1
|
Constantinides VC, Paraskevas GP, Velonakis G, Stefanis L, Kapaki E. Localizing apraxia in corticobasal syndrome: a morphometric MRI study. Cereb Cortex 2024; 34:bhae154. [PMID: 38629797 DOI: 10.1093/cercor/bhae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Apraxia localization has relied on voxel-based, lesion-symptom mapping studies in left hemisphere stroke patients. Studies on the neural substrates of different manifestations of apraxia in neurodegenerative disorders are scarce. The primary aim of this study was to look into the neural substrates of different manifestations of apraxia in a cohort of corticobasal syndrome patients (CBS) by use of cortical thickness. Twenty-six CBS patients were included in this cross-sectional study. The Goldenberg apraxia test (GAT) was applied. 3D-T1-weighted images were analyzed via the automated recon-all Freesurfer version 6.0 pipeline. Vertex-based multivariate General Linear Model analysis was applied to correlate GAT scores with cortical thickness. Deficits in imitation of meaningless gestures correlated with bilateral superior parietal atrophy, extending to the angular and supramarginal gyri, particularly on the left. Finger imitation relied predominantly on superior parietal lobes, whereas the left angular and supramarginal gyri, in addition to superior parietal lobes, were critical for hand imitation. The widespread bilateral clusters of atrophy in CBS related to apraxia indicate different pathophysiological mechanisms mediating praxis in neurodegenerative disorders compared to vascular lesions, with implications both for our understanding of praxis and for the rehabilitation approaches of patients with apraxia.
Collapse
Affiliation(s)
- Vasilios C Constantinides
- First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sofias Avenue, Athens, P.C. 11528, Greece
| | - George P Paraskevas
- First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sofias Avenue, Athens, P.C. 11528, Greece
- Second Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, 1 Rimini Street, Athens, P.C. 12462, Greece
| | - Georgios Velonakis
- Second Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, 1 Rimini Street, Athens, P.C. 12462, Greece
| | - Leonidas Stefanis
- First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sofias Avenue, Athens, P.C. 11528, Greece
| | - Elisabeth Kapaki
- Second Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, 1 Rimini Street, Athens, P.C. 12462, Greece
| |
Collapse
|
2
|
Whitwell RL, Hasan HA, MacNeil RR, Enns JT. Coming to grips with reality: Real grasps, but not pantomimed grasps, resist a simultaneous tilt illusion. Neuropsychologia 2023; 191:108726. [PMID: 37931746 DOI: 10.1016/j.neuropsychologia.2023.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Investigations of grasping real, 3D objects subjected to illusory effects from a pictorial background often choose in-flight grasp aperture as the primary variable to test the hypothesis that the visuomotor system resists the illusion. Here we test an equally important feature of grasps that has received less attention: in-flight grasp orientation. The current study tested a variant of the simultaneous tilt illusion using a mirror-apparatus to manipulate the availability of haptic feedback. Participants performed grasps with haptic feedback (real grasps) and without it (pantomime grasps), reaching for the reflection of a real, 3D bar atop a background grating that induced a 1.1° bias in the perceived orientation of the bar in a separate sample of participants. Analysis of the hand's in-flight grasp orientation at early, late, and end stages of the reach showed that at no point were the real grasps biased by the illusion. In contrast, pantomimed grasps were affected by the illusion at the late and end stages of the reach. At each stage, the effect on the real grasps was significantly weaker than the effect of the illusion as measured by the mean point of subjective equality (PSE) in a two-alternative forced-choice task. In contrast, the effect on the pantomime grasps was statistically indistinguishable from the mean PSE at all three stages of the reach. These findings reinforce the idea that in-flight grasp orientation, like grasp aperture to pictorial illusions of target size, is refractory to pictorial backgrounds that bias perceived orientation.
Collapse
Affiliation(s)
- R L Whitwell
- Department of Physiology & Pharmacology, The University of Western University, Canada; Department of Psychology, The University of Western University, Canada.
| | - H A Hasan
- Department of Psychology, The University of British Columbia, Canada
| | - R R MacNeil
- Department of Psychology, The University of British Columbia, Canada
| | - J T Enns
- Department of Psychology, The University of British Columbia, Canada
| |
Collapse
|
3
|
Przybylski L, Kroliczak G. The functional organization of skilled actions in the adextral and atypical brain. Neuropsychologia 2023; 191:108735. [PMID: 37984793 DOI: 10.1016/j.neuropsychologia.2023.108735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
When planning functional grasps of tools, right-handed individuals (dextrals) show mostly left-lateralized neural activity in the praxis representation network (PRN), regardless of the used hand. Here we studied whether or not similar cerebral asymmetries are evident in non-righthanded individuals (adextrals). Sixty two participants, 28 righthanders and 34 non-righthanders (21 lefthanders, 13 mixedhanders), planned functional grasps of tools vs. grasps of control objects, and subsequently performed their pantomimed executions, in an event-related functional magnetic resonance imaging (fMRI) project. Both hands were tested, separately in two different sessions, counterbalanced across participants. After accounting for non-functional components of the prospective grasp, planning functional grasps of tools was associated with greater engagement of the same, left-hemisphere occipito-temporal, parietal and frontal areas of PRN, regardless of hand and handedness. Only when the analyses involved signal changes referenced to resting baseline intervals, differences between adextrals and dextrals emerged. Whereas in the left hemisphere the neural activity was equivalent in both groups (except for the occipito-temporo-parietal junction), its increases in the right occipito-temporal cortex, medial intraparietal sulcus (area MIP), the supramarginal gyrus (area PFt/PF), and middle frontal gyrus (area p9-46v) were significantly greater in adextrals. The inverse contrast was empty. Notably, when individuals with atypical and typical hemispheric phenotypes were directly compared, planning functional (vs. control) grasps invoked, instead, significant clusters located nearly exclusively in the left hemisphere of the typical phenotype. Previous studies interpret similar right-sided vs. left-sided increases in neural activity for skilled actions as handedness dependent, i.e., located in the hemisphere dominant for manual skills. Yet, none of the effects observed here can be purely handedness dependent because there were mixed-handed individuals among adextrals, and numerous mixed-handed and left-handed individuals possess the typical phenotype. Thus, our results clearly show that hand dominance has limited power in driving the cerebral organization of motor cognitive functions.
Collapse
Affiliation(s)
- Lukasz Przybylski
- Action & Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Gregory Kroliczak
- Action & Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland; Cognitive Neuroscience Center, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
4
|
Chen J, Paciocco JU, Deng Z, Culham JC. Human Neuroimaging Reveals Differences in Activation and Connectivity between Real and Pantomimed Tool Use. J Neurosci 2023; 43:7853-7867. [PMID: 37722847 PMCID: PMC10648550 DOI: 10.1523/jneurosci.0068-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
Because the sophistication of tool use is vastly enhanced in humans compared with other species, a rich understanding of its neural substrates requires neuroscientific experiments in humans. Although functional magnetic resonance imaging (fMRI) has enabled many studies of tool-related neural processing, surprisingly few studies have examined real tool use. Rather, because of the many constraints of fMRI, past research has typically used proxies such as pantomiming despite neuropsychological dissociations between pantomimed and real tool use. We compared univariate activation levels, multivariate activation patterns, and functional connectivity when participants used real tools (a plastic knife or fork) to act on a target object (scoring or poking a piece of putty) or pantomimed the same actions with similar movements and timing. During the Execute phase, we found higher activation for real versus pantomimed tool use in sensorimotor regions and the anterior supramarginal gyrus, and higher activation for pantomimed than real tool use in classic tool-selective areas. Although no regions showed significant differences in activation magnitude during the Plan phase, activation patterns differed between real versus pantomimed tool use and motor cortex showed differential functional connectivity. These results reflect important differences between real tool use, a closed-loop process constrained by real consequences, and pantomimed tool use, a symbolic gesture that requires conceptual knowledge of tools but with limited consequences. These results highlight the feasibility and added value of employing natural tool use tasks in functional imaging, inform neuropsychological dissociations, and advance our theoretical understanding of the neural substrates of natural tool use.SIGNIFICANCE STATEMENT The study of tool use offers unique insights into how the human brain synthesizes perceptual, cognitive, and sensorimotor functions to accomplish a goal. We suggest that the reliance on proxies, such as pantomiming, for real tool use has (1) overestimated the contribution of cognitive networks, because of the indirect, symbolic nature of pantomiming; and (2) underestimated the contribution of sensorimotor networks necessary for predicting and monitoring the consequences of real interactions between hand, tool, and the target object. These results enhance our theoretical understanding of the full range of human tool functions and inform our understanding of neuropsychological dissociations between real and pantomimed tool use.
Collapse
Affiliation(s)
- Juan Chen
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, and the School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, Guangdong 510631, China
| | - Joseph U Paciocco
- Neuroscience Program, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zhiqing Deng
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, and the School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Jody C Culham
- Neuroscience Program, University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department of Psychology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
5
|
Seifert C, Zhao J, Brandi ML, Kampe T, Hermsdörfer J, Wohlschläger A. Investigating the effects of the aging brain on real tool use performance-an fMRI study. Front Aging Neurosci 2023; 15:1238731. [PMID: 37674783 PMCID: PMC10477673 DOI: 10.3389/fnagi.2023.1238731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Healthy aging affects several domains of cognitive and motor performance and is further associated with multiple structural and functional neural reorganization patterns. However, gap of knowledge exists, referring to the impact of these age-related alterations on the neural basis of tool use-an important, complex action involved in everyday life throughout the entire lifespan. The current fMRI study aims to investigate age-related changes of neural correlates involved in planning and executing a complex object manipulation task, further providing a better understanding of impaired tool use performance in apraxia patients. Methods A balanced number of sixteen older and younger healthy adults repeatedly manipulated everyday tools in an event-related Go-No-Go fMRI paradigm. Results Our data indicates that the left-lateralized network, including widely distributed frontal, temporal, parietal and occipital regions, involved in tool use performance is not subjected to age-related functional reorganization processes. However, age-related changes regarding the applied strategical procedure can be detected, indicating stronger investment into the planning, preparatory phase of such an action in older participants.
