1
|
Han X, Maharjan S, Chen J, Zhao Y, Qi Y, White LE, Johnson GA, Wang N. High-resolution diffusion magnetic resonance imaging and spatial-transcriptomic in developing mouse brain. Neuroimage 2024; 297:120734. [PMID: 39032791 PMCID: PMC11377129 DOI: 10.1016/j.neuroimage.2024.120734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Brain development is a highly complex process regulated by numerous genes at the molecular and cellular levels. Brain tissue exhibits serial microstructural changes during the development process. High-resolution diffusion magnetic resonance imaging (dMRI) affords a unique opportunity to probe these changes in the developing brain non-destructively. In this study, we acquired multi-shell dMRI datasets at 32 µm isotropic resolution to investigate the tissue microstructure alterations, which we believe to be the highest spatial resolution dMRI datasets obtained for postnatal mouse brains. We adapted the Allen Developing Mouse Brain Atlas (ADMBA) to integrate quantitative MRI metrics and spatial transcriptomics. Diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and neurite orientation dispersion and density imaging (NODDI) metrics were used to quantify brain development at different postnatal days. We demonstrated that the differential evolutions of fiber orientation distributions contribute to the distinct development patterns in white matter (WM) and gray matter (GM). Furthermore, the genes enriched in the nervous system that regulate brain structure and function were expressed in spatial correlation with age-matched dMRI. This study is the first one providing high-resolution dMRI, including DTI, DKI, and NODDI models, to trace mouse brain microstructural changes in WM and GM during postnatal development. This study also highlighted the genotype-phenotype correlation of spatial transcriptomics and dMRI, which may improve our understanding of brain microstructure changes at the molecular level.
Collapse
Affiliation(s)
- Xinyue Han
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Surendra Maharjan
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| | - Jie Chen
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC, USA
| | - Leonard E White
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
2
|
By S, Kahl A, Cogswell PM. Alzheimer's Disease Clinical Trials: What Have We Learned From Magnetic Resonance Imaging. J Magn Reson Imaging 2024. [PMID: 39031716 DOI: 10.1002/jmri.29462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/22/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of cognitive impairment and dementia worldwide with rising prevalence, incidence and mortality. Despite many decades of research, there remains an unmet need for disease-modifying treatment that can significantly alter the progression of disease. Recently, with United States Food and Drug Administration (FDA) drug approvals, there have been tremendous advances in this area, with agents demonstrating effects on cognition and biomarkers. Magnetic resonance imaging (MRI) plays an instrumental role in these trials. This review article aims to outline how MRI is used for screening eligibility, monitoring safety and measuring efficacy in clinical trials, leaning on the landscape of past and recent AD clinical trials that have used MRI as examples; further, insight on promising MRI biomarkers for future trials is provided. LEVEL OF EVIDENCE: 1. TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Samantha By
- Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Anja Kahl
- Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | | |
Collapse
|
3
|
Anderson JAE, Yurtsever A, Fisher-Skau O, Cherep LA, MacPhee I, Luk G, Grundy JG. Examining the consistency in bilingualism and white matter research: A meta-analysis. Neuropsychologia 2024; 195:108801. [PMID: 38244768 DOI: 10.1016/j.neuropsychologia.2024.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
This study aimed to systematically investigate the relationship between bilingualism, age, L2 onset age of acquisition (AoA), and white matter integrity (operationalized as fractional anisotropy, FA), addressing inconsistencies in the literature. We conducted a meta-analysis of 23 studies and used meta-regression models to assess the influence of age and L2AoA on effect sizes in studies comparing monolinguals and bilinguals. Even though the overall between-group effect size across the whole brain was unreliable, bilingualism was associated with increased white matter integrity in specific tracts and in groups with a limited range of age and L2AoA. Age had a small, negative effect on white matter integrity, with differences between monolinguals and bilinguals more pronounced in younger adults, consistent with a view of an initial increase in white matter integrity, followed by remodeling for efficiency over time. In contrast, later L2AoA was associated with greater white matter integrity in bilinguals than monolinguals, again consistent with the remodeling for efficiency model. Our findings highlight the importance of considering age and L2AoA when examining the neural basis of bilingualism on white matter in the brain and how bilingualism contributes to structural changes that stave off cognitive decline in older age.
Collapse
Affiliation(s)
- John A E Anderson
- Department of Cognitive Science, Carleton University, Department of Psychology, Canada.
