1
|
Du Y, Cai X, Zheng Y, Long A, Zhang M, Chen M, Zhang W, Zhu J, Guo J, Yang C. Research advances and trends in anatomy from 2013 to 2023: A visual analysis based on CiteSpace and VOSviewer. Clin Anat 2024; 37:730-745. [PMID: 38651194 DOI: 10.1002/ca.24168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
As the cornerstone of medicine, the development of anatomy is related to many disciplines and fields and has received extensive attention from researchers. How to integrate and grasp the cutting-edge information in this field quickly is a challenge for researchers, so the aim of this study is to analyze research in anatomy using CiteSpace and VOSviewer in order to identify research hotspots and future directions. To offer a fresh viewpoint for assessing the academic influences of researchers, nations, or institutions on anatomy, and to examine the development of hotspots in anatomical study and to forecast future trends. A total of 4637 anatomy-related publications from 2013 to 2023 were collected from Web of Science Core Collection databases. Their temporal distribution, spatial distribution, cited authors, co-cited journals, keywords, and disciplinary connections in the literature were analyzed using CiteSpace and VOSviewer, and a knowledge graph was constructed. The temporal distribution shows a general fluctuation in the amount of literature published from 2013 to 2023. In spatial distribution, the total number of published articles was highest in the United States, the United Kingdom, and China, the United States leading. Tubbs, Rhoton, Iwanaga, and LaPrade are important authors in anatomy. Clinical Anatomy, Surgical and Radiologic Anatomy, and Journal of Anatomy were the most highly cited journals. Analysis of keywords and citation emergence showed that the research hotspots and trends in anatomy focused mainly on anatomy education, digital technology, and surgical management. At the same time, anatomy showed a trend toward multidisciplinary crossover, developing closer relationships with molecular biology, immunology, and clinical medicine. Current research in anatomy focuses on innovative reform of the educational model and the application and promotion of digital technology. Also, multidisciplinary cross-fertilization is an inevitable trend for the future development of anatomy.
Collapse
Affiliation(s)
- Yikuan Du
- Central Laboratory, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, China
| | - Xiaolin Cai
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Ye Zheng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Aoxue Long
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Mengting Zhang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Mianhai Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Weichui Zhang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Jinfeng Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Jinhua Guo
- Department of anatomy, Guangdong Medical University, Dongguan, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
- Department of anatomy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
2
|
Stasenko A, Lin C, Bonilha L, Bernhardt BC, McDonald CR. Neurobehavioral and Clinical Comorbidities in Epilepsy: The Role of White Matter Network Disruption. Neuroscientist 2024; 30:105-131. [PMID: 35193421 PMCID: PMC9393207 DOI: 10.1177/10738584221076133] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epilepsy is a common neurological disorder associated with alterations in cortical and subcortical brain networks. Despite a historical focus on gray matter regions involved in seizure generation and propagation, the role of white matter (WM) network disruption in epilepsy and its comorbidities has sparked recent attention. In this review, we describe patterns of WM alterations observed in focal and generalized epilepsy syndromes and highlight studies linking WM disruption to cognitive and psychiatric comorbidities, drug resistance, and poor surgical outcomes. Both tract-based and connectome-based approaches implicate the importance of extratemporal and temporo-limbic WM disconnection across a range of comorbidities, and an evolving literature reveals the utility of WM patterns for predicting outcomes following epilepsy surgery. We encourage new research employing advanced analytic techniques (e.g., machine learning) that will further shape our understanding of epilepsy as a network disorder and guide individualized treatment decisions. We also address the need for research that examines how neuromodulation and other treatments (e.g., laser ablation) affect WM networks, as well as research that leverages larger and more diverse samples, longitudinal designs, and improved magnetic resonance imaging acquisitions. These steps will be critical to ensuring generalizability of current research and determining the extent to which neuroplasticity within WM networks can influence patient outcomes.
Collapse
Affiliation(s)
- Alena Stasenko
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Christine Lin
- School of Medicine, University of California, San Diego, CA, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Boris C Bernhardt
- Departments of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Carrie R McDonald
- Department of Psychiatry, University of California, San Diego, CA, USA
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, CA, USA
- Center for Multimodal Imaging and Genetics (CMIG), University of California, San Diego, CA, USA
| |
Collapse
|
3
|
Lenga P, Scherer M, Peretzke R, Neher P, Jesser J, Beisse C, Unterberg AW, Daniela B. Correlation of visual field deficits and q-ball high-resolution fiber tractography of the optic radiation for adjacently located intracerebral lesions: preliminary results from a single-center prospective study. Neurosurg Rev 2024; 47:31. [PMID: 38177718 PMCID: PMC10766805 DOI: 10.1007/s10143-023-02278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/01/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Visual field deficits (VFDs) are common in patients with temporal and occipital lobe lesions. Diffusion tensor fiber tractography (DTI-FT) is widely used for surgery planning to reduce VFDs. Q-ball high-resolution fiber tractography (QBI-HRFT) improves upon DTI. This study aims to evaluate the effectiveness of DTI-FT and QBI-HRFT for surgery planning near the optic radiation (OR) as well as the correlation between VFDs, the nearest distance from the lesion to the OR fiber bundle (nD-LOR), and the lesion volume (LV). This ongoing prospective clinical trial collects clinical and imaging data of patients with lesions in deterrent areas. The present subanalysis included eight patients with gliomas near the OR. Probabilistic HRFT based on QBI-FT and conventional DTI-FT were performed for OR reconstruction based on a standard diffusion-weighted magnetic resonance imaging sequence in clinical use. Quantitative analysis was used to evaluate the lesion volume (LV) and nD-LOR. VFDs were determined based on standardized automated perimetry. We included eight patients (mean age 51.7 years [standard deviation (SD) 9.5]) with lesions near the OR. Among them, five, two, and one patients had temporodorsal, occipital, and temporal lesions, respectively. Four patients had normal vision preoperatively, while four patients had preexisting VFD. QBI-FT analysis indicated that patients with VFD exhibited a significantly smaller median nD-LOR (mean, -4.5; range -7.0; -2.3) than patients without VFD (mean, 7.4; range -4.3; 27.2) (p = 0.050). There was a trend towards a correlation between tumor volume and nD-LOR when QBI-FT was used (rs = -0.6; p = 0.056). A meticulous classification of the spatial relationship between the lesions and OR according to DTI-FT and QBI-FT was performed. The results indicated that the most prevalent orientations were the FT bundles located laterally and intrinsically in relation to the tumor. Compared with conventional DTI-FT, QBI-FT suggests reliable and more accurate results when correlated to preoperative VFDs and might be preferred for preoperative planning and intraoperative use of nearby lesions, particularly for those with larger volumes. A detailed analysis of localization, surgical approach together with QBI-FT and DTI-FT could reduce postoperative morbidity regarding VFDs. The display of HRFT techniques intraoperatively within the navigation system should be pursued for this issue.
Collapse
Affiliation(s)
- Pavlina Lenga
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - Moritz Scherer
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Robin Peretzke
- German Cancer Research Center, Division of Medical Image Computing, Heidelberg, Germany
| | - Peter Neher
- German Cancer Research Center, Division of Medical Image Computing, Heidelberg, Germany
| | - Jessica Jesser
- Department of Ophthalmology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christina Beisse
- Department of Ophthalmology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Becker Daniela
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- IU International University of Applied Sciences, University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
4
|
Song S, Jean S, Deng D, Dai Y, Fang X, Wei X, Chen W, Shi S, Jiang R. Diffusion spectrum imaging based semi-automatic optic radiation tractography for vision preservation in SEEG-guided radiofrequency thermocoagulation. Seizure 2024; 114:61-69. [PMID: 38056030 DOI: 10.1016/j.seizure.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE To assess the efficacy and safety of stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RFTC), using diffusion spectrum imaging (DSI) tractography to preoperatively delineate the optic radiation (OR) and reduce the risk of visual field defects (VFDs) where the epileptogenic zones (EZs) are located in or close to the eloquent visual areas. METHODS We prospectively followed up twenty-four consecutive patients (12 males and 12 females) who underwent SEEG-guided RFTC in or near the OR pathway. A distance of ≥ 3.5 mm away from the OR on the targeted electrodes contacts that exhibited relevant ictal onset patterns, IEDs and EES during SEEG recordings, was required as our selection criterion prior to performing RFTC, enough to theoretically prevent VFDs. Using default tracking parameters, the optic radiation was tracked semi-automatically in DSI-studio. RESULTS There were 12 male and 12 female patients ranging in age from 6 to 57 years, with follow-up period ranging from 6 to 37 months. Nineteen patients responded to RFTC (R+, 79.16 %), and 5 patients did not benefit from RFTC (R-, 20.83 %). The preoperative application of DSI semi-automatic based OR tractography was successful in the protection of the OR in all 24 patients. Three patients experienced a neurologic deficit following RFTC, and five patients had a partial quadrant visual field deficit prior to surgery that did not worsen, and none of the remaining nineteen patients had a quadrant visual field deficit. CONCLUSION Our study validates the safety and efficacy of SEEG-RFTC as a viable therapeutic approach for epileptic foci situated in or adjacent to the visual eloquent regions. We demonstrate that DSI-based tractography offers superior precision in delineating the OR compared to DTI. We establish that implementing a criterion of a minimum distance of ≥ 3.5 mm in radius from the OR on the targeted electrode contacts prior to conducting RFTC can effectively mitigate the risk of VFDs.
Collapse
Affiliation(s)
- Shiwei Song
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Stéphane Jean
- Department of Neurosurgery, Fuzhou Children's Hospital, Fuzhou, 350001, China
| | - Donghuo Deng
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yihai Dai
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xinrong Fang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiaoqiang Wei
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Weitao Chen
- Department of Neurosurgery, Fuzhou Children's Hospital, Fuzhou, 350001, China
| | - Songsheng Shi
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Rifeng Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
5
|
Baş G, Taşkıran E, Arslan S, Kemerdere R, Tanrıöver N. Intraoperative visual evoked potential and subcortico-cortical evoked potential monitoring in diffuse low-grade glioma surgery: a case report. Acta Neurol Belg 2023; 123:2365-2370. [PMID: 36648703 DOI: 10.1007/s13760-023-02186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Affiliation(s)
- Gülçin Baş
- Department of Neurosurgery, Istanbul University-Cerrahpaşa Cerrahpaşa Medical Faculty, Istanbul, Turkey.
| | - Emine Taşkıran
- Department of Neurosurgery, Istanbul University-Cerrahpaşa Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Serdar Arslan
- Department of Neurosurgery, Istanbul University-Cerrahpaşa Cerrahpaşa Medical Faculty, Istanbul, Turkey
- Department of Radiology, Istanbul University-Cerrahpaşa Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Rahşan Kemerdere
- Department of Neurosurgery, Istanbul University-Cerrahpaşa Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Necmettin Tanrıöver
- Department of Neurosurgery, Istanbul University-Cerrahpaşa Cerrahpaşa Medical Faculty, Istanbul, Turkey
| |
Collapse
|
6
|
Herlin B, Uszynski I, Chauvel M, Poupon C, Dupont S. Cross-subject variability of the optic radiation anatomy in a cohort of 1065 healthy subjects. Surg Radiol Anat 2023:10.1007/s00276-023-03161-4. [PMID: 37195302 DOI: 10.1007/s00276-023-03161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Optic radiations are tracts of particular interest for neurosurgery, especially for temporal lobe resection, because their lesion is responsible for visual field defects. However, histological and MRI studies found a high inter-subject variability of the optic radiation anatomy, especially for their most rostral extent inside the Meyer's temporal loop. We aimed to better assess inter-subject anatomical variability of the optic radiations, in order to help to reduce the risk of postoperative visual field deficiencies. METHODS Using an advanced analysis pipeline relying on a whole-brain probabilistic tractography and fiber clustering, we processed the diffusion MRI data of the 1065 subjects of the HCP cohort. After registration in a common space, a cross-subject clustering on the whole cohort was performed to reconstruct the reference optic radiation bundle, from which all optic radiations were segmented on an individual scale. RESULTS We found a median distance between the rostral tip of the temporal pole and the rostral tip of the optic radiation of 29.2 mm (standard deviation: 2.1 mm) for the right side and 28.8 mm (standard deviation: 2.3 mm) for the left side. The difference between both hemispheres was statistically significant (p = 1.10-8). CONCLUSION We demonstrated inter-individual variability of the anatomy of the optic radiations on a large-scale study, especially their rostral extension. In order to better guide neurosurgical procedures, we built a MNI-based reference atlas of the optic radiations that can be used for fast optic radiation reconstruction from any individual diffusion MRI tractography.