Collapse
Affiliation(s)
- Clara Seifert
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Jingkang Zhao
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Marie-Luise Brandi
- Department of Neuroradiology, TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thabea Kampe
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Joachim Hermsdörfer
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Afra Wohlschläger
- Department of Neuroradiology, TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
6
|
Kulik V, Reyes LD, Sherwood CC. Coevolution of language and tools in the human brain: An ALE meta-analysis of neural activation during syntactic processing and tool use. PROGRESS IN BRAIN RESEARCH 2023; 275:93-115. [PMID: 36841572 DOI: 10.1016/bs.pbr.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Language and complex tool use are often cited as behaviors unique to humans and may be evolutionarily linked owing to the underlying cognitive processes they have in common. We executed a quantitative activation likelihood estimation (ALE) meta-analysis (GingerALE 2.3) on published, whole-brain neuroimaging studies to identify areas associated with syntactic processing and/or tool use in humans. Significant clusters related to syntactic processing were identified in areas known to be related to language production and comprehension, including bilateral Broca's area in the inferior frontal gyrus. Tool use activation clusters were all in the left hemisphere and included the primary motor cortex and premotor cortex, in addition to other areas involved with sensorimotor transformation. Activation shared by syntactic processing and tool use was only significant at one cluster, located in the pars opercularis of the left inferior frontal gyrus. This minimal overlap between syntactic processing and tool use activation from our meta-analysis of neuroimaging studies indicates that there is not a widespread common neural network between the two. Broca's area may serve as an important hub that was initially recruited in early human evolution in the context of simple tool use, but was eventually co-opted for linguistic purposes, including the sequential and hierarchical ordering processes that characterize syntax. In the future, meta-analyses of additional components of language may allow for a more comprehensive examination of the functional networks that underlie the coevolution of human language and complex tool use.
Collapse
Affiliation(s)
- Veronika Kulik
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, United States
| | - Laura D Reyes
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, United States
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, United States.
| |
Collapse
|
7
|
Lausberg H, Dvoretska D, Ptito A. Production of co-speech gestures in the right hemisphere: Evidence from individuals with complete or anterior callosotomy. Neuropsychologia 2023; 180:108484. [PMID: 36638861 DOI: 10.1016/j.neuropsychologia.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
INTRODUCTION A right-hand preference for co-speech gestures in right-handed neurotypical individuals as well as the co-occurrence of speech and gesture has induced neuropsychological research to primarily target the left hemisphere when investigating co-speech gesture production. However, the substantial number of spontaneous left-hand gestures in right-handed individuals has, thus far, been unexplained. Recent studies in individuals with complete callosotomy and exclusive left hemisphere speech production show a reliable left-hand preference for co-speech gestures, indicating a right hemispheric generation. However, the findings raise the issue if the separate right hemisphere is able to also generate representational gestures. The present study challenges the proposition of a specific right hemispheric contribution to gesture production by differentiating gesture types including representational ones in individuals with complete callosotomy and by including individuals with anterior callosotomy in whom neural reorganization is less extensive. METHODS Three right-handed individuals with complete commissurotomy (A.A., N.G., G.C.) and three right-handed individuals with anterior callosotomy (C.E., S.R., L. D), all with left hemisphere language dominance, and a matched right-handed neurotypical control group (n = 10) were examined in an experimental setting, including re-narration of a nonverbal animated cartoon and responding to intelligence questions. The participants' video-taped hand movement behavior was analyzed by two independent certified raters with the NEUROGES-ELAN system for nonverbal behavior and gesture. Unimanual right-hand and left-hand gestures were classified into eight gesture types. RESULTS The individuals with complete and anterior callosotomy performed unimanual co-speech gestures with the left as well as the right hand, with no significant preference of one hand for gestures overall. Concerning the specific gesture types, the group with complete callosotomy showed a significant right-hand preference for pantomime gestures, which also applied to the callosotomy total group. The group with anterior callosotomy displayed a significant left-hand preference for form presentation gestures. As a trend, the callosotomy total group differed from the neurotypical group as they performed more left-hand egocentric deictic and left-hand form presentation gestures. DISCUSSION The present study replicates the finding of a substantial left-hand use for unimanual co-speech gestures in individuals with complete callosotomy. The proposition of a right hemispheric contribution to gesture production independent from left hemispheric language production is corroborated by the finding that individuals with anterior callosotomy show a similar pattern of hand use for gestures. Representational gestures were displayed with either hand, suggesting that in particular right hemispheric spatial cognition can be directly expressed in gesture. The significant right-hand preference for pantomime gesture was outstanding and compatible with the established left hemispheric specialization for tool use praxis. The findings shed a new light on the left-hand gestures in neurotypical individuals, suggesting that these can be generated in the right hemisphere.
Collapse
Affiliation(s)
- Hedda Lausberg
- Department of Neurology, Psychosomatic Medicine, and Psychiatry, German Sport University, Cologne, Germany.
| | - Daniela Dvoretska
- Department of Neurology, Psychosomatic Medicine, and Psychiatry, German Sport University, Cologne, Germany
| | - Alain Ptito
- Montreal Neurological Institute, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Bruner E, Battaglia-Mayer A, Caminiti R. The parietal lobe evolution and the emergence of material culture in the human genus. Brain Struct Funct 2023; 228:145-167. [PMID: 35451642 DOI: 10.1007/s00429-022-02487-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Traditional and new disciplines converge in suggesting that the parietal lobe underwent a considerable expansion during human evolution. Through the study of endocasts and shape analysis, paleoneurology has shown an increased globularity of the braincase and bulging of the parietal region in modern humans, as compared to other human species, including Neandertals. Cortical complexity increased in both the superior and inferior parietal lobules. Emerging fields bridging archaeology and neuroscience supply further evidence of the involvement of the parietal cortex in human-specific behaviors related to visuospatial capacity, technological integration, self-awareness, numerosity, mathematical reasoning and language. Here, we complement these inferences on the parietal lobe evolution, with results from more classical neuroscience disciplines, such as behavioral neurophysiology, functional neuroimaging, and brain lesions; and apply these to define the neural substrates and the role of the parietal lobes in the emergence of functions at the core of material culture, such as tool-making, tool use and constructional abilities.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación Sobre la Evolución Humana, Burgos, Spain
| | | | - Roberto Caminiti
- Neuroscience and Behavior Laboratory, Istituto Italiano di Tecnologia (IIT), Roma, Italy.
| |
Collapse
|
9
|
Pastore-Wapp M, Gyurkó DM, Vanbellingen T, Lehnick D, Cazzoli D, Pflugshaupt T, Pflugi S, Nyffeler T, Walther S, Bohlhalter S. Improved gesturing in left-hemispheric stroke by right inferior parietal theta burst stimulation. Front Neurosci 2022; 16:998729. [PMID: 36590287 PMCID: PMC9800932 DOI: 10.3389/fnins.2022.998729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Apraxia is a common syndrome of left hemispheric stroke. A parieto-premotor-prefrontal network has been associated with apraxia, in which the left inferior parietal lobe (IPL-L) plays a major role. We hypothesized that transcranial continuous theta burst stimulation (cTBS) over the right inferior parietal lobe (IPL-R) improves gesturing by reducing its inhibition on the contralateral IPL in left hemispheric stroke patients. It was assumed that this effect is independent of lesion volume and that transcallosal connectivity is predictive for gestural effect after stimulation. Materials and methods Nineteen stroke patients were recruited. Lesion volume and fractional anisotropy of the corpus callosum were acquired with structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Each patient had pseudorandomised sessions with sham or with stimulation over the IPL-R or over the right inferior frontal gyrus IFG-R. Gesturing was assessed in a double-blinded manner before and after each session. We tested the effects of stimulation on gesture performance using a linear mixed-effects model. Results Pairwise treatment contrasts showed, that, compared to sham, the behavioral effect was higher after stimulation over IPL-R (12.08, 95% CI 6.04 - 18.13, p < 0.001). This treatment effect was approximately twice as high as the contrasts for IFG-R vs. sham (6.25, 95% CI -0.20 - 12.70, p = 0.058) and IPL-R vs. IFG-R vs. sham (5.83, 95% CI -0.49 - 12.15, p = 0.071). Furthermore, higher fractional anisotropy in the splenium (connecting the left and right IPL) were associated with higher behavioral effect. Relative lesion volume did not affect the changes after sham or stimulation over IPL-R or IFG-R. Conclusion One single session of cTBS over the IPL-R improved gesturing after left hemispheric stroke. Denser microstructure in the corpus callosum correlated with favorable gestural response. We therefore propose the indirect transcallosal modulation of the IPL-L as a promising model of restoring interhemispheric balance, which may be useful in rehabilitation of apraxia.
Collapse
Affiliation(s)
- Manuela Pastore-Wapp
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
| | | | - Tim Vanbellingen
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
| | - Dirk Lehnick
- Biostatistics and Methodology, Clinical Trials Unit Central Switzerland, Lucerne, Switzerland
- Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | - Dario Cazzoli
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
- Department of Psychology, University of Bern, Bern, Switzerland
| | | | | | - Thomas Nyffeler
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
- Biostatistics and Methodology, Clinical Trials Unit Central Switzerland, Lucerne, Switzerland
- Department of Neurology, University Hospital of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy of Bern, Bern, Switzerland
| | - Stephan Bohlhalter
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Michalowski B, Buchwald M, Klichowski M, Ras M, Kroliczak G. Action goals and the praxis network: an fMRI study. Brain Struct Funct 2022; 227:2261-2284. [PMID: 35731447 PMCID: PMC9418102 DOI: 10.1007/s00429-022-02520-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/30/2022] [Indexed: 01/09/2023]
Abstract
The praxis representation network (PRN) of the left cerebral hemisphere is typically linked to the control of functional interactions with familiar tools. Surprisingly, little is known about the PRN engagement in planning and execution of tool-directed actions motivated by non-functional but purposeful action goals. Here we used functional neuroimaging to perform both univariate and multi-voxel pattern analyses (MVPA) in 20 right-handed participants who planned and later executed, with their dominant and non-dominant hands, disparate grasps of tools for different goals, including: (1) planning simple vs. demanding functional grasps of conveniently vs. inconveniently oriented tools with an intention to immediately use them, (2) planning simple—but non-functional—grasps of inconveniently oriented tools with a goal to pass them to a different person, (3) planning reaching movements directed at such tools with an intention to move/push them with the back of the hand, and (4) pantomimed execution of the earlier planned tasks. While PRN contributed to the studied interactions with tools, the engagement of its critical nodes, and/or complementary right hemisphere processing, was differently modulated by task type. E.g., planning non-functional/structural grasp-to-pass movements of inconveniently oriented tools, regardless of the hand, invoked the left parietal and prefrontal nodes significantly more than simple, non-demanding functional grasps. MVPA corroborated decoding capabilities of critical PRN areas and some of their right hemisphere counterparts. Our findings shed new lights on how performance of disparate action goals influences the extraction of object affordances, and how or to what extent it modulates the neural activity within the parieto-frontal brain networks.
