1
|
Li Z, He L, Peng L, Zhu X, Li M, Hu D. Negative hemodynamic response in the visual cortex: Evidence supporting neuronal origin via hemodynamic observation and two-photon imaging. Brain Res Bull 2025; 220:111149. [PMID: 39615859 DOI: 10.1016/j.brainresbull.2024.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
The positive hemodynamic response (PHR) during stimulation often co-occurs with a strong, sustained negative hemodynamic response (NHR). However, the characteristics and neurophysiological mechanisms of the NHR, especially in regions distal to the PHR, remain incompletely understood. Using intrinsic optical imaging (OI) and two-photon imaging, we observed that forelimb electrical stimulation evoked strong PHR signals in the forelimb region of the primary somatosensory cortex (S1FL). Meanwhile, NHR signals primarily appeared in the primary visual cortex (V1), with a delayed onset and lower amplitude relative to the PHR signals. Additionally, stimulation led to a reduction in cerebral blood flow (CBF) in the NHR region. Notably, there was an overall suppression of the calcium response in the NHR region, although a small proportion (14 %) of neurons exhibited concurrent activation. Axon tracing revealed cortico-cortical projections from S1FL to V1. These findings suggest that neuronal deactivation significantly contributes to the origin of the NHR, offering additional insights into the specific inhibitory mechanisms underlying the NHR.
Collapse
Affiliation(s)
- Zhen Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Lihua He
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Limin Peng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Xuan Zhu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| |
Collapse
|
2
|
Dresbach S, Gulban OF, Steinbach T, Eck J, Kashyap S, Kaas A, Weiskopf N, Goebel R, Huber R. Laminar CBV and BOLD response-characteristics over time and space in the human primary somatosensory cortex at 7T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600746. [PMID: 39372740 PMCID: PMC11451658 DOI: 10.1101/2024.06.26.600746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Uncovering the cortical representation of the body has been at the core of human brain mapping for decades, with special attention given to the digits. In the last decade, advances in functional magnetic resonance imaging (fMRI) technologies have opened the possibility of noninvasively unraveling the 3rd dimension of digit representations in humans along cortical layers. In laminar fMRI it is common to combine the use of the highly sensitive blood oxygen level dependent (BOLD) contrast with cerebral blood volume sensitive measurements, like vascular space occupancy (VASO), that are more specific to the underlying neuronal populations. However, the spatial and temporal VASO response characteristics across cortical depth to passive stimulation of the digits are still unknown. Therefore, we characterized haemodynamic responses to vibrotactile stimulation of individual digit-tips across cortical depth at 0.75 mm in-plane spatial resolution using BOLD and VASO fMRI at 7T. We could identify digit-specific regions of interest (ROIs) in putative Brodmann area 3b, following the known anatomical organization. In the ROIs, the BOLD response increased towards the cortical surface due to the draining vein effect, while the VASO response was more shifted towards middle cortical layers, likely reflecting bottom-up input from the thalamus, as expected. Interestingly, we also found slightly negative BOLD and VASO responses for non-preferred digits in the ROIs, potentially indicating neuronal surround inhibition. Finally, we explored the temporal signal dynamics for BOLD and VASO as a function of distance from activation peaks resulting from stimulation of contralateral digits. With this analysis, we showed a triphasic response consisting of an initial peak and a subsequent negative deflection during stimulation, followed by a positive post-stimulus response in BOLD and to some extent in VASO. While similar responses were reported with invasive methods in animal models, here we demonstrate a potential neuronal excitation-inhibition mechanism in a center-surround architecture across layers in the human somatosensory cortex. Given that, unlike in animals, human experiments do not rely on anesthesia and can readily implement extensive behavioral testing, obtaining this effect in humans is an important step towards further uncovering the functional significance of the different aspects of the triphasic response.
Collapse
|
3
|
Fukuda S, Tsujinaka R, Oda H, Hamada N, Matsuoka M, Hiraoka K. Suppression of perceptual sensitivity to digital nerve stimulation induced by afferent volley from digital nerve of contralateral homologous finger. Neuroreport 2023; 34:436-440. [PMID: 37096762 DOI: 10.1097/wnr.0000000000001909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The purpose of the present study is to investigate whether perceptual sensitivity to digital nerve stimulation is modulated by the afferent volley from the digital nerve of a contralateral finger. Fifteen healthy humans participated in this study. A test stimulus was given to the right-hand index finger, and a conditioning stimulus was given to one of the five fingers on the left hand 20, 30, or 40 ms before the test stimulus. The perceptual threshold of the finger stimulation was measured. The perceptual threshold of the test stimulus was significantly increased by a conditioning stimulus to the left-hand index finger given 40 ms before the test stimulus. In contrast, the threshold was not significantly changed by a conditioning stimulus to any finger other than the index finger. Perceptual sensitivity to digital nerve stimulation is suppressed by the afferent volley from the digital nerve of the contralateral homologous finger. This means that the afferent volley from the digital nerve suppresses the homologous finger representation in the ipsilateral somatosensory areas. These findings can be explained by the view that the afferent volley from the digital nerve of the index finger projects to the index finger representation in the contralateral primary sensory cortex and that the interhemispheric transcallosal inhibitory drive is provided from the secondary sensory cortex to the homologous finger representation in the contralateral secondary sensory cortex.
Collapse
Affiliation(s)
- Shiho Fukuda
- Graduate School of Rehabilitation Science, Osaka Metropolitan University
| | - Ryo Tsujinaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University
| | - Hitoshi Oda
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University
| | - Naoki Hamada
- Graduate School of Rehabilitation Science, Osaka Metropolitan University
| | - Masakazu Matsuoka
- Graduate School of Rehabilitation Science, Osaka Metropolitan University
| | - Koichi Hiraoka
- School of Medicine, Osaka Metropolitan University, Habikino city, Osaka, Japan
| |
Collapse
|
4
|
de Freitas Zanona A, Romeiro da Silva AC, Baltar do Rego Maciel A, Shirahige Gomes do Nascimento L, Bezerra da Silva A, Piscitelli D, Monte-Silva K. Sensory and motor cortical excitability changes induced by rTMS and sensory stimulation in stroke: A randomized clinical trial. Front Neurosci 2023; 16:985754. [PMID: 36760794 PMCID: PMC9907709 DOI: 10.3389/fnins.2022.985754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Background The ability to produce coordinated movement is dependent on dynamic interactions through transcallosal fibers between the two cerebral hemispheres of the brain. Although typically unilateral, stroke induces changes in functional and effective connectivity across hemispheres, which are related to sensorimotor impairment and stroke recovery. Previous studies have focused almost exclusively on interhemispheric interactions in the primary motor cortex (M1). Objective To identify the presence of interhemispheric asymmetry (ASY) of somatosensory cortex (S1) excitability and to investigate whether S1 repetitive transcranial magnetic stimulation (rTMS) combined with sensory stimulation (SS) changes excitability in S1 and M1, as well as S1 ASY, in individuals with subacute stroke. Methods A randomized clinical trial. Participants with a single episode of stroke, in the subacute phase, between 35 and 75 years old, were allocated, randomly and equally balanced, to four groups: rTMS/sham SS, sham rTMS/SS, rTMS/SS, and sham rTMS/Sham SS. Participants underwent 10 sessions of S1 rTMS of the lesioned hemisphere (10 Hz, 1,500 pulses) followed by SS. SS was applied to the paretic upper limb (UL) (active SS) or non-paretic UL (sham SS). TMS-induced motor evoked potentials (MEPs) of the paretic UL and somatosensory evoked potential (SSEP) of both ULs assessed M1 and S1 cortical excitability, respectively. The S1 ASY index was measured before and after intervention. Evaluator, participants and the statistician were blinded. Results Thirty-six participants divided equally into groups (nine participants per group). Seven patients were excluded from MEP analysis because of failure to produce consistent MEP. One participant was excluded in the SSEP analysis because no SSEP was detected. All somatosensory stimulation groups had decreased S1 ASY except for the sham rTMS/Sham SS group. When compared with baseline, M1 excitability increased only in the rTMS/SS group. Conclusion S1 rTMS and SS alone or in combination changed S1 excitability and decreased ASY, but it was only their combination that increased M1 excitability. Clinical trial registration clinicaltrials.gov, identifier (NCT03329807).
Collapse
Affiliation(s)
- Aristela de Freitas Zanona
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil,Occupational Therapy Department and Post-Graduate Program in Applied Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | | | - Adriana Baltar do Rego Maciel
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Amanda Bezerra da Silva
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Daniele Piscitelli
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy,Department of Kinesiology, University of Connecticut, Storrs, CT, United States,*Correspondence: Daniele Piscitelli, ,
| | - Katia Monte-Silva
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
5
|
Dumont V, Giovannella M, Zuba D, Clouard R, Durduran T, Guillois B, Roche-Labarbe N. Somatosensory prediction in the premature neonate brain. Dev Cogn Neurosci 2022; 57:101148. [PMID: 36027649 PMCID: PMC9428805 DOI: 10.1016/j.dcn.2022.101148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Sensory prediction (SP) is at the core of early cognitive development. Impaired SP may be a key to understanding the emergence of neurodevelopmental disorders, however there is little data on how and when this skill emerges. We set out to provide evidence of SP in the brain of premature neonates in the fundamental sensory modality: touch. Using Diffuse Correlation Spectroscopy, we measured blood flow changes in the somatosensory cortex of premature neonates presented with a vibrotactile stimulation-omission sequence. When ISI was fixed, participants presented a decrease in blood flow during stimulus omissions, starting when a stimulus should begin: the expectation of a certain stimulus onset induced deactivation of the somatosensory cortex. When ISI was jittered, we observed an increase in blood flow during omissions: the expectation of a likely but not certain stimulus onset induced activation of the somatosensory cortex. Our results reveal SP in the brain as early as four weeks before term, based on the temporal structure of a unimodal somatosensory stimulation, and show that SP produces opposite regulation of activity in the somatosensory cortex depending on how liable is stimulus onset. Future studies will investigate the predictive value of somatosensory prediction on neurodevelopment in this vulnerable population.
Collapse
Affiliation(s)
- Victoria Dumont
- Normandie Univ, UNICAEN, LPCN, 14000 Caen, France; Normandie Univ, UNICAEN, INSERM, COMETE, 14000 Caen, France.
| | - Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Daniel Zuba
- Normandie Univ, UNICAEN, INSERM, COMETE, 14000 Caen, France; CHU, 14000 Caen, France
| | - Régis Clouard
- Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| | - Bernard Guillois
- Normandie Univ, UNICAEN, LPCN, 14000 Caen, France; CHU, 14000 Caen, France
| | | |
Collapse
|
6
|
He H, Ettehadi N, Shmuel A, Razlighi QR. Evidence suggesting common mechanisms underlie contralateral and ipsilateral negative BOLD responses in human visual cortex. Neuroimage 2022; 262:119440. [PMID: 35842097 PMCID: PMC9523581 DOI: 10.1016/j.neuroimage.2022.119440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
The task-evoked positive BOLD response (PBR) to a unilateral visual hemi-field stimulation is often accompanied by robust and sustained contralateral as well as ipsilateral negative BOLD responses (NBRs) in the visual cortex. The signal characteristics and the neural and/or vascular mechanisms that underlie these two types of NBRs are not completely understood. In this paper, we investigated the properties of these two types of NBRs. We first demonstrated the linearity of both NBRs with respect to stimulus duration. Next, we showed that the hemodynamic response functions (HRFs) of the two NBRs were similar to each other, but significantly different from that of the PBR. Moreover, the subject-wise expressions of the two NBRs were tightly coupled to the degree that the correlation between the two NBRs was significantly higher than the correlation between each NBR and the PBR. However, the activation patterns of the two NBRs did not show a high level of interhemispheric spatial similarity, and the functional connectivity between them was not different than the interhemispheric functional connectivity between the NBRs and PBR. Finally, while attention did modulate both NBRs, the attention-related changes in their HRFs were similar. Our findings suggest that the two NBRs might be generated through common neural and/or vascular mechanisms involving distal/deep brain regions that project to the two hemispheres.