Collapse
Affiliation(s)
- B Herlin
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France.
- AP-HP, Epilepsy Unit, GH Pitié-Salpêtrière-Charles Foix, 47-83 Boulevard de L'Hôpital, 75013, Paris, France.
- Sorbonne Université, Paris, France.
| | - I Uszynski
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - M Chauvel
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - C Poupon
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - S Dupont
- AP-HP, Epilepsy Unit, GH Pitié-Salpêtrière-Charles Foix, 47-83 Boulevard de L'Hôpital, 75013, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
7
|
Zhang Y, Ge H, Xu M, Mei W. Significance of Preoperative Nerve Reconstruction Using Diffusion Tensor Imaging Tractography for Facial Nerve Protection in Vestibular Schwannoma. J Korean Neurosurg Soc 2023; 66:183-189. [PMID: 36239080 PMCID: PMC10009239 DOI: 10.3340/jkns.2022.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The facial nerve trace on the ipsilateral side of the vestibular schwannoma was reconstructed by diffusion tensor imaging tractography to identify the adjacent relationship between the facial nerve and the tumor, and to improve the level of intraoperative facial nerve protection. METHODS The clinical data of 30 cases of unilateral vestibular schwannoma who underwent tumor resection via retrosigmoid approach were collected between January 2019 and December 2020. All cases underwent magnetic resonance imaging examination before operation. Diffusion tensor imaging and anatomical images were used to reconstruct the facial nerve track of the affected side, so as to predict the course of the nerve and its adjacent relationship with the tumor, to compare the actual trace of the facial nerve during operation, verify the degree of coincidence, and evaluate the nerve function (House-Brackmann grade) after surgery. RESULTS The facial nerve of 27 out of 30 cases could be displayed by diffusion tensor imaging tractography, and the tracking rate was 90% (27/30). The intraoperative locations of facial nerve shown in 25 cases were consistent with the preoperative reconstruction results. The coincidence rate was 92.6% (25/27). The facial nerves were located on the anterior middle part of the tumor in 14 cases, anterior upper part in eight cases, anterior lower part in seven cases, and superior polar in one case. Intraoperative facial nerve anatomy was preserved in 30 cases. Among the 30 patients, total resection was performed in 28 cases and subtotal resection in two cases. The facial nerve function was evaluated 2 weeks after operation, and the results showed grade I in 12 cases, grade II in 16 cases and grade III in two cases. CONCLUSION Preoperative diffusion tensor imaging tractography can clearly show the trajectory and adjacent position of the facial nerve on the side of vestibular schwannoma, which is beneficial to accurately identify and effectively protect the facial nerve during the operation, and is worthy of clinical application and promotion.
Collapse
Affiliation(s)
- Yuanlong Zhang
- Department of of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hongliang Ge
- Department of of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Mingxia Xu
- Department of of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenzhong Mei
- Department of of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Pruckner P, Nenning KH, Fischmeister FPS, Yildirim MS, Schwarz M, Reitner A, Aull-Watschinger S, Koren J, Baumgartner C, Prayer D, Rössler K, Dorfer C, Czech T, Pataraia E, Kasprian G, Bonelli S. Visual outcomes after anterior temporal lobectomy and transsylvian selective amygdalohippocampectomy: A quantitative comparison of clinical and diffusion data. Epilepsia 2023; 64:705-717. [PMID: 36529714 DOI: 10.1111/epi.17490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Anterior temporal lobectomy (ATL) and transsylvian selective amygdalohippocampectomy (tsSAHE) are effective treatment strategies for intractable temporal lobe epilepsy but may cause visual field deficits (VFDs) by damaging the optic radiation (OpR). Due to the OpR's considerable variability and because it is indistinguishable from surrounding tissue without further technical guidance, it is highly vulnerable to iatrogenic injury. This imaging study uses a multimodal approach to assess visual outcomes after epilepsy surgery. METHODS We studied 62 patients who underwent ATL (n = 32) or tsSAHE (n = 30). Analysis of visual outcomes was conducted in four steps, including the assessment of (1) perimetry outcome (VFD incidence/extent, n = 44/40), (2) volumetric OpR tractography damage (n = 55), and the (3) relation of volumetric OpR tractography damage and perimetry outcome (n = 35). Furthermore, (4) fixel-based analysis (FBA) was performed to assess micro- and macrostructural changes within the OpR following surgery (n = 36). RESULTS Altogether, 56% of all patients had postoperative VFDs (78.9% after ATL, 36.36% after tsSAHE, p = .011). VFDs and OpR tractography damage tended to be more severe within the ATL group (ATL vs. tsSAHE, integrity of contralateral upper quadrant: 65% vs. 97%, p = .002; OpR tractography damage: 69.2 mm3 vs. 3.8 mm3 , p = .002). Volumetric OpR tractography damage could reliably predict VFD incidence (86% sensitivity, 78% specificity) and could significantly explain VFD extent (R2 = .47, p = .0001). FBA revealed a more widespread decline of fibre cross-section within the ATL group. SIGNIFICANCE In the context of controversial visual outcomes following epilepsy surgery, this study provides clinical as well as neuroimaging evidence for a higher risk and greater severity of postoperative VFDs after ATL compared to tsSAHE. Volumetric OpR tractography damage is a feasible parameter to reliably predict this morbidity in both treatment groups and may ultimately support personalized planning of surgical candidates. Advanced diffusion analysis tools such as FBA offer a structural explanation of surgically induced visual pathway damage, allowing noninvasive quantification and visualization of micro- and macrostructural tract affection.
Collapse
Affiliation(s)
- Philip Pruckner
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Karl-Heinz Nenning
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, New York, USA
| | - Florian Ph S Fischmeister
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Mehmet-Salih Yildirim
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michelle Schwarz
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Andreas Reitner
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | | | - Johannes Koren
- Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Christoph Baumgartner
- Department of Neurology, Clinic Hietzing, Vienna, Austria
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
- Medical Faculty, Sigmund Freud University, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | | | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Silvia Bonelli
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Shi J, Lu D, Pan R, Chen H, Teng H, Xu Y, Bo F, Zhou Q, Zhang Y. Applications of diffusion tensor imaging integrated with neuronavigation to prevent visual damage during tumor resection in the optic radiation area. Front Oncol 2022; 12:955418. [PMID: 36052256 PMCID: PMC9424997 DOI: 10.3389/fonc.2022.955418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Background Intracranial tumors involving the temporo-occipital lobe often compress or destroy the optic radiation (OpR), resulting in decreased visual function. The aim of this study is to explore the value of diffusion tensor imaging (DTI) tractography integrated with neuronavigation to prevent visual damage when resecting tumors involving the OpR and find potential factors affecting patients’ visual function and quality of life (QOL). Methods Our study is a cross-sectional study that included 28 patients with intracranial tumors in close morphological relationship with the OpR recruited between January 2020 and February 2022. The surgical incision and approach were preoperatively designed and adjusted according to the DTI tractography results and visual function scores. All patients underwent examinations of visual acuity (VA) and visual field index (VFI) and completed visual function and QOL scales at admission and 2 months after discharge. Logistic regression and linear regression analysis were conducted to evaluate clinical factors potentially affecting pre/postoperative OpR morphology, VA, VFI, visual function, and QOL. Results Lesion size was the main factor found to affect visual function (β = -0.74, 95%CI: -1.12~-0.36, P = 0.05), VA (left: β = -0.11, 95%CI: -0.14~-0.08, P < 0.001; right: β = -0.15, 95%CI: -0.17~-0.13, P < 0.001), and VFI (left: β = -0.11, 95%CI: -0.14~-0.08, P < 0.001; right: β = -0.14, 95%CI: -0.16~-0.12, P < 0.001). Lesion size, edema, and involvement of the lateral ventricle temporal horn were factors affecting OpR morphology and QOL. The 28 patients showed significantly improved VA, VFI, visual function, and QOL results (P < 0.05) 2 months after discharge. Conclusions Combining DTI of OpR mapping and microscopic-based neuronavigation aided precise mapping and thus preservation of visual function in patients undergoing tumor resection. Potential clinical factors affecting patients’ visual function and QOL scores were identified which are useful for assessing a patient’s condition and predicting prognosis.
Collapse
Affiliation(s)
- Jianwei Shi
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dafeng Lu
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruihan Pan
- Department of Neurosurgery, First Affliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hairong Chen
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Teng
- Department of Geriatrics , The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Xu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Fuduo Bo
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Zhou
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yansong Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yansong Zhang,
| |
Collapse
|
10
|
Wu C, Ferreira F, Fox M, Harel N, Hattangadi-Gluth J, Horn A, Jbabdi S, Kahan J, Oswal A, Sheth SA, Tie Y, Vakharia V, Zrinzo L, Akram H. Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 2021; 244:118649. [PMID: 34648960 DOI: 10.1016/j.neuroimage.2021.118649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor, Philadelphia, PA 19107, USA.
| | - Francisca Ferreira
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street S.E., Minneapolis, MN 55455, USA.
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, Center for Precision Radiation Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Joshua Kahan
- Department of Neurology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA.
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Mansfield Rd, Oxford OX1 3TH, UK.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Ninth Floor, Houston, TX 77030, USA.
| | - Yanmei Tie
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Vejay Vakharia
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Harith Akram
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
11
|
Accuracy and outcomes of diffusion tensor imaging tractography in resection for vestibular schwannoma for facial nerve preservation. J Neurol Sci 2021; 430:120006. [PMID: 34601356 DOI: 10.1016/j.jns.2021.120006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/18/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Impairment of facial nerve (FN) function is a common postoperative complication in surgical resections of Vestibular Schwannomas (VS). Diffusion tensor imaging (DTI) tractography creates in vivo imaging of the anatomical location of white matter tracts that can be preoperatively used to visualize the displaced FN. We present an analysis of patients who underwent DTI tractography imaging prior to VS resection. METHODS Patient charts were reviewed from March 2012 to April 2015 who underwent DTI tractography prior to surgical resection for VS. Reliability of this measure was compared to the intraoperative FN location as determined by the surgeon. House Brackmann (HB) score was used to assess facial nerve function. RESULTS A total of 11 patients were included with a mean age of 43 years (range: 19-64) and mean follow-up length of 11.9 months (range: 3.1-34.2). The average maximum tumor diameter was 2.82 cm (range: 1.7-4.2). DTI tractography was accurate in 90.9% (10/11) of patients. Postoperatively, 72.7% (8/11) had a HB score of I or II, 18.2% (2/11) had a HB score of III, and 9.1% (1/11) had a HB score of IV. CONCLUSIONS Facial nerve visualization for VS resection can be accurately visualized using DTI tractography. This modality may lead to reduction of postoperative FN damage.