| | | | - Odin Fisher-Skau
- Department of Cognitive Science, Carleton University, Department of Psychology, Canada
| | | | - Imola MacPhee
- Department of Cognitive Science, Carleton University, Department of Psychology, Canada
| | - Gigi Luk
- Department of Educational & Counselling Psychology, McGill University, Canada
| | - John G Grundy
- Iowa State University, Department of Psychology, USA
| |
Collapse
|
4
|
Li T, Qin R, Li C, Li L, Wang X, Wang L. Diffusion kurtosis imaging of brain white matter alteration in patients with coronary artery disease based on the TBSS method. Front Aging Neurosci 2024; 16:1301826. [PMID: 38425783 PMCID: PMC10901985 DOI: 10.3389/fnagi.2024.1301826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Object The aim of our study was to examine the alterations in microstructure in patients with coronary artery disease (CAD) and cognitive impairment (CI) using diffusion kurtosis imaging (DKI). Additionally, we aimed to investigate the potential correlation between DKI parameters and cognitive function. Materials and methods A total of 28 CAD patients and 30 healthy controls (HC) were prospectively enrolled in our study. All participants underwent routine and diffusion sequences of head imaging. DKE software was utilized to generate various diffusion kurtosis imaging parameters (DKI), including kurtosis fractional anisotropy (KFA), mean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK), fractional anisotropy (FA), and mean diffusivity (MD). Nonparametric tests were conducted using tract-based spatial statistics (TBSS) to compare the parameter values between the two groups. The parameter values of the significantly different fiber tracts were extracted and correlated with the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores. Results Compared to the HC group, patients with coronary artery disease exhibited significant reductions in FA values in the bilateral Superior corona radiata, bilateral Anterior corona radiata, bilateral Posterior corona radiata, corpus callosum, left Posterior thalamic radiation, right Posterior limb of internal capsule, Anterior limb of internal capsule, and Cerebral peduncle, as well as in the left Superior longitudinal fasciculus. Additionally, KFA values decreased in the bilateral Anterior corona radiata, bilateral Anterior limb of internal capsule, and Genu of the corpus callosum. The MK values decreased in the right Posterior corona radiata, Retrolenticular part of the internal capsule, Posterior thalamic radiation (including optic radiation), Superior longitudinal fasciculus, and left Posterior thalamic radiation (including optic radiation). Moreover, the RK values decreased in the bilateral Retrolenticular part of the internal capsule, right Posterior thalamic radiation (including optic radiation), and Superior longitudinal fasciculus, as well as in the left Superior longitudinal fasciculus and Posterior thalamic radiation (including optic radiation) (p < 0.01, TFCE corrected), while no significant differences were observed in other parameter values (p > 0.01, TFCE corrected). The FA values of the right posterior limb of the internal capsule (r = 0.610, p = 0.001) and the right cerebral peduncle (r = 0.622, p < 0.001) were positively correlated with MMSE scores. Additionally, a significant correlation between kurtosis and diffusion coefficient parameters (FA and KFA) was observed. Conclusion CAD patients showed radial shrinkage and complexity of brain white matter microstructure. Whole-brain white matter analysis based on TBSS DKI can objectively reflect the characteristics of white matter damage in CAD patients, providing a basis for the auxiliary diagnosis of CAD with CI.
Collapse
Affiliation(s)
- Tong Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rui Qin
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cuicui Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lin Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Li Wang
- Department of Health Management Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Verovnik B, Khachatryan E, Šuput D, Van Hulle MM. Effects of risk factors on longitudinal changes in brain structure and function in the progression of AD. Alzheimers Dement 2023; 19:2666-2676. [PMID: 36807765 DOI: 10.1002/alz.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/20/2023]
Abstract
INTRODUCTION Past research on Alzheimer's disease (AD) has focused on biomarkers, cognition, and neuroimaging as primary predictors of its progression, albeit additional ones have recently gained attention. When turning to the prediction of the progression from one stage to another, one could benefit from the joint assessment of imaging-based biomarkers and risk/protective factors. METHODS We included 86 studies that fulfilled our inclusion criteria. RESULTS Our review summarizes and discusses the results of 30 years of longitudinal research on brain changes assessed with neuroimaging and the risk/protective factors and their effect on AD progression. We group results into four sections: genetic, demographic, cognitive and cardiovascular, and lifestyle factors. DISCUSSION Given the complex nature of AD, including risk factors could prove invaluable for a better understanding of AD progression. Some of these risk factors are modifiable and could be targeted by potential future treatments.
Collapse
Affiliation(s)
- Barbara Verovnik
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Elvira Khachatryan
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Center for Clinical Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marc M Van Hulle