Collapse
Affiliation(s)
- Bartosz Michalowski
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Wydział Psychologii i Kognitywistyki UAM, ul. Szamarzewskiego 89, 60-568, Poznan, Poland
| | - Mikolaj Buchwald
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Wydział Psychologii i Kognitywistyki UAM, ul. Szamarzewskiego 89, 60-568, Poznan, Poland
| | - Michal Klichowski
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Wydział Psychologii i Kognitywistyki UAM, ul. Szamarzewskiego 89, 60-568, Poznan, Poland.,Learning Laboratory, Faculty of Educational Studies, Adam Mickiewicz University, Poznan, Poland
| | - Maciej Ras
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Wydział Psychologii i Kognitywistyki UAM, ul. Szamarzewskiego 89, 60-568, Poznan, Poland
| | - Gregory Kroliczak
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Wydział Psychologii i Kognitywistyki UAM, ul. Szamarzewskiego 89, 60-568, Poznan, Poland.
| |
Collapse
|
11
|
Gurariy G, Mruczek REB, Snow JC, Caplovitz GP. Using High-Density Electroencephalography to Explore Spatiotemporal Representations of Object Categories in Visual Cortex. J Cogn Neurosci 2022; 34:967-987. [PMID: 35286384 PMCID: PMC9169880 DOI: 10.1162/jocn_a_01845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Visual object perception involves neural processes that unfold over time and recruit multiple regions of the brain. Here, we use high-density EEG to investigate the spatiotemporal representations of object categories across the dorsal and ventral pathways. In , human participants were presented with images from two animate object categories (birds and insects) and two inanimate categories (tools and graspable objects). In , participants viewed images of tools and graspable objects from a different stimulus set, one in which a shape confound that often exists between these categories (elongation) was controlled for. To explore the temporal dynamics of object representations, we employed time-resolved multivariate pattern analysis on the EEG time series data. This was performed at the electrode level as well as in source space of two regions of interest: one encompassing the ventral pathway and another encompassing the dorsal pathway. Our results demonstrate shape, exemplar, and category information can be decoded from the EEG signal. Multivariate pattern analysis within source space revealed that both dorsal and ventral pathways contain information pertaining to shape, inanimate object categories, and animate object categories. Of particular interest, we note striking similarities obtained in both ventral stream and dorsal stream regions of interest. These findings provide insight into the spatio-temporal dynamics of object representation and contribute to a growing literature that has begun to redefine the traditional role of the dorsal pathway.
Collapse
|
12
|
Rosenzopf H, Wiesen D, Basilakos A, Yourganov G, Bonilha L, Rorden C, Fridriksson J, Karnath HO, Sperber C. Mapping the human praxis network: an investigation of white matter disconnection in limb apraxia of gesture production. Brain Commun 2022; 4:fcac004. [PMID: 35169709 PMCID: PMC8833454 DOI: 10.1093/braincomms/fcac004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 11/14/2022] Open
Abstract
Left hemispheric cerebral stroke can cause apraxia, a motor cognitive disorder characterized by deficits of higher-order motor skills such as the failure to accurately produce meaningful gestures. This disorder provides unique insights into the anatomical and cognitive architecture of the human praxis system. The present study aimed to map the structural brain network that is damaged in apraxia. We assessed the ability to perform meaningful gestures with the hand in 101 patients with chronic left hemisphere stroke. Structural white matter fibre damage was directly assessed by diffusion tensor imaging and fractional anisotropy mapping. We used multivariate topographical inference on tract-based fractional anisotropy topographies to identify white matter disconnection associated with apraxia. We found relevant pathological white matter alterations in a densely connected fronto-temporo-parietal network of short and long association fibres. Hence, the findings suggest that heterogeneous topographical results in previous lesion mapping studies might not only result from differences in study design, but also from the general methodological limitations of univariate topographical mapping in uncovering the structural praxis network. A striking role of middle and superior temporal lobe disconnection, including temporo-temporal short association fibres, was found, suggesting strong involvement of the temporal lobe in the praxis network. Further, the results stressed the importance of subcortical disconnections for the emergence of apractic symptoms. Our study provides a fine-grain view into the structural connectivity of the human praxis network and suggests a potential value of disconnection measures in the clinical prediction of behavioural post-stroke outcome.
Collapse
Affiliation(s)
- Hannah Rosenzopf
- Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Daniel Wiesen
- Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Grigori Yourganov
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Christopher Rorden
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Hans-Otto Karnath
- Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Christoph Sperber
- Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Visani E, Sebastiano DR, Duran D, Garofalo G, Magliocco F, Silipo F, Buccino G. The Semantics of Natural Objects and Tools in the Brain: A Combined Behavioral and MEG Study. Brain Sci 2022; 12:brainsci12010097. [PMID: 35053840 PMCID: PMC8774003 DOI: 10.3390/brainsci12010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/29/2022] Open
Abstract
Current literature supports the notion that the recognition of objects, when visually presented, is sub-served by neural structures different from those responsible for the semantic processing of their nouns. However, embodiment foresees that processing observed objects and their verbal labels should share similar neural mechanisms. In a combined behavioral and MEG study, we compared the modulation of motor responses and cortical rhythms during the processing of graspable natural objects and tools, either verbally or pictorially presented. Our findings demonstrate that conveying meaning to an observed object or processing its noun similarly modulates both motor responses and cortical rhythms; being natural graspable objects and tools differently represented in the brain, they affect in a different manner both behavioral and MEG findings, independent of presentation modality. These results provide experimental evidence that neural substrates responsible for conveying meaning to objects overlap with those where the object is represented, thus supporting an embodied view of semantic processing.
Collapse
Affiliation(s)
- Elisa Visani
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (E.V.); (D.R.S.); (D.D.)
| | - Davide Rossi Sebastiano
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (E.V.); (D.R.S.); (D.D.)
| | - Dunja Duran
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (E.V.); (D.R.S.); (D.D.)
| | - Gioacchino Garofalo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, University San Raffaele, Via Olgettina 60, 20132 Milan, Italy;
| | - Fabio Magliocco
- Centro Psico-Sociale di Seregno—Azienda Socio-Sanitaria Territoriale di Vimercate, 20871 Vimercate, Italy;
| | - Francesco Silipo
- Dipartimento di Scienze Mediche e Chirurgiche, University “Magna Graecia” of Catanzaro, Viale Salvatore Venuta, 88100 Germaneto, Italy;
| | - Giovanni Buccino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, University San Raffaele, Via Olgettina 60, 20132 Milan, Italy;
- Correspondence:
| |
Collapse
|
14
|
Mangalam M, Fragaszy DM, Wagman JB, Day BM, Kelty-Stephen DG, Bongers RM, Stout DW, Osiurak F. On the psychological origins of tool use. Neurosci Biobehav Rev 2022; 134:104521. [PMID: 34998834 DOI: 10.1016/j.neubiorev.2022.104521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/01/2021] [Accepted: 01/01/2022] [Indexed: 01/13/2023]
Abstract
The ubiquity of tool use in human life has generated multiple lines of scientific and philosophical investigation to understand the development and expression of humans' engagement with tools and its relation to other dimensions of human experience. However, existing literature on tool use faces several epistemological challenges in which the same set of questions generate many different answers. At least four critical questions can be identified, which are intimately intertwined-(1) What constitutes tool use? (2) What psychological processes underlie tool use in humans and nonhuman animals? (3) Which of these psychological processes are exclusive to tool use? (4) Which psychological processes involved in tool use are exclusive to Homo sapiens? To help advance a multidisciplinary scientific understanding of tool use, six author groups representing different academic disciplines (e.g., anthropology, psychology, neuroscience) and different theoretical perspectives respond to each of these questions, and then point to the direction of future work on tool use. We find that while there are marked differences among the responses of the respective author groups to each question, there is a surprising degree of agreement about many essential concepts and questions. We believe that this interdisciplinary and intertheoretical discussion will foster a more comprehensive understanding of tool use than any one of these perspectives (or any one of these author groups) would (or could) on their own.
Collapse
Affiliation(s)
- Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Science, Northeastern University, Boston, Massachusetts 02115, USA.
| | | | - Jeffrey B Wagman
- Department of Psychology, Illinois State University, Normal, IL 61761, USA
| | - Brian M Day
- Department of Psychology, Butler University, Indianapolis, IN 46208, USA
| | | | - Raoul M Bongers
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands
| | - Dietrich W Stout
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs, Université de Lyon, Lyon 69361, France; Institut Universitaire de France, Paris 75231, France
| |
Collapse
|
15
|
Schmidt CC, Achilles EIS, Fink GR, Weiss PH. Distinct cognitive components and their neural substrates underlying praxis and language deficits following left hemisphere stroke. Cortex 2021; 146:200-215. [PMID: 34896806 DOI: 10.1016/j.cortex.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
Apraxia is characterised by multiple deficits of higher motor functions, primarily caused by left hemisphere (LH) lesions to parietal-frontal praxis networks. While previous neuropsychological and lesion studies tried to relate the various apraxic deficits to specific lesion sites, a comprehensive analysis of the different apraxia profiles and the related (impaired) motor-cognitive processes as well as their differential neural substrates in LH stroke is lacking. To reveal the cognitive mechanisms that underlie the different patterns of praxis and (related) language deficits, we applied principal component analysis (PCA) to the scores of sub-acute LH stroke patients (n = 91) in several tests of apraxia and aphasia. Voxel-based lesion-symptom mapping (VLSM) analyses were then used to investigate the neural substrates of the identified components. The PCA yielded a first component related to language functions and three components related to praxis functions, with each component associated with specific lesion patterns. Regarding praxis functions, performance in imitating arm/hand gestures was accounted for by a second component related to the left precentral gyrus and the inferior parietal lobule. Imitating finger configurations, pantomiming the use of objects related to the face, and actually using objects loaded on component 3, related to the left anterior intraparietal sulcus and angular gyrus. The last component represented the imitation of bucco-facial gestures and was linked to the basal ganglia and LH white matter tracts. The results further revealed that pantomime of (limb-related) object use depended on both the component 2 and 3, which were shared with gesture imitation and actual object use. Data support and extend the notion that apraxia represents a multi-componential syndrome comprising different (impaired) motor-cognitive processes, which dissociate - at least partially - from language processes. The distinct components might be disturbed to a varying degree following LH stroke since they are associated with specific lesion patterns within the LH.