Collapse
Affiliation(s)
- Hengda He
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, USA; Department of Biomedical Engineering, Columbia University, New York, USA
| | - Nabil Ettehadi
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Amir Shmuel
- Montreal Neurological Institute, Departments of Neurology, Neurosurgery, Physiology and Biomedical Engineering, McGill University, Montreal, QA, Canada
| | - Qolamreza R Razlighi
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
7
|
Mayhew SD, Coleman SC, Mullinger KJ, Can C. Across the adult lifespan the ipsilateral sensorimotor cortex negative BOLD response exhibits decreases in magnitude and spatial extent suggesting declining inhibitory control. Neuroimage 2022; 253:119081. [PMID: 35278710 PMCID: PMC9130740 DOI: 10.1016/j.neuroimage.2022.119081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022] Open
Abstract
Ipsilateral sensorimotor (iSM1) cortex negative BOLD responses (NBR) are observed to unilateral tasks and are thought to reflect a functionally relevant component of sensorimotor inhibition. Evidence suggests that sensorimotor inhibitory mechanisms degrade with age, along with aspects of motor ability and dexterity. However, understanding of age-related changes to NBR is restricted by limited comparisons between young vs old adults groups with relatively small samples sizes. Here we analysed a BOLD fMRI dataset (obtained from the CamCAN repository) of 581 healthy subjects, gender-balanced, sampled from the whole adult lifespan performing a motor response task to an audio-visual stimulus. We aimed to investigate how sensorimotor and default-mode NBR characteristics of magnitude, spatial extent and response shape alter at every decade of the aging process. A linear decrease in iSM1 NBR magnitude was observed across the whole lifespan whereas the contralateral sensorimotor (cSM1) PBR magnitude was unchanged. An age-related decrease in the spatial extent of NBR and an increase in the ipsilateral positive BOLD response (PBR) was observed. This occurred alongside an increasing negative correlation between subject's iSM1 NBR and cSM1 PBR magnitude, reflecting a change in the balance between cortical excitation and inhibition. Conventional GLM analysis, using a canonical haemodynamic response (HR) function, showed disappearance of iSM1 NBR in subjects over 50 years of age. However, a deconvolution analysis showed that the shape of the iSM1 HR altered throughout the lifespan, with delayed time-to-peak and decreased magnitude. The most significant decreases in iSM1 HR magnitude occurred in older age (>60 years) but the first changes in shape and timing occurred as early as 30 years, suggesting possibility of separate mechanisms underlying these alterations. Reanalysis using data-driven HRs for each decade detected significant sensorimotor NBR into late older age, showing the importance of taking changes in HR morphology into account in fMRI aging studies. These results may reflect fMRI measures of the age-related decreases in transcollosal inhibition exerted upon ipsilateral sensorimotor cortex and alterations to the excitatory-inhibitory balance in the sensorimotor network.
Collapse
Affiliation(s)
- Stephen D Mayhew
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK.
| | - Sebastian C Coleman
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Karen J Mullinger
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK; Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Cam Can
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Oelschlägel M, Polanski WH, Morgenstern U, Steiner G, Kirsch M, Koch E, Schackert G, Sobottka SB. Characterization of cortical hemodynamic changes following sensory, visual, and speech activation by intraoperative optical imaging utilizing phase-based evaluation methods. Hum Brain Mapp 2022; 43:598-615. [PMID: 34590384 PMCID: PMC8720199 DOI: 10.1002/hbm.25674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 11/12/2022] Open
Abstract
Alterations within cerebral hemodynamics are the intrinsic signal source for a wide variety of neuroimaging techniques. Stimulation of specific functions leads due to neurovascular coupling, to changes in regional cerebral blood flow, oxygenation and volume. In this study, we investigated the temporal characteristics of cortical hemodynamic responses following electrical, tactile, visual, and speech activation for different stimulation paradigms using Intraoperative Optical Imaging (IOI). Image datasets from a total of 22 patients that underwent surgical resection of brain tumors were evaluated. The measured reflectance changes at different light wavelength bands, representing alterations in regional cortical blood volume (CBV), and deoxyhemoglobin (HbR) concentration, were assessed by using Fourier-based evaluation methods. We found a decrease of CBV connected to an increase of HbR within the contralateral primary sensory cortex (SI) in patients that were prolonged (30 s/15 s) electrically stimulated. Additionally, we found differences in amplitude as well as localization of activated areas for different stimulation patterns. Contrary to electrical stimulation, prolonged tactile as well as prolonged visual stimulation are provoking increases in CBV within the corresponding activated areas (SI, visual cortex). The processing of the acquired data from awake patients performing speech tasks reveals areas with increased, as well as areas with decreased CBV. The results lead us to the conclusion, that the CBV decreases in connection with HbR increases in SI are associated to processing of nociceptive stimuli and that stimulation type, as well as paradigm have a nonnegligible impact on the temporal characteristics of the following hemodynamic response.
Collapse
Affiliation(s)
- Martin Oelschlägel
- Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Clinical Sensoring and Monitoring, Dresden, Saxony, Germany
| | - Witold H Polanski
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany
| | - Ute Morgenstern
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Institute of Biomedical Engineering, Dresden, Saxony, Germany
| | - Gerald Steiner
- Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Clinical Sensoring and Monitoring, Dresden, Saxony, Germany
| | - Matthias Kirsch
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany.,Department of Neurosurgery, Asklepios Kliniken Schildautal Seesen, Seesen, Saxony, Germany
| | - Edmund Koch
- Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Clinical Sensoring and Monitoring, Dresden, Saxony, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany
| | - Stephan B Sobottka
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany
| |
Collapse
|
9
|
Tang W, Shu Y, Bai S, Peng Y, Yang L, Liu R. Brain activation related to the tactile perception of touching ridged texture using fingers. Skin Res Technol 2021; 28:254-264. [PMID: 34751480 PMCID: PMC9907631 DOI: 10.1111/srt.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/16/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Humans can recognize the physical properties of objects by touching them, even when vision is unavailable. Tactile perception is important for humans in interacting with the environment. The triangular ridged textures are usually added to surface to improve the grip reliability of products, but the sharp edge of triangular ridge induces sharp and uncomfortable feeling. MATERIALS AND METHODS To study the effect of the edge shape of triangular ridged texture on brain activity, functional magnetic resonance imaging technique was used to obtain the blood oxygen level-dependent (BOLD) signal of subjects during the touching of textured surfaces. Samples with sharp, round, and flat shape ridged textures were chosen as the tactile stimulus. RESULTS The contralateral postcentral gyrus, the precentral gyrus, the inferior parietal lobule, and the supramarginal gyrus, corresponding with the functional regions of the primary somatosensory cortex (SI), the secondary somatosensory cortex (SII), and the primary motor cortex (MI) were related to the perception of three shape ridged textures. The main brain activation located in the postcentral gyrus and the SI. The tactile information of three shape ridged textures was received by Brodmann area (BA) 3 of the SI, and then inputted to BA 2 of the SI, the further tactile discrimination of shape of ridged textures was involved in BA40 of the SII. The intensity, the areas, and the percent signal change (PSC) of brain activation that were evoked by different shape ridged textures were related to the geometric structures of the ridged textures. The more complex the geometric structures of texture are, the larger the intensity, the area, and the PSC in brain activation are. The negative BOLD responses of the ipsilateral sensory cortex that were evoked by the flat ridged texture indicated the ipsilateral neuronal inhibition within the sensory systems. The bilateral precuneus, the superior parietal gyrus, and the inferior parietal gyrus, corresponding with the functional areas of the SII (BA40) and the SSA(BA7), were involved in the tactile discriminate of the differences in shapes of ridged textures. The differences in brain activation were related to the differences in geometric structures of the ridged texture. The larger the differences in geometric structure of texture are, the larger the differences in brain activation are. This study revealed the activated location of brain related to the tactile stimulation of different edge shape of ridged textures and the relationship between the geometric structures of ridged texture and brain activities. This research contributes to optimize surface tactile characteristics on products, especially effective surface textures design for good grip.
Collapse
Affiliation(s)
- Wei Tang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
| | - Yunxiao Shu
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
| | - Shengjie Bai
- Radiology Department, Xuzhou Central Hospital, Xuzhou, China
| | - Yuxing Peng
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
| | - Lei Yang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
| | - Rui Liu
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
10
|
Fracasso A, Gaglianese A, Vansteensel MJ, Aarnoutse EJ, Ramsey NF, Dumoulin SO, Petridou N. FMRI and intra-cranial electrocorticography recordings in the same human subjects reveals negative BOLD signal coupled with silenced neuronal activity. Brain Struct Funct 2021; 227:1371-1384. [PMID: 34363092 PMCID: PMC9046332 DOI: 10.1007/s00429-021-02342-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 07/09/2021] [Indexed: 12/27/2022]
Abstract
Positive blood oxygenation level-dependent (BOLD) responses (PBR), as measured by functional Magnetic Resonance Imaging (fMRI), are the most utilized measurements to non-invasively map activity in the brain. Recent studies have consistently shown that BOLD responses are not exclusively positive. Negative BOLD responses (NBR) have been reported in response to specific sensory stimulations and tasks. However, the exact relationship between NBR and the underlying metabolic and neuronal demand is still under debate. In this study, we investigated the neurophysiological basis of negative BOLD using fMRI and intra-cranial electrophysiology (electrocorticography, ECoG) measurements from the same human participants. We show that, for those electrodes that responded to visual stimulation, PBR are correlated with high-frequency band (HFB) responses. Crucially, NBR were associated with an absence of HFB power responses and an unpredicted decrease in the alpha power responses.
Collapse
Affiliation(s)
- Alessio Fracasso
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland.
| | - Anna Gaglianese
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center, University of Lausanne, Rue Centrale 7, 1003, Lausanne, Switzerland
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department of Neurosurgery and Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Mariska J Vansteensel
- Department of Neurosurgery and Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Erik J Aarnoutse
- Department of Neurosurgery and Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Nick F Ramsey
- Department of Neurosurgery and Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Serge O Dumoulin
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Spinoza Center for Neuroimaging, Amsterdam, The Netherlands
- Experimental and Applied Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Natalia Petridou
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
11
|
Naito E, Morita T, Asada M. Importance of the Primary Motor Cortex in Development of Human Hand/Finger Dexterity. Cereb Cortex Commun 2021; 1:tgaa085. [PMID: 34296141 PMCID: PMC8152843 DOI: 10.1093/texcom/tgaa085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/02/2020] [Indexed: 11/18/2022] Open
Abstract
Hand/finger dexterity is well-developed in humans, and the primary motor cortex (M1) is believed to play a particularly important role in it. Here, we show that efficient recruitment of the contralateral M1 and neuronal inhibition of the ipsilateral M1 identified by simple hand motor and proprioceptive tasks are related to hand/finger dexterity and its ontogenetic development. We recruited healthy, right-handed children (n = 21, aged 8–11 years) and adults (n = 23, aged 20–26 years) and measured their brain activity using functional magnetic resonance imaging during active and passive right-hand extension–flexion tasks. We calculated individual active control-related activity (active–passive) to evaluate efficient brain activity recruitment and individual task-related deactivation (neuronal inhibition) during both tasks. Outside the scanner, participants performed 2 right-hand dexterous motor tasks, and we calculated the hand/finger dexterity index (HDI) based on their individual performance. Participants with a higher HDI exhibited less active control-related activity in the contralateral M1 defined by the active and passive tasks, independent of age. Only children with a higher HDI exhibited greater ipsilateral M1 deactivation identified by these tasks. The results imply that hand/finger dexterity can be predicted by recruitment and inhibition styles of the M1 during simple hand sensory–motor tasks.