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Lacalle-Aurioles M, Iturria-Medina Y. Fornix degeneration in risk factors of Alzheimer's disease, possible trigger of cognitive decline. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100158. [PMID: 36703699 PMCID: PMC9871745 DOI: 10.1016/j.cccb.2023.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Risk factors of late-onset Alzheimer's disease (AD) such as aging, type 2 diabetes, obesity, heart failure, and traumatic brain injury can facilitate the appearance of cognitive decline and dementia by triggering cerebrovascular pathology and neuroinflammation. White matter (WM) microstructure and function are especially vulnerable to these conditions. Microstructural WM changes, assessed with diffusion weighted magnetic resonance imaging, can already be detected at preclinical stages of AD, and in the presence of the aforementioned risk factors. Particularly, the limbic system and cortico-cortical association WM tracts, which myelinate late during brain development, degenerate at the earliest stages. The fornix, a C-shaped WM tract that originates from the hippocampus, is one of the limbic tracts that shows early microstructural changes. Fornix integrity is necessary for ensuring an intact executive function and memory performance. Thus, a better understanding of the mechanisms that cause fornix degeneration is critical in the development of therapeutic strategies aiming to prevent cognitive decline in populations at risk. In this literature review, i) we deepen the idea that partial loss of forniceal integrity is an early event in AD, ii) we describe the role that common risk factors of AD can play in the degeneration of the fornix, and iii) we discuss some potential cellular and physiological mechanisms of WM degeneration in the scenario of cerebrovascular disease and inflammation.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada,Corresponding author at: Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada,McConnell Brain Imaging Centre, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Wei W, Lin Z, Xu P, Lv X, Lin L, Li Y, Zhou Y, Lu T, Xue X. Diet Control and Swimming Exercise Ameliorate HFD-Induced Cognitive Impairment Related to the SIRT1-NF- κB/PGC-1 α Pathways in ApoE-/- Mice. Neural Plast 2023; 2023:9206875. [PMID: 36999158 PMCID: PMC10049848 DOI: 10.1155/2023/9206875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/04/2023] [Accepted: 03/07/2023] [Indexed: 04/01/2023] Open
Abstract
High-fat diet- (HFD-) induced neuroinflammation may ultimately lead to an increased risk of cognitive impairment. Here, we evaluate the effects of diet control and swimming or both on the prevention of cognitive impairment by enhancing SIRT1 activity. Twenty-week-old ApoE-/- mice were fed a HFD for 8 weeks and then were treated with diet control and/or swimming for 8 weeks. Cognitive function was assessed using the novel object recognition test (NORT) and Y-maze test. The expression of sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), brain-derived neurotrophic factor (BDNF), nuclear factor kappa B p65 (NF-κB p65), interleukin-1β (IL-1β), and tumour necrosis factor-α (TNF-α) in the hippocampus was measured by western blotting. The levels of fractional anisotropy (FA), N-acetylaspartate (NAA)/creatine (Cr) ratio, choline (Cho)/Cr ratio, and myo-inositol (MI)/Cr ratio in the hippocampus were evaluated by diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) using 7.0-T magnetic resonance imaging (MRI). Our results showed that cognitive dysfunction and hippocampal neuroinflammation appeared to be remarkably observed in apolipoprotein E (ApoE)-/- mice fed with HFD. Diet control plus swimming significantly reversed HFD-induced cognitive decline, reduced the time spent exploring the novel object, and ameliorated spontaneous alternation in the Y-maze test. Compared with the HFD group, ApoE-/- mice fed diet control and/or subjected to swimming had an increase in FA, NAA/Cr, and Cho/Cr; a drop in MI/Cr; elevated expression levels of SIRT1, PGC-1α, and BDNF; and inhibited production of proinflammatory cytokines, including NF-κB p65, IL-1β, and TNF-α. SIRT1, an NAD+-dependent class III histone enzyme, deacetylases and regulates the activity of PGC-1α and NF-κB. These data indicated that diet control and/or swimming ameliorate cognitive deficits through the inhibitory effect of neuroinflammation via SIRT1-mediated pathways, strongly suggesting that swimming and/or diet control could be potentially effective nonpharmacological treatments for cognitive impairment.
Collapse
Affiliation(s)
- Wei Wei
- 1The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhicheng Lin
- 1The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - PeiTao Xu
- 1The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xinru Lv
- 2College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Libin Lin
- 2College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yongxu Li
- 2College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yangjie Zhou
- 2College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Taotao Lu
- 2College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiehua Xue
- 1The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- 3Fujian Provincial Rehabilitation Industrial Institution, Fujian Provincial Key Laboratory of Rehabilitation Technology, Fujian Key Laboratory of Cognitive Rehabilitation, Fuzhou, China
| |
Collapse
|
8
|
Zhou J, Zhang P, Zhang B, Kong Y. White Matter Damage in Alzheimer's Disease: Contribution of Oligodendrocytes. Curr Alzheimer Res 2022; 19:CAR-EPUB-127137. [PMID: 36281858 PMCID: PMC9982194 DOI: 10.2174/1567205020666221021115321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease, seriously influencing the quality of life and is a global health problem. Many factors affect the onset and development of AD, but specific mechanisms underlying the disease are unclear. Most studies investigating AD have focused on neurons and the gray matter in the central nervous system (CNS) but have not led to effective treatments. Recently, an increasing number of studies have focused on the white matter (WM). Magnetic resonance imaging and pathology studies have shown different degrees of WM abnormality during the progression of AD. Myelin sheaths, the main component of WM in the CNS, wrap and insulate axons to ensure conduction of the rapid action potential and axonal integrity. WM damage is characterized by progressive degeneration of axons, oligodendrocytes (OLs), and myelin in one or more areas of the CNS. The contributions of OLs to AD progression have, until recently, been largely overlooked. OLs are integral to myelin production, and the proliferation and differentiation of OLs, an early characteristic of AD, provide a promising target for preclinical diagnosis and treatment. However, despite some progress, the key mechanisms underlying the contributions of OLs to AD remain unclear. Given the heavy burden of medical treatment, a better understanding of the pathophysiological mechanisms underlying AD is vital. This review comprehensively summarize the results on WM abnormalities in AD and explores the relationship between OL progenitor cells and the pathogenesis of AD. Finally, the underlying molecular mechanisms and potential future research directions are discussed.