Collapse
Affiliation(s)
- Claudia C Schmidt
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.
| | - Elisabeth I S Achilles
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| |
Collapse
|
16
|
Osiurak F, Reynaud E, Baumard J, Rossetti Y, Bartolo A, Lesourd M. Pantomime of tool use: looking beyond apraxia. Brain Commun 2021; 3:fcab263. [PMID: 35350708 PMCID: PMC8936430 DOI: 10.1093/braincomms/fcab263] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Pantomime has a long tradition in clinical neuropsychology of apraxia. It has been much more used by researchers and clinicians to assess tool-use disorders than real tool use. Nevertheless, it remains incompletely understood and has given rise to controversies, such as the involvement of the left inferior parietal lobe or the nature of the underlying cognitive processes. The present article offers a comprehensive framework, with the aim of specifying the neural and cognitive bases of pantomime. To do so, we conducted a series of meta-analyses of brain-lesion, neuroimaging and behavioural studies about pantomime and other related tasks (i.e. real tool use, imitation of meaningless postures and semantic knowledge). The first key finding is that the area PF (Area PF complex) within the left inferior parietal lobe is crucially involved in both pantomime and real tool use as well as in the kinematics component of pantomime. The second key finding is the absence of a well-defined neural substrate for the posture component of pantomime (both grip errors and body-part-as-tool responses). The third key finding is the role played by the intraparietal sulcus in both pantomime and imitation of meaningless postures. The fourth key finding is that the left angular gyrus seems to be critical in the production of motor actions directed towards the body. The fifth key finding is that performance on pantomime is strongly correlated with the severity of semantic deficits. Taken together, these findings invite us to offer a neurocognitive model of pantomime, which provides an integrated alternative to the two hypotheses that dominate the field: The gesture-engram hypothesis and the communicative hypothesis. More specifically, this model assumes that technical reasoning (notably the left area PF), the motor-control system (notably the intraparietal sulcus), body structural description (notably the left angular gyrus), semantic knowledge (notably the polar temporal lobes) and potentially theory of mind (notably the middle prefrontal cortex) work in concert to produce pantomime. The original features of this model open new avenues for understanding the neurocognitive bases of pantomime, emphasizing that pantomime is a communicative task that nevertheless originates in specific tool-use (not motor-related) cognitive processes. .
Collapse
Affiliation(s)
- François Osiurak
- Laboratoire d’Etude des Mécanismes Cognitifs (EA3082), Université Lyon 2, 69676 Bron, France
- Institut Universitaire de France, 75231 Paris, France
| | - Emanuelle Reynaud
- Laboratoire d’Etude des Mécanismes Cognitifs (EA3082), Université Lyon 2, 69676 Bron, France
| | - Josselin Baumard
- Normandie University, UNIROUEN, CRFDP (EA7475), 76821 Mont Saint Aignan, France
| | - Yves Rossetti
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, CNRS U5292, Inserm U1028, Université de Lyon, 69676 Bron, France
- Mouvement, Handicap, et Neuro-Immersion, Hospices Civils de Lyon et Centre de Recherche en Neurosciences de Lyon, Hôpital Henry Gabrielle, 69230 Saint-Genis-Laval, France
| | - Angela Bartolo
- Institut Universitaire de France, 75231 Paris, France
- Univ. Lille, CNRS, UMR9193, SCALab—Sciences Cognitives et Sciences Affectives, 59653 Villeneuve d'Ascq, France
| | - Mathieu Lesourd
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive (UR481), Université de Bourgogne Franche-Comté, 25030 Besançon, France
- MSHE Ledoux, CNRS, Université de Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
17
|
Whitwell RL, Striemer CL, Cant JS, Enns JT. The Ties that Bind: Agnosia, Neglect and Selective Attention to Visual Scale. Curr Neurol Neurosci Rep 2021; 21:54. [PMID: 34586544 DOI: 10.1007/s11910-021-01139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Historical and contemporary treatments of visual agnosia and neglect regard these disorders as largely unrelated. It is thought that damage to different neural processes leads directly to one or the other condition, yet apperceptive variants of agnosia and object-centered variants of neglect share remarkably similar deficits in the quality of conscious experience. Here we argue for a closer association between "apperceptive" variants of visual agnosia and "object-centered" variants of visual neglect. We introduce a theoretical framework for understanding these conditions based on "scale attention", which refers to selecting boundary and surface information at different levels of the structural hierarchy in the visual array. RECENT FINDINGS We review work on visual agnosia, the cortical structures and cortico-cortical pathways that underlie visual perception, visuospatial neglect and object-centered neglect, and attention to scale. We highlight direct and indirect pathways involved in these disorders and in attention to scale. The direct pathway involves the posterior vertical segments of the superior longitudinal fasciculus that are positioned to link the established dorsal and ventral attentional centers in the parietal cortex with structures in the inferior occipitotemporal cortex associated with visual apperceptive agnosia. The connections in the right hemisphere appear to be more important for visual conscious experience, whereas those in the left hemisphere appear to be more strongly associated with the planning and execution of visually guided grasps directed at multi-part objects such as tools. In the latter case, semantic and functional information must drive the selection of the appropriate hand posture and grasp points on the object. This view is supported by studies of grasping in patients with agnosia and in patients with neglect that show that the selection of grasp points when picking up a tool involves both scale attention and semantic contributions from inferotemporal cortex. The indirect pathways, which include the inferior fronto-occipital and horizontal components of the superior longitudinal fasciculi, involve the frontal lobe, working memory and the "multiple demands" network, which can shape the content of visual awareness through the maintenance of goal- and task-based abstractions and their influence on scale attention. Recent studies of human cortico-cortical pathways necessitate revisions to long-standing theoretical views on visual perception, visually guided action and their integrations. We highlight findings from a broad sample of seemingly disparate areas of research to support the proposal that attention to scale is necessary for typical conscious visual experience and for goal-directed actions that depend on functional and semantic information. Furthermore, we suggest that vertical pathways between the parietal and occipitotemporal cortex, along with indirect pathways that involve the premotor and prefrontal cortex, facilitate the operations of scale attention.
Collapse
Affiliation(s)
- Robert L Whitwell
- Department of Psychology, University of British Columbia, Vancouver, Canada.
| | | | - Jonathan S Cant
- Department of Psychology, University of Toronto Scarborough, Toronto, Canada
| | - James T Enns
- Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Rohrbach N, Krewer C, Löhnert L, Thierfelder A, Randerath J, Jahn K, Hermsdörfer J. Improvement of Apraxia With Augmented Reality: Influencing Pantomime of Tool Use via Holographic Cues. Front Neurol 2021; 12:711900. [PMID: 34512524 PMCID: PMC8427527 DOI: 10.3389/fneur.2021.711900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Defective pantomime of tool use is a hall mark of limb apraxia. Contextual information has been demonstrated to improve tool use performance. Further, knowledge about the potential impact of technological aids such as augmented reality for patients with limb apraxia is still scarce. Objective: Since augmented reality offers a new way to provide contextual information, we applied it to pantomime of tool use. We hypothesize that the disturbed movement execution can be mitigated by holographic stimulation. If visual stimuli facilitate the access to the appropriate motor program in patients with apraxia, their performance should improve with increased saliency, i.e., should be better when supported by dynamic and holographic cues vs. static and screen-based cues. Methods: Twenty one stroke patients and 23 healthy control subjects were randomized to mime the use of five objects, presented in two Environments (Screen vs. Head Mounted Display, HMD) and two Modes (Static vs. Dynamic) resulting in four conditions (ScreenStat, ScreenDyn, HMDStat, HMDDyn), followed by a real tool demonstration. Pantomiming was analyzed by a scoring system using video recordings. Additionally, the sense of presence was assessed using a questionnaire. Results: Healthy control participants performed close to ceiling and significantly better than patients. Patients achieved significantly higher scores with holographic or dynamic cues. Remarkably, when their performance was supported by animated holographic cues (e.g., striking hammer), it did not differ significantly from real tool demonstration. As the sense of presence increases with animated holograms, so does the pantomiming. Conclusion: Patients' performance improved with visual stimuli of increasing saliency. Future assistive technology could be implemented upon this knowledge and thus, positively impact the rehabilitation process and a patient's autonomy.
Collapse
Affiliation(s)
- Nina Rohrbach
- Technical University Munich, Chair of Human Movement Science, Munich, Germany
| | - Carmen Krewer
- Technical University Munich, Chair of Human Movement Science, Munich, Germany
- Schön Klinik Bad Aibling, Bad Aibling, Germany
| | - Lisa Löhnert
- Technical University Munich, Chair of Human Movement Science, Munich, Germany
| | - Annika Thierfelder
- Technical University Munich, Chair of Human Movement Science, Munich, Germany
| | - Jennifer Randerath
- Lurija Institute for Rehabilitation Sciences and Health Research at the University of Konstanz, Konstanz, Germany
| | - Klaus Jahn
- Schön Klinik Bad Aibling, Bad Aibling, Germany
- Ludwig-Maximilians University of Munich, University Hospital Grosshadern, Munich, Germany
| | - Joachim Hermsdörfer
- Technical University Munich, Chair of Human Movement Science, Munich, Germany
| |
Collapse
|
19
|
Malfatti G, Turella L. Neural encoding and functional interactions underlying pantomimed movements. Brain Struct Funct 2021; 226:2321-2337. [PMID: 34247268 PMCID: PMC8354930 DOI: 10.1007/s00429-021-02332-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/21/2021] [Indexed: 01/23/2023]
Abstract
Pantomimes are a unique movement category which can convey complex information about our intentions in the absence of any interaction with real objects. Indeed, we can pretend to use the same tool to perform different actions or to achieve the same goal adopting different tools. Nevertheless, how our brain implements pantomimed movements is still poorly understood. In our study, we explored the neural encoding and functional interactions underlying pantomimes adopting multivariate pattern analysis (MVPA) and connectivity analysis of fMRI data. Participants performed pantomimed movements, either grasp-to-move or grasp-to-use, as if they were interacting with two different tools (scissors or axe). These tools share the possibility to achieve the same goal. We adopted MVPA to investigate two levels of representation during the planning and execution of pantomimes: (1) distinguishing different actions performed with the same tool, (2) representing the same final goal irrespective of the adopted tool. We described widespread encoding of action information within regions of the so-called “tool” network. Several nodes of the network—comprising regions within the ventral and the dorsal stream—also represented goal information. The spatial distribution of goal information changed from planning—comprising posterior regions (i.e. parietal and temporal)—to execution—including also anterior regions (i.e. premotor cortex). Moreover, connectivity analysis provided evidence for task-specific bidirectional coupling between the ventral stream and parieto-frontal motor networks. Overall, we showed that pantomimes were characterized by specific patterns of action and goal encoding and by task-dependent cortical interactions.