Collapse
Affiliation(s)
- Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| | - Minoru Asada
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Shader MJ, Luke R, Gouailhardou N, McKay CM. The use of broad vs restricted regions of interest in functional near-infrared spectroscopy for measuring cortical activation to auditory-only and visual-only speech. Hear Res 2021; 406:108256. [PMID: 34051607 DOI: 10.1016/j.heares.2021.108256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
As an alternative to fMRI, functional near-infrared spectroscopy (fNIRS) is a relatively new tool for observing cortical activation. However, spatial resolution is reduced compared to fMRI and often the exact locations of fNIRS optodes and specific anatomical information is not known. The aim of this study was to explore the location and range of specific regions of interest that are sensitive to detecting cortical activation using fNIRS in response to auditory- and visual-only connected speech. Two approaches to a priori region-of-interest selection were explored. First, broad regions corresponding to the auditory cortex and occipital lobe were analysed. Next, the fNIRS Optode Location Decider (fOLD) tool was used to divide the auditory and visual regions into two subregions corresponding to distinct anatomical structures. The Auditory-A and -B regions corresponded to Heschl's gyrus and planum temporale, respectively. The Visual-A region corresponded to the superior occipital gyrus and the cuneus, and the Visual-B region corresponded to the middle occipital gyrus. The experimental stimulus consisted of a connected speech signal segmented into 12.5-sec blocks and was presented in either an auditory-only or visual-only condition. Group-level results for eight normal-hearing adult participants averaged over the broad regions of interest revealed significant auditory-evoked activation for both the left and right broad auditory regions of interest. No significant activity was observed for any other broad region of interest in response to any stimulus condition. When divided into subregions, there was a significant positive auditory-evoked response in the left and right Auditory-A regions, suggesting activation near the primary auditory cortex in response to auditory-only speech. There was a significant positive visual-evoked response in the Visual-B region, suggesting middle occipital gyrus activation in response to visual-only speech. In the Visual-A region, however, there was a significant negative visual-evoked response. This result suggests a significant decrease in oxygenated hemoglobin in the superior occipital gyrus as well as the cuneus in response to visual-only speech. Distinct response characteristics, either positive or negative, in adjacent subregions within the temporal and occipital lobes were fairly consistent on the individual level. Results suggest that temporal regions near Heschl's gyrus may be the most advantageous location in adults for identifying hemodynamic responses to complex auditory speech signals using fNIRS. In the occipital lobe, regions corresponding to the facial processing pathway may prove advantageous for measuring positive responses to visual speech using fNIRS.
Collapse
Affiliation(s)
- Maureen J Shader
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia.
| | - Robert Luke
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia; Department of Linguistics, Faculty of Medicine, Health and Human Sciences, Macquarie Hearing, Macquarie University, 16 University Avenue, New South Wales 2109, Australia
| | | | - Colette M McKay
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
| |
Collapse
|
13
|
Bennett MR, Farnell L, Gibson WG. Quantitative relations between BOLD responses, cortical energetics and impulse firing across cortical depth. Eur J Neurosci 2021; 54:4230-4245. [PMID: 33901325 DOI: 10.1111/ejn.15247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/08/2021] [Indexed: 11/28/2022]
Abstract
The blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signal arises as a consequence of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen ( CMR O 2 ) that in turn are modulated by changes in neural activity. Recent advances in imaging have achieved sub-millimetre resolution and allowed investigation of the BOLD response as a function of cortical depth. Here, we adapt our previous theory relating the BOLD signal to neural activity to produce a quantitative model that incorporates venous blood draining between cortical layers. The adjustable inputs to the model are the neural activity and a parameter governing this blood draining. A three-layer version for transient neural inputs and a multi-layer version for constant or tonic neural inputs are able to account for a variety of experimental results, including negative BOLD signals.
Collapse
Affiliation(s)
- Maxwell R Bennett
- Brain and Mind Research Centre, University of Sydney, Camperdown, NSW, Australia
- Center for Mathematical Biology, University of Sydney, Sydney, NSW, Australia
| | - Leslie Farnell
- Center for Mathematical Biology, University of Sydney, Sydney, NSW, Australia
- The School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - William G Gibson
- Center for Mathematical Biology, University of Sydney, Sydney, NSW, Australia
- The School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Tremblay SA, Jäger AT, Huck J, Giacosa C, Beram S, Schneider U, Grahl S, Villringer A, Tardif CL, Bazin PL, Steele CJ, Gauthier CJ. White matter microstructural changes in short-term learning of a continuous visuomotor sequence. Brain Struct Funct 2021; 226:1677-1698. [PMID: 33885965 DOI: 10.1007/s00429-021-02267-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/26/2021] [Indexed: 11/29/2022]
Abstract
Efficient neural transmission is crucial for optimal brain function, yet the plastic potential of white matter (WM) has long been overlooked. Growing evidence now shows that modifications to axons and myelin occur not only as a result of long-term learning, but also after short training periods. Motor sequence learning (MSL), a common paradigm used to study neuroplasticity, occurs in overlapping learning stages and different neural circuits are involved in each stage. However, most studies investigating short-term WM plasticity have used a pre-post design, in which the temporal dynamics of changes across learning stages cannot be assessed. In this study, we used multiple magnetic resonance imaging (MRI) scans at 7 T to investigate changes in WM in a group learning a complex visuomotor sequence (LRN) and in a control group (SMP) performing a simple sequence, for five consecutive days. Consistent with behavioral results, where most improvements occurred between the two first days, structural changes in WM were observed only in the early phase of learning (d1-d2), and in overall learning (d1-d5). In LRNs, WM microstructure was altered in the tracts underlying the primary motor and sensorimotor cortices. Moreover, our structural findings in WM were related to changes in functional connectivity, assessed with resting-state functional MRI data in the same cohort, through analyses in regions of interest (ROIs). Significant changes in WM microstructure were found in a ROI underlying the right supplementary motor area. Together, our findings provide evidence for highly dynamic WM plasticity in the sensorimotor network during short-term MSL.
Collapse
Affiliation(s)
- Stéfanie A Tremblay
- Department of Physics/PERFORM Center, Concordia University, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| | - Anna-Thekla Jäger
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Charite Universitätsmedizin, Charite, Berlin, Germany
| | - Julia Huck
- Department of Physics/PERFORM Center, Concordia University, Montreal, QC, Canada
| | - Chiara Giacosa
- Department of Physics/PERFORM Center, Concordia University, Montreal, QC, Canada
| | - Stephanie Beram
- Department of Physics/PERFORM Center, Concordia University, Montreal, QC, Canada
| | - Uta Schneider
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sophia Grahl
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, Leipzig, Germany.,Leipzig University Medical Centre, IFB Adiposity Diseases, Leipzig, Germany.,Collaborative Research Centre 1052-A5, University of Leipzig, Leipzig, Germany
| | - Christine L Tardif
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada.,Montreal Neurological Institute, Montreal, QC, Canada
| | - Pierre-Louis Bazin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Faculty of Social and Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Christopher J Steele
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Claudine J Gauthier
- Department of Physics/PERFORM Center, Concordia University, Montreal, QC, Canada. .,Montreal Heart Institute, Montreal, QC, Canada.
| |
Collapse
|
15
|
Abstract
In perceptual rivalry, ambiguous sensory information leads to dynamic changes in the perceptual interpretation of fixed stimuli. This phenomenon occurs when participants receive sensory stimuli that support two or more distinct interpretations; this results in spontaneous alternations between possible perceptual interpretations. Perceptual rivalry has been widely studied across different sensory modalities including vision, audition, and to a limited extent, in the tactile domain. Common features of perceptual rivalry across various ambiguous visual and auditory paradigms characterize the randomness of switching times and their dependence on input strength manipulations (Levelt's propositions). It is still unclear whether the general characteristics of perceptual rivalry are preserved with tactile stimuli. This study aims to introduce a simple tactile stimulus capable of generating perceptual rivalry and explores whether general features of perceptual rivalry from other modalities extend to the tactile domain. Our results confirm that Levelt's proposition II extends to tactile bistability, and that the stochastic characteristics of irregular perceptual alternations agree with non-tactile modalities. An analysis of correlations between subsequent perceptual phases reveals a significant positive correlation at lag 1 (as found in visual bistability), and a negative correlation for lag 2 (in contrast with visual bistability).
Collapse
|
16
|
de la Rosa N, Ress D, Taylor AJ, Kim JH. Retinotopic variations of the negative blood-oxygen-level dependent hemodynamic response function in human primary visual cortex. J Neurophysiol 2021; 125:1045-1057. [PMID: 33625949 DOI: 10.1152/jn.00676.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) measures blood-oxygen-level-dependent (BOLD) contrast that is generally assumed to be linearly related to excitatory neural activity. The positive hemodynamic response function (pHRF) is the positive BOLD response (PBR) evoked by a brief neural stimulation; the pHRF is often used as the impulse response for linear analysis of neural excitation. Many fMRI studies have observed a negative BOLD response (NBR) that is often associated with neural suppression. However, the temporal dynamics of the NBR evoked by a brief stimulus, the negative HRF (nHRF), remains unclear. Here, a unilateral visual stimulus was presented in a slow event-related design to elicit both pHRFs in the stimulus representation (SR), and nHRFs elsewhere. The observed nHRFs were not inverted versions of the pHRF previously reported. They were characterized by a stronger initial negative response followed by a significantly later positive peak. In contralateral primary visual cortex (V1), these differences varied with eccentricity from the SR. Similar nHRFs were observed in ipsilateral V1 with less eccentricity variation. Experiments with the blocked version of the same stimulus confirmed that brain regions presenting the unexpected nHRF dynamics correspond to those presenting a strong NBR. These data demonstrated that shift-invariant temporal linearity did not hold for the NBR while confirming that the PBR maintained rough linearity. Modeling indicated that the observed nHRFs can be created by suppression of both blood flow and oxygen metabolism. Critically, the nHRF can be misinterpreted as a pHRF due to their similarity, which could confound linear analysis for event-related fMRI experiments.NEW & NOTEWORTHY We investigate dynamics of the negative hemodynamic response function (nHRF), the negative blood-oxygen-level-dependent (BOLD) response (NBR) evoked by a brief stimulus, in human early visual cortex. Here, we show that the nHRFs are not inverted versions of the corresponding pHRFs. The nHRF has complex dynamics that varied significantly with eccentricity. The results also show shift-invariant temporal linearity does not hold for the NBR.
Collapse
|
17
|
Zhou S, Huang Y, Jiao J, Hu J, Hsing C, Lai Z, Yang Y, Hu X. Impairments of cortico-cortical connectivity in fine tactile sensation after stroke. J Neuroeng Rehabil 2021; 18:34. [PMID: 33588877 PMCID: PMC7885375 DOI: 10.1186/s12984-021-00821-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/12/2021] [Indexed: 01/17/2023] Open
Abstract
Background Fine tactile sensation plays an important role in motor relearning after stroke. However, little is known about its dynamics in post-stroke recovery, principally due to a lack of effective evaluation on neural responses to fine tactile stimulation. This study investigated the post-stroke alteration of cortical connectivity and its functional structure in response to fine tactile stimulation via textile fabrics by electroencephalogram (EEG)-derived functional connectivity and graph theory analyses. Method Whole brain EEG was recorded from 64 scalp channels in 8 participants with chronic stroke and 8 unimpaired controls before and during the skin of the unilateral forearm contacted with a piece of cotton fabric. Functional connectivity (FC) was then estimated using EEG coherence. The fabric stimulation induced FC (SFC) was analyzed by a cluster-based permutation test for the FC in baseline and fabric stimulation. The functional structure of connectivity alteration in the brain was also investigated by assessing the multiscale topological properties of functional brain networks according to the graph theory. Results In the SFC distribution, an altered hemispheric lateralization (HL) (HL degree, 14%) was observed when stimulating the affected forearm in the stroke group, compared to stimulation of the unaffected forearm of the stroke group (HL degree, 53%) and those of the control group (HL degrees, 92% for the left and 69% for the dominant right limb). The involvement of additional brain regions, i.e., the distributed attention networks, was also observed when stimulating either limb of the stroke group compared with those of the control. Significantly increased (P < 0.05) global and local efficiencies were found when stimulating the affected forearm compared to the unaffected forearm. A significantly increased (P < 0.05) degree of inter-hemisphere FC (interdegree) mainly within ipsilesional somatosensory region and a significantly diminished degree of intra-hemisphere FC (intradegree) (P < 0.05) in ipsilesional primary somatosensory region were observed when stimulating the affected forearm, compared with the unaffected forearm. Conclusions The alteration of cortical connectivity in fine tactile sensation post-stroke was characterized by the compensation from the contralesional hemisphere and distributed attention networks related to involuntary attention. The interhemispheric connectivity could implement the compensation from the contralateral hemisphere to the ipsilesional somatosensory region. Stroke participants also exerted increased cortical activities in fine tactile sensation.
