism, which presents with peripheral sensory disturbances, including the pathognomonic symptom of cold allodynia which is characterized by intense stabbing and burning pain in response to mild cooling. We show that intraplantar injection of P-CTX-1 elicits cold allodynia in mice by targeting specific unmyelinated and myelinated primary sensory neurons. These include both tetrodotoxin-resistant, TRPA1-expressing peptidergic C-fibres and tetrodotoxin-sensitive A-fibres. P-CTX-1 does not directly open heterologously expressed TRPA1, but when co-expressed with Na(v) channels, sodium channel activation by P-CTX-1 is sufficient to drive TRPA1-dependent calcium influx that is responsible for the development of cold allodynia, as evidenced by a large reduction of excitatory effect of P-CTX-1 on TRPA1-deficient nociceptive C-fibres and of ciguatoxin-induced cold allodynia in TRPA1-null mutant mice. Functional MRI studies revealed that ciguatoxin-induced cold allodynia enhanced the BOLD (Blood Oxygenation Level Dependent) signal, an effect that was blunted in TRPA1-deficient mice, confirming an important role for TRPA1 in the pathogenesis of cold allodynia.
Collapse
Affiliation(s)
- Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Noninvasive cortical modulation of experimental pain. Pain 2012; 153:1350-1363. [DOI: 10.1016/j.pain.2012.04.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 01/09/2023]
|
48
|
Borsook D, Becerra L. How close are we in utilizing functional neuroimaging in routine clinical diagnosis of neuropathic pain? Curr Pain Headache Rep 2012; 15:223-9. [PMID: 21369853 DOI: 10.1007/s11916-011-0187-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
As with many disorders affecting the central nervous system, treatment of chronic pain is fraught with difficulties related to specific diagnosis and measures of treatment efficacy. Given the recent advances that brain-imaging techniques have contributed to our understanding of how chronic pain affects multiple aspects of brain function (including sensory, emotional, cognitive, and modulatory), opportunities to use these approaches in the clinic are clearly a focus of research laboratories around the world. The routine application of brain imaging as a clinical marker of disease state or therapeutic (drug) efficacy would significantly enhance the clinical process by providing objective measures for clinicians and patients.
Collapse
Affiliation(s)
- David Borsook
- Center for Pain and the Brain, c/o Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | | |
Collapse
|
49
|
Maihöfner C, Jesberger F, Seifert F, Kaltenhäuser M. Cortical processing of mechanical hyperalgesia: A MEG study. Eur J Pain 2012; 14:64-70. [DOI: 10.1016/j.ejpain.2009.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/31/2009] [Accepted: 02/12/2009] [Indexed: 11/27/2022]
|
50
|
Duerden EG, Albanese MC. Localization of pain-related brain activation: a meta-analysis of neuroimaging data. Hum Brain Mapp 2011; 34:109-49. [PMID: 22131304 DOI: 10.1002/hbm.21416] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/28/2011] [Accepted: 07/05/2011] [Indexed: 12/23/2022] Open
Abstract
A meta-analysis of 140 neuroimaging studies was performed using the activation-likelihood-estimate (ALE) method to explore the location and extent of activation in the brain in response to noxious stimuli in healthy volunteers. The first analysis involved the creation of a likelihood map illustrating brain activation common across studies using noxious stimuli. The left thalamus, right anterior cingulate cortex (ACC), bilateral anterior insulae, and left dorsal posterior insula had the highest likelihood of being activated. The second analysis contrasted noxious cold with noxious heat stimulation and revealed higher likelihood of activation to noxious cold in the subgenual ACC and the amygdala. The third analysis assessed the implications of using either a warm stimulus or a resting baseline as the control condition to reveal activation attributed to noxious heat. Comparing noxious heat to warm stimulation led to peak ALE values that were restricted to cortical regions with known nociceptive input. The fourth analysis tested for a hemispheric dominance in pain processing and showed the importance of the right hemisphere, with the strongest ALE peaks and clusters found in the right insula and ACC. The fifth analysis compared noxious muscle with cutaneous stimuli and the former type was more likely to evoke activation in the posterior and anterior cingulate cortices, precuneus, dorsolateral prefrontal cortex, and cerebellum. In general, results indicate that some brain regions such as the thalamus, insula and ACC have a significant likelihood of activation regardless of the type of noxious stimuli, while other brain regions show a stimulus-specific likelihood of being activated.
Collapse
Affiliation(s)
- Emma G Duerden
- Département de Physiologie, Groupe de Recherche Sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|