Collapse
Affiliation(s)
- Giulia Malfatti
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068, Rovereto, Italy
| | - Luca Turella
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068, Rovereto, Italy.
| |
Collapse
|
20
|
Pastore-Wapp M, Nyffeler T, Nef T, Bohlhalter S, Vanbellingen T. Non-invasive brain stimulation in limb praxis and apraxia: A scoping review in healthy subjects and patients with stroke. Cortex 2021; 138:152-164. [PMID: 33691224 DOI: 10.1016/j.cortex.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/09/2020] [Accepted: 02/09/2021] [Indexed: 01/25/2023]
Abstract
Non-invasive brain stimulation (NIBS) techniques are widely used in research settings to investigate brain mechanisms and increasingly being used for treatment purposes. The aim of this study was to systematically identify and review the current literature on NIBS studies of limb praxis and apraxia in healthy subjects and stroke patients with a scoping review using PRISMA-ScR guidelines. MEDLINE-PubMed, EMBASE and PsycINFO were searched. Inclusion criteria were English peer-reviewed studies focusing on the investigation of limb praxis/apraxia using repetitive transcranial magnetic stimulation (rTMS), or transcranial direct current stimulation (tDCS). Fourteen out of 139 records met the inclusion criteria, including thirteen studies with healthy subjects and one with stroke patients. The results of our systematic review suggest that in healthy subjects NIBS over left inferior parietal lobe (IPL) mainly interfered with gesture processing, by either affecting reaction times in judgment tasks or real gesturing. First promising results suggest that inhibitory continuous theta burst stimulation (cTBS) over right IPL may enhance gesturing in healthy subjects, explained by transcallosal facilitation of left IPL. In stroke patients, excitatory anodal tDCS over left IPL may improve limb apraxia. However, larger well powered and sham-controlled clinical trials are needed to expand on these proof-of-concept results, before NIBS could be a treatment option to improve limb apraxia in stroke patients.
Collapse
Affiliation(s)
- Manuela Pastore-Wapp
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland; ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University Bern, Switzerland
| | - Thomas Nyffeler
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Biomedical Research (DBMR) and Department of Neurology, University of Bern, and Inselspital, Bern University Hospital, Bern, Switzerland
| | - Tobias Nef
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University Bern, Switzerland
| | - Stephan Bohlhalter
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland; University of Zurich, Zurich, Switzerland
| | - Tim Vanbellingen
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland; ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University Bern, Switzerland.
| |
Collapse
|
21
|
Bencivenga F, Sulpizio V, Tullo MG, Galati G. Assessing the effective connectivity of premotor areas during real vs imagined grasping: a DCM-PEB approach. Neuroimage 2021; 230:117806. [PMID: 33524574 DOI: 10.1016/j.neuroimage.2021.117806] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022] Open
Abstract
The parieto-frontal circuit underlying grasping, which requires the serial involvement of the anterior intraparietal area (aIPs) and the ventral premotor cortex (PMv), has been recently extended enlightening the role of the dorsal premotor cortex (PMd). The supplementary motor area (SMA) has been also suggested to encode grip force for grasping actions; furthermore, both PMd and SMA are known to play a crucial role in motor imagery. Here, we aimed at assessing the dynamic couplings between left aIPs, PMv, PMd, SMA and primary motor cortex (M1) by comparing executed and imagined right-hand grasping, using Dynamic Causal Modelling (DCM) and Parametrical Empirical Bayes (PEB) analyses. 24 subjects underwent an fMRI exam (3T) during which they were asked to perform or imagine a grasping movement visually cued by photographs of commonly used objects. We tested whether the two conditions a) exert a modulatory effect on both forward and feedback couplings among our areas of interest, and b) differ in terms of strength and sign of these parameters. Results of the real condition confirmed the serial involvement of aIPs, PMv and M1. PMv also exerted a positive influence on PMd and SMA, but received an inhibitory feedback only from PMd. Our results suggest that a general motor program for grasping is planned by the aIPs-PMv circuit; then, PMd and SMA encode high-level features of the movement. During imagery, the connection strength from aIPs to PMv was weaker and the information flow stopped in PMv; thus, a less complex motor program was planned. Moreover, results suggest that SMA and PMd cooperate to prevent motor execution. In conclusion, the comparison between execution and imagery reveals that during grasping premotor areas dynamically interplay in different ways, depending on task demands.
Collapse
Affiliation(s)
- Federica Bencivenga
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Valentina Sulpizio
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Maria Giulia Tullo
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
22
|
Wymbs NF, Nebel MB, Ewen JB, Mostofsky SH. Altered Inferior Parietal Functional Connectivity is Correlated with Praxis and Social Skill Performance in Children with Autism Spectrum Disorder. Cereb Cortex 2020; 31:2639-2652. [PMID: 33386399 DOI: 10.1093/cercor/bhaa380] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Children with autism spectrum disorder (ASD) have difficulties perceiving and producing skilled gestures, or praxis. The inferior parietal lobule (IPL) is crucial to praxis acquisition and expression, yet how IPL connectivity contributes to autism-associated impairments in praxis as well as social-communicative skill remains unclear. Using resting-state functional magnetic resonance imaging, we applied independent component analysis to test how IPL connectivity relates to praxis and social-communicative skills in children with and without ASD. Across all children (with/without ASD), praxis positively correlated with connectivity of left posterior-IPL with the left dorsal premotor cortex and with the bilateral posterior/medial parietal cortex. Praxis also correlated with connectivity of right central-IPL connectivity with the left intraparietal sulcus and medial parietal lobe. Further, in children with ASD, poorer praxis and social-communicative skills both correlated with weaker right central-IPL connectivity with the left cerebellum, posterior cingulate, and right dorsal premotor cortex. Our findings suggest that IPL connectivity is linked to praxis development, that contributions arise bilaterally, and that right IPL connectivity is associated with impaired praxis and social-communicative skills in autism. The findings underscore the potential impact of IPL connectivity and impaired skill acquisition on the development of a range of social-communicative and motor functions during childhood, including autism-associated impairments.
Collapse
Affiliation(s)
- Nicholas F Wymbs
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joshua B Ewen
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Whitwell RL, Katz NJ, Goodale MA, Enns JT. The Role of Haptic Expectations in Reaching to Grasp: From Pantomime to Natural Grasps and Back Again. Front Psychol 2020; 11:588428. [PMID: 33391110 PMCID: PMC7773727 DOI: 10.3389/fpsyg.2020.588428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
When we reach to pick up an object, our actions are effortlessly informed by the object's spatial information, the position of our limbs, stored knowledge of the object's material properties, and what we want to do with the object. A substantial body of evidence suggests that grasps are under the control of "automatic, unconscious" sensorimotor modules housed in the "dorsal stream" of the posterior parietal cortex. Visual online feedback has a strong effect on the hand's in-flight grasp aperture. Previous work of ours exploited this effect to show that grasps are refractory to cued expectations for visual feedback. Nonetheless, when we reach out to pretend to grasp an object (pantomime grasp), our actions are performed with greater cognitive effort and they engage structures outside of the dorsal stream, including the ventral stream. Here we ask whether our previous finding would extend to cued expectations for haptic feedback. Our method involved a mirror apparatus that allowed participants to see a "virtual" target cylinder as a reflection in the mirror at the start of all trials. On "haptic feedback" trials, participants reached behind the mirror to grasp a size-matched cylinder, spatially coincident with the virtual one. On "no-haptic feedback" trials, participants reached behind the mirror and grasped into "thin air" because no cylinder was present. To manipulate haptic expectation, we organized the haptic conditions into blocked, alternating, and randomized schedules with and without verbal cues about the availability of haptic feedback. Replicating earlier work, we found the strongest haptic effects with the blocked schedules and the weakest effects in the randomized uncued schedule. Crucially, the haptic effects in the cued randomized schedule was intermediate. An analysis of the influence of the upcoming and immediately preceding haptic feedback condition in the cued and uncued random schedules showed that cuing the upcoming haptic condition shifted the haptic influence on grip aperture from the immediately preceding trial to the upcoming trial. These findings indicate that, unlike cues to the availability of visual feedback, participants take advantage of cues to the availability of haptic feedback, flexibly engaging pantomime, and natural modes of grasping to optimize the movement.
Collapse
Affiliation(s)
- Robert L Whitwell
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Nathan J Katz
- Department of Psychology, Brain and Mind Institute, The University of Western Ontario, London, ON, Canada
| | - Melvyn A Goodale
- Department of Psychology, Brain and Mind Institute, The University of Western Ontario, London, ON, Canada
| | - James T Enns
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Viher PV, Abdulkadir A, Savadijev P, Stegmayer K, Kubicki M, Makris N, Karmacharya S, Federspiel A, Bohlhalter S, Vanbellingen T, Müri R, Wiest R, Strik W, Walther S. Structural organization of the praxis network predicts gesture production: Evidence from healthy subjects and patients with schizophrenia. Cortex 2020; 132:322-333. [PMID: 33011518 DOI: 10.1016/j.cortex.2020.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/11/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023]
Abstract
Hand gestures are an integral part of social interactions and communication. Several imaging studies in healthy subjects and lesion studies in patients with apraxia suggest the praxis network for gesture production, involving mainly left inferior frontal, posterior parietal and temporal regions. However, little is known about the structural connectivity underlying gesture production. We recruited 41 healthy participants and 39 patients with schizophrenia. All participants performed a gesture production test, the Test of Upper Limb Apraxia, and underwent diffusion tensor imaging. We hypothesized that gesture production is associated with structural network connectivity as well as with tract integrity. We defined the praxis network as an undirected graph comprised of 13 bilateral regions of interest and derived measures of local and global structural connectivity and tract integrity from Finsler geometry. We found an association of gesture deficit with reduced global and local efficiency of the praxis network. Furthermore, reduced tract integrity, for example in the superior longitudinal fascicle, arcuate fascicle or corpus callosum were related to gesture deficits. Our findings contribute to the understanding of structural correlates of gesture production as they first present diffusion tensor imaging data in a combined sample of healthy subjects and a patient cohort with gestural deficits.
Collapse
Affiliation(s)
- Petra V Viher
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| | - Ahmed Abdulkadir
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Peter Savadijev
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Diagnostic Radiology, McGill University, Montreal, Canada
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Sarina Karmacharya
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Stephan Bohlhalter
- Department of Clinical Research, University Hospital, Inselspital, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Tim Vanbellingen
- Department of Clinical Research, University Hospital, Inselspital, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland; Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
| | - René Müri
- Department of Clinical Research, University Hospital, Inselspital, Bern, Switzerland; Department of Neurology, University Hospital Inselspital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging, Institute of Neuroradiology, University of Bern, Bern, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Brain correlates of motor complexity during observed and executed actions. Sci Rep 2020; 10:10965. [PMID: 32620887 PMCID: PMC7335074 DOI: 10.1038/s41598-020-67327-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/29/2022] Open
Abstract
Recently, cortical areas with motor properties have attracted attention widely to their involvement in both action generation and perception. Inferior frontal gyrus (IFG), ventral premotor cortex (PMv) and inferior parietal lobule (IPL), presumably consisting of motor-related areas, are of particular interest, given that they respond to motor behaviors both when they are performed and observed. Converging neuroimaging evidence has shown the functional roles of IFG, PMv and IPL in action understanding. Most studies have focused on the effects of modulations in goals and kinematics of observed actions on the brain response, but little research has explored the effects of manipulations in motor complexity. To address this, we used fNIRS to examine the brain activity in the frontal, motor, parietal and occipital regions, aiming to better understand the brain correlates involved in encoding motor complexity. Twenty-one healthy adults executed and observed two hand actions that differed in motor complexity. We found that motor complexity sensitive brain regions were present in the pars opercularis IFG/PMv, primary motor cortex (M1), IPL/supramarginal gyrus and middle occipital gyrus (MOG) during action execution, and in pars opercularis IFG/PMv and M1 during action observation. Our findings suggest that the processing of motor complexity involves not only M1 but also pars opercularis IFG, PMv and IPL, each of which plays a critical role in action perception and execution.