Collapse
Affiliation(s)
- Jinyu Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing-400042, China
| | - Peng Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing-400010, China
| | - Bo Zhang
- Department of Basic Medicine, Chongqing Medical and Pharmaceutical College, Chongqing-401331, China
| | - Yuhan Kong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing-400042, China
| |
Collapse
|
9
|
Maharjan S, Tsai AP, Lin PB, Ingraham C, Jewett MR, Landreth GE, Oblak AL, Wang N. Age-dependent microstructure alterations in 5xFAD mice by high-resolution diffusion tensor imaging. Front Neurosci 2022; 16:964654. [PMID: 36061588 PMCID: PMC9428354 DOI: 10.3389/fnins.2022.964654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the age-dependent microstructure changes in 5xFAD mice using high-resolution diffusion tensor imaging (DTI). Methods The 5xFAD mice at 4, 7.5, and 12 months and the wild-type controls at 4 months were scanned at 9.4T using a 3D echo-planar imaging (EPI) pulse sequence with the isotropic spatial resolution of 100 μm. The b-value was 3000 s/mm2 for all the diffusion MRI scans. The samples were also acquired with a gradient echo pulse sequence at 50 μm isotropic resolution. The microstructure changes were quantified with DTI metrics, including fractional anisotropy (FA) and mean diffusivity (MD). The conventional histology was performed to validate with MRI findings. Results The FA values (p = 0.028) showed significant differences in the cortex between wild-type (WT) and 5xFAD mice at 4 months, while hippocampus, anterior commissure, corpus callosum, and fornix showed no significant differences for either FA and MD. FA values of 5xFAD mice gradually decreased in cortex (0.140 ± 0.007 at 4 months, 0.132 ± 0.008 at 7.5 months, 0.126 ± 0.013 at 12 months) and fornix (0.140 ± 0.007 at 4 months, 0.132 ± 0.008 at 7.5 months, 0.126 ± 0.013 at 12 months) with aging. Both FA (p = 0.029) and MD (p = 0.037) demonstrated significant differences in corpus callosum between 4 and 12 months age old. FA and MD were not significantly different in the hippocampus or anterior commissure. The age-dependent microstructure alterations were better captured by FA when compared to MD. Conclusion FA showed higher sensitivity to monitor amyloid deposition in 5xFAD mice. DTI may be utilized as a sensitive biomarker to monitor beta-amyloid progression for preclinical studies.
Collapse
Affiliation(s)
- Surendra Maharjan
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
| | - Andy P. Tsai
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Peter B. Lin
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Cynthia Ingraham
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Megan R. Jewett
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
| | - Gary E. Landreth
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, IN, United States
| | - Adrian L. Oblak
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- *Correspondence: Nian Wang,
| |
Collapse
|
10
|
Shafer AT, Williams OA, Perez E, An Y, Landman BA, Ferrucci L, Resnick SM. Accelerated decline in white matter microstructure in subsequently impaired older adults and its relationship with cognitive decline. Brain Commun 2022; 4:fcac051. [PMID: 35356033 PMCID: PMC8963308 DOI: 10.1093/braincomms/fcac051] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/03/2022] [Accepted: 02/25/2022] [Indexed: 11/12/2022] Open
Abstract
Little is known about a longitudinal decline in white matter microstructure and its associations with cognition in preclinical dementia. Longitudinal diffusion tensor imaging and neuropsychological testing were performed in 50 older adults who subsequently developed mild cognitive impairment or dementia (subsequently impaired) and 200 cognitively normal controls. Rates of white matter microstructural decline were compared between groups using voxel-wise linear mixed-effects models. Associations between change in white matter microstructure and cognition were examined. Subsequently impaired individuals had a faster decline in fractional anisotropy in the right inferior fronto-occipital fasciculus and bilateral splenium of the corpus callosum. A decline in right inferior fronto-occipital fasciculus fractional anisotropy was related to a decline in verbal memory, visuospatial ability, processing speed and mini-mental state examination. A decline in bilateral splenium fractional anisotropy was related to a decline in verbal fluency, processing speed and mini-mental state examination. Accelerated regional white matter microstructural decline is evident during the preclinical phase of mild cognitive impairment/dementia and is related to domain-specific cognitive decline.
Collapse
Affiliation(s)
- Andrea T. Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA,Correspondence to: Andrea T. Shafer 251 Bayview Blvd., Baltimore MD 21224, USA E-mail:
| | - Owen A. Williams
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Evian Perez
- San Juan Bautista School of Medicine, Caguas, Puerto Rico
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA,Correspondence may also be addressed to: Susan M. Resnick E-mail:
| |
Collapse
|
11
|
Forno G, Lladó A, Hornberger M. Going round in circles-The Papez circuit in Alzheimer's disease. Eur J Neurosci 2021; 54:7668-7687. [PMID: 34656073 DOI: 10.1111/ejn.15494] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
The hippocampus is regarded as the pivotal structure for episodic memory symptoms associated with Alzheimer's disease (AD) pathophysiology. However, what is often overlooked is that the hippocampus is 'only' one part of a network of memory critical regions, the Papez circuit. Other Papez circuit regions are often regarded as less relevant for AD as they are thought to sit 'downstream' of the hippocampus. However, this notion is oversimplistic, and increasing evidence suggests that other Papez regions might be affected before or concurrently with the hippocampus. In addition, AD research has mostly focused on episodic memory deficits, whereas spatial navigation processes are also subserved by the Papez circuit with increasing evidence supporting its valuable potential as a diagnostic measure of incipient AD pathophysiology. In the current review, we take a step forward analysing recent evidence on the structural and functional integrity of the Papez circuit across AD disease stages. Specifically, we will review the integrity of specific Papez regions from at-genetic-risk (APOE4 carriers), to mild cognitive impairment (MCI), to dementia stage of sporadic AD and autosomal dominant AD (ADAD). We related those changes to episodic memory and spatial navigation/orientation deficits in AD. Finally, we provide an overview of how the Papez circuit is affected in AD diseases and their specific symptomology contributions. This overview strengthened the need for moving away from a hippocampal-centric view to a network approach on how the whole Papez circuit is affected in AD and contributes to its symptomology, informing future research and clinical approaches.