Collapse
|
12
|
Tanaka T, Takei J, Teshigawara A, Yamamoto Y, Akasaki Y, Hasegawa Y, Murayama Y. Avoidance and Improvement in Visual Field Defect After Surgery for Metastatic Brain Tumors in the Parietal and the Occipital Lobe. World Neurosurg 2021; 155:e847-e857. [PMID: 34530147 DOI: 10.1016/j.wneu.2021.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Visual field defects occasionally occur secondary to tumors in the parietal and the occipital lobes. The aim of this study was to analyze the efficacy of improvement in hemianopsia after surgery for metastatic brain tumors involving or adjacent to the optic radiation (OR). METHODS The study included 49 patients with brain metastasis in the parietal and occipital lobes in the present study. Preoperative and postoperative neurological assessments included visual field, Mini-Mental State Examination, and Karnofsky performance scale. RESULTS Of 49 patients, 33 (67.3%) presented with preoperative homonymous hemianopsia. Of these 33 patients, the visual field was improved postoperatively in 17 patients (51.5%). In all patients regardless of preoperative hemianopsia, postoperative visual fields did not deteriorate. Tractography demonstrated that the OR was split by the tumor (n = 6) and fanning of fibers expanded along the lateral side of the tumor (n = 11). All tumors were removed via surgical access toward the medial side of the tumor. Gross total resection was achieved in most tumors in the group with visual improvement (n = 16/17; 94.1%). Improvement in the visual field was attributed to tumor location in the subcortical white matter, removal rate of the tumor, and higher postoperative Karnofsky performance scale score. CONCLUSIONS The OR tended to deviate to the lateral side of the tumor in the parieto-occipital junction. The postoperative visual field improved even in cases of an occipital tumor. Based on the present study, total resection via an appropriate surgical route should be considered to preserve the OR, leading to improvement in the postoperative visual field.
Collapse
Affiliation(s)
- Toshihide Tanaka
- Department of Neurosurgery, Kashiwa Hospital, Jikei University School of Medicine, Kashiwa, Japan.
| | - Jun Takei
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| | - Akihiko Teshigawara
- Department of Neurosurgery, Kashiwa Hospital, Jikei University School of Medicine, Kashiwa, Japan
| | - Yohei Yamamoto
- Department of Neurosurgery, Jikei University School of Medicine, Daisan Hospital, Tokyo, Japan
| | - Yasuharu Akasaki
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| | - Yuzuru Hasegawa
- Department of Neurosurgery, Kashiwa Hospital, Jikei University School of Medicine, Kashiwa, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Sheng Z, Yu J, Chen Z, Sun Y, Bu X, Wang M, Sarica C, Hernesniemi J, Nelson BJ, Zemmar A, Avecillas-Chasin JM. Constrained-Spherical Deconvolution Tractography in the Evaluation of the Corticospinal Tract in Glioma Surgery. Front Surg 2021; 8:646465. [PMID: 34395506 PMCID: PMC8358074 DOI: 10.3389/fsurg.2021.646465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction: Tractography has demonstrated utility for surgical resection in the setting of primary brain tumors involving eloquent white matter (WM) pathways. Methods: Twelve patients with glioma in or near eloquent motor areas were analyzed. The motor status was recorded before and after surgery. Two different tractography approaches were used to generate the motor corticospinal tract (CST): Constrained spherical deconvolution probabilistic tractography (CSD-Prob) and single tensor deterministic tractography (Tens-DET). To define the degree of disruption of the CST after surgical resection of the tumor, we calculated the percentage of the CST affected by surgical resection, which was then correlated with the postoperative motor status. Moreover, the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of the CST generated by the CSD-Prob and the Tens-DET was measured and compared between the ipsilesional and contralesional side. Results: The CST was identified in all patients and its trajectory was displaced by the tumor. Only the CSD-Prob approach showed the CST with the characteristic fan-like projections from the precentral gyrus to the brainstem. Disruption of the CST was identified in 6/6 with postoperative motor deficit by CSD-Prob approach and in 5/6 in the Tens-DET. The degree of disruption was significantly associated with the motor deficit with the CSD-Prob approach (rho = −0.88, p = 0.021). However, with the Tens-DET approach the CST disruption did not show significant association with the motor function (rho = −0.27, p = 0.6). There was a significant decrease in FA (p = 0.006) and a significant increase in MD (p = 0.0004) and RD (p = 0.005) on the ipsilesional CST compared with the contralesional CST only with the CSD-Prob approach. Conclusion: CSD-Prob accurately represented the known anatomy of the CST and provided a meaningful estimate of microstructural changes of the CST affected by the tumor and its macrostructural damage after surgery. Newer surgical planning stations should include advanced models and algorithms of tractography in order to obtain more meaningful reconstructions of the WM pathways during glioma surgery.
Collapse
Affiliation(s)
- Zhiyuan Sheng
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Jinliang Yu
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Zhongcan Chen
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Yong Sun
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Xingyao Bu
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Meiyun Wang
- Department of Radiology, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, China
| | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Juha Hernesniemi
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Bradley J Nelson
- Multi Scale Robotics Laboratory, ETH Zurich, Zurich, Switzerland
| | - Ajmal Zemmar
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Josue M Avecillas-Chasin
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Department of Neurosurgery, Center for Neuromodulation, Mount Sinai Health System, New York, NY, United States
| |
Collapse
|
14
|
Leon-Rojas J, Cornell I, Rojas-Garcia A, D’Arco F, Panovska-Griffiths J, Cross H, Bisdas S. The role of preoperative diffusion tensor imaging in predicting and improving functional outcome in pediatric patients undergoing epilepsy surgery: a systematic review. BJR Open 2021; 3:20200002. [PMID: 34381942 PMCID: PMC8320117 DOI: 10.1259/bjro.20200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Diffusion tensor imaging (DTI) is a useful neuroimaging technique for surgical planning in adult patients. However, no systematic review has been conducted to determine its utility for pre-operative analysis and planning of Pediatric Epilepsy surgery. We sought to determine the benefit of pre-operative DTI in predicting and improving neurological functional outcome after epilepsy surgery in children with intractable epilepsy. METHODS A systematic review of articles in English using PubMed, EMBASE and Scopus databases, from inception to January 10, 2020 was conducted. All studies that used DTI as either predictor or direct influencer of functional neurological outcome (motor, sensory, language and/or visual) in pediatric epilepsy surgical candidates were included. Data extraction was performed by two blinded reviewers. Risk of bias of each study was determined using the QUADAS 2 Scoring System. RESULTS 13 studies were included (6 case reports/series, 5 retrospective cohorts, and 2 prospective cohorts) with a total of 229 patients. Seven studies reported motor outcome; three reported motor outcome prediction with a sensitivity and specificity ranging from 80 to 85.7 and 69.6 to 100%, respectively; four studies reported visual outcome. In general, the use of DTI was associated with a high degree of favorable neurological outcomes after epilepsy surgery. CONCLUSION Multiple studies show that DTI helps to create a tailored plan that results in improved functional outcome. However, more studies are required in order to fully assess its utility in pediatric patients. This is a desirable field of study because DTI offers a non-invasive technique more suitable for children. ADVANCES IN KNOWLEDGE This systematic review analyses, exclusively, studies of pediatric patients with drug-resistant epilepsy and provides an update of the evidence regarding the role of DTI, as part of the pre-operative armamentarium, in improving post-surgical neurological sequels and its potential for outcome prediction.
Collapse
Affiliation(s)
| | - Isabel Cornell
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | | | - Felice D’Arco
- Department of Pediatric Neuroradiology, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | | | - Helen Cross
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
- NeurALL Research Group, Universidad Internacional del Ecuador, Medical School, Quito, Ecuador
- Department of Applied Health Research, University College London, London, UK
- Department of Pediatric Neuroradiology, Great Ormond Street Hospital for Children NHS Trust, London, UK
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
15
|
Boëx C, Goga C, Bérard N, Al Awadhi A, Bartoli A, Meling T, Bijlenga P, Schaller K. Intraoperative subcortico-cortical evoked potentials of the visual pathway under general anesthesia. Clin Neurophysiol 2021; 132:1381-1388. [PMID: 34023622 DOI: 10.1016/j.clinph.2021.02.399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To assess whether intraoperative subcortical mapping of the visual pathways during brain surgeries was feasible. METHODS Subcortico-cortical evoked potentials (SCEPs: 30 stimulations/site, biphasic single pulse, 1.3 Hz, 0.2 ms/phase, maximum 10 mA; bipolar probe) were measured in 12 patients for stimulation of the optic radiation, Meyer's loop or optic nerve. Recorded sites were bilateral central, parietal, parieto-occipital, occipital (subdermal scalp electrodes, 5-4000 Hz). The minimum distances from the stimulation locations, i.e. the closest border of the resection cavity to the diffusion tensor imaging based visual pathways, were evaluated postoperatively (smallest distance across coronal, sagittal and axial planes). RESULTS Stimulation elicited SCEPs when the visual tracts were close (≤4.5 mm). The responses consisted of a short (P1, 3.0-5.6 ms; 8/8 patients) and of a middle (P2, 15-21.6 ms; 3/8 patients) latency waveforms. In agreement with the neuroanatomy, ipsilateral occipital responses were obtained for temporal or parietal stimulations, and bi-occipital responses for optic nerve stimulations. CONCLUSIONS For the first time to our knowledge, intraoperative SCEPs were observed for stimulations of the optic radiation and of Meyer's loop. Short latency responses were found in agreement with fast conduction of the visual pathway's connecting myelinated fibers. SIGNIFICANCE The mapping of the visual pathways was found feasible for neurosurgeries under general anesthesia.
Collapse
Affiliation(s)
- Colette Boëx
- Department of Neurology, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Cristina Goga
- Departement of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Nadia Bérard
- Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Abdullah Al Awadhi
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Departement of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Andrea Bartoli
- Departement of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Torstein Meling
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Departement of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Bijlenga
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Departement of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Karl Schaller
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Departement of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
16
|
Henderson F, Abdullah KG, Verma R, Brem S. Tractography and the connectome in neurosurgical treatment of gliomas: the premise, the progress, and the potential. Neurosurg Focus 2021; 48:E6. [PMID: 32006950 DOI: 10.3171/2019.11.focus19785] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022]
Abstract
The ability of diffusion tensor MRI to detect the preferential diffusion of water in cerebral white matter tracts enables neurosurgeons to noninvasively visualize the relationship of lesions to functional neural pathways. Although viewed as a research tool in its infancy, diffusion tractography has evolved into a neurosurgical tool with applications in glioma surgery that are enhanced by evolutions in crossing fiber visualization, edema correction, and automated tract identification. In this paper the current literature supporting the use of tractography in brain tumor surgery is summarized, highlighting important clinical studies on the application of diffusion tensor imaging (DTI) for preoperative planning of glioma resection, and risk assessment to analyze postoperative outcomes. The key methods of tractography in current practice and crucial white matter fiber bundles are summarized. After a review of the physical basis of DTI and post-DTI tractography, the authors discuss the methodologies with which to adapt DT image processing for surgical planning, as well as the potential of connectomic imaging to facilitate a network approach to oncofunctional optimization in glioma surgery.