Collapse
Affiliation(s)
- Sa Zhou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yanhuan Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiao Jiao
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Junyan Hu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chihchia Hsing
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhangqi Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yang Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
18
|
Howarth C, Mishra A, Hall CN. More than just summed neuronal activity: how multiple cell types shape the BOLD response. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190630. [PMID: 33190598 PMCID: PMC7116385 DOI: 10.1098/rstb.2019.0630] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Functional neuroimaging techniques are widely applied to investigations of human cognition and disease. The most commonly used among these is blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. The BOLD signal occurs because neural activity induces an increase in local blood supply to support the increased metabolism that occurs during activity. This supply usually outmatches demand, resulting in an increase in oxygenated blood in an active brain region, and a corresponding decrease in deoxygenated blood, which generates the BOLD signal. Hence, the BOLD response is shaped by an integration of local oxygen use, through metabolism, and supply, in the blood. To understand what information is carried in BOLD signals, we must understand how several cell types in the brain-local excitatory neurons, inhibitory neurons, astrocytes and vascular cells (pericytes, vascular smooth muscle and endothelial cells), and their modulation by ascending projection neurons-contribute to both metabolism and haemodynamic changes. Here, we review the contributions of each cell type to the regulation of cerebral blood flow and metabolism, and discuss situations where a simplified interpretation of the BOLD response as reporting local excitatory activity may misrepresent important biological phenomena, for example with regards to arousal states, ageing and neurological disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Clare Howarth
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
19
|
Landelle C, Anton JL, Nazarian B, Sein J, Gharbi A, Felician O, Kavounoudias A. Functional brain changes in the elderly for the perception of hand movements: A greater impairment occurs in proprioception than touch. Neuroimage 2020; 220:117056. [PMID: 32562781 DOI: 10.1016/j.neuroimage.2020.117056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/28/2022] Open
Abstract
Unlike age-related brain changes linked to motor activity, neural alterations related to self-motion perception remain unknown. Using fMRI data, we investigated age-related changes in the central processing of somatosensory information by inducing illusions of right-hand rotations with specific proprioceptive and tactile stimulation. Functional connectivity during resting-state (rs-FC) was also compared between younger and older participants. Results showed common sensorimotor activations in younger and older adults during proprioceptive and tactile illusions, but less deactivation in various right frontal regions and the precuneus were found in the elderly. Older participants exhibited a less-lateralized pattern of activity across the primary sensorimotor cortices (SM1) in the proprioceptive condition only. This alteration of the interhemispheric balance correlated with declining individual performance in illusion velocity perception from a proprioceptive, but not a tactile, origin. By combining task-related data, rs-FC and behavioral performance, this study provided consistent results showing that hand movement perception was altered in the elderly, with a more pronounced deterioration of the proprioceptive system, likely due to the breakdown of inhibitory processes with aging. Nevertheless, older people could benefit from an increase in internetwork connectivity to overcome this kinesthetic decline.
Collapse
Affiliation(s)
- Caroline Landelle
- Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260), Marseille, France; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jean-Luc Anton
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - Bruno Nazarian
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - Julien Sein
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - Ali Gharbi
- Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260), Marseille, France
| | - Olivier Felician
- Aix Marseille Univ, INSERM, INS (Institut des Neurosciences des Systèmes - UMR1106), Marseille, France
| | - Anne Kavounoudias
- Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260), Marseille, France.
| |
Collapse
|
20
|
Cardellicchio P, Hilt PM, Dolfini E, Fadiga L, D'Ausilio A. Beta Rebound as an Index of Temporal Integration of Somatosensory and Motor Signals. Front Syst Neurosci 2020; 14:63. [PMID: 32982705 PMCID: PMC7492746 DOI: 10.3389/fnsys.2020.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Modulation of cortical beta rhythm (15–30 Hz) is present during preparation for and execution of voluntary movements as well as during somatosensory stimulation. A rebound in beta synchronization is observed after the end of voluntary movements as well as after somatosensory stimulation and is believed to describe the return to baseline of sensorimotor networks. However, the contribution of efferent and afferent signals to the beta rebound remains poorly understood. Here, we applied electrical median nerve stimulation (MNS) to the right side followed by transcranial magnetic stimulation (TMS) on the left primary motor cortex after either 15 or 25 ms. Because the afferent volley reaches the somatosensory cortex after about 20 ms, TMS on the motor cortex was either anticipating or following the cortical arrival of the peripheral stimulus. We show modulations in different beta sub-bands and in both hemispheres, following a pattern of greater resynchronization when motor signals are paired with a peripheral one. The beta rebound in the left hemisphere (stimulated) is modulated in its lower frequency range when TMS precedes the cortical arrival of the afferent volley. In the right hemisphere (unstimulated), instead, the increase is limited to higher beta frequencies when TMS is delivered after the arrival of the afferent signal. In general, we demonstrate that the temporal integration of afferent and efferent signals plays a key role in the genesis of the beta rebound and that these signals may be carried in parallel by different beta sub-bands.
Collapse
Affiliation(s)
- Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
| | - Pauline M Hilt
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
| | - Elisa Dolfini
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.,Department of Biomedical and Specialized Surgical Sciences, Division of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Luciano Fadiga
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.,Department of Biomedical and Specialized Surgical Sciences, Division of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.,Department of Biomedical and Specialized Surgical Sciences, Division of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Wilson R, Thomas A, Mayhew SD. Spatially congruent negative BOLD responses to different stimuli do not summate in visual cortex. Neuroimage 2020; 218:116891. [DOI: 10.1016/j.neuroimage.2020.116891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/07/2023] Open
|
22
|
Murray SO, Kolodny T, Schallmo MP, Gerdts J, Bernier RA. Late fMRI Response Components Are Altered in Autism Spectrum Disorder. Front Hum Neurosci 2020; 14:241. [PMID: 32694986 PMCID: PMC7338757 DOI: 10.3389/fnhum.2020.00241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/02/2020] [Indexed: 12/01/2022] Open
Abstract
Disrupted cortical neural inhibition has been hypothesized to be a primary contributor to the pathophysiology of autism spectrum disorder (ASD). This hypothesis predicts that ASD will be associated with an increase in neural responses. We tested this prediction by comparing fMRI response magnitudes to simultaneous visual, auditory, and motor stimulation in ASD and neurotypical (NT) individuals. No increases in the initial transient response in any brain region were observed in ASD, suggesting that there is no increase in overall cortical neural excitability. Most notably, there were widespread fMRI magnitude increases in the ASD response following stimulation offset, approximately 6–8 s after the termination of sensory and motor stimulation. In some regions, the higher fMRI offset response in ASD could be attributed to a lack of an “undershoot”—an often observed feature of fMRI responses believed to reflect inhibitory processing. Offset response magnitude was associated with reaction times (RT) in the NT group and may explain an overall reduced RT in the ASD group. Overall, our results suggest that increases in neural responsiveness are present in ASD but are confined to specific components of the neural response, are particularly strong following stimulation offset, and are linked to differences in RT.
Collapse
Affiliation(s)
- Scott O Murray
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Science, University of Minnesota, Minneapolis, MN, United States
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
23
|
Martínez-Maestro M, Labadie C, Möller HE. Dynamic metabolic changes in human visual cortex in regions with positive and negative blood oxygenation level-dependent response. J Cereb Blood Flow Metab 2019; 39:2295-2307. [PMID: 30117749 PMCID: PMC6827122 DOI: 10.1177/0271678x18795426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dynamic metabolic changes were investigated by functional magnetic resonance spectroscopy (fMRS) during sustained stimulation of human primary visual cortex. Two established paradigms, consisting of either a full-field or a small-circle flickering checkerboard, were employed to generate wide-spread areas of positive or negative blood oxygenation level-dependent (BOLD) responses, respectively. Compared to baseline, the glutamate concentration increased by 5.3% (p = 0.007) during activation and decreased by -3.8% (p = 0.017) during deactivation. These changes were positively correlated with the amplitude of the BOLD response (R = 0.60, p = 0.002) and probably reflect changes of tricarboxylic acid cycle activity. During deactivation, the glucose concentration decreased by -7.9% (p = 0.025) presumably suggesting increased consumption or reduced glucose supply. Other findings included an increased concentration of glutathione (4.2%, p = 0.023) during deactivation and a negative correlation of glutathione and BOLD signal changes (R = -0.49, p = 0.012) as well as positive correlations of aspartate (R = 0.44, p = 0.035) and N-acetylaspartylglutamate (R = 0.42, p = 0.035) baseline concentrations with the BOLD response. It remains to be shown in future work if the observed effects on glutamate and glucose levels deviate from the assumption of a direct link between glucose utilization and regulation of blood flow or support previous suggestions that the hemodynamic response is mainly driven by feedforward release of vasoactive messengers.
Collapse
Affiliation(s)
| | - Christian Labadie
- AG Klinische Neuroimmunologie, NeuroCure Clinical Research Center (NCRC), Charité Universitätsmedizin, Berlin, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
24
|
Blood Oxygen Level-Dependent Response Changes in the Ipsilateral Primary Somatosensory Cortex and Thalamus of Patients With Moyamoya Disease During Median Nerve Electrical Stimulation. J Comput Assist Tomogr 2019; 43:539-546. [PMID: 31268874 DOI: 10.1097/rct.0000000000000891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the changes in the blood oxygen level-dependent (BOLD) response in the ipsilateral primary somatosensory cortex (SI) and thalamus of patients with moyamoya disease (MMD) during sensory stimulation. METHODS Sixty-four MMD patients, and 15 healthy volunteers were enrolled. Thirty-three MMD patients exhibited paroxysmal numbness or hypoesthesia in the unilateral limbs. Fifteen patients with acroparesthesia underwent unilateral encephaloduroarteriosynangiosis (EDAS). All volunteers underwent BOLD functional magnetic resonance imaging (BOLD-fMRI) under median nerve electrical stimulation (MNES). Blood oxygen level-dependent fMRI data were processed to obtain time-signal intensity curves in the activation areas of the bilateral SI and thalamus. Processed dynamic susceptibility contrast-enhanced magnetic resonance imaging data were used to measure the time to peak of the BOLD response in the regions of interest, including the bilateral SI, thalamus, and cerebellum. Changes in the time-signal intensity curve-related hemodynamic parameters in the ipsilateral SI and thalamus were examined between healthy controls, nonacroparesthesia patients, and asymptomatic and symptomatic sides of unilateral acroparesthesia patients during MNES. Changes in these parameters in MMD patients before and after EDAS were examined. RESULTS Compared with healthy volunteers, 3 groups of MMD patients exhibited an increased peak of the positive BOLD response in the ipsilateral thalamus during MNES (0.65 ± 0.24 vs 0.79 ± 0.35, 0.94 ± 0.57, and 0.89 ± 0.50; P = 0.0335). The positive response peak in the ipsilateral SI markedly increased in MMD patients with acroparesthesia during MNES on the asymptomatic side (0.56 ± 0.37 vs 0.38 ± 0.27, P = 0.0243). The time to peak negative response in the ipsilateral SI was prolonged during MNES on the symptomatic side after EDAS (12.14 ± 8.90 seconds vs 18.86 ± 9.20 seconds, P = 0.0201). CONCLUSIONS During sensory stimulation treatment, BOLD response changes occurred in the ipsilateral SI and thalamus of MMD patients. These changes enabled the contralateral hemisphere of the brain to better deal with sensory stimuli.