Collapse
Affiliation(s)
- Gonzalo Forno
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,School of Psychology, Universidad de los Andes, Santiago, Chile.,Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, ICBM, Neurosciences Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | | |
Collapse
|
12
|
Frau-Pascual A, Augustinack J, Varadarajan D, Yendiki A, Salat DH, Fischl B, Aganj I. Conductance-Based Structural Brain Connectivity in Aging and Dementia. Brain Connect 2021; 11:566-583. [PMID: 34042511 PMCID: PMC8558081 DOI: 10.1089/brain.2020.0903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background: Structural brain connectivity has been shown to be sensitive to the changes that the brain undergoes during Alzheimer's disease (AD) progression. Methods: In this work, we used our recently proposed structural connectivity quantification measure derived from diffusion magnetic resonance imaging, which accounts for both direct and indirect pathways, to quantify brain connectivity in dementia. We analyzed data from the second phase of Alzheimer's Disease Neuroimaging Initiative and third release in the Open Access Series of Imaging Studies data sets to derive relevant information for the study of the changes that the brain undergoes in AD. We also compared these data sets to the Human Connectome Project data set, as a reference, and eventually validated externally on two cohorts of the European DTI Study in Dementia database. Results: Our analysis shows expected trends of mean conductance with respect to age and cognitive scores, significant age prediction values in aging data, and regional effects centered among subcortical regions, and cingulate and temporal cortices. Discussion: Results indicate that the conductance measure has prediction potential, especially for age, that age and cognitive scores largely overlap, and that this measure could be used to study effects such as anticorrelation in structural connections. Impact statement This work presents a methodology and a set of analyses that open new possibilities in the study of healthy and pathological aging. The methodology used here is sensitive to direct and indirect pathways in deriving brain connectivity measures from diffusion-weighted magnetic resonance imaging, and therefore provides information that many state-of-the-art methods do not account for. As a result, this technique may provide the research community with ways to detect subtle effects of healthy aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Aina Frau-Pascual
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jean Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Divya Varadarajan
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David H. Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Iman Aganj
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Roy M, Rheault F, Croteau E, Castellano CA, Fortier M, St-Pierre V, Houde JC, Turcotte ÉE, Bocti C, Fulop T, Cunnane SC, Descoteaux M. Fascicle- and Glucose-Specific Deterioration in White Matter Energy Supply in Alzheimer's Disease. J Alzheimers Dis 2021; 76:863-881. [PMID: 32568202 DOI: 10.3233/jad-200213] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND White matter energy supply to oligodendrocytes and the axonal compartment is crucial for normal axonal function. Although gray matter glucose hypometabolism is extensively reported in Alzheimer's disease (AD), glucose and ketones, the brain's two main fuels, are rarely quantified in white matter in AD. OBJECTIVE Using a dual-tracer PET method combined with a fascicle-specific diffusion MRI approach, robust to white matter hyper intensities and crossing fibers, we aimed to quantify both glucose and ketone metabolism in specific white matter fascicles associated with mild cognitive impairment (MCI; n = 51) and AD (n = 13) compared to cognitively healthy age-matched controls (Controls; n = 14). METHODS Eight white matter fascicles of the limbic lobe and corpus callosum were extracted and analyzed into fascicle profiles of five sections. Glucose (18F-fluorodeoxyglucose) and ketone (11C-acetoacetate) uptake rates, corrected for partial volume effect, were calculated along each fascicle. RESULTS The only fascicle with significantly lower glucose uptake in AD compared to Controls was the left posterior cingulate segment of the cingulum (-22%; p = 0.016). Non-significantly lower glucose uptake in this fascicle was also observed in MCI. In contrast to glucose, ketone uptake was either unchanged or higher in sections of the fornix and parahippocampal segment of the cingulum in AD. CONCLUSION To our knowledge, this is the first report of brain fuel uptake calculated along white matter fascicles in humans. Energetic deterioration in white matter in AD appears to be specific to glucose and occurs first in the posterior cingulum.
Collapse
Affiliation(s)
- Maggie Roy
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Rheault
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Etienne Croteau
- CR-CHUS, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Mélanie Fortier
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | - Valérie St-Pierre
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | | | - Éric E Turcotte
- CR-CHUS, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christian Bocti
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Tamas Fulop
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen C Cunnane
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Descoteaux
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
14
|
Chamberlain JD, Turney IC, Goodman JT, Hakun JG, Dennis NA. Fornix white matter microstructure differentially predicts false recollection rates in older and younger adults. Neuropsychologia 2021; 157:107848. [PMID: 33838146 DOI: 10.1016/j.neuropsychologia.2021.107848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022]
Abstract
Healthy aging is accompanied by increased false remembering in addition to reduced successful remembering in older adults. Neuroimaging studies implicate age-related differences in the involvement of medial temporal lobe and fronto-parietal regions in mediating highly confident false recollection. However, no studies have directly examined the relationship between white matter microstructure and false recollection in younger and older adults. Using diffusion-weighted imaging and probabilistic tractography, we examined how white matter microstructure within tracts connecting the hippocampus and the fronto-parietal retrieval network contribute to false recollection rates in healthy younger and older adults. We found only white matter microstructure within the fornix contributed to false recollection rates, and this relationship was specific to older adults. Fornix white matter microstructure did not contribute to true recollection rate, nor did common white matter contribute to false recollection, suggesting fornix microstructure is explicitly associated with highly confident false memories in our sample of older adults. These findings underlie the importance of examining microstructural correlates associated with false recollection in younger and older adults.