Collapse
Affiliation(s)
- Fraser Henderson
- 1Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania.,3Department of Neurosurgery, The Medical University of South Carolina, Charleston, South Carolina; and
| | - Kalil G Abdullah
- 4Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ragini Verma
- 1Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania.,2DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven Brem
- 1Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
17
|
David B, Eberle J, Delev D, Gaubatz J, Prillwitz CC, Wagner J, Schoene-Bake JC, Luechters G, Radbruch A, Wabbels B, Schramm J, Weber B, Surges R, Elger CE, Rüber T. Multi-scale image analysis and prediction of visual field defects after selective amygdalohippocampectomy. Sci Rep 2021; 11:1444. [PMID: 33446810 PMCID: PMC7809286 DOI: 10.1038/s41598-020-80751-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/24/2020] [Indexed: 01/29/2023] Open
Abstract
Selective amygdalohippocampectomy is an effective treatment for patients with therapy-refractory temporal lobe epilepsy but may cause visual field defect (VFD). Here, we aimed to describe tissue-specific pre- and postoperative imaging correlates of the VFD severity using whole-brain analyses from voxel- to network-level. Twenty-eight patients with temporal lobe epilepsy underwent pre- and postoperative MRI (T1-MPRAGE and Diffusion Tensor Imaging) as well as kinetic perimetry according to Goldmann standard. We probed for whole-brain gray matter (GM) and white matter (WM) correlates of VFD using voxel-based morphometry and tract-based spatial statistics, respectively. We furthermore reconstructed individual structural connectomes and conducted local and global network analyses. Two clusters in the bihemispheric middle temporal gyri indicated a postsurgical GM volume decrease with increasing VFD severity (FWE-corrected p < 0.05). A single WM cluster showed a fractional anisotropy decrease with increasing severity of VFD in the ipsilesional optic radiation (FWE-corrected p < 0.05). Furthermore, patients with (vs. without) VFD showed a higher number of postoperative local connectivity changes. Neither in the GM, WM, nor in network metrics we found preoperative correlates of VFD severity. Still, in an explorative analysis, an artificial neural network meta-classifier could predict the occurrence of VFD based on presurgical connectomes above chance level.
Collapse
Affiliation(s)
- Bastian David
- grid.15090.3d0000 0000 8786 803XDepartment of Epileptology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Jasmine Eberle
- grid.15090.3d0000 0000 8786 803XDepartment of Epileptology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany ,Clinic for Neurology and Palliative Medicine, Municipal Hospital Köln-Merheim, Cologne, Germany
| | - Daniel Delev
- grid.1957.a0000 0001 0728 696XDepartment of Neurosurgery, RWTH University Aachen, Aachen, Germany
| | - Jennifer Gaubatz
- grid.15090.3d0000 0000 8786 803XDepartment of Epileptology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Conrad C. Prillwitz
- grid.15090.3d0000 0000 8786 803XDepartment of Epileptology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Jan Wagner
- grid.488560.70000 0000 9188 2870Department of Neurology, University of Ulm and Universitäts- and Rehabilitationskliniken Ulm, Ulm, Germany
| | - Jan-Christoph Schoene-Bake
- grid.10423.340000 0000 9529 9877Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Guido Luechters
- grid.10388.320000 0001 2240 3300Center for Development Research, University of Bonn, Bonn, Germany
| | - Alexander Radbruch
- grid.15090.3d0000 0000 8786 803XDepartment of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Bettina Wabbels
- grid.15090.3d0000 0000 8786 803XDepartment of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Johannes Schramm
- grid.15090.3d0000 0000 8786 803XMedical Faculty, University Hospital Bonn, Bonn, Germany
| | - Bernd Weber
- grid.15090.3d0000 0000 8786 803XInstitute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- grid.15090.3d0000 0000 8786 803XDepartment of Epileptology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Christian E. Elger
- grid.15090.3d0000 0000 8786 803XDepartment of Epileptology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Theodor Rüber
- grid.15090.3d0000 0000 8786 803XDepartment of Epileptology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany ,grid.7839.50000 0004 1936 9721Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe University Frankfurt, Frankfurt am Main, Germany ,grid.7839.50000 0004 1936 9721Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Shi D, Pan Z, Li X, Guo H, Zheng Q. Diffusion coefficient orientation distribution function for diffusion magnetic resonance imaging. J Neurosci Methods 2020; 348:108986. [PMID: 33141036 DOI: 10.1016/j.jneumeth.2020.108986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Diffusion magnetic resonance imaging (dMRI) is a popular non-invasive imaging technique applied for the study of nerve fibers in vivo, with diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI) as the commonly used dMRI methods. However, DTI cannot resolve complex fiber orientations in a local area and HARDI lacks a solid physical basis. NEW METHOD We introduce a diffusion coefficient orientation distribution function (DCODF). It has a clear physical meaning to represent the orientation distribution of diffusion coefficients for Gaussian and non-Gaussian diffusion. Based on DCODF, we then propose a new HARDI method, termed as diffusion coefficient orientation distribution transform (DCODT), to estimate the orientation distribution of nerve fibers in voxels. RESULTS The method is verified on the simulated data, ISMRM-2015-Tracto-challenge data, and HCP datasets. The results show the superior capability of DCODT in resolving the complex distribution of multiple fiber bundles effectively. COMPARISON WITH EXISTING METHOD(S) The method is compared to other common model-free HARDI estimators. In the numerical simulations, DCODT achieves a better trade-off between the resolution and accuracy than the counterparts for high b-values. In the comparisons based on the challenge data, the improvement of DCODT is significant in scoring. The results on the HCP datasets show that DCODT provides fewer spurious lobes in the glyphs, resulting in more coherent fiber orientations. CONCLUSIONS We conclude that DCODT may be a reliable method to extract accurate information about fiber orientations from dMRI data and promising for the study of neural architecture.
Collapse
Affiliation(s)
- Diwei Shi
- Center for Nano & Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Ziyi Pan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100084, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Quanshui Zheng
- Center for Nano & Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Jordan KM, Keshavan A, Caverzasi E, Osorio J, Papinutto N, Amirbekian B, Berger MS, Henry RG. Longitudinal Disconnection Tractograms to Investigate the Functional Consequences of White Matter Damage: An Automated Pipeline. J Neuroimaging 2020; 30:443-457. [PMID: 32436352 DOI: 10.1111/jon.12713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/27/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Neurosurgical resection is one of the few opportunities researchers have to image the human brain pre- and postfocal damage. A major challenge associated with brains undergoing surgical resection is that they often do not fit brain templates most image-processing methodologies are based on. Manual intervention is required to reconcile the pathology, requiring time investment and introducing reproducibility concerns, and extreme cases must be excluded. METHODS We propose an automatic longitudinal pipeline based on High Angular Resolution Diffusion Imaging acquisitions to facilitate a Pathway Lesion Symptom Mapping analysis relating focal white matter injury to functional deficits. This two-part approach includes (i) automatic segmentation of focal white matter injury from anisotropic power differences, and (ii) modeling disconnection using tractography on the single-subject level, which specifically identifies the disconnections associated with focal white matter damage. RESULTS The advantages of this approach stem from (1) objective and automatic lesion segmentation and tractogram generation, (2) objective and precise segmentation of affected tissue likely to be associated with damage to long-range white matter pathways (defined by anisotropic power), (3) good performance even in the cases of anatomical distortions by use of nonlinear tensor-based registration, which aligns images using an approach sensitive to white matter microstructure. CONCLUSIONS Mapping a system as variable and complex as the human brain requires sample sizes much larger than the current technology can support. This pipeline can be used to execute large-scale, sufficiently powered analyses by meeting the need for an automatic approach to objectively quantify white matter disconnection.
Collapse
Affiliation(s)
- Kesshi M Jordan
- UCSF-UC Berkeley Graduate Group in Bioengineering, San Francisco, CA.,Department of Neurology, University of California, San Francisco, CA
| | - Anisha Keshavan
- UCSF-UC Berkeley Graduate Group in Bioengineering, San Francisco, CA.,Department of Neurology, University of California, San Francisco, CA
| | - Eduardo Caverzasi
- Department of Neurology, University of California, San Francisco, CA
| | - Joseph Osorio
- Division of Neurosurgery, Department of Surgery, University of California, San Diego, CA
| | - Nico Papinutto
- Department of Neurology, University of California, San Francisco, CA
| | - Bagrat Amirbekian
- UCSF-UC Berkeley Graduate Group in Bioengineering, San Francisco, CA.,Department of Neurology, University of California, San Francisco, CA
| | - Mitchel S Berger
- Department of Neurosurgery, University of California, San Francisco, CA
| | - Roland G Henry
- UCSF-UC Berkeley Graduate Group in Bioengineering, San Francisco, CA.,Department of Neurology, University of California, San Francisco, CA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| |
Collapse
|
20
|
Donos C, Rollo P, Tombridge K, Johnson JA, Tandon N. Visual field deficits following laser ablation of the hippocampus. Neurology 2020; 94:e1303-e1313. [DOI: 10.1212/wnl.0000000000008940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/02/2019] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo qualify the incidence of and risk factors for visual field deficits (VFD) following laser interstitial thermal ablation (LITT) for mesial temporal lobe epilepsy (MTLE) and to relate this to anterior temporal lobectomy (ATL).MethodsFifty-seven patients underwent LITT of the amygdalo-hippocampal complex (AH) for MTLE. Masks of ablation volumes, laser probe trajectories, and visual radiations (VRs) from individual subject space were transformed into standardized space using nonlinear registration. Voxel-wise statistics were performed to model relationships between VFDs vs ablation volumes, laser trajectories, VRs, and AH asymmetry. A review of VFDs following ATLs was performed.ResultsThe incidence of VFD after LITT is much lower than after ATLs. A total of 37.5% of patients developed a VFD, with the probability of this being much higher after left (50%) vs right hemisphere LITT (10%) (Fisher test, p = 0.05). This laterality effect on VFDs is mirrored but underappreciated in ATL series. The most consistent LITT-VFD occurred in the superior vertical octant. Ablation of Meyer loop as well as the summed probability of VRs within laser trajectories correlated with VFDs (p < 0.05). Left and right hippocampi have significantly distinct orientations in axial and coronal planes, which may be one reason for the variation in VFD probability.ConclusionsLITT results in lower rates of and smaller VFDs—typically an octantanopsia. VRs are at greater risk during surgery for left than right MTLE. Anatomical asymmetries in hippocampal anatomy may explain the hemispheric differences in deficits, and should factor into trajectory planning and also into preoperative patient counseling. Overall the incidence and extent of visual deficits following LITT for MTLE is lower than the reported data following anterior temporal lobectomy. VF tractography incorporated into LITT planning may reduce the occurrence of VFDs.
Collapse
|
21
|
Shan YZ, Wang ZM, Fan XT, Zhang HQ, Ren LK, Wei PH, Zhao GG. Automatic labeling of the fanning and curving shape of Meyer's loop for epilepsy surgery: an atlas extracted from high-definition fiber tractography. BMC Neurol 2019; 19:302. [PMID: 31779601 PMCID: PMC6882219 DOI: 10.1186/s12883-019-1537-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Visual field defects caused by injury to Meyer's loop (ML) are common in patients undergoing anterior temporal lobectomy during epilepsy surgery. Evaluation of the anatomical shapes of the curving, fanning and sharp angles of ML to guide surgeries is important but still challenging for diffusion tensor imaging. We present an advanced diffusion data-based ML atlas and labeling protocol to reproduce anatomical features in individuals within a short time. METHODS Thirty Massachusetts General Hospital-Human Connectome Project (MGH-HCP) diffusion datasets (ultra-high magnetic gradient & 512 directions) were warped to standard space. The resulting fibers were projected together to create an atlas. The anatomical features and the tractography correspondence rates were evaluated in 30 MGH-HCP individuals and local diffusion spectrum imaging data (eight healthy subjects and six hippocampal sclerosis patients). RESULTS In the atlas, features of curves, sharp angles and fanning shapes were adequately reproduced. The distances from the anterior tip of the temporal lobe to the anterior ridge of Meyer's loop were 23.1 mm and 26.41 mm on the left and right sides, respectively. The upper and lower divisions of the ML were revealed to be twisting. Eighty-eight labeled sides were achieved, and the correspondence rates were 87.44% ± 6.92, 80.81 ± 10.62 and 72.83% ± 14.03% for MGH-HCP individuals, DSI-healthy individuals and DSI-patients, respectively. CONCLUSION Atlas-labeled ML is comparable to high angular resolution tractography in healthy or hippocampal sclerosis patients. Therefore, rapid identification of the ML location with a single modality of T1 is practical. This protocol would facilitate functional studies and visual field protection during neurosurgery.