Collapse
|
25
|
Morita T, Asada M, Naito E. Developmental Changes in Task-Induced Brain Deactivation in Humans Revealed by a Motor Task. Dev Neurobiol 2019; 79:536-558. [PMID: 31136084 PMCID: PMC6771882 DOI: 10.1002/dneu.22701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/09/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Performing tasks activates relevant brain regions in adults while deactivating task-irrelevant regions. Here, using a well-controlled motor task, we explored how deactivation is shaped during typical human development and whether deactivation is related to task performance. Healthy right-handed children (8-11 years), adolescents (12-15 years), and young adults (20-24 years; 20 per group) underwent functional magnetic resonance imaging with their eyes closed while performing a repetitive button-press task with their right index finger in synchronization with a 1-Hz sound. Deactivation in the ipsilateral sensorimotor cortex (SM1), bilateral visual and auditory (cross-modal) areas, and bilateral default mode network (DMN) progressed with development. Specifically, ipsilateral SM1 and lateral occipital deactivation progressed prominently between childhood and adolescence, while medial occipital (including primary visual) and DMN deactivation progressed from adolescence to adulthood. In adults, greater cross-modal deactivation in the bilateral primary visual cortices was associated with higher button-press timing accuracy relative to the sound. The region-specific deactivation progression in a developmental period may underlie the gradual promotion of sensorimotor function segregation required in the task. Task-induced deactivation might have physiological significance regarding suppressed activity in task-irrelevant regions. Furthermore, cross-modal deactivation develops to benefit some aspects of task performance in adults.
Collapse
Affiliation(s)
- Tomoyo Morita
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minoru Asada
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
26
|
Wilson R, Mullinger KJ, Francis ST, Mayhew SD. The relationship between negative BOLD responses and ERS and ERD of alpha/beta oscillations in visual and motor cortex. Neuroimage 2019; 199:635-650. [PMID: 31189075 DOI: 10.1016/j.neuroimage.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/10/2019] [Accepted: 06/03/2019] [Indexed: 01/06/2023] Open
Abstract
Previous work has investigated the electrophysiological origins of the intra-modal (within the stimulated sensory cortex) negative BOLD fMRI response (NBR, decrease from baseline) but little attention has been paid to the origin of cross-modal NBRs, those in a different sensory cortex. In the current study we use simultaneous EEG-fMRI recordings to assess the neural correlates of both intra- and cross-modal responses to left-hemifield visual stimuli and right-hand motor tasks, and evaluate the balance of activation and deactivation between the visual and motor systems. Within- and between-subject covariations of EEG and fMRI responses to both tasks are assessed to determine how patterns of event-related desynchronization/synchronisation (ERD/ERS) of alpha/beta frequency oscillations relate to the NBR in the two sensory cortices. We show that both visual and motor tasks induce intra-modal NBR and cross-modal NBR (e.g. visual stimuli evoked NBRs in both visual and motor cortices). In the EEG data, bilateral intra-modal alpha/beta ERD were consistently observed to both tasks, whilst the cross-modal EEG response varied across subjects between alpha/beta ERD and ERS. Both the mean cross-modal EEG and fMRI response amplitudes showed a small increase in magnitude with increasing task intensity. In response to the visual stimuli, subjects displaying cross-modal ERS of motor beta power displayed a significantly larger magnitude of cross-modal NBR in motor cortex. However, in contrast to the motor stimuli, larger cross-modal ERD of visual alpha power was associated with larger cross-modal visual NBR. Single-trial correlation analysis provided further evidence of relationship between EEG signals and the NBR, motor cortex beta responses to motor tasks were significantly negatively correlated with cross-modal visual cortex NBR amplitude, and positively correlated with intra-modal motor cortex PBR. This study provides a new body of evidence that the coupling between BOLD and low-frequency (alpha/beta) sensory cortex EEG responses extends to cross-modal NBR.
Collapse
Affiliation(s)
- Ross Wilson
- Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK
| | - Karen J Mullinger
- Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK; SPMIC, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Susan T Francis
- SPMIC, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Stephen D Mayhew
- Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK.
| |
Collapse
|
27
|
Distinction of self-produced touch and social touch at cortical and spinal cord levels. Proc Natl Acad Sci U S A 2019; 116:2290-2299. [PMID: 30670645 PMCID: PMC6369791 DOI: 10.1073/pnas.1816278116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The earliest way humans can learn what their body is and where the outside world begins is through the tactile sense, especially through touch between parent and baby. In this study, we demonstrated differential processing of touch from self and others at cortical and spinal levels. Our results support top-down modulation of dorsal horn somatosensory processing, as recently shown in animal studies. We provide evidence that the individual self-concept relates to differential self- vs. other-processing in the tactile domain. Self- vs. other-distinction is necessary for successful social interaction with others and for establishing a coherent self. Our results suggest an association between impaired somatosensory processing and a dysfunctional self-concept, as seen in many psychiatric disorders. Differentiation between self-produced tactile stimuli and touch by others is necessary for social interactions and for a coherent concept of “self.” The mechanisms underlying this distinction are unknown. Here, we investigated the distinction between self- and other-produced light touch in healthy volunteers using three different approaches: fMRI, behavioral testing, and somatosensory-evoked potentials (SEPs) at spinal and cortical levels. Using fMRI, we found self–other differentiation in somatosensory and sociocognitive areas. Other-touch was related to activation in several areas, including somatosensory cortex, insula, superior temporal gyrus, supramarginal gyrus, striatum, amygdala, cerebellum, and prefrontal cortex. During self-touch, we instead found deactivation in insula, anterior cingulate cortex, superior temporal gyrus, amygdala, parahippocampal gyrus, and prefrontal areas. Deactivation extended into brain areas encoding low-level sensory representations, including thalamus and brainstem. These findings were replicated in a second cohort. During self-touch, the sensorimotor cortex was functionally connected to the insula, and the threshold for detection of an additional tactile stimulus was elevated. Differential encoding of self- vs. other-touch during fMRI correlated with the individual self-concept strength. In SEP, cortical amplitudes were reduced during self-touch, while latencies at cortical and spinal levels were faster for other-touch. We thus demonstrated a robust self–other distinction in brain areas related to somatosensory, social cognitive, and interoceptive processing. Signs of this distinction were evident at the spinal cord. Our results provide a framework for future studies in autism, schizophrenia, and emotionally unstable personality disorder, conditions where symptoms include social touch avoidance and poor self-vs.-other discrimination.
Collapse
|
28
|
Klingner CM, Brodoehl S, Witte OW, Guntinas-Lichius O, Volk GF. The impact of motor impairment on the processing of sensory information. Behav Brain Res 2018; 359:701-708. [PMID: 30248364 DOI: 10.1016/j.bbr.2018.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/19/2018] [Accepted: 09/19/2018] [Indexed: 11/26/2022]
Abstract
Sensorimotor adaptation is driven by mismatch errors between desired movements and actual movement outcomes. A mismatch error can be minimized by adjusting movements or by altering the interpretation of sensory information. While the effect of mismatch errors on the motor system has received much attention, the contribution of somatosensory feedback, particularly the sensory-motor interplay in the process of adaptation, remains poorly understood. Our study analyzes the impact of peripheral deefferentation on the plasticity of the brain networks responsible for sensory-motor adaptation, focusing particularly on changes in the processing of somatosensory information. For this aim, task-based and resting-state functional MRI was performed on 24 patients in the acute state of a left-sided idiopathic peripheral facial nerve palsy. The functional connectivity of cortical and subcortical networks was analyzed and compared to a healthy control group. We found a strong involvement of the somatosensory system and the thalamus in the adaptation process following an acute peripheral deefferentation. The investigated network shows the principal pattern of a reduced connectivity between cortical areas, while the connectivity to subcortical areas (the basal ganglia and the thalamus) is increased. We suggest that the increased connectivity between the subcortical and cortical structures indicates an active sensory-motor adaptation process. We further hypothesize that the decreased functional connectivity at the cortical level reflects an unsuccessful sensorimotor adaptation process due to the inability to solve the somatosensory-motor mismatch. These results extend our understanding of the somatosensory-motor interaction in response to a mismatch signal and highlight the importance of the thalamus in this process.
Collapse
Affiliation(s)
- Carsten M Klingner
- Hans Berger Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, University Hospital, Germany; Facial-Nerve-Center, Jena University Hospital, Germany.
| | - Stefan Brodoehl
- Hans Berger Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, University Hospital, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Germany
| | - Orlando Guntinas-Lichius
- Department of Otorhinolaryngology, Jena University Hospital, Germany; Facial-Nerve-Center, Jena University Hospital, Germany
| | - Gerd F Volk
- Department of Otorhinolaryngology, Jena University Hospital, Germany; Facial-Nerve-Center, Jena University Hospital, Germany
| |
Collapse
|
29
|
Hirtz R, Weiss T, Huonker R, Witte OW. Impact of transcranial direct current stimulation on structural plasticity of the somatosensory system. J Neurosci Res 2018; 96:1367-1379. [PMID: 29876962 DOI: 10.1002/jnr.24258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 01/21/2023]
Abstract
While there is a growing body of evidence regarding the behavioral and neurofunctional changes in response to the longitudinal delivery of transcranial direct current stimulation (tDCS), there is limited evidence regarding its structural effects. Therefore, the present study was intended to investigate the effect of repeatedly applied anodal tDCS over the primary somatosensory cortex on the gray matter (GM) and white matter (WM) compartment of the brain. Structural tDCS effects were, moreover, related to effects evidenced by functional imaging and behavioral assessment. tDCS was applied over the course of 5 days in 25 subjects with concomitant assessment of tactile acuity of the right and left index finger as well as imaging at baseline, after the last delivery of tDCS and at follow-up 4 weeks thereafter. Irrespective of the stimulation condition (anodal vs. sham), voxel-based morphometry revealed a behaviorally relevant decrease of GM in the precuneus co-localized with a functional change of its activity. Moreover, there was a decrease in GM of the bilateral lingual gyrus and the right cerebellum. Diffusion tensor imaging analysis showed an increase of fractional anisotropy exclusively in the tDCSanodal condition in the left frontal cortex affecting the final stretch of a somatosensory decision making network comprising the middle and superior frontal gyrus as well as regions adjacent to the genu of the corpus callosum. Thus, this is the first study in humans to identify structural plasticity in the GM compartment and tDCS-specific changes in the WM compartment in response to somatosensory learning.
Collapse
Affiliation(s)
- Raphael Hirtz
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Pediatric Endocrinology and Diabetology, Essen University Hospital, Essen, Germany
| | - Thomas Weiss
- Department of Biological and Clinical Psychology, Friedrich Schiller University, Jena, Germany
| | - Ralph Huonker
- Brain Imaging Center, Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
30
|
Impact of transcranial direct current stimulation on somatosensory transfer learning: When the secondary somatosensory cortex comes into play. Brain Res 2018; 1689:98-108. [DOI: 10.1016/j.brainres.2018.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 03/11/2018] [Accepted: 03/26/2018] [Indexed: 11/22/2022]
|
31
|
Bennett MR, Farnell L, Gibson WG. Quantitative relations between BOLD responses, cortical energetics, and impulse firing. J Neurophysiol 2018; 119:979-989. [PMID: 29187550 DOI: 10.1152/jn.00352.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The blood oxygen level-dependent (BOLD) functional magnetic resonance imaging signal arises as a consequence of changes in blood flow and oxygen usage that in turn are modulated by changes in neural activity. Much attention has been given to both theoretical and experimental aspects of the energetics but not to the neural activity. Here we identify the best energetic theory for the steady-state BOLD signal on the basis of correct predictions of experimental observations. This theory is then used, together with the recently determined relationship between energetics and neural activity, to predict how the BOLD signal changes with activity. Unlike existing treatments, this new theory incorporates a nonzero baseline activity in a completely consistent way and is thus able to account for both sustained positive and negative BOLD signals. We also show that the increase in BOLD signal for a given increase in activity is significantly smaller the larger the baseline activity, as is experimentally observed. Furthermore, the decline of the positive BOLD signal arising from deeper cortical laminae in response to an increase in neural firing is shown to arise as a consequence of the larger baseline activity in deeper laminae. Finally, we provide quantitative relations integrating BOLD responses, energetics, and impulse firing, which among other predictions give the same results as existing theories when the baseline activity is zero. NEW & NOTEWORTHY We use a recently established relation between energetics and neural activity to give a quantitative account of BOLD dependence on neural activity. The incorporation of a nonzero baseline neural activity accounts for positive and negative BOLD signals, shows that changes in neural activity give BOLD changes that are smaller the larger the baseline, and provides a basis for the observed inverse relation between BOLD responses and the depth of cortical laminae giving rise to them.