Collapse
Affiliation(s)
- Jordan D Chamberlain
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Indira C Turney
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA; Department of Neurology, University of Columbia Medical Center, New York, NY, USA
| | - Jordan T Goodman
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Jonathan G Hakun
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA; Department of Neurology, The Pennsylvania State University Hershey Medical Center, Hershey, PA, USA
| | - Nancy A Dennis
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
15
|
Bergamino M, Walsh RR, Stokes AM. Free-water diffusion tensor imaging improves the accuracy and sensitivity of white matter analysis in Alzheimer's disease. Sci Rep 2021; 11:6990. [PMID: 33772083 PMCID: PMC7998032 DOI: 10.1038/s41598-021-86505-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) based diffusion tensor imaging (DTI) can assess white matter (WM) integrity through several metrics, such as fractional anisotropy (FA), axial/radial diffusivities (AxD/RD), and mode of anisotropy (MA). Standard DTI is susceptible to the effects of extracellular free water (FW), which can be removed using an advanced free-water DTI (FW-DTI) model. The purpose of this study was to compare standard and FW-DTI metrics in the context of Alzheimer’s disease (AD). Data were obtained from the Open Access Series of Imaging Studies (OASIS-3) database and included both healthy controls (HC) and mild-to-moderate AD. With both standard and FW-DTI, decreased FA was found in AD, mainly in the corpus callosum and fornix, consistent with neurodegenerative mechanisms. Widespread higher AxD and RD were observed with standard DTI; however, the FW index, indicative of AD-associated neurodegeneration, was significantly elevated in these regions in AD, highlighting the potential impact of free water contributions on standard DTI in neurodegenerative pathologies. Using FW-DTI, improved consistency was observed in FA, AxD, and RD, and the complementary FW index was higher in the AD group as expected. With both standard and FW-DTI, higher values of MA coupled with higher values of FA in AD were found in the anterior thalamic radiation and cortico-spinal tract, most likely arising from a loss of crossing fibers. In conclusion, FW-DTI better reflects the underlying pathology of AD and improves the accuracy of DTI metrics related to WM integrity in Alzheimer’s disease.
Collapse
Affiliation(s)
- Maurizio Bergamino
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Ryan R Walsh
- Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Ashley M Stokes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, 85013, USA.
| |
Collapse
|
16
|
Bergamino M, Keeling EG, Walsh RR, Stokes AM. Systematic Assessment of the Impact of DTI Methodology on Fractional Anisotropy Measures in Alzheimer's Disease. Tomography 2021; 7:20-38. [PMID: 33681461 PMCID: PMC7934686 DOI: 10.3390/tomography7010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
White matter microstructural changes in Alzheimer's disease (AD) are often assessed using fractional anisotropy (FA) obtained from diffusion tensor imaging (DTI). FA depends on the acquisition and analysis methods, including the fitting algorithm. In this study, we compared FA maps from different acquisitions and fitting algorithms in AD, mild cognitive impairment (MCI), and healthy controls (HCs) using the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Three acquisitions from two vendors were compared (Siemens 30, GE 48, and Siemens 54 directions). DTI data were fit using nine fitting algorithms (four linear least squares (LLS), two weighted LLS (WLLS), and three non-linear LLS (NLLS) from four software tools (FSL, DSI-Studio, CAMINO, and AFNI). Different cluster volumes and effect-sizes were observed across acquisitions and fits, but higher consistency was observed as the number of diffusion directions increased. Significant differences were observed between HC and AD groups for all acquisitions, while significant differences between HC and MCI groups were only observed for GE48 and SI54. Using the intraclass correlation coefficient, AFNI-LLS and CAMINO-RESTORE were the least consistent with the other algorithms. By combining data across all three acquisitions and nine fits, differences between AD and HC/MCI groups were observed in the fornix and corpus callosum, indicating FA differences in these regions may be robust DTI-based biomarkers. This study demonstrates that comparisons of FA across aging populations could be confounded by variability in acquisitions and fit methodologies and that identifying the most robust DTI methodology is critical to provide more reliable DTI-based neuroimaging biomarkers for assessing microstructural changes in AD.
Collapse
Affiliation(s)
- Maurizio Bergamino
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (M.B.); (E.G.K.)
| | - Elizabeth G. Keeling
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (M.B.); (E.G.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85013, USA
| | - Ryan R. Walsh
- Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA;
| | - Ashley M. Stokes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (M.B.); (E.G.K.)
| |
Collapse
|
17
|
Liu X, Du L, Zhang B, Zhao Z, Gao W, Liu B, Liu J, Chen Y, Wang Y, Yu H, Ma G. Alterations and Associations Between Magnetic Susceptibility of the Basal Ganglia and Diffusion Properties in Alzheimer's Disease. Front Neurosci 2021; 15:616163. [PMID: 33664645 PMCID: PMC7921325 DOI: 10.3389/fnins.2021.616163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/12/2021] [Indexed: 11/28/2022] Open
Abstract
This study adopted diffusion tensor imaging to detect alterations in the diffusion parameters of the white matter fiber in Alzheimer’s disease (AD) and used quantitative susceptibility mapping to detect changes in magnetic susceptibility. However, whether the changes of susceptibility values due to excessive iron in the basal ganglia have correlations with the alterations of the diffusion properties of the white matter in patients with AD are still unknown. We aim to investigate the correlations among magnetic susceptibility values of the basal ganglia, diffusion indexes of the white matter, and cognitive function in patients with AD. Thirty patients with AD and nineteen healthy controls (HCs) were recruited. Diffusion indexes of the whole brain were detected using tract-based spatial statistics. The caudate nucleus, putamen, and globus pallidus were selected as regions of interest, and their magnetic susceptibility values were measured. Compared with HCs, patients with AD showed that there were significantly increased axial diffusivity (AxD) in the internal capsule, superior corona radiata (SCR), and right anterior corona radiata (ACR); increased radial diffusivity (RD) in the right anterior limb of the internal capsule, ACR, and genu of the corpus callosum (GCC); and decreased fractional anisotropy (FA) in the right ACR and GCC. The alterations of RD values, FA values, and susceptibility values of the right caudate nucleus in patients with AD were correlated with cognitive scores. Besides, AxD values in the right internal capsule, ACR, and SCR were positively correlated with the magnetic susceptibility values of the right caudate nucleus in patients with AD. Our findings revealed that the magnetic susceptibility of the caudate nucleus may be an MRI-based biomarker of the cognitive dysfunction of AD and abnormal excessive iron distribution in the basal ganglia had adverse effects on the diffusion properties of the white matter.