Collapse
Affiliation(s)
- Yong-Zhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing, 100053, China
| | - Zhen-Ming Wang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiao-Tong Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing, 100053, China
| | - Hua-Qiang Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing, 100053, China
| | - Lian-Kun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Peng-Hu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing, 100053, China.
| | - Guo-Guang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing, 100053, China.
| |
Collapse
|
22
|
Yang JYM, Beare R, Wu MH, Barton SM, Malpas CB, Yeh CH, Harvey AS, Anderson V, Maixner WJ, Seal M. Optic Radiation Tractography in Pediatric Brain Surgery Applications: A Reliability and Agreement Assessment of the Tractography Method. Front Neurosci 2019; 13:1254. [PMID: 31824251 PMCID: PMC6879599 DOI: 10.3389/fnins.2019.01254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/05/2019] [Indexed: 11/13/2022] Open
Abstract
Background Optic radiation (OR) tractography may help predict and reduce post-neurosurgical visual field deficits. OR tractography methods currently lack pediatric and surgical focus. Purpose We propose a clinically feasible OR tractography strategy in a pediatric neurosurgery setting and examine its intra-rater and inter-rater reliability/agreements. Methods Preoperative and intraoperative MRI data were obtained from six epilepsy and two brain tumor patients on 3 Tesla MRI scanners. Four raters with different clinical experience followed the proposed strategy to perform probabilistic OR tractography with manually drawing anatomical landmarks to reconstruct the OR pathway, based on fiber orientation distributions estimated from high angular resolution diffusion imaging data. Intra- and inter-rater reliabilities/agreements of tractography results were assessed using intraclass correlation coefficient (ICC) and dice similarity coefficient (DSC) across various tractography and OR morphological metrics, including the lateral geniculate body positions, tract volumes, and Meyer's loop position from temporal anatomical landmarks. Results Good to excellent intra- and inter-rater reproducibility was demonstrated for the majority of OR reconstructions (ICC = 0.70-0.99; DSC = 0.84-0.89). ICC was higher for non-lesional (0.82-0.99) than lesional OR (0.70-0.99). The non-lesional OR's mean volume was 22.66 cm3; the mean Meyer's loop position was 29.4 mm from the temporal pole, 5.89 mm behind of and 10.26 mm in front of the temporal ventricular horn. The greatest variations (± 1.00-3.00 mm) were observed near pathology, at the tract edges or at cortical endpoints. The OR tractography were used to assist surgical planning and guide lesion resection in all cases, no patient had new visual field deficits postoperatively. Conclusion The proposed tractography strategy generates reliable and reproducible OR tractography images that can be reliably implemented in the routine, non-emergency pediatric neurosurgical setting.
Collapse
Affiliation(s)
- Joseph Yuan-Mou Yang
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, VIC, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Richard Beare
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Michelle Hao Wu
- Medical Imaging, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Sarah M Barton
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Charles B Malpas
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Clinical Outcomes Research Unit, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Chun-Hung Yeh
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - A Simon Harvey
- Neuroscience Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Vicki Anderson
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Brain and Mind, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Psychology, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Wirginia J Maixner
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, VIC, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Marc Seal
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Brotis A, Giannis T, Kapsalaki E, Dardiotis E, Fountas K. Complications after Anterior Temporal Lobectomy for Medically Intractable Epilepsy: A Systematic Review and Meta-Analysis. Stereotact Funct Neurosurg 2019; 97:69-82. [DOI: 10.1159/000500136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/03/2019] [Indexed: 11/19/2022]
|
24
|
Costabile JD, Alaswad E, D'Souza S, Thompson JA, Ormond DR. Current Applications of Diffusion Tensor Imaging and Tractography in Intracranial Tumor Resection. Front Oncol 2019; 9:426. [PMID: 31192130 PMCID: PMC6549594 DOI: 10.3389/fonc.2019.00426] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
In the treatment of brain tumors, surgical intervention remains a common and effective therapeutic option. Recent advances in neuroimaging have provided neurosurgeons with new tools to overcome the challenge of differentiating healthy tissue from tumor-infiltrated tissue, with the aim of increasing the likelihood of maximizing the extent of resection volume while minimizing injury to functionally important regions. Novel applications of diffusion tensor imaging (DTI), and DTI-derived tractography (DDT) have demonstrated that preoperative, non-invasive mapping of eloquent cortical regions and functionally relevant white matter tracts (WMT) is critical during surgical planning to reduce postoperative deficits, which can decrease quality of life and overall survival. In this review, we summarize the latest developments of applying DTI and tractography in the context of resective surgery and highlight its utility within each stage of the neurosurgical workflow: preoperative planning and intraoperative management to improve postoperative outcomes.
Collapse
Affiliation(s)
- Jamie D Costabile
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Elsa Alaswad
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Shawn D'Souza
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - John A Thompson
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - D Ryan Ormond
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
25
|
Giordano M, Samii A, Samii M, Nabavi A. Magnetic Resonance Imaging-Apparent Diffusion Coefficient Assessment of Vestibular Schwannomas: Systematic Approach, Methodology, and Pitfalls. World Neurosurg 2019; 125:e820-e823. [PMID: 30738940 DOI: 10.1016/j.wneu.2019.01.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the validity of various approaches to extract quantitative measurements of diffusion imaging (i.e., apparent diffusion coefficient [ADC]) to investigate tumors of the central nervous system. In current studies, the region of interest (ROI) for the quantitative measurements are placed arbitrarily according to morphology. Our aim is to investigate how placement patterns influence the ADC estimation in intracranial tumors. METHODS Twenty consecutive patients affected by vestibular schwannoma were studied using diffusion imaging. ADC values were obtained using different ROI placement methods: segmentation ADC values of the entire volume (vADC), random ADC values were obtained in 10 different ROI points, and a single ROI in the ADC of the internal auditory canal portion of the tumor. RESULTS ADC of the internal auditory canal portion of the tumor and vADC differed significantly (P < 0.01). vADC was different between cystic and microcystic schwannomas (P = 0.009) and between cystic and solid schwannomas (P = 0.006). CONCLUSIONS The positioning of ROI in these measurements is pivotal. Although "whole tumor volume" measurements represent the largest amount of information, multiple seed points can be used as well. However, there must be multiple seeds and their placement must be reported. ADC can be used as a versatile tool for tumor assessment but must be used judiciously and structured to yield comparable results.
Collapse
Affiliation(s)
- Mario Giordano
- Department of Neurosurgery, International Neuroscience Institute, Hannover, Germany.
| | - Amir Samii
- Department of Neurosurgery, International Neuroscience Institute, Hannover, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Madjid Samii
- Department of Neurosurgery, International Neuroscience Institute, Hannover, Germany
| | - Arya Nabavi
- Department of Neurosurgery, International Neuroscience Institute, Hannover, Germany
| |
Collapse
|
26
|
Bopp MH, Pietruk PM, Nimsky C, Carl B. Fiber tractography of the optic radiations: impact of diffusion model, voxel shape and orientation. J Neurosurg Sci 2019; 65:494-502. [PMID: 30724054 DOI: 10.23736/s0390-5616.19.04622-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Reliable visualization of the optic radiations (OR) is of major importance in tumor surgery close to the OR to prevent permanent visual field deficits. Diffusion tensor imaging (DTI) based fiber tractography (FT) has become a standard tool to visualize major white matter tracts and to support the prevention of postoperative deficits. Nevertheless, FT of the OR is notoriously challenging due to its high neuroanatomical complexity. METHODS To improve FT of the OR we analyzed the effect of a more complex diffusion model and the effect of different voxel shapes and orientations. MRI data of 21 healthy subjects was acquired using isometric and anisometric voxel sizes and standard and adapted slice angulation. FT was performed using the DTI based approach and an orientation distribution function (ODF) based approach. Results were visually inspected, and fiber tract volumes were compared. RESULTS DTI based FT led to poor results, failing to reconstruct plausible tracts at all in up to 26.11 % of all cases. The ODF based approach resulted in more compound and solid tracts showing also significantly larger tract volumes. Voxel shape or orientation did not influence DTI but ODF based FT. Isometric or anisometric voxels with standard slice orientation revealed highest tract volumes. Adapted orientation in combination with anisometric voxels led to significantly smaller tract volumes. CONCLUSIONS Plausible tractography of the OR can be achieved using ODF based fiber tracking within a clinically feasible timeframe. Voxel shape and orientation seem to be of minor importance and might be kept to isometric voxel for flexible application of FT.
Collapse
Affiliation(s)
- Miriam H Bopp
- Department of Neurosurgery, University of Marburg, Marburg, Germany - .,Marburg Center for Mind, Brain and Behavior, Marburg, Germany -
| | - Peter M Pietruk
- Department of Neurosurgery, University of Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior, Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior, Marburg, Germany
| |
Collapse
|
27
|
Panesar SS, Abhinav K, Yeh FC, Jacquesson T, Collins M, Fernandez-Miranda J. Tractography for Surgical Neuro-Oncology Planning: Towards a Gold Standard. Neurotherapeutics 2019; 16:36-51. [PMID: 30542904 PMCID: PMC6361069 DOI: 10.1007/s13311-018-00697-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance imaging tractography permits in vivo visualization of white matter structures. Aside from its academic value, tractography has been proven particularly useful to neurosurgeons for preoperative planning. Preoperative tractography permits both qualitative and quantitative analyses of tumor effects upon surrounding white matter, allowing the surgeon to specifically tailor their operative approach. Despite its benefits, there is controversy pertaining to methodology, implementation, and interpretation of results in this context. High-definition fiber tractography (HDFT) is one of several non-tensor tractography approaches permitting visualization of crossing white matter trajectories at high resolutions, dispensing with the well-known shortcomings of diffusion tensor imaging (DTI) tractography. In this article, we provide an overview of the advantages of HDFT in a neurosurgical context, derived from our considerable experience implementing the technique for academic and clinical purposes. We highlight nuances of qualitative and quantitative approaches to using HDFT for brain tumor surgery planning, and integration of tractography with complementary operative adjuncts, and consider areas requiring further research.
Collapse
Affiliation(s)
- Sandip S Panesar
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA, 94304, USA
| | - Kumar Abhinav
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA, 94304, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothée Jacquesson
- CHU de Lyon - Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Lyon, France
| | - Malie Collins
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA, 94304, USA
| | - Juan Fernandez-Miranda
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
28
|
Tsougos I, Kousi E, Georgoulias P, Kapsalaki E, Fountas KN. Neuroimaging methods in Epilepsy of Temporal Origin. Curr Med Imaging 2018; 15:39-51. [DOI: 10.2174/1573405613666170622114920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 11/22/2022]
Abstract
Background:
Temporal Lobe Epilepsy (TLE) comprises the most common form of
symptomatic refractory focal epilepsy in adults. Accurate lateralization and localization of the
epileptogenic focus are a significant prerequisite for determining surgical candidacy once the
patient has been deemed medically intractable. Structural MR imaging, clinical,
electrophysiological, and neurophysiological data have an established role in the localization of the
epileptogenic foci. Nevertheless, hippocampal sclerosis cannot be detected on MR images in more
than 30% of patients with TLE, and the presurgical assessment remains controversial.
</P><P>
Discussion: In the last years, advanced MR imaging techniques, such as 1H-MRS, DWI, DTI,
DSCI, and fMRI, may provide valuable additional information regarding the physiological and
metabolic characterization of brain tissue. MR imaging has shifted towards functional and
molecular imaging, thus, promising to improve the accuracy regarding the lateralization and the
localization of the epileptogenic focus. Additionally, nuclear medicine studies, such as SPECT and
PET imaging modalities, have become an asset for the decoding of brain function and activity, and
can be diagnostically helpful as well, since they provide valuable data regarding the altered
metabolic activity of the seizure foci.