Collapse
Affiliation(s)
- M R Bennett
- Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales , Australia.,Center for Mathematical Biology, University of Sydney , Sydney, New South Wales , Australia
| | - L Farnell
- Center for Mathematical Biology, University of Sydney , Sydney, New South Wales , Australia.,The School of Mathematics and Statistics, University of Sydney, Camperdown, New South Wales , Australia
| | - W G Gibson
- Center for Mathematical Biology, University of Sydney , Sydney, New South Wales , Australia.,The School of Mathematics and Statistics, University of Sydney, Camperdown, New South Wales , Australia
| |
Collapse
|
32
|
Jorge J, Figueiredo P, Gruetter R, van der Zwaag W. Mapping and characterization of positive and negative BOLD responses to visual stimulation in multiple brain regions at 7T. Hum Brain Mapp 2018; 39:2426-2441. [PMID: 29464809 DOI: 10.1002/hbm.24012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/05/2018] [Accepted: 02/10/2018] [Indexed: 11/06/2022] Open
Abstract
External stimuli and tasks often elicit negative BOLD responses in various brain regions, and growing experimental evidence supports that these phenomena are functionally meaningful. In this work, the high sensitivity available at 7T was explored to map and characterize both positive (PBRs) and negative BOLD responses (NBRs) to visual checkerboard stimulation, occurring in various brain regions within and beyond the visual cortex. Recently-proposed accelerated fMRI techniques were employed for data acquisition, and procedures for exclusion of large draining vein contributions, together with ICA-assisted denoising, were included in the analysis to improve response estimation. Besides the visual cortex, significant PBRs were found in the lateral geniculate nucleus and superior colliculus, as well as the pre-central sulcus; in these regions, response durations increased monotonically with stimulus duration, in tight covariation with the visual PBR duration. Significant NBRs were found in the visual cortex, auditory cortex, default-mode network (DMN) and superior parietal lobule; NBR durations also tended to increase with stimulus duration, but were significantly less sustained than the visual PBR, especially for the DMN and superior parietal lobule. Responses in visual and auditory cortex were further studied for checkerboard contrast dependence, and their amplitudes were found to increase monotonically with contrast, linearly correlated with the visual PBR amplitude. Overall, these findings suggest the presence of dynamic neuronal interactions across multiple brain regions, sensitive to stimulus intensity and duration, and demonstrate the richness of information obtainable when jointly mapping positive and negative BOLD responses at a whole-brain scale, with ultra-high field fMRI.
Collapse
Affiliation(s)
- João Jorge
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrícia Figueiredo
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland
| | - Wietske van der Zwaag
- Biomedical Imaging Research Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Spinoza Institute for Neuroimaging, Royal Netherlands Academy for Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Rosli Y, Carle CF, Ho Y, James AC, Kolic M, Rohan EMF, Maddess T. Retinotopic effects of visual attention revealed by dichoptic multifocal pupillography. Sci Rep 2018; 8:2991. [PMID: 29445236 PMCID: PMC5813021 DOI: 10.1038/s41598-018-21196-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/31/2018] [Indexed: 01/10/2023] Open
Abstract
Multifocal pupillographic objective perimetry (mfPOP) has recently been shown to be able to measure cortical function. Here we assessed 44 regions of the central 60 degrees of the visual fields of each eye concurrently in 7 minutes/test. We examined how foveally- and peripherally-directed attention changed response sensitivity and delay across the 44 visual field locations/eye. Four experiments were completed comparing white, yellow and blue stimulus arrays. Experiments 1 to 4 tested 16, 23, 9 and 6 subjects, 49/54 being unique. Experiment 1, Experiments 2 and 3, and Experiment 4 used three variants of the mfPOP method that provided increasingly improved signal quality. Experiments 1 to 3 examined centrally directed attention, and Experiment 4 compared effects of attention directed to different peripheral targets. Attention reduced the sensitivity of the peripheral locations in Experiment 1, but only for the white stimuli not yellow. Experiment 2 confirmed that result. Experiment 3 showed that blue stimuli behaved like white. Peripheral attention showed increased sensitivity around the attentional targets. The results are discussed in terms of the cortical inputs to the pupillary system. The results agree with those from multifocal and other fMRI and VEP studies. mfPOP may be a useful adjunct to those methods.
Collapse
Affiliation(s)
- Yanti Rosli
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Biomedical Science Program, Diagnostic & Applied Health Sciences, Faculty of Health Science, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Corinne Frances Carle
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Yiling Ho
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Andrew Charles James
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Maria Kolic
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Australia
| | - Emilie Marie Françoise Rohan
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Ted Maddess
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| |
Collapse
|
34
|
Altered functional connectivity differs in stroke survivors with impaired touch sensation following left and right hemisphere lesions. NEUROIMAGE-CLINICAL 2018; 18:342-355. [PMID: 29487791 PMCID: PMC5814381 DOI: 10.1016/j.nicl.2018.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/18/2018] [Accepted: 02/07/2018] [Indexed: 12/15/2022]
Abstract
One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC) data was extracted from four seed regions, i.e. primary (S1) and secondary (S2) somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI) were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2), and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group) and contra-lesional S2 (both groups). We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other networks in stroke survivors with impaired touch sensation. Hemisphere of lesion was associated with different patterns of altered functional connectivity within the somatosensory network and with related function was associated with different patterns of altered functional connectivity within the somatosensory network and with related functional networks. Examined somatosensory resting functional connectivity (RSFC) in left/right lesion stroke patients and/healthy controls. Seed based voxel wise (SB) and laterality index (LI) analyses were used. Left lesion SB results showed decreased RSFC in somatosensory and attention regions vs. controls/right lesion patients. Right lesion patients showed increased RSFC compared to controls and left lesion patients to inferior parietal areas. LI results showed increased laterality in both left and right lesion groups between the somatosensory seeds. This suggests RSFC may differ depending on laterality of lesion damage, with altered connectivity profiles between networks.
Collapse
|
35
|
Uhlirova H, Kılıç K, Tian P, Sakadžić S, Gagnon L, Thunemann M, Desjardins M, Saisan PA, Nizar K, Yaseen MA, Hagler DJ, Vandenberghe M, Djurovic S, Andreassen OA, Silva GA, Masliah E, Kleinfeld D, Vinogradov S, Buxton RB, Einevoll GT, Boas DA, Dale AM, Devor A. The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0356. [PMID: 27574309 DOI: 10.1098/rstb.2015.0356] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 12/22/2022] Open
Abstract
The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed 'bottom-up' forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the 'ground truth' for the development of new tools for tackling the inverse problem-estimation of neuronal activity from multimodal non-invasive imaging data.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- Hana Uhlirova
- Department of Radiology, UCSD, La Jolla, CA 92093, USA CEITEC-Central European Institute of Technology and Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Kıvılcım Kılıç
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA
| | - Peifang Tian
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA Department of Physics, John Carroll University, University Heights, OH 44118, USA
| | - Sava Sakadžić
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | - Louis Gagnon
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | - Payam A Saisan
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA
| | - Krystal Nizar
- Neurosciences Graduate Program, UCSD, La Jolla, CA 92093, USA
| | - Mohammad A Yaseen
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Matthieu Vandenberghe
- Department of Radiology, UCSD, La Jolla, CA 92093, USA NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, 0407 Oslo, Norway NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway
| | - Gabriel A Silva
- Department of Bioengineering, UCSD, La Jolla, CA 92093, USA Department of Opthalmology, UCSD, La Jolla, CA 92093, USA
| | | | - David Kleinfeld
- Department of Physics, UCSD, La Jolla, CA 92093, USA Department of Electrical and Computer Engineering, UCSD, La Jolla, CA 92093, USA Section of Neurobiology, UCSD, La Jolla, CA 92093, USA
| | - Sergei Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Gaute T Einevoll
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway Department of Physics, University of Oslo, 0316 Oslo, Norway
| | - David A Boas
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | - Anders M Dale
- Department of Radiology, UCSD, La Jolla, CA 92093, USA Department of Neurosciences, UCSD, La Jolla, CA 92093, USA
| | - Anna Devor
- Department of Radiology, UCSD, La Jolla, CA 92093, USA Department of Neurosciences, UCSD, La Jolla, CA 92093, USA Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
36
|
Tal Z, Geva R, Amedi A. Positive and Negative Somatotopic BOLD Responses in Contralateral Versus Ipsilateral Penfield Homunculus. Cereb Cortex 2017; 27:962-980. [PMID: 28168279 PMCID: PMC6093432 DOI: 10.1093/cercor/bhx024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/17/2017] [Indexed: 11/20/2022] Open
Abstract
One of the basic properties of sensory cortices is their topographical organization. Most imaging studies explored this organization using the positive blood oxygenation level-dependent (BOLD) signal. Here, we studied the topographical organization of both positive and negative BOLD in contralateral and ipsilateral primary somatosensory cortex (S1). Using phase-locking mapping methods, we verified the topographical organization of contralateral S1, and further showed that different body segments elicit pronounced negative BOLD responses in both hemispheres. In the contralateral hemisphere, we found a sharpening mechanism in which stimulation of a given body segment triggered a gradient of activation with a significant deactivation in more remote areas. In the ipsilateral cortex, deactivation was not only located in the homolog area of the stimulated parts but rather was widespread across many parts of S1. Additionally, analysis of resting-state functional magnetic resonance imaging signal showed a gradient of connectivity to the neighboring contralateral body parts as well as to the ipsilateral homologous area for each body part. Taken together, our results indicate a complex pattern of baseline and activity-dependent responses in the contralateral and ipsilateral sides. Both primary sensory areas were characterized by unique negative BOLD responses, suggesting that they are an important component in topographic organization of sensory cortices.
Collapse
Affiliation(s)
- Zohar Tal
- Department of Medical Neurobiology, Institute of Medical Research Israel – Canada (IMRIC), Faculty of Medicine
| | - Ran Geva
- Department of Medical Neurobiology, Institute of Medical Research Israel – Canada (IMRIC), Faculty of Medicine
| | - Amir Amedi
- Department of Medical Neurobiology, Institute of Medical Research Israel – Canada (IMRIC), Faculty of Medicine
- The Edmond and Lily Safra Center for Brain Science (ELSC)
- Program of Cognitive Science, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| |
Collapse
|
37
|
Klingner CM, Brodoehl S, Witte OW. The importance of the negative blood-oxygenation-level-dependent (BOLD) response in the somatosensory cortex. Rev Neurosci 2016; 26:647-53. [PMID: 26057216 DOI: 10.1515/revneuro-2015-0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/17/2015] [Indexed: 11/15/2022]
Abstract
In recent years, multiple studies have shown task-induced negative blood-oxygenation-level-dependent responses (NBRs) in multiple brain regions in humans and animals. Converging evidence suggests that task-induced NBRs can be interpreted in terms of decreased neuronal activity. However, the vascular and metabolic dynamics and functional importance of the NBR are highly debated. Here, we review studies investigating the origin and functional importance of the NBR, with special attention to the somatosensory cortex.