Collapse
Affiliation(s)
- Xiuxiu Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Lei Du
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Bing Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| | - Zifang Zhao
- Department of Anesthesiology, Peking University First Hospital, Beijing, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Jian Liu
- Department of Ultrasound Diagnosis, China-Japan Friendship Hospital, Beijing, China
| | - Yue Chen
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yige Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
18
|
Diffusion properties of the fornix assessed by deterministic tractography shows age, sex, volume, cognitive, hemispheric, and twin relationships in young adults from the Human Connectome Project. Brain Struct Funct 2021; 226:381-395. [PMID: 33386420 DOI: 10.1007/s00429-020-02181-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The fornix is the primary efferent pathway of the hippocampus and plays a central role in memory circuitry. Diffusion tensor imaging has shown changes in the fornix with typical development and aging. Here, the fornix was investigated in 903 healthy young adult participants aged 22-36 years old from the high-spatial resolution 1.25 mm isotropic Human Connectome Project (HCP) diffusion dataset. Manual deterministic tractography was used to assess relationships between fornix diffusion parameters and age, sex, laterality, hippocampus volume, memory scores, and genetic effects in a subgroup of mono- and dizygotic twins. Fornix diffusion metrics were weakly correlated with age over the given age span. While significant hemispheric and sex differences were observed (greater fractional anisotropy (FA) and volume in the right hemisphere; greater FA and volume in females), there was great overlap between the groups. Hippocampus volume measurements showed greater volume in the right hemisphere, were found to be larger in males, and were weakly correlated with fornix FA and volume. Interestingly, all fornix diffusion measurements correlated strongly with fornix volume, suggesting the presence of partial volume effects despite the high-spatial resolution of the data. Both fornix diffusion parameters and hippocampal volumes were able to explain some variance (0.6-5.5%) in the memory tests evaluated. The fornix diffusion parameters were influenced by both genetic and shared environmental factors, displaying greater variability in dizygotic than in monozygotic twins. These findings provide a comprehensive depiction of the fornix in healthy, young individuals, upon which future typical development/aging and pathological studies could anchor.
Collapse
|
19
|
Aderghal K, Afdel K, Benois-Pineau J, Catheline G. Improving Alzheimer's stage categorization with Convolutional Neural Network using transfer learning and different magnetic resonance imaging modalities. Heliyon 2020; 6:e05652. [PMID: 33336093 PMCID: PMC7733012 DOI: 10.1016/j.heliyon.2020.e05652] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/04/2020] [Accepted: 11/30/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Alzheimer's Disease (AD) is a neurodegenerative disease characterized by progressive loss of memory and general decline in cognitive functions. Multi-modal imaging such as structural MRI and DTI provide useful information for the classification of patients on the basis of brain biomarkers. Recently, CNN methods have emerged as powerful tools to improve classification using images. NEW METHOD In this paper, we propose a transfer learning scheme using Convolutional Neural Networks (CNNs) to automatically classify brain scans focusing only on a small ROI: e.g. a few slices of the hippocampal region. The network's architecture is similar to a LeNet-like CNN upon which models are built and fused for AD stage classification diagnosis. We evaluated various types of transfer learning through the following mechanisms: (i) cross-modal (sMRI and DTI) and (ii) cross-domain transfer learning (using MNIST) (iii) a hybrid transfer learning of both types. RESULTS Our method shows good performances even on small datasets and with a limited number of slices of small brain region. It increases accuracy with more than 5 points for the most difficult classification tasks, i.e., AD/MCI and MCI/NC. COMPARISON WITH EXISTING METHODS Our methodology provides good accuracy scores for classification over a shallow convolutional network. Besides, we focused only on a small region; i.e., the hippocampal region, where few slices are selected to feed the network. Also, we used cross-modal transfer learning. CONCLUSIONS Our proposed method is suitable for working with a shallow CNN network for low-resolution MRI and DTI scans. It yields to significant results even if the model is trained on small datasets, which is often the case in medical image analysis.