Conclusion:
Overall, advanced MRI, SPECT, and PET imaging techniques are increasingly
becoming an essential part of TLE diagnostics, when the epileptogenic area is not identified on
structural MRI or when structural MRI, clinical, and electrophysiological findings are not in
concordance.
Collapse
Affiliation(s)
- Ioannis Tsougos
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| | - Evanthia Kousi
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Panagiotis Georgoulias
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| | - Eftychia Kapsalaki
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| | - Kostas N. Fountas
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| |
Collapse
|
29
|
Visual field defects after radiosurgery versus temporal lobectomy for mesial temporal lobe epilepsy: Findings of the ROSE trial. Seizure 2018; 63:62-67. [PMID: 30408713 DOI: 10.1016/j.seizure.2018.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Stereotactic radiosurgery (SRS) may be an alternative to anterior temporal lobectomy (ATL) for mesial temporal lobe epilepsy (MTLE). Visual field defects (VFD) occur in 9-100% of patients following open surgery for MTLE. Postoperative VFD after minimally invasive versus open surgery may differ. METHODS This prospective trial randomized patients with unilateral hippocampal sclerosis and concordant video-EEG findings to SRS versus ATL. Humphries perimetry was obtained at 24 m after surgery. VFD ratios (VFDR = proportion of missing homonymous hemifield with 0 = no VFD, 0.5 = complete superior quadrantanopsia) quantified VFD. Regressions of VFDR were evaluated against treatment arm and covariates. MRI evaluated effects of volume changes on VFDR. The relationships of VFDR with seizure remission and driving status 3 years after surgery were evaluated. RESULTS No patients reported visual changes or had abnormal bedside examinations, but 49 of 54 (91%) of patients experienced VFD on formal perimetry. Neither incidence nor severity of VFDR differed significantly by treatment arm. VFDR severity was not associated with seizure remission or driving status. CONCLUSION The nature of VFD was consistent with lesions of the optic radiations. Effective surgery (defined by seizure remission) of the mesial temporal lobe results in about a 90% incidence of typical VFD regardless of method.
Collapse
|
30
|
Relation of Structural and Functional Changes in Auditory and Visual Pathways after Temporal Lobe Epilepsy Surgery. Behav Sci (Basel) 2018; 8:bs8100092. [PMID: 30322032 PMCID: PMC6210521 DOI: 10.3390/bs8100092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Auditory and visual pathways may be affected as a consequence of temporal lobe epilepsy surgery because of their anatomical relationships with this structure. The purpose of this paper is to correlate the results of the auditory and visual evoked responses with the parameters of tractography of the visual pathway, and with the state of connectivity between respective thalamic nuclei and primary cortices in both systems after the surgical resection of the epileptogenic zone in drug-resistant epileptic patients. Tractography of visual pathway and anatomical connectivity of auditory and visual thalamus-cortical radiations were evaluated in a sample of eight patients. In general, there was a positive relationship of middle latency response (MLR) latency and length of resection, while a negative correlation was found between MLR latency and the anatomical connection strength and anatomical connection probability of the auditory radiations. In the visual pathway, significant differences between sides were found with respect to the number and length of tracts, which was lower in the operated one. Anatomical connectivity variables and perimetry (visual field defect index) were particularly correlated with the latency of P100 wave which was obtained by quadrant stimulation. These results demonstrate an indirect functional modification of the auditory pathway and a direct traumatic lesion of the visual pathway after anterior temporal lobectomy in patients with drug resistant epilepsy.
Collapse
|
31
|
Chamberland M, Tax CMW, Jones DK. Meyer's loop tractography for image-guided surgery depends on imaging protocol and hardware. Neuroimage Clin 2018; 20:458-465. [PMID: 30128284 PMCID: PMC6096050 DOI: 10.1016/j.nicl.2018.08.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/31/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022]
Abstract
Introduction Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction. Methods Diffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols. Results A significant effect of data acquisition on the ML-TP distance was observed between protocols (p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7-16.5 mm). Conclusion We showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols.
Collapse
Affiliation(s)
- Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom; School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia
| |
Collapse
|
32
|
Sydnor VJ, Rivas-Grajales AM, Lyall AE, Zhang F, Bouix S, Karmacharya S, Shenton ME, Westin CF, Makris N, Wassermann D, O'Donnell LJ, Kubicki M. A comparison of three fiber tract delineation methods and their impact on white matter analysis. Neuroimage 2018; 178:318-331. [PMID: 29787865 DOI: 10.1016/j.neuroimage.2018.05.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 05/18/2018] [Indexed: 12/20/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations of tract volume, tract length, mean fractional anisotropy, and true positive and true negative rates, and report measures of intra-method and inter-method agreement. We discuss methodological similarities and differences between the three approaches and the major advantages and drawbacks of each, and review research and clinical contexts for which each method may be most apposite. Emphasis is given to the means by which different white matter fiber tract delineation approaches may systematically produce variable results, despite utilizing the same input tractography and reliance on similar anatomical knowledge.
Collapse
Affiliation(s)
- Valerie J Sydnor
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana María Rivas-Grajales
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Fan Zhang
- Laboratory for Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarina Karmacharya
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Carl-Fredrik Westin
- Laboratory for Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Demian Wassermann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Athena, Université Cote d'Azur, Inria, France; Parietal, CEA, Université Paris-Saclay, INRIA Saclay Île-de-France, France
| | - Lauren J O'Donnell
- Laboratory for Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Gutzwiller EM, Cabrilo I, Radovanovic I, Schaller K, Boëx C. Intraoperative monitoring with visual evoked potentials for brain surgeries. J Neurosurg 2018; 130:654-660. [PMID: 29600911 DOI: 10.3171/2017.8.jns171168] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/28/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The goal of this study was to determine the performance of intraoperative visual evoked potentials (VEPs) in detecting visual field changes. METHODS Assessments of VEPs were performed with simultaneous retinal responses by using white light-emitting diodes protected from scialytic microscope lights. The alarm criterion was a reproducible decrease in amplitude of the VEP P100 wave of 20% or more. Visual fields were assessed preoperatively and 1 month postsurgery (Goldmann perimetry). RESULTS The VEPs were analyzed for 29 patients undergoing resection of a brain lesion. In 89.7% of patients, steady VEP and retinal responses were obtained for monitoring. The absence of alarm was associated in 94.4% of cases with the absence of postoperative visual changes (specificity). The alarms correctly identified 66.7% of cases with any postoperative changes and 100% of cases with changes more severe than just a discrete quadrantanopia or deterioration of an existing quadrantanopia (sensitivity, new diffuse deterioration < 2 dB). In 11.5% of patients, a transitory VEP decrease with subsequent recovery was observed without postoperative defects. CONCLUSIONS Intraoperative VEPs were performed with simultaneous recording of electroretinograms, with protection from lights of the operating room and with white light-emitting diodes. Intraoperative VEPs were shown to be reliable in predicting postoperative visual field changes. In this series of intraaxial brain procedures, reliable intraoperative VEP monitoring was achieved, allowing at minimum the detection of new quadrantanopia. The standardization of this technique appears to be a valuable effort in regard to the functional risks of homonymous hemianopia.
Collapse
Affiliation(s)
| | | | - Ivan Radovanovic
- 2Division of Neurosurgery, Toronto Western Hospitals, Krembil Neuroscience Center, University Health Network and University of Toronto, Ontario, Canada
| | | | - Colette Boëx
- 3Neurology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland; and
| |
Collapse
|
34
|
Zhang JS, Qu L, Wang Q, Jin W, Hou YZ, Sun GC, Li FY, Yu XG, Xu BN, Chen XL. Intraoperative visualisation of functional structures facilitates safe frameless stereotactic biopsy in the motor eloquent regions of the brain. Br J Neurosurg 2017; 32:372-380. [PMID: 29260585 DOI: 10.1080/02688697.2017.1416059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND For stereotactic brain biopsy involving motor eloquent regions, the surgical objective is to enhance diagnostic yield and preserve neurological function. To achieve this aim, we implemented functional neuro-navigation and intraoperative magnetic resonance imaging (iMRI) into the biopsy procedure. The impact of this integrated technique on the surgical outcome and postoperative neurological function was investigated and evaluated. METHOD Thirty nine patients with lesions involving motor eloquent structures underwent frameless stereotactic biopsy assisted by functional neuro-navigation and iMRI. Intraoperative visualisation was realised by integrating anatomical and functional information into a navigation framework to improve biopsy trajectories and preserve eloquent structures. iMRI was conducted to guarantee the biopsy accuracy and detect intraoperative complications. The perioperative change of motor function and biopsy error before and after iMRI were recorded, and the role of functional information in trajectory selection and the relationship between the distance from sampling site to nearby eloquent structures and the neurological deterioration were further analyzed. RESULTS Functional neuro-navigation helped modify the original trajectories and sampling sites in 35.90% (16/39) of cases to avoid the damage of eloquent structures. Even though all the lesions were high-risk of causing neurological deficits, no significant difference was found between preoperative and postoperative muscle strength. After data analysis, 3mm was supposed to be the safe distance for avoiding transient neurological deterioration. During surgery, the use of iMRI significantly reduced the biopsy errors (p = 0.042) and potentially increased the diagnostic yield from 84.62% (33/39) to 94.87% (37/39). Moreover, iMRI detected intraoperative haemorrhage in 5.13% (2/39) of patients, all of them benefited from the intraoperative strategies based on iMRI findings. CONCLUSIONS Intraoperative visualisation of functional structures could be a feasible, safe and effective technique. Combined with intraoperative high-field MRI, it contributed to enhance the biopsy accuracy and lower neurological complications in stereotactic brain biopsy involving motor eloquent areas.
Collapse
Affiliation(s)
- Jia-Shu Zhang
- a Department of Neurosurgery , General Hospital , Beijing , China
| | - Ling Qu
- b Neurosurgery Department of Chinese PLA General Hospital , Beijing , China
| | - Qun Wang
- a Department of Neurosurgery , General Hospital , Beijing , China
| | - Wei Jin
- c Pathology Department of Chinese PLA General Hospital , Beijing , China
| | - Yuan-Zheng Hou
- a Department of Neurosurgery , General Hospital , Beijing , China
| | - Guo-Chen Sun
- a Department of Neurosurgery , General Hospital , Beijing , China
| | - Fang-Ye Li
- a Department of Neurosurgery , General Hospital , Beijing , China
| | - Xin-Guang Yu
- a Department of Neurosurgery , General Hospital , Beijing , China
| | - Ban-Nan Xu
- a Department of Neurosurgery , General Hospital , Beijing , China
| | - Xiao-Lei Chen
- a Department of Neurosurgery , General Hospital , Beijing , China
| |
Collapse
|
35
|
Meesters S, Ossenblok P, Wagner L, Schijns O, Boon P, Florack L, Vilanova A, Duits R. Stability metrics for optic radiation tractography: Towards damage prediction after resective surgery. J Neurosci Methods 2017; 288:34-44. [PMID: 28648721 PMCID: PMC5538260 DOI: 10.1016/j.jneumeth.2017.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/25/2017] [Accepted: 05/31/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND An accurate delineation of the optic radiation (OR) using diffusion MR tractography may reduce the risk of a visual field deficit after temporal lobe resection. However, tractography is prone to generate spurious streamlines, which deviate strongly from neighboring streamlines and hinder a reliable distance measurement between the temporal pole and the Meyer's loop (ML-TP distance). NEW METHOD Stability metrics are introduced for the automated removal of spurious streamlines near the Meyer's loop. Firstly, fiber-to-bundle coherence (FBC) measures can identify spurious streamlines by estimating their alignment with the surrounding streamline bundle. Secondly, robust threshold selection removes spurious streamlines while preventing an underestimation of the extent of the Meyer's loop. Standardized parameter selection is realized through test-retest evaluation of the variability in ML-TP distance. RESULTS The variability in ML-TP distance after parameter selection was below 2mm for each of the healthy volunteers studied (N=8). The importance of the stability metrics is illustrated for epilepsy surgery candidates (N=3) for whom the damage to the Meyer's loop was evaluated by comparing the pre- and post-operative OR reconstruction. The difference between predicted and observed damage is in the order of a few millimeters, which is the error in measured ML-TP distance. COMPARISON WITH EXISTING METHOD(S) The stability metrics are a novel method for the robust estimate of the ML-TP distance. CONCLUSIONS The stability metrics are a promising tool for clinical trial studies, in which the damage to the OR can be related to the visual field deficit that may occur after epilepsy surgery.