Collapse
|
26
|
Li J, Guo B, Cui L, Huang H, Meng M. Dissociated modulations of multivoxel activation patterns in the ventral and dorsal visual pathways by the temporal dynamics of stimuli. Brain Behav 2020; 10:e01673. [PMID: 32496013 PMCID: PMC7375111 DOI: 10.1002/brb3.1673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/12/2020] [Accepted: 04/30/2020] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION Previous studies suggested temporal limitations of visual object identification in the ventral pathway. Moreover, multivoxel pattern analyses (MVPA) of fMRI activation have shown reliable encoding of various object categories including faces and tools in the ventral pathway. By contrast, the dorsal pathway is involved in reaching a target and grasping a tool, and quicker in processing the temporal dynamics of stimulus change. However, little is known about how activation patterns in both pathways may change according to the temporal dynamics of stimulus change. METHODS Here, we measured fMRI responses of two consecutive stimuli with varying interstimulus intervals (ISIs), and we compared how the two visual pathways respond to the dynamics of stimuli by using MVPA and information-based searchlight mapping. RESULTS We found that the temporal dynamics of stimuli modulate responses of the two visual pathways in opposite directions. Specifically, slower temporal dynamics (longer ISIs) led to greater activity and better MVPA results in the ventral pathway. However, faster temporal dynamics (shorter ISIs) led to greater activity and better MVPA results in the dorsal pathway. CONCLUSIONS These results are the first to show how temporal dynamics of stimulus change modulated multivoxel fMRI activation pattern change. And such temporal dynamic response function in different ROIs along the two visual pathways may shed lights on understanding functional relationship and organization of these ROIs.
Collapse
Affiliation(s)
- Jiaxin Li
- School of PsychologySouth China Normal UniversityGuangzhouChina
| | - Bingbing Guo
- School of PsychologySouth China Normal UniversityGuangzhouChina
| | - Lin Cui
- School of PsychologySouth China Normal UniversityGuangzhouChina
| | - Hong Huang
- School of PsychologySouth China Normal UniversityGuangzhouChina
| | - Ming Meng
- School of PsychologySouth China Normal UniversityGuangzhouChina
- Key Laboratory of BrainCognition and Education Sciences (South China Normal University)Ministry of EducationGuangzhouChina
- Center for Studies of Psychological ApplicationSouth China Normal UniversityGuangzhouChina
- Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhouChina
| |
Collapse
|
27
|
Riccardi N, Yourganov G, Rorden C, Fridriksson J, Desai R. Degradation of Praxis Brain Networks and Impaired Comprehension of Manipulable Nouns in Stroke. J Cogn Neurosci 2020; 32:467-483. [PMID: 31682566 PMCID: PMC10274171 DOI: 10.1162/jocn_a_01495] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Distributed brain systems contribute to representation of semantic knowledge. Whether sensory and motor systems of the brain are causally involved in representing conceptual knowledge is an especially controversial question. Here, we tested 57 chronic left-hemisphere stroke patients using a semantic similarity judgment task consisting of manipulable and nonmanipulable nouns. Three complementary methods were used to assess the neuroanatomical correlates of semantic processing: voxel-based lesion-symptom mapping, resting-state functional connectivity, and gray matter fractional anisotropy. The three measures provided converging evidence that injury to the brain networks required for action observation, execution, planning, and visuomotor coordination are associated with specific deficits in manipulable noun comprehension relative to nonmanipulable items. Damage or disrupted connectivity of areas such as the middle posterior temporal gyrus, anterior inferior parietal lobe, and premotor cortex was related specifically to the impairment of manipulable noun comprehension. These results suggest that praxis brain networks contribute especially to the comprehension of manipulable object nouns.
Collapse
|
28
|
Pazen M, Uhlmann L, van Kemenade BM, Steinsträter O, Straube B, Kircher T. Predictive perception of self-generated movements: Commonalities and differences in the neural processing of tool and hand actions. Neuroimage 2020; 206:116309. [DOI: 10.1016/j.neuroimage.2019.116309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/28/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
|
29
|
Effect of test instructions: The example of the pantomime production task. Brain Cogn 2020; 139:105516. [PMID: 31935628 DOI: 10.1016/j.bandc.2020.105516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Accepted: 01/04/2020] [Indexed: 11/21/2022]
Abstract
The production of pantomime is a sensible task to detect praxis deficits. It is usually assessed by presenting objects visually or by verbal command. Verbal instructions are given either by providing the name of the object (e.g., "Show me how to use a pen") or by requiring the object function (e.g., "Show me how to write"). These modes of testing are used interchangeably. The aim of this study is to investigate whether the different instructions generate different performances. Fifty-one healthy participants (17-89 years old) were assessed on three pantomime production tasks differing for the instruction given: two with verbal instructions (Pantomime by Name and Pantomime by Function) and one with the object visually presented (Pantomime by Object). Results showed that Pantomime by Function produced the poorest performance and the highest frequency of Body Parts as Tool (BPT) errors, suggesting that the way the instructions are given may determine the performance in a task. Nuances in test instructions could result in misleading outcome.
Collapse
|
30
|
Kageyama T, Dos Santos Kawata KH, Kawashima R, Sugiura M. Performance and Material-Dependent Holistic Representation of Unconscious Thought: A Functional Magnetic Resonance Imaging Study. Front Hum Neurosci 2019; 13:418. [PMID: 31866843 PMCID: PMC6908964 DOI: 10.3389/fnhum.2019.00418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Psychological research has demonstrated that humans can think unconsciously. Unconscious thought (UT) refers to cognitive or affective decision-related processes that occur beyond conscious awareness. UT processes are considered more effective in complex decision-making than conscious thought (CT). In addition, holistic representation plays a key role in UT and consists of a multimodal, value-related cognitive process. While the neural correlates of UT have recently been investigated, the holistic representation hypothesis of UT has not been confirmed. Therefore, in the present study, we aimed to further evaluate this hypothesis by utilizing two UT tasks (person and consumer-product evaluations) in conjunction with an improved functional magnetic resonance imaging (fMRI) experimental protocol. Participants evaluated four alternatives with 12 attributes each. In the UT condition, once the decision information had been presented, the participants completed a 1-back task for 120 s and evaluated each alternative, as well as an independent 1-back task in the absence of any decision information. We then performed regression analysis of the UT performance in both tasks. Our results revealed a positive correlation between performance in the UT task and the use of the anterior part of the precuneus/paracentral lobule in the person evaluation task and between performance and the posterior part of the precuneus, postcentral gyrus, middle occipital gyrus, and superior parietal lobule in the consumer-product evaluation task. The involvement of the precuneus area in both tasks was indicative of a multimodal, value-related process and is consistent with the features of holistic representation, supporting a central role for holistic representation in UT. Furthermore, the involvement of different precuneus subregions in the two UT tasks may reflect the task dependency of the key representation critical for advantageous UT.
Collapse
Affiliation(s)
- Tetsuya Kageyama
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Ryuta Kawashima
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Motoaki Sugiura
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Disaster-Related Cognitive Science, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| |
Collapse
|
31
|
Riccardi N, Yourganov G, Rorden C, Fridriksson J, Desai RH. Dissociating action and abstract verb comprehension post-stroke. Cortex 2019; 120:131-146. [PMID: 31302507 PMCID: PMC6825884 DOI: 10.1016/j.cortex.2019.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/30/2019] [Accepted: 05/23/2019] [Indexed: 11/30/2022]
Abstract
The neural bases of action and abstract concept representations remain a topic of debate. While several lines of research provide evidence for grounding of action-related conceptual content into sensory-motor systems, results of traditional lesion-deficit studies have been somewhat inconsistent. Further, few studies have directly compared the neural substrates of action and relatively abstract verb comprehension post-stroke. Here, we investigated the impact of the disruption of two neural networks on comprehension of action and relatively abstract verbs in 48 unilateral left-hemisphere stroke patients using two methodologies: 1) lesion-deficit association and 2) resting-state functional connectivity (RSFC) analyses. Disruption of RSFC between the left inferior frontal gyrus and right hemisphere primary and secondary sensory-motor areas predicted greater relative impairment of action semantics. Voxel-based lesion-symptom mapping revealed that damage to frontal white matter, extending towards the inferior frontal gyrus, also predicted greater relative impairment of action semantics. On the other hand, damage to the left anterior middle temporal gyrus significantly impaired the more abstract category relative to action. These findings support the view that action and non-action/abstract semantic processing rely on partially dissociable brain networks, with action concepts relying more heavily on sensory-motor areas. The results also have wider implications for lesion-deficit association studies and show how the contralateral hemisphere can play a compensatory role following unilateral stroke.
Collapse
Affiliation(s)
- Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Grigori Yourganov
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC, USA; Institute for Mind and Brain, University of South Carolina, Columbia, SC, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA; Institute for Mind and Brain, University of South Carolina, Columbia, SC, USA
| | - Rutvik H Desai
- Department of Psychology, University of South Carolina, Columbia, SC, USA; Institute for Mind and Brain, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
32
|
Chen J, Snow JC, Culham JC, Goodale MA. What Role Does "Elongation" Play in "Tool-Specific" Activation and Connectivity in the Dorsal and Ventral Visual Streams? Cereb Cortex 2019; 28:1117-1131. [PMID: 28334063 DOI: 10.1093/cercor/bhx017] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
Images of tools induce stronger activation than images of nontools in a left-lateralized network that includes ventral-stream areas implicated in tool identification and dorsal-stream areas implicated in tool manipulation. Importantly, however, graspable tools tend to be elongated rather than stubby, and so the tool-selective responses in some of these areas may, to some extent, reflect sensitivity to elongation rather than "toolness" per se. Using functional magnetic resonance imaging, we investigated the role of elongation in driving tool-specific activation in the 2 streams and their interconnections. We showed that in some "tool-selective" areas, the coding of toolness and elongation coexisted, but in others, elongation and toolness were coded independently. Psychophysiological interaction analysis revealed that toolness, but not elongation, had a strong modulation of the connectivity between the ventral and dorsal streams. Dynamic causal modeling revealed that viewing tools (either elongated or stubby) increased the connectivity from the ventral- to the dorsal-stream tool-selective areas, but only viewing elongated tools increased the reciprocal connectivity between these areas. Overall, these data disentangle how toolness and elongation affect the activation and connectivity of the tool network and help to resolve recent controversies regarding the relative contribution of "toolness" versus elongation in driving dorsal-stream "tool-selective" areas.