Collapse
Affiliation(s)
- Karim Aderghal
- Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
- LabSIV, Faculty of Sciences, Department of Computer Science, Ibn Zohr University, Agadir, Morocco
| | - Karim Afdel
- LabSIV, Faculty of Sciences, Department of Computer Science, Ibn Zohr University, Agadir, Morocco
| | - Jenny Benois-Pineau
- Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
| | - Gwénaëlle Catheline
- Univ. Bordeaux, CNRS, UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Bordeaux, France
| |
Collapse
|
20
|
Abstract
Purpose of Review This review focuses on the pathophysiology of acute HIV infection (AHI) and related central nervous system (CNS) pathology, the clinical characteristics of neurologic complications of AHI, and the implications of the CNS reservoir and viral escape for HIV treatment and cure strategies. Recent Findings Recent studies in newly seroconverted populations show a high prevalence of peripheral neuropathy and cognitive dysfunction in AHI, even though these findings have been classically associated with chronic HIV infection. HIV cure strategies such as the "shock and kill" strategy are currently being studied in vitro and even in small clinical trials, though the CNS as a reservoir for latent HIV poses unique barriers to these treatment strategies. Summary Limited point of care diagnostic testing for AHI and delayed recognition of infection continue to lead to under-recognition and under-reporting of neurologic manifestations of AHI. AHI should be on the differential for a broad range of neurological conditions, from Bell's palsy, peripheral neuropathy, and aseptic meningitis, to more rare manifestations such as ADEM, AIDP, meningo-radiculitis, transverse myelitis, and brachial neuritis. Treatment for these conditions involves early initiation of antiretroviral therapy (ART) and then standard presentation-specific treatments. Current HIV cure strategies under investigation include bone marrow transplant, viral reservoir re-activation and eradication, and genome and epigenetic viral targeting. However, CNS penetration by HIV-1 occurs early on in the disease course with the establishment of the CNS viral reservoir and is an important limiting factor for these therapies.
Collapse
|
21
|
Dong JW, Jelescu IO, Ades-Aron B, Novikov DS, Friedman K, Babb JS, Osorio RS, Galvin JE, Shepherd TM, Fieremans E. Diffusion MRI biomarkers of white matter microstructure vary nonmonotonically with increasing cerebral amyloid deposition. Neurobiol Aging 2020; 89:118-128. [PMID: 32111392 PMCID: PMC7314576 DOI: 10.1016/j.neurobiolaging.2020.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/14/2019] [Accepted: 01/14/2020] [Indexed: 01/27/2023]
Abstract
Beta amyloid (Aβ) accumulation is the earliest pathological marker of Alzheimer's disease (AD), but early AD pathology also affects white matter (WM) integrity. We performed a cross-sectional study including 44 subjects (23 healthy controls and 21 mild cognitive impairment or early AD patients) who underwent simultaneous PET-MR using 18F-Florbetapir, and were categorized into 3 groups based on Aβ burden: Aβ- [mean mSUVr ≤1.00], Aβi [1.00 < mSUVr <1.17], Aβ+ [mSUVr ≥1.17]. Intergroup comparisons of diffusion MRI metrics revealed significant differences across multiple WM tracts. Aβi group displayed more restricted diffusion (higher fractional anisotropy, radial kurtosis, axonal water fraction, and lower radial diffusivity) than both Aβ- and Aβ+ groups. This nonmonotonic trend was confirmed by significant continuous correlations between mSUVr and diffusion metrics going in opposite direction for 2 cohorts: pooled Aβ-/Aβi and pooled Aβi/Aβ+. The transient period of increased diffusion restriction may be due to inflammation that accompanies rising Aβ burden. In the later stages of Aβ accumulation, neurodegeneration is the predominant factor affecting diffusion.
Collapse
Affiliation(s)
- Jian W Dong
- Department of Radiology, New York University School of Medicine, New York, NY, USA; Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ileana O Jelescu
- Department of Radiology, New York University School of Medicine, New York, NY, USA; Centre d'Imagerie Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Benjamin Ades-Aron
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Dmitry S Novikov
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Kent Friedman
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - James S Babb
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Ricardo S Osorio
- Center for Sleep and Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - James E Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Boca-Raton, FL, USA
| | - Timothy M Shepherd
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Els Fieremans
- Department of Radiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Senova S, Fomenko A, Gondard E, Lozano AM. Anatomy and function of the fornix in the context of its potential as a therapeutic target. J Neurol Neurosurg Psychiatry 2020; 91:547-559. [PMID: 32132227 PMCID: PMC7231447 DOI: 10.1136/jnnp-2019-322375] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
The fornix is a white matter bundle located in the mesial aspect of the cerebral hemispheres, which connects various nodes of a limbic circuitry and is believed to play a key role in cognition and episodic memory recall. As the most prevalent cause of dementia, Alzheimer's disease (AD) dramatically impairs the quality of life of patients and imposes a significant societal burden on the healthcare system. As an established treatment for movement disorders, deep brain stimulation (DBS) is currently being investigated in preclinical and clinical studies for treatment of memory impairment in AD by modulating fornix activity. Optimal target and stimulation parameters to potentially rescue memory deficits have yet to be determined. The aim of this review is to consolidate the structural and functional aspects of the fornix in the context of neuromodulation for memory deficits. We first present an anatomical and functional overview of the fibres and structures interconnected by the fornix. Recent evidence from preclinical models suggests that the fornix is subdivided into two distinct functional axes: a septohippocampal pathway and a subiculothalamic pathway. Each pathway's target and origin structures are presented, followed by a discussion of their oscillatory dynamics and functional connectivity. Overall, neuromodulation of each pathway of the fornix is discussed in the context of evidence-based forniceal DBS strategies. It is not yet known whether driving fornix activity can enhance cognition-optimal target and stimulation parameters to rescue memory deficits have yet to be determined.
Collapse
Affiliation(s)
- Suhan Senova
- Neurosurgery, Institut Mondor de recherche biomedicale, Créteil, Île-de-France, France
| | - Anton