Collapse
Affiliation(s)
- Stephan Meesters
- Academic Center for Epileptology Kempenhaeghe & Maastricht University Medical Center, Netherlands; Department of Mathematics & Computer Science, Eindhoven University of Technology, Netherlands.
| | - Pauly Ossenblok
- Academic Center for Epileptology Kempenhaeghe & Maastricht University Medical Center, Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Netherlands
| | - Louis Wagner
- Academic Center for Epileptology Kempenhaeghe & Maastricht University Medical Center, Netherlands
| | - Olaf Schijns
- Academic Center for Epileptology Kempenhaeghe & Maastricht University Medical Center, Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Netherlands
| | - Paul Boon
- Academic Center for Epileptology Kempenhaeghe & Maastricht University Medical Center, Netherlands
| | - Luc Florack
- Department of Mathematics & Computer Science, Eindhoven University of Technology, Netherlands
| | - Anna Vilanova
- Department of Mathematics and Computer Science, Delft University of Technology, Netherlands; Department of Mathematics & Computer Science, Eindhoven University of Technology, Netherlands
| | - Remco Duits
- Department of Mathematics & Computer Science, Eindhoven University of Technology, Netherlands
| |
Collapse
|
36
|
Besson P, Bandt SK, Proix T, Lagarde S, Jirsa VK, Ranjeva JP, Bartolomei F, Guye M. Anatomic consistencies across epilepsies: a stereotactic-EEG informed high-resolution structural connectivity study. Brain 2017; 140:2639-2652. [DOI: 10.1093/brain/awx181] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/12/2017] [Indexed: 11/12/2022] Open
|
37
|
Essayed WI, Zhang F, Unadkat P, Cosgrove GR, Golby AJ, O'Donnell LJ. White matter tractography for neurosurgical planning: A topography-based review of the current state of the art. Neuroimage Clin 2017; 15:659-672. [PMID: 28664037 PMCID: PMC5480983 DOI: 10.1016/j.nicl.2017.06.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/17/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
We perform a review of the literature in the field of white matter tractography for neurosurgical planning, focusing on those works where tractography was correlated with clinical information such as patient outcome, clinical functional testing, or electro-cortical stimulation. We organize the review by anatomical location in the brain and by surgical procedure, including both supratentorial and infratentorial pathologies, and excluding spinal cord applications. Where possible, we discuss implications of tractography for clinical care, as well as clinically relevant technical considerations regarding the tractography methods. We find that tractography is a valuable tool in variable situations in modern neurosurgery. Our survey of recent reports demonstrates multiple potentially successful applications of white matter tractography in neurosurgery, with progress towards overcoming clinical challenges of standardization and interpretation.
Collapse
Affiliation(s)
- Walid I Essayed
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Fan Zhang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prashin Unadkat
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - G Rees Cosgrove
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren J O'Donnell
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Yin D, Thompson JA, Drees C, Ojemann SG, Nagae L, Pelak VS, Abosch A. Optic Radiation Tractography and Visual Field Deficits in Laser Interstitial Thermal Therapy for Amygdalohippocampectomy in Patients with Mesial Temporal Lobe Epilepsy. Stereotact Funct Neurosurg 2017; 95:107-113. [DOI: 10.1159/000454866] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/23/2016] [Indexed: 11/19/2022]
|
39
|
Gooneratne IK, Mannan S, de Tisi J, Gonzalez JC, McEvoy AW, Miserocchi A, Diehl B, Wehner T, Bell GS, Sander JW, Duncan JS. Somatic complications of epilepsy surgery over 25 years at a single center. Epilepsy Res 2017; 132:70-77. [PMID: 28324680 DOI: 10.1016/j.eplepsyres.2017.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/27/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Epilepsy surgery is an effective treatment for refractory focal epilepsy. Risks of surgery need to be considered when advising individuals of treatment options. We describe the frequency and nature of physical adverse events associated with epilepsy surgery in a single center. MATERIAL AND METHODS We reviewed the prospectively maintained records of adults who underwent epilepsy surgery at our center between 1990 and 2014 to identify peri/postsurgical adverse events. These were categorized into neurological deficits and those related to surgery (e.g. wound infections). Neurological deficits were categorized as expected or unexpected and into transient (≤3 months) or persistent (>3 months), RESULTS: There were 911 procedures with no peri-operative deaths. Persistent neurological adverse events were seen following 157 (17.2%) procedures. The most common persistent expected complication was quadrantanopia after temporal lobe resections (72/764, 9.4%). Unexpected persistent neurological complications occurred in 20 procedures (2.2%) and included: quadrantanopia (6, 0.7%); hemianopia (2, 0.2%); hemi/mono-paresis/sensory loss (9, 1%); dysphasia (10, 1%); frontalis muscle weakness (2, 0.2%); and oculomotor weakness (1, 0.1%). 106 surgery related adverse events occurred in 83 procedures, with severe infections requiring bone-flap removal in 24 (2.6%) procedures and intracranial infections in 8 (0.9%). The risk of post-resective severe infection increased by 4 fold (OR 4.32, 95% CI 2.1-8.9, p<0.001) with use of subdural EEG monitoring prior to resection. In consequence, in August 2011 we introduced antibiotic coverage in all individuals undergoing intracranial monitoring. Also, after August 2011 there was greater use of Stereo-EEG (SEEG) than subdural (OR 9.0 CI 0.36-224.2, p=0.18ns). One complicated by severe infection. Other surgical complications included haematoma (0.3%), hydrocephalus (0.3%) and CSF leak (1.2%). None had permanent complications. CONCLUSIONS Adverse event rates are similar to other series. Epilepsy surgery carries well defined surgical and neurological risks. The risks of somatic adverse events, in addition to neuropsychiatric and neuropsychological complications need to be made clear to individuals considering this treatment option.
Collapse
Affiliation(s)
- Inuka K Gooneratne
- NIHR UCL Hospitals Biomedical Research Centre, Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, & Epilepsy Society, Chalfont St Peter, SL9 0RJ, UK, UK; Kegalle District General Hospital, Kegalle, Sri Lanka.
| | - Shahidul Mannan
- NIHR UCL Hospitals Biomedical Research Centre, Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, & Epilepsy Society, Chalfont St Peter, SL9 0RJ, UK, UK
| | - Jane de Tisi
- NIHR UCL Hospitals Biomedical Research Centre, Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, & Epilepsy Society, Chalfont St Peter, SL9 0RJ, UK, UK
| | - Juan C Gonzalez
- NIHR UCL Hospitals Biomedical Research Centre, Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, & Epilepsy Society, Chalfont St Peter, SL9 0RJ, UK, UK; Stichting Epilepsie Instellingen Nederland - SEIN, Achterweg 5, Heemstede 2103SW, Netherlands; Kegalle District General Hospital, Kegalle, Sri Lanka
| | - Andrew W McEvoy
- NIHR UCL Hospitals Biomedical Research Centre, Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, & Epilepsy Society, Chalfont St Peter, SL9 0RJ, UK, UK
| | - Anna Miserocchi
- NIHR UCL Hospitals Biomedical Research Centre, Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, & Epilepsy Society, Chalfont St Peter, SL9 0RJ, UK, UK
| | - Beate Diehl
- NIHR UCL Hospitals Biomedical Research Centre, Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, & Epilepsy Society, Chalfont St Peter, SL9 0RJ, UK, UK
| | - Tim Wehner
- NIHR UCL Hospitals Biomedical Research Centre, Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, & Epilepsy Society, Chalfont St Peter, SL9 0RJ, UK, UK
| | - Gail S Bell
- NIHR UCL Hospitals Biomedical Research Centre, Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, & Epilepsy Society, Chalfont St Peter, SL9 0RJ, UK, UK
| | - Josemir W Sander
- NIHR UCL Hospitals Biomedical Research Centre, Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, & Epilepsy Society, Chalfont St Peter, SL9 0RJ, UK, UK; Stichting Epilepsie Instellingen Nederland - SEIN, Achterweg 5, Heemstede 2103SW, Netherlands
| | - John S Duncan
- NIHR UCL Hospitals Biomedical Research Centre, Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, & Epilepsy Society, Chalfont St Peter, SL9 0RJ, UK, UK
| |
Collapse
|
40
|
Zhang Y, Mao Z, Wei P, Jin Y, Ma L, Zhang J, Yu X. Preoperative Prediction of Location and Shape of Facial Nerve in Patients with Large Vestibular Schwannomas Using Diffusion Tensor Imaging–Based Fiber Tracking. World Neurosurg 2017; 99:70-78. [DOI: 10.1016/j.wneu.2016.11.110] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022]
|
41
|
Sun GC, Wang F, Chen XL, Yu XG, Ma XD, Zhou DB, Zhu RY, Xu BN. Impact of Virtual and Augmented Reality Based on Intraoperative Magnetic Resonance Imaging and Functional Neuronavigation in Glioma Surgery Involving Eloquent Areas. World Neurosurg 2016; 96:375-382. [DOI: 10.1016/j.wneu.2016.07.107] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 11/26/2022]
|
42
|
Sivakanthan S, Neal E, Murtagh R, Vale FL. The evolving utility of diffusion tensor tractography in the surgical management of temporal lobe epilepsy: a review. Acta Neurochir (Wien) 2016; 158:2185-2193. [PMID: 27566714 DOI: 10.1007/s00701-016-2910-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/27/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) is a relatively new imaging modality that has found many peri-operative applications in neurosurgery. METHODS A comprehensive survey of the applications of diffusion tensor imaging (DTI) in planning for temporal lobe epilepsy surgery was conducted. The presentation of this literature is supplemented by a case illustration. RESULTS The authors have found that DTI is well utilized in epilepsy surgery, primarily in the tractography of Meyer's loop. DTI has also been used to demonstrate extratemporal connections that may be responsible for surgical failure as well as perioperative planning. The tractographic anatomy of the temporal lobe is discussed and presented with original DTI pictures. CONCLUSIONS The uses of DTI in epilepsy surgery are varied and rapidly evolving. A discussion of the technology, its limitations, and its applications is well warranted and presented in this article.