Collapse
|
38
|
Rosner AO, Barlow SM. Hemodynamic changes in cortical sensorimotor systems following hand and orofacial motor tasks and pulsed pneumotactile stimulation. Somatosens Mot Res 2016; 33:145-155. [PMID: 27550186 DOI: 10.1080/08990220.2016.1219711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We performed a functional near-infrared spectroscopy (fNIRS) study of the evoked hemodynamic responses seen in hand and face sensorimotor cortical representations during (1) active motor tasks and (2) pulsed pneumotactile stimulation. Contralateral fNIRS measurements were performed on 22 healthy adult participants using a block paradigm that consisted of repetitive right hand and right oral angle somatosensory stimulation using a pulsed pneumotactile array stimulator, and repetitive right-hand grip compression and bilabial compressions on strain gages. Results revealed significant oxyhemoglobin (HbO) modulation across stimulus conditions in corresponding somatotopic cortical regions. Of the 22 participants, 86% exhibited a decreased HbO response during at least one of the stimulus conditions, which may be indicative of cortical steal, or hypo-oxygenation occurring in channels adjacent to the primary areas of activation. Across all conditions, 56% of participants' HbO responses were positive and 44% were negative. Hemodynamic responses most likely differed across hand and face motor and somatosensory cortical regions due to differences in regional arterial/venous anatomy, cortical vascular beds, extent and orientation of somatotopy, task dynamics, and mechanoreceptor typing in hand and face. The combination of optical imaging and task conditions allowed for non-invasive examination of hemodynamic changes in somatosensory and motor cortices using natural, pneumatic stimulation of glabrous hand and hairy skin of the lower face and functionally relevant and measurable motor tasks involving the same structures.
Collapse
Affiliation(s)
- Austin O Rosner
- a Department of Special Education and Communication Disorders , University of Nebraska , Lincoln , NE , USA.,b Center for Brain, Biology, and Behavior , Department of Biological Systems Engineering, University of Nebraska , Lincoln , NE , USA
| | - Steven M Barlow
- a Department of Special Education and Communication Disorders , University of Nebraska , Lincoln , NE , USA.,b Center for Brain, Biology, and Behavior , Department of Biological Systems Engineering, University of Nebraska , Lincoln , NE , USA
| |
Collapse
|
39
|
Perrotta A, Chiacchiaretta P, Anastasio MG, Pavone L, Grillea G, Bartolo M, Siravo E, Colonnese C, De Icco R, Serrao M, Sandrini G, Pierelli F, Ferretti A. Temporal summation of the nociceptive withdrawal reflex involves deactivation of posterior cingulate cortex. Eur J Pain 2016; 21:289-301. [PMID: 27452295 DOI: 10.1002/ejp.923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Temporal summation of pain sensation is pivotal both in physiological and pathological nociception. In humans, it develops in parallel with temporal summation of the nociceptive withdrawal reflex (NWR) of the lower limb, an objective representation of the temporal processing of nociceptive signals into the spinal cord. METHODS To study the contribution of cortical and subcortical structures in temporal summation of pain reflex responses, we compared the fMRI signal changes related to the temporal summation threshold (TST) of the NWR with that related to the single NWR response. We studied 17 healthy subjects using a stimulation paradigm previously determined to evoke both the TST of the NWR (SUMM) and the NWR single response (SING). RESULTS We found a significant activation in left (contralateral) primary somatosensory cortex (SI), bilateral secondary somatosensory cortex (SII), bilateral insula, anterior cingulate cortex (ACC) and bilateral thalamus during both SUMM and SING conditions. The SUMM versus SING contrast revealed a significant deactivation in the posterior cingulate cortex (PCC) and bilateral middle occipital gyrus in SUMM when compared to SING condition. CONCLUSIONS Our data support the hypothesis that temporal summation of nociceptive reflex responses is driven through a switch between activation and deactivation of a specific set of brain areas linked to the default mode network. This behaviour could be explained in view of the relevance of the pain processing induced by temporal summation, recognized as a more significant potential damaging condition with respect to a single, isolated, painful stimulation of comparable pain intensity. SIGNIFICANCE The study demonstrated that TST of the NWR involves a selective deactivation of PCC.
Collapse
Affiliation(s)
- A Perrotta
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - P Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio" of Chieti, Italy
| | | | - L Pavone
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - G Grillea
- IRCCS Neuromed, Pozzilli (Isernia), Italy.,Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - M Bartolo
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - E Siravo
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - C Colonnese
- IRCCS Neuromed, Pozzilli (Isernia), Italy.,Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - R De Icco
- C. Mondino National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - M Serrao
- Unit of Neurorehabilitation, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, ICOT, Latina, Italy
| | - G Sandrini
- C. Mondino National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - F Pierelli
- IRCCS Neuromed, Pozzilli (Isernia), Italy.,Unit of Neurorehabilitation, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, ICOT, Latina, Italy
| | - A Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio" of Chieti, Italy
| |
Collapse
|
40
|
Abstract
In this review, we examine how tactile misperceptions provide evidence regarding body representations. First, we propose that tactile detection and localization are serial processes, in contrast to parallel processing hypotheses based on patients with numbsense. Second, we discuss how information in primary somatosensory maps projects to body size and shape representations to localize touch on the skin surface, and how responses after use-dependent plasticity reflect changes in this mapping. Third, we review situations in which our body representations are inconsistent with our actual body shape, specifically discussing phantom limb phenomena and anesthetization. We discuss problems with the traditional remapping hypothesis in amputees, factors that modulate perceived body size and shape, and how changes in perceived body form influence tactile localization. Finally, we review studies in which brain-damaged individuals perceive touch on the opposite side of the body, and demonstrate how interhemispheric mechanisms can give rise to these anomalous percepts.
Collapse
Affiliation(s)
- Jared Medina
- a Department of Psychology , University of Delaware , Newark , DE , USA
| | - H Branch Coslett
- b Department of Neurology, Center for Cognitive Neuroscience , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
41
|
Daulatzai MA. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer’s Disease. Neurotox Res 2016; 30:295-337. [DOI: 10.1007/s12640-016-9643-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
|
42
|
Carey LM, Abbott DF, Lamp G, Puce A, Seitz RJ, Donnan GA. Same Intervention-Different Reorganization: The Impact of Lesion Location on Training-Facilitated Somatosensory Recovery After Stroke. Neurorehabil Neural Repair 2016; 30:988-1000. [PMID: 27325624 DOI: 10.1177/1545968316653836] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The brain may reorganize to optimize stroke recovery. Yet relatively little is known about neural correlates of training-facilitated recovery, particularly after loss of body sensations. OBJECTIVE Our aim was to characterize changes in brain activation following clinically effective touch discrimination training in stroke patients with somatosensory loss after lesions of primary/secondary somatosensory cortices or thalamic/capsular somatosensory regions using functional magnetic resonance imaging (fMRI). METHODS Eleven stroke patients with somatosensory loss, 7 with lesions involving primary (S1) and/or secondary (S2) somatosensory cortex (4 male, 58.7 ± 13.3 years) and 4 with lesions primarily involving somatosensory thalamus and/or capsular/white matter regions (2 male, 58 ± 8.6 years) were studied. Clinical and MRI testing occurred at 6 months poststroke (preintervention), and following 15 sessions of clinically effective touch discrimination training (postintervention). RESULTS Improved touch discrimination of a magnitude similar to previous clinical studies and approaching normal range was found. Patients with thalamic/capsular somatosensory lesions activated preintervention in left ipsilesional supramarginal gyrus, and postintervention in ipsilesional insula and supramarginal gyrus. In contrast, those with S1/S2 lesions did not show common activation preintervention, only deactivation in contralesional superior parietal lobe, including S1, and cingulate cortex postintervention. The S1/S2 group did, however, show significant change over time involving ipsilesional precuneus. This change was greater than for the thalamic/capsular group (P = .012; d = -2.43; CI = -0.67 to -3.76). CONCLUSION Different patterns of change in activation are evident following touch discrimination training with thalamic/capsular lesions compared with S1/S2 cortical somatosensory lesions, despite common training and similar improvement.
Collapse
Affiliation(s)
- Leeanne M Carey
- La Trobe University, Bundoora, Victoria, Australia The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - David F Abbott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gemma Lamp
- La Trobe University, Bundoora, Victoria, Australia The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Aina Puce
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia Indiana University, Bloomington, IN, USA
| | - Rüdiger J Seitz
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia LVR-Klinikum Düsseldorf, Düsseldorf, Germany University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Geoffrey A Donnan
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Fornander L, Nyman T, Hansson T, Brismar T, Engström M. Inter-hemispheric plasticity in patients with median nerve injury. Neurosci Lett 2016; 628:59-66. [PMID: 27291455 DOI: 10.1016/j.neulet.2016.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/05/2023]
Abstract
Peripheral nerve injuries result in reorganization within the contralateral hemisphere. Furthermore, recent animal and human studies have suggested that the plastic changes in response to peripheral nerve injury also include several areas of the ipsilateral hemisphere. The objective of this study was to map the inter-hemispheric plasticity in response to median nerve injury, to investigate normal differences in contra- and ipsilateral activation, and to study the impact of event-related or blocked functional magnetic resonance imaging (fMRI) design on ipsilateral activation. Four patients with median nerve injury at the wrist (injured and epineurally sutured >2 years earlier) and ten healthy volunteers were included. 3T fMRI was used to map the hemodynamic response to brain activity during tactile stimulation of the fingers, and a laterality index (LI) was calculated. Stimulation of Digits II-III of the injured hand resulted in a reduction in contralateral activation in the somatosensory area SI. Patients had a lower LI (0.21±0.15) compared to healthy controls (0.60±0.26) indicating greater ipsilateral activation of the primary somatosensory cortex. The spatial dispersion of the coordinates for areas SI and SII was larger in the ipsilateral than in the contralateral hemisphere in the healthy controls, and was increased in the contralateral hemisphere of the patients compared to the healthy controls. There was no difference in LI between the event-related and blocked paradigms. In conclusion, patients with median nerve injury have increased ipsilateral SI area activation, and spatially more dispersed contralateral SI activation during tactile stimulation of their injured hand. In normal subjects ipsilateral activation has larger spatial distribution than the contralateral. Previous findings in patients performed with the blocked fMRI paradigm were confirmed. The increase in ipsilateral SI activation may be due to an interhemispheric disinhibition associated with changes in the afferent signal inflow to the contralateral primary somatosensory cortex.
Collapse
Affiliation(s)
- Lotta Fornander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Orthopaedics, Vrinnevi Hospital, Norrköping, Sweden.
| | - Torbjörn Nyman
- Pain and Rehabilitation Centre, UHL, County Council of Östergötland, Linköping, Sweden
| | - Thomas Hansson
- Division of Plastic Surgery, Hand Surgery and Burns, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Tom Brismar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Maria Engström
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
44
|
Mayhew SD, Mullinger KJ, Ostwald D, Porcaro C, Bowtell R, Bagshaw AP, Francis ST. Global signal modulation of single-trial fMRI response variability: Effect on positive vs negative BOLD response relationship. Neuroimage 2016; 133:62-74. [PMID: 26956909 DOI: 10.1016/j.neuroimage.2016.02.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 01/25/2023] Open
Abstract
In functional magnetic resonance imaging (fMRI), the relationship between positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to stimulation is potentially informative about the balance of excitatory and inhibitory brain responses in sensory cortex. In this study, we performed three separate experiments delivering visual, motor or somatosensory stimulation unilaterally, to one side of the sensory field, to induce PBR and NBR in opposite brain hemispheres. We then assessed the relationship between the evoked amplitudes of contralateral PBR and ipsilateral NBR at the level of both single-trial and average responses. We measure single-trial PBR and NBR peak amplitudes from individual time-courses, and show that they were positively correlated in all experiments. In contrast, in the average response across trials the absolute magnitudes of both PBR and NBR increased with increasing stimulus intensity, resulting in a negative correlation between mean response amplitudes. Subsequent analysis showed that the amplitude of single-trial PBR was positively correlated with the BOLD response across all grey-matter voxels and was not specifically related to the ipsilateral sensory cortical response. We demonstrate that the global component of this single-trial response modulation could be fully explained by voxel-wise vascular reactivity, the BOLD signal standard deviation measured in a separate resting-state scan (resting state fluctuation amplitude, RSFA). However, bilateral positive correlation between PBR and NBR regions remained. We further report that modulations in the global brain fMRI signal cannot fully account for this positive PBR-NBR coupling and conclude that the local sensory network response reflects a combination of superimposed vascular and neuronal signals. More detailed quantification of physiological and noise contributions to the BOLD signal is required to fully understand the trial-by-trial PBR and NBR relationship compared with that of average responses.