Collapse
Affiliation(s)
- Juan Chen
- The Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | - Jody C Culham
- The Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Melvyn A Goodale
- The Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
33
|
A pantomiming priming study on the grasp and functional use actions of tools. Exp Brain Res 2019; 237:2155-2165. [PMID: 31203403 DOI: 10.1007/s00221-019-05581-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/11/2019] [Indexed: 12/31/2022]
Abstract
It has previously been demonstrated that tool recognition is facilitated by the repeated visual presentation of object features affording actions, such as those related to grasping and their functional use. It is unclear, however, if this can also facilitate pantomiming. Participants were presented with an image of a prime followed by a target tool and were required to pantomime the appropriate action for each one. The grasp and functional use attributes of the target tool were either the same or different to the prime. Contrary to expectations, participants were slower at pantomiming the target tool relative to the prime regardless of whether the grasp and function of the tool were the same or different-except when the prime and target tools consisted of identical images of the same exemplar. We also found a decrease in accuracy of performing functional use actions for the target tool relative to the prime when the two differed in functional use but not grasp. We reconcile differences between our findings and those that have performed priming studies on tool recognition with differences in task demands and known differences in how the brain recognises tools and performs actions to make use of them.
Collapse
|
34
|
Garcea FE, Buxbaum LJ. Gesturing tool use and tool transport actions modulates inferior parietal functional connectivity with the dorsal and ventral object processing pathways. Hum Brain Mapp 2019; 40:2867-2883. [PMID: 30900321 DOI: 10.1002/hbm.24565] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Interacting with manipulable objects (tools) requires the integration of diverse computations supported by anatomically remote regions. Previous functional neuroimaging research has demonstrated the left supramarginal (SMG) exhibits functional connectivity to both ventral and dorsal pathways, supporting the integration of ventrally-mediated tool properties and conceptual knowledge with dorsally-computed volumetric and structural representations of tools. This architecture affords us the opportunity to test whether interactions between the left SMG, ventral visual pathway, and dorsal visual pathway are differentially modulated when participants plan and generate tool-directed gestures emphasizing functional manipulation (tool use gesturing) or structure-based grasping (tool transport gesturing). We found that functional connectivity between the left SMG, ventral temporal cortex (bilateral fusiform gyri), and dorsal visual pathway (left superior parietal lobule/posterior intraparietal sulcus) was maximal for tool transport planning and gesturing, whereas functional connectivity between the left SMG, left ventral anterior temporal lobe, and left frontal operculum was maximal for tool use planning and gesturing. These results demonstrate that functional connectivity to the left SMG is differentially modulated by tool use and tool transport gesturing, suggesting that distinct tool features computed by the two object processing pathways are integrated in the parietal lobe in the service of tool-directed action.
Collapse
Affiliation(s)
- Frank E Garcea
- Moss Rehabilitation Research Institute, Albert Einstein Healthcare Network, Elkins Park, Pennsylvania.,Cognitive Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Albert Einstein Healthcare Network, Elkins Park, Pennsylvania.,Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Zapparoli L, Gandola M, Banfi G, Paulesu E. A Breakdown of Imagined Visuomotor Transformations and Its Neural Correlates in Young Elderly Subjects. Cereb Cortex 2018; 29:1682-1696. [DOI: 10.1093/cercor/bhy314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Martina Gandola
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- University Vita e Salute San Raffaele, Milan, Italy
| | - Eraldo Paulesu
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
36
|
Left inferior parietal and posterior temporal cortices mediate the effect of action observation on semantic processing of objects: evidence from rTMS. PSYCHOLOGICAL RESEARCH 2018; 84:1006-1019. [DOI: 10.1007/s00426-018-1117-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
|
37
|
Decoding Brain States for Planning Functional Grasps of Tools: A Functional Magnetic Resonance Imaging Multivoxel Pattern Analysis Study. J Int Neuropsychol Soc 2018; 24:1013-1025. [PMID: 30196800 DOI: 10.1017/s1355617718000590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES We used multivoxel pattern analysis (MVPA) to investigate neural selectivity for grasp planning within the left-lateralized temporo-parieto-frontal network of areas (praxis representation network, PRN) typically associated with tool-related actions, as studied with traditional neuroimaging contrasts. METHODS We used data from 20 participants whose task was to plan functional grasps of tools, with either right or left hands. Region of interest and whole-brain searchlight analyses were performed to show task-related neural patterns. RESULTS MVPA revealed significant contributions to functional grasp planning from the anterior intraparietal sulcus (aIPS) and its immediate vicinities, supplemented by inputs from posterior subdivisions of IPS, and the ventral lateral occipital complex (vLOC). Moreover, greater local selectivity was demonstrated in areas near the superior parieto-occipital cortex and dorsal premotor cortex, putatively forming the dorso-dorsal stream. CONCLUSIONS A contribution from aIPS, consistent with its role in prospective grasp formation and/or encoding of relevant tool properties (e.g., potential graspable parts), is likely to accompany the retrieval of manipulation and/or mechanical knowledge subserved by the supramarginal gyrus for achieving action goals. An involvement of vLOC indicates that MVPA is particularly sensitive to coding of object properties, their identities and even functions, for a support of grip formation. Finally, the engagement of the superior parieto-frontal regions as revealed by MVPA is consistent with their selectivity for transient features of tools (i.e., variable affordances) for anticipatory hand postures. These outcomes support the notion that, compared to traditional approaches, MVPA can reveal more fine-grained patterns of neural activity. (JINS, 2018, 24, 1013-1025).
Collapse
|
38
|
Watson CE, Gotts SJ, Martin A, Buxbaum LJ. Bilateral functional connectivity at rest predicts apraxic symptoms after left hemisphere stroke. Neuroimage Clin 2018; 21:101526. [PMID: 30612063 PMCID: PMC6319198 DOI: 10.1016/j.nicl.2018.08.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/22/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
Increasing evidence indicates that focal lesions following stroke cause alterations in connectivity among functional brain networks. Functional connectivity between hemispheres has been shown to be particularly critical for predicting stroke-related behavioral deficits and recovery of motor function and attention. Much less is known, however, about the relevance of interhemispheric functional connectivity for cognitive abilities like praxis that rely on strongly lateralized brain networks. In the current study, we examine correlations between symptoms of apraxia-a disorder of skilled action that cannot be attributed to lower-level sensory or motor impairments-and spontaneous, resting brain activity in functional MRI in chronic left hemisphere stroke patients and neurologically-intact control participants. Using a data-driven approach, we identified 32 regions-of-interest in which pairwise functional connectivity correlated with two distinct measures of apraxia, even when controlling for age, head motion, lesion volume, and other artifacts: overall ability to pantomime the typical use of a tool, and disproportionate difficulty pantomiming the use of tools associated with different, competing use and grasp-to-move actions (e.g., setting a kitchen timer versus picking it up). Better performance on both measures correlated with stronger interhemispheric functional connectivity. Relevant regions in the right hemisphere were often homologous to left hemisphere areas associated with tool use and action. Additionally, relative to overall pantomime accuracy, disproportionate difficulty pantomiming the use of tools associated with competing use and grasp actions was associated with weakened functional connectivity among a more strongly left-lateralized and peri-Sylvian set of brain regions. Finally, patient performance on both measures of apraxia was best predicted by a model that incorporated information about lesion location and functional connectivity, and functional connectivity continued to explain unique variance in behavior even after accounting for lesion loci. These results indicate that interhemispheric functional connectivity is relevant even for a strongly lateralized cognitive ability like praxis and emphasize the importance of the right hemisphere in skilled action.
Collapse
Affiliation(s)
| | - Stephen J Gotts
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Alex Martin
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA.
| |
Collapse
|
39
|
Apraxia of object-related action does not depend on visual feedback. Cortex 2018; 99:103-117. [DOI: 10.1016/j.cortex.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/31/2017] [Accepted: 11/07/2017] [Indexed: 11/19/2022]
|
40
|
|
41
|
Kupferberg A, Iacoboni M, Flanagin V, Huber M, Kasparbauer A, Baumgartner T, Hasler G, Schmidt F, Borst C, Glasauer S. Fronto-parietal coding of goal-directed actions performed by artificial agents. Hum Brain Mapp 2017; 39:1145-1162. [PMID: 29205671 DOI: 10.1002/hbm.23905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 11/11/2022] Open
Abstract
With advances in technology, artificial agents such as humanoid robots will soon become a part of our daily lives. For safe and intuitive collaboration, it is important to understand the goals behind their motor actions. In humans, this process is mediated by changes in activity in fronto-parietal brain areas. The extent to which these areas are activated when observing artificial agents indicates the naturalness and easiness of interaction. Previous studies indicated that fronto-parietal activity does not depend on whether the agent is human or artificial. However, it is unknown whether this activity is modulated by observing grasping (self-related action) and pointing actions (other-related action) performed by an artificial agent depending on the action goal. Therefore, we designed an experiment in which subjects observed human and artificial agents perform pointing and grasping actions aimed at two different object categories suggesting different goals. We found a signal increase in the bilateral inferior parietal lobule and the premotor cortex when tool versus food items were pointed to or grasped by both agents, probably reflecting the association of hand actions with the functional use of tools. Our results show that goal attribution engages the fronto-parietal network not only for observing a human but also a robotic agent for both self-related and social actions. The debriefing after the experiment has shown that actions of human-like artificial agents can be perceived as being goal-directed. Therefore, humans will be able to interact with service robots intuitively in various domains such as education, healthcare, public service, and entertainment.