Collapse
Affiliation(s)
- Sananthan Sivakanthan
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 2 Tampa General Circle, 7th Floor, Tampa, FL, 33606, USA.
| | - Elliot Neal
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 2 Tampa General Circle, 7th Floor, Tampa, FL, 33606, USA
- Brainlab Inc, Westchester, IL, USA
| | - Ryan Murtagh
- Department of Radiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Fernando L Vale
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 2 Tampa General Circle, 7th Floor, Tampa, FL, 33606, USA
| |
Collapse
|
43
|
Renauld E, Descoteaux M, Bernier M, Garyfallidis E, Whittingstall K. Semi-Automatic Segmentation of Optic Radiations and LGN, and Their Relationship to EEG Alpha Waves. PLoS One 2016; 11:e0156436. [PMID: 27383146 PMCID: PMC4934857 DOI: 10.1371/journal.pone.0156436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/13/2016] [Indexed: 12/13/2022] Open
Abstract
At rest, healthy human brain activity is characterized by large electroencephalography (EEG) fluctuations in the 8-13 Hz range, commonly referred to as the alpha band. Although it is well known that EEG alpha activity varies across individuals, few studies have investigated how this may be related to underlying morphological variations in brain structure. Specifically, it is generally believed that the lateral geniculate nucleus (LGN) and its efferent fibres (optic radiation, OR) play a key role in alpha activity, yet it is unclear whether their shape or size variations contribute to its inter-subject variability. Given the widespread use of EEG alpha in basic and clinical research, addressing this is important, though difficult given the problems associated with reliably segmenting the LGN and OR. For this, we employed a multi-modal approach and combined diffusion magnetic resonance imaging (dMRI), functional magnetic resonance imaging (fMRI) and EEG in 20 healthy subjects to measure structure and function, respectively. For the former, we developed a new, semi-automated approach for segmenting the OR and LGN, from which we extracted several structural metrics such as volume, position and diffusivity. Although these measures corresponded well with known morphology based on previous post-mortem studies, we nonetheless found that their inter-subject variability was not significantly correlated to alpha power or peak frequency (p >0.05). Our results therefore suggest that alpha variability may be mediated by an alternative structural source and our proposed methodology may in general help in better understanding the influence of anatomy on function such as measured by EEG or fMRI.
Collapse
Affiliation(s)
- Emmanuelle Renauld
- Department of Nuclear Medecine and Radiobiology, Faculty of Medicine and Health Science, University of Sherbrooke, Sherbrooke, Qc, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of Science, University of Sherbrooke, Sherbrooke, Qc, Canada
- Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Qc, Canada
- Centre d’Imagerie Moléculaire de Sherbrooke (CIMS), Centre de Recherche du CHUS, Sherbrooke, Qc, Canada
| | - Michaël Bernier
- Department of Nuclear Medecine and Radiobiology, Faculty of Medicine and Health Science, University of Sherbrooke, Sherbrooke, Qc, Canada
| | - Eleftherios Garyfallidis
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of Science, University of Sherbrooke, Sherbrooke, Qc, Canada
| | - Kevin Whittingstall
- Department of Nuclear Medecine and Radiobiology, Faculty of Medicine and Health Science, University of Sherbrooke, Sherbrooke, Qc, Canada
- Department of Diagnostic Radiology, Faculty of Medicine and Health Science, University of Sherbrooke, Sherbrooke, Qc, Canada
- Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Qc, Canada
- Centre d’Imagerie Moléculaire de Sherbrooke (CIMS), Centre de Recherche du CHUS, Sherbrooke, Qc, Canada
| |
Collapse
|
44
|
Zheng X, Xu X, Zhang H, Wang Q, Ma X, Chen X, Sun G, Zhang J, Jiang J, Xu B, Zhang J. A Preliminary Experience with Use of Intraoperative Magnetic Resonance Imaging in Thalamic Glioma Surgery: A Case Series of 38 Patients. World Neurosurg 2016; 89:434-41. [DOI: 10.1016/j.wneu.2016.01.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
|
45
|
Faust K, Vajkoczy P. Distinct displacements of the optic radiation based on tumor location revealed using preoperative diffusion tensor imaging. J Neurosurg 2016; 124:1343-52. [DOI: 10.3171/2015.3.jns141584] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
Visual field defects (VFDs) due to optic radiation (OR) injury are a common complication of temporal lobe surgery. The authors analyzed whether preoperative visualization of the optic tract would reduce this complication by influencing the surgeon’s decisions about surgical approaches. The authors also determined whether white matter shifts caused by temporal lobe tumors would follow predetermined patterns based on the tumor’s topography.
METHODS
One hundred thirteen patients with intraaxial tumors of the temporal lobe underwent preoperative diffusion tensor imaging (DTI) fiber tracking. In 54 of those patients, both pre- and postoperative VFDs were documented using computerized perimetry. Brainlab’s iPlan 2.5 navigation software was used for tumor reconstruction and fiber visualization after the fusion of DTI studies with their respective magnetization-prepared rapid gradient-echo (MP-RAGE) images. The tracking algorithm was as follows: minimum fiber length 100 mm, fractional anisotropy threshold 0.1. The lateral geniculate body and the calcarine cortex were employed as tract seeding points. Shifts of the OR caused by tumor were visualized in comparison with the fiber tracking of the patient’s healthy hemisphere.
RESULTS
Temporal tumors produced a dislocation of the OR but no apparent fiber destruction. The shift of white matter tracts followed fixed patterns dependent on tumor location: Temporolateral tumors resulted in a medial fiber shift, and thus a lateral transcortical approach is recommended. Temporopolar tumors led to a posterior shift, always including Meyer’s loop; therefore, a pterional transcortical approach is recommended. Temporomesial tumors produced a lateral and superior shift; thus, a transsylvian-transcisternal approach will result in maximum sparing of the fibers. Temporocentric tumors also induced a lateral fiber shift. For those tumors, a transsylvian-transopercular approach is recommended. Tumors of the fusiform gyrus generated a superior (and lateral) shift; consequently, a subtemporal approach is recommended to avoid white matter injury. In applying the approaches recommended above, new or worsened VFDs occurred in 4% of the patient cohort. Total neurological and surgical morbidity were less than 10%. In 90% of patients, gross-total resection was accomplished.
CONCLUSIONS
Preoperative visualization of the OR may help in avoiding postoperative VFDs.
Collapse
|
46
|
Abstract
Nuclear magnetic resonance (NMR) diffusion experiments are widely employed as they yield information about structures hindering the diffusion process, e.g., about cell membranes. While it has been shown in recent articles that these experiments can be used to determine the shape of closed pores averaged over a volume of interest, it is still an open question how much information can be gained in open well-connected systems. In this theoretical work, it is shown that the full structure information of connected periodic systems is accessible. To this end, the so-called "SEquential Rephasing by Pulsed field-gradient Encoding N Time intervals" (SERPENT) sequence is used, which employs several diffusion encoding gradient pulses with different amplitudes. Two two-dimensional solid matrices that are surrounded by an NMR-visible medium are considered: a hexagonal lattice of cylinders and a rectangular lattice of isosceles triangles.
Collapse
Affiliation(s)
- Frederik Bernd Laun
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lars Müller
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Tristan Anselm Kuder
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
47
|
Abstract
The implementation of fiber tracking or tractography modules in commercial navigation systems resulted in a broad availability of visualization possibilities for major white matter tracts in the neurosurgical community. Unfortunately the implemented algorithms and tracking approaches do not represent the state of the art of tractography strategies and may lead to false tracking results. The application of advanced tractography techniques for neurosurgical procedures poses even additional challenges that relate to effects of the individual anatomy that might be altered by edema and tumor, to stereotactic inaccuracies due to image distortion, as well as to registration inaccuracies and brain shift.
Collapse
Affiliation(s)
- Christopher Nimsky
- Department of Neurosurgery, University Marburg, Baldingerstrasse, Marburg, 35033, Germany.
| | - Miriam Bauer
- Department of Neurosurgery, University Marburg, Baldingerstrasse, Marburg, 35033, Germany
| | - Barbara Carl
- Department of Neurosurgery, University Marburg, Baldingerstrasse, Marburg, 35033, Germany
| |
Collapse
|
48
|
Bai SC, Xu BN, Wei SH, Geng JF, Wu DD, Yu XG, Chen XL. Intraoperative high-field magnetic resonance imaging combined with functional neuronavigation in resection of low-grade temporal lobe tumors. World J Surg Oncol 2015; 13:286. [PMID: 26410079 PMCID: PMC4583990 DOI: 10.1186/s12957-015-0690-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/07/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The aim of this study is to investigate the role of intraoperative MR imaging in temporal lobe low-grade glioma (LGG) surgery and to report the surgical outcome in our series with regard to seizures, neurological defects, and quality of life. METHODS Patients with temporal lobe contrast-nonenhancing gliomas who presented with seizures in the course of their disease were enrolled in our prospective study. We non-randomly assigned patients to undergo intraoperative magnetic resonance imaging (iMRI)-guided surgery or conventional surgery. Extent of resection (EOR) and surgical outcomes were compared between the two groups. RESULTS Forty-one patients were allocated in the iMRI group, and 14 were in the conventional group. Comparable EOR was achieved for the two groups (p = 0.634) although preoperative tumor volumes were significantly larger for the iMRI group. Seizure outcome tended to be better for the iMRI group (Engel class I achieved for 89.7% (35/39) vs 75% (9/12)) although this difference was not statistically different. Newly developed neurological deficits were observed in four patients (10.3%) and two patients (16.7%), respectively (p = 0.928). Free of seizures and neurological morbidity led to a return-to-work or return-to-school rate of 84.6% (33/39) vs 75% (9/12), respectively (p = 0.741). CONCLUSIONS Our study provided evidence that iMRI was a safe and useful tool in temporal lobe LGG surgery. Optimal extent of resection contributed to favorable seizure outcome in our series with low morbidity rate, which led to a high return-to-work rate.
Collapse
Affiliation(s)
- Shao-cong Bai
- Department of Neurosurgery, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Bai-nan Xu
- Department of Neurosurgery, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Shi-hui Wei
- Department of Ophthalmology, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Jie-feng Geng
- Department of Neurosurgery, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Dong-dong Wu
- Department of Neurosurgery, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Xin-guang Yu
- Department of Neurosurgery, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Xiao-lei Chen
- Department of Neurosurgery, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
49
|
Giordano M, Nabavi A, Gerganov VM, Javadi AS, Samii M, Fahlbusch R, Samii A. Assessment of quantitative corticospinal tract diffusion changes in patients affected by subcortical gliomas using common available navigation software. Clin Neurol Neurosurg 2015; 136:1-4. [DOI: 10.1016/j.clineuro.2015.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/12/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
|
50
|
Kochan M, Daga P, Burgos N, White M, Cardoso MJ, Mancini L, Winston GP, McEvoy AW, Thornton J, Yousry T, Duncan JS, Stoyanov D, Ourselin S. Simulated field maps for susceptibility artefact correction in interventional MRI. Int J Comput Assist Radiol Surg 2015; 10:1405-16. [PMID: 26179219 DOI: 10.1007/s11548-015-1253-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Intraoperative MRI (iMRI) is a powerful modality for acquiring images of the brain to facilitate precise image-guided neurosurgery. Diffusion-weighted MRI (DW-MRI) provides critical information about location, orientation and structure of nerve fibre tracts, but suffers from the "susceptibility artefact" stemming from magnetic field perturbations due to the step change in magnetic susceptibility at air-tissue boundaries in the head. An existing approach to correcting the artefact is to acquire a field map by means of an additional MRI scan. However, to recover true field maps from the acquired field maps near air-tissue boundaries is challenging, and acquired field maps are unavailable in historical MRI data sets. This paper reports a detailed account of our method to simulate field maps from structural MRI scans that was first presented at IPCAI 2014 and provides a thorough experimental and analysis section to quantitatively validate our technique. METHODS We perform automatic air-tissue segmentation of intraoperative MRI scans, feed the segmentation into a field map simulation step and apply the acquired and the simulated field maps to correct DW-MRI data sets. RESULTS We report results for 12 patient data sets acquired during anterior temporal lobe resection surgery for the surgical management of focal epilepsy. We find a close agreement between acquired and simulated field maps and observe a statistically significant reduction in the susceptibility artefact in DW-MRI data sets corrected using simulated field maps in the vicinity of the resection. The artefact reduction obtained using acquired field maps remains better than that using the simulated field maps in all evaluated regions of the brain. CONCLUSIONS The proposed simulated field maps facilitate susceptibility artefact reduction near the resection. Accurate air-tissue segmentation is key to achieving accurate simulation. The proposed simulation approach is adaptable to different iMRI and neurosurgical applications.
Collapse
Affiliation(s)
- Martin Kochan
- Centre for Medical Image Computing, University College London, London, UK,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|