Collapse
Affiliation(s)
- S D Mayhew
- Birmingham University Imaging Centre (BUIC), School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - K J Mullinger
- Birmingham University Imaging Centre (BUIC), School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - D Ostwald
- Arbeitsbereich Computational Cognitive Neuroscience, Department of Education and Psychology, Free University Berlin, Berlin, Germany; Center for Adaptive Rationality (ARC), Max-Planck-Institute for Human Development, Berlin, Germany
| | - C Porcaro
- Laboratory of Electrophysiology for Translational Neuroscience (LET'S) - ISTC - CNR, Department of Neuroscience, Fatebenefratelli Hospital Isola Tiberina, Rome, Italy; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK; Department of Information Engineering,Università Politecnica delle Marche, Ancona, Italy
| | - R Bowtell
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - A P Bagshaw
- Birmingham University Imaging Centre (BUIC), School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - S T Francis
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|
45
|
Reliability of negative BOLD in ipsilateral sensorimotor areas during unimanual task activity. Brain Imaging Behav 2016; 9:245-54. [PMID: 24788334 DOI: 10.1007/s11682-014-9302-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Research using functional magnetic resonance imaging has for numerous years now reported the existence of a negative blood oxygenation level dependent (BOLD) response. Based on accumulating evidence, this negative BOLD signal appears to represent an active inhibition of cortical areas in which it is found during task activity. This particularly important with respect to motor function given that it is fairly well-established that, in younger adults, the ipsilateral sensorimotor cortex exhibits negative BOLD during unimanual movements in fMRI. This interhemispheric suppression of cortical activity may have useful implications for our understanding of both basic motor function and rehabilitation of injury or disease. However, to date, we are aware of no study that has tested the reliability of evoked negative BOLD in ipsilateral sensorimotor cortex in individuals across sessions. The current study employs a unimanual finger opposition task previously shown to evoke negative BOLD in ipsilateral sensorimotor cortex across three sessions. Reliability metrics across sessions indicates that both the magnitude and location of ipsilateral sensorimotor negative BOLD response is relatively stable over each of the three sessions. Moreover, the volume of negative BOLD in ipsilateral cortex was highly correlated with volume of positive BOLD activity in the contralateral primary motor cortex. These findings show that the negative BOLD signal can be reliably evoked in unimanual task paradigms, and that the signal dynamic could represent an active suppression of the ipsilateral sensorimotor cortex originating from the contralateral motor areas.
Collapse
|
46
|
Ma Z, Cao P, Sun P, Zhao L, Li L, Tong S, Lu Y, Yan Y, Chen Y, Chai X. Inverted optical intrinsic response accompanied by decreased cerebral blood flow are related to both neuronal inhibition and excitation. Sci Rep 2016; 6:21627. [PMID: 26860040 PMCID: PMC4748280 DOI: 10.1038/srep21627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/27/2016] [Indexed: 01/27/2023] Open
Abstract
Negative hemodynamic response has been widely reported in blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging studies, however its origin is still controversial. Optical intrinsic signal (OIS) imaging can be used to study brain activity by simultaneously recording hemodynamic signals at different wavelengths with high spatial resolution. In this study, we found transcorneal electrical stimulation (TcES) could elicit both positive OIS response (POR) and negative OIS response (NOR) in cats’ visual cortex. We then investigated the property of this negative response to TcES and its relationship with cerebral blood flow (CBF) and neuronal activity. Results from laser speckle contrast imaging showed decreased CBF in the NOR region while increased CBF in the POR region. Both planar and laminar electrophysiological recordings in the middle (500–700 μm) cortical layers demonstrated that decreased and increased neuronal activities were coexisted in the NOR region. Furthermore, decreased neuronal activity was also detected in the deep cortical layers in the NOR region. This work provides evidence that the negative OIS together with the decreased CBF should be explained by mechanisms of both neuronal inhibition and excitation within middle cortical layers. Our results would be important for interpreting neurophysiological mechanisms underlying the negative BOLD signals.
Collapse
Affiliation(s)
- Zengguang Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengjia Cao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengcheng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linna Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liming Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiliang Lu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Yan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
47
|
Zippo AG, Rinaldi S, Pellegata G, Caramenti GC, Valente M, Fontani V, Biella GEM. Electrophysiological effects of non-invasive Radio Electric Asymmetric Conveyor (REAC) on thalamocortical neural activities and perturbed experimental conditions. Sci Rep 2015; 5:18200. [PMID: 26658170 PMCID: PMC4676007 DOI: 10.1038/srep18200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/13/2015] [Indexed: 01/20/2023] Open
Abstract
The microwave emitting Radio Electric Asymmetric Conveyor (REAC) is a technology able to interact with biological tissues at low emission intensity (2 mW at the emitter and 2.4 or 5.8 GHz) by inducing radiofrequency generated microcurrents. It shows remarkable biological effects at many scales from gene modulations up to functional global remodeling even in human subjects. Previous REAC experiments by functional Magnetic Resonance Imaging (fMRI) on healthy human subjects have shown deep modulations of cortical BOLD signals. In this paper we studied the effects of REAC application on spontaneous and evoked neuronal activities simultaneously recorded by microelectrode matrices from the somatosensory thalamo-cortical axis in control and chronic pain experimental animal models. We analyzed the spontaneous spiking activity and the Local Field Potentials (LFPs) before and after REAC applied with a different protocol. The single neuron spiking activities, the neuronal responses to peripheral light mechanical stimuli, the population discharge synchronies as well as the correlations and the network dynamic connectivity characteristics have been analyzed. Modulations of the neuronal frequency associated with changes of functional correlations and significant LFP temporal realignments have been diffusely observed. Analyses by topological methods have shown changes in functional connectivity with significant modifications of the network features.
Collapse
Affiliation(s)
- Antonio G Zippo
- Institute of Molecular Bioimaging and Physiology, Dept. of Bio-Medicine, National Research Council (CNR), LITA Bldg., Via Fratelli Cervi, 93, 20090 Segrate (Milan), Italy
| | - Salvatore Rinaldi
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy.,Department of Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy.,Research Department, Rinaldi Fontani Foundation - NPO, Viale Belfiore 43, 50144 Florence, Italy
| | - Giulio Pellegata
- Institute of Molecular Bioimaging and Physiology, Dept. of Bio-Medicine, National Research Council (CNR), LITA Bldg., Via Fratelli Cervi, 93, 20090 Segrate (Milan), Italy
| | - Gian Carlo Caramenti
- Institute of Biomedical Technology, National Research Council, (CNR), LITA Bldg., Via Fratelli Cervi, 93, 20090 Segrate (Milan), Italy
| | - Maurizio Valente
- Institute of Molecular Bioimaging and Physiology, Dept. of Bio-Medicine, National Research Council (CNR), LITA Bldg., Via Fratelli Cervi, 93, 20090 Segrate (Milan), Italy
| | - Vania Fontani
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy.,Department of Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy.,Research Department, Rinaldi Fontani Foundation - NPO, Viale Belfiore 43, 50144 Florence, Italy
| | - Gabriele E M Biella
- Institute of Molecular Bioimaging and Physiology, Dept. of Bio-Medicine, National Research Council (CNR), LITA Bldg., Via Fratelli Cervi, 93, 20090 Segrate (Milan), Italy
| |
Collapse
|
48
|
Brouwer GJ, Arnedo V, Offen S, Heeger DJ, Grant AC. Normalization in human somatosensory cortex. J Neurophysiol 2015; 114:2588-99. [PMID: 26311189 DOI: 10.1152/jn.00939.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 08/24/2015] [Indexed: 01/23/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) was used to measure activity in human somatosensory cortex and to test for cross-digit suppression. Subjects received stimulation (vibration of varying amplitudes) to the right thumb (target) with or without concurrent stimulation of the right middle finger (mask). Subjects were less sensitive to target stimulation (psychophysical detection thresholds were higher) when target and mask digits were stimulated concurrently compared with when the target was stimulated in isolation. fMRI voxels in a region of the left postcentral gyrus each responded when either digit was stimulated. A regression model (called a forward model) was used to separate the fMRI measurements from these voxels into two hypothetical channels, each of which responded selectively to only one of the two digits. For the channel tuned to the target digit, responses in the left postcentral gyrus increased with target stimulus amplitude but were suppressed by concurrent stimulation to the mask digit, evident as a shift in the gain of the response functions. For the channel tuned to the mask digit, a constant baseline response was evoked for all target amplitudes when the mask was absent and responses decreased with increasing target amplitude when the mask was concurrently presented. A computational model based on divisive normalization provided a good fit to the measurements for both mask-absent and target + mask stimulation. We conclude that the normalization model can explain cross-digit suppression in human somatosensory cortex, supporting the hypothesis that normalization is a canonical neural computation.
Collapse
Affiliation(s)
- Gijs Joost Brouwer
- Department of Psychology and Center for Neural Science, New York University, New York, New York; and
| | - Vanessa Arnedo
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Shani Offen
- Department of Psychology and Center for Neural Science, New York University, New York, New York; and
| | - David J Heeger
- Department of Psychology and Center for Neural Science, New York University, New York, New York; and
| | - Arthur C Grant
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
49
|
Abstract
The perception of pitch is a widely studied and hotly debated topic in human hearing. Many of these studies combine functional imaging techniques with stimuli designed to disambiguate the percept of pitch from frequency information present in the stimulus. While useful in identifying potential “pitch centres” in cortex, the existence of truly pitch-responsive neurons requires single neuron-level measures that can only be undertaken in animal models. While a number of animals have been shown to be sensitive to pitch, few studies have addressed the location of cortical generators of pitch percepts in non-human models. The current study uses high-field functional magnetic resonance imaging (fMRI) of the feline brain in an attempt to identify regions of cortex that show increased activity in response to pitch-evoking stimuli. Cats were presented with iterated rippled noise (IRN) stimuli, narrowband noise stimuli with the same spectral profile but no perceivable pitch, and a processed IRN stimulus in which phase components were randomized to preserve slowly changing modulations in the absence of pitch (IRNo). Pitch-related activity was not observed to occur in either primary auditory cortex (A1) or the anterior auditory field (AAF) which comprise the core auditory cortex in cats. Rather, cortical areas surrounding the posterior ectosylvian sulcus responded preferentially to the IRN stimulus when compared to narrowband noise, with group analyses revealing bilateral activity centred in the posterior auditory field (PAF). This study demonstrates that fMRI is useful for identifying pitch-related processing in cat cortex, and identifies cortical areas that warrant further investigation. Moreover, we have taken the first steps in identifying a useful animal model for the study of pitch perception.
Collapse
Affiliation(s)
- Blake E. Butler
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| | - Amee J. Hall
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Stephen G. Lomber
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
- National Centre for Audiology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
50
|
Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation. Neuropsychologia 2015; 79:246-55. [PMID: 26164474 DOI: 10.1016/j.neuropsychologia.2015.07.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/19/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Emerging evidence indicates impairments in somatosensory function may be a major contributor to motor dysfunction associated with neurologic injury or disorders. However, the neuroanatomical substrates underlying the connection between aberrant sensory input and ineffective motor output are still under investigation. The primary somatosensory cortex (S1) plays a critical role in processing afferent somatosensory input and contributes to the integration of sensory and motor signals necessary for skilled movement. Neuroimaging and neurostimulation approaches provide unique opportunities to non-invasively study S1 structure and function including connectivity with other cortical regions. These research techniques have begun to illuminate casual contributions of abnormal S1 activity and connectivity to motor dysfunction and poorer recovery of motor function in neurologic patient populations. This review synthesizes recent evidence illustrating the role of S1 in motor control, motor learning and functional recovery with an emphasis on how information from these investigations may be exploited to inform stroke rehabilitation to reduce motor dysfunction and improve therapeutic outcomes.
Collapse
|