Collapse
Affiliation(s)
- Aleksandra Kupferberg
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry University of Bern, Bern, Switzerland
| | - Marco Iacoboni
- David Geffen School of Medicine at UCLA, Ahmanson-Lovelace Brain Mapping Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, Los Angeles, California
| | - Virginia Flanagin
- German Center for Vertigo and Balance Disorders DSGZ, Ludwig-Maximilian University Munich, München, Germany.,Center for Sensorimotor Research, Department of Neurology, Ludwig-Maximilian University, München, Germany
| | - Markus Huber
- Center for Sensorimotor Research, Department of Neurology, Ludwig-Maximilian University, München, Germany
| | | | - Thomas Baumgartner
- Department of Social Psychology and Social Neuroscience, University of Bern, Bern, Switzerland
| | - Gregor Hasler
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry University of Bern, Bern, Switzerland
| | - Florian Schmidt
- Department of Robotics, DLR, Oberpfaffenhofen, Bavaria, Germany
| | - Christoph Borst
- Department of Robotics, DLR, Oberpfaffenhofen, Bavaria, Germany
| | - Stefan Glasauer
- German Center for Vertigo and Balance Disorders DSGZ, Ludwig-Maximilian University Munich, München, Germany.,Center for Sensorimotor Research, Department of Neurology, Ludwig-Maximilian University, München, Germany
| |
Collapse
|
42
|
Ortiz KZ, Mantovani-Nagaoka J. Limb apraxia in aphasic patients. ARQUIVOS DE NEURO-PSIQUIATRIA 2017; 75:767-772. [DOI: 10.1590/0004-282x20170150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/11/2017] [Indexed: 11/22/2022]
Abstract
ABSTRACT Limb apraxia is usually associated with left cerebral hemisphere damage, with numerous case studies involving aphasic patients. The aim of this study was to verify the occurrence of limb apraxia in aphasic patients and analyze its nature. This study involved 44 healthy volunteers and 28 aphasic patients matched for age and education. AH participants were assessed using a limb apraxia battery comprising subtests evaluating lexical-semantic aspects related to the comprehension/production of gestures as well as motor movements. Aphasics had worse performances on many tasks related to conceptual components of gestures. The difficulty found on the imitation of dynamic gesture tasks also indicated that there were specific motor difficulties in gesture planning. These results reinforce the importance of conducting limb apraxia assessment in aphasic patients and also highlight pantomime difficulties as a good predictor for semantic disturbances.
Collapse
|
43
|
Viher PV, Stegmayer K, Kubicki M, Karmacharya S, Lyall AE, Federspiel A, Vanbellingen T, Bohlhalter S, Wiest R, Strik W, Walther S. The cortical signature of impaired gesturing: Findings from schizophrenia. NEUROIMAGE-CLINICAL 2017; 17:213-221. [PMID: 29159038 PMCID: PMC5683189 DOI: 10.1016/j.nicl.2017.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 01/09/2023]
Abstract
Schizophrenia is characterized by deficits in gesturing that is important for nonverbal communication. Research in healthy participants and brain-damaged patients revealed a left-lateralized fronto-parieto-temporal network underlying gesture performance. First evidence from structural imaging studies in schizophrenia corroborates these results. However, as of yet, it is unclear if cortical thickness abnormalities contribute to impairments in gesture performance. We hypothesized that patients with deficits in gesture production show cortical thinning in 12 regions of interest (ROIs) of a gesture network relevant for gesture performance and recognition. Forty patients with schizophrenia and 41 healthy controls performed hand and finger gestures as either imitation or pantomime. Group differences in cortical thickness between patients with deficits, patients without deficits, and controls were explored using a multivariate analysis of covariance. In addition, the relationship between gesture recognition and cortical thickness was investigated. Patients with deficits in gesture production had reduced cortical thickness in eight ROIs, including the pars opercularis of the inferior frontal gyrus, the superior and inferior parietal lobes, and the superior and middle temporal gyri. Gesture recognition correlated with cortical thickness in fewer, but mainly the same, ROIs within the patient sample. In conclusion, our results show that impaired gesture production and recognition in schizophrenia is associated with cortical thinning in distinct areas of the gesture network. Impairments in gesture production and recognition in schizophrenia are related to altered brain structure. Brain alterations in schizophrenia are located in areas that are generally damaged in apraxia. Schizophrenia patients with gesture deficits show cortical thinning of several regions in the gesture network. Deficits of gesture production and recognition are both related to a fronto-parieto-temporal gesture network.
Collapse
Affiliation(s)
- Petra Verena Viher
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Sarina Karmacharya
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Amanda Ellis Lyall
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Tim Vanbellingen
- Department of Clinical Research, Inselspital, Bern, Switzerland; Neurology and Neurorehabilitation Center, Luzerner Kantonsspital, Lucerne, Switzerland; Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
| | - Stephan Bohlhalter
- Neurology and Neurorehabilitation Center, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging, Institute of Neuroradiology, University of Bern, Bern, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
44
|
Etcharry-Bouyx F, Le Gall D, Jarry C, Osiurak F. Gestural apraxia. Rev Neurol (Paris) 2017; 173:430-439. [DOI: 10.1016/j.neurol.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
|
45
|
Planning Functional Grasps of Simple Tools Invokes the Hand-independent Praxis Representation Network: An fMRI Study. J Int Neuropsychol Soc 2017; 23:108-120. [PMID: 28205496 DOI: 10.1017/s1355617716001120] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Neuropsychological and neuroimaging evidence indicates that tool use knowledge and abilities are represented in the praxis representation network (PRN) of the left cerebral hemisphere. We investigated whether PRN would also underlie the planning of function-appropriate grasps of tools, even though such an assumption is inconsistent with some neuropsychological evidence for independent representations of tool grasping and skilled tool use. METHODS Twenty right-handed participants were tested in an event-related functional magnetic resonance imaging (fMRI) study wherein they planned functionally appropriate grasps of tools versus grasps of non-tools matched for size and/or complexity, and later executed the pantomimed grasps of these objects. The dominant right, and non-dominant left hands were used in two different sessions counterbalanced across participants. The tool and non-tool stimuli were presented at three different orientations, some requiring uncomfortable hand rotations for effective grips, with the difficulty matched for both hands. RESULTS Planning functional grasps of tools (vs. non-tools) was associated with significant asymmetrical increases of activity in the temporo/occipital-parieto-frontal networks. The greater involvement of the left hemisphere PRN was particularly evident when hand movement kinematics (including wrist rotations) for grasping tools and non-tools were matched. The networks engaged in the task for the dominant and non-dominant hand were virtually identical. The differences in neural activity for the two object categories disappeared during grasp execution. CONCLUSIONS The greater hand-independent engagement of the left-hemisphere praxis representation network for planning functional grasps reveals a genuine effect of an early affordance/function-based visual processing of tools. (JINS, 2017, 23, 108-120).
Collapse
|
46
|
Abstract
OBJECTIVES Exploring the nature of defective pantomime in apraxia. METHODS Critical review of behavioral associations and dissociations between defective pantomime, imitation of gestures, and real tool use. Analysis of congruencies between crucial lesions for pantomime, imitation, and tool use. RESULTS There are behavioral double dissociations between pantomime and imitation, and their cerebral substrates show very little overlap. Whereas defective pantomime is bound to temporal and inferior frontal lesions, imitation is mainly affected by parietal lesions. Pantomime usually replicates the motor actions of real use but on scrutiny there are important differences between the movements of real use and of pantomime that cast doubt on the assumption that pantomime is produced by the same motor programs as actual use. A more plausible proposal posits that pantomime is a communicative gesture that uses manual actions for conveying information about objects and their use. The manual actions are constructed by selection and combination of distinctive features of tools and actions. They frequently include replications of characteristic motor actions of real use, but the main criterion for selection and modification of features is the comprehensibility of the gestures rather than the accurate replication of the motor actions of real use. CONCLUSIONS Pantomime of tool use is a communicative gesture rather than a replication of the motor actions of real use. (JINS, 2017, 23, 121-127).
Collapse
|
47
|
Króliczak G, Piper BJ, Frey SH. Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance. Neuropsychologia 2016; 93:501-512. [PMID: 27020138 PMCID: PMC5036996 DOI: 10.1016/j.neuropsychologia.2016.03.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/27/2016] [Accepted: 03/21/2016] [Indexed: 11/27/2022]
Abstract
Data from focal brain injury and functional neuroimaging studies implicate a distributed network of parieto-fronto-temporal areas in the human left cerebral hemisphere as playing distinct roles in the representation of meaningful actions (praxis). Because these data come primarily from right-handed individuals, the relationship between left cerebral specialization for praxis representation and hand dominance remains unclear. We used functional magnetic resonance imaging (fMRI) to evaluate the hypothesis that strongly left-handed (right hemisphere motor dominant) adults also exhibit this left cerebral specialization. Participants planned familiar actions for subsequent performance with the left or right hand in response to transitive (e.g., "pounding") or intransitive (e.g. "waving") action words. In linguistic control trials, cues denoted non-physical actions (e.g., "believing"). Action planning was associated with significant, exclusively left-lateralized and extensive increases of activity in the supramarginal gyrus (SMg), and more focal modulations in the left caudal middle temporal gyrus (cMTg). This activity was hand- and gesture-independent, i.e., unaffected by the hand involved in subsequent action performance, and the type of gesture (i.e., transitive or intransitive). Compared directly with right-handers, left-handers exhibited greater involvement of the right angular gyrus (ANg) and dorsal premotor cortex (dPMC), which is indicative of a less asymmetric functional architecture for praxis representation. We therefore conclude that the organization of mechanisms involved in planning familiar actions is influenced by one's motor dominance. However, independent of hand dominance, the left SMg and cMTg are specialized for ideomotor transformations-the integration of conceptual knowledge and motor representations into meaningful actions. These findings support the view that higher-order praxis representation and lower-level motor dominance rely on dissociable mechanisms.
Collapse
Affiliation(s)
- Gregory Króliczak
- Institute of Psychology, Action & Cognition Laboratory, Adam Mickiewicz University in Poznań, Poland
| | - Brian J Piper
- Neuroscience Program, Bowdoin College, Brunswick, ME 04011, USA
| | - Scott H Frey
- Department of Psychological Sciences, Rehabilitation Neuroscience Laboratory; Brain Imaging Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
48
|
Shared neural correlates of limb apraxia in early stages of Alzheimer's dementia and behavioural variant frontotemporal dementia. Cortex 2016; 84:1-14. [DOI: 10.1016/j.cortex.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/07/2016] [Accepted: 08/06/2016] [Indexed: 11/21/2022]
|
49
|
Affordance processing in segregated parieto-frontal dorsal stream sub-pathways. Neurosci Biobehav Rev 2016; 69:89-112. [DOI: 10.1016/j.neubiorev.2016.07.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 05/29/2016] [Accepted: 07/07/2016] [Indexed: 02/04/2023]
|
50
|
Hand-independent representation of tool-use pantomimes in the left anterior intraparietal cortex. Exp Brain Res 2016; 234:3677-3687. [DOI: 10.1007/s00221-016-4765-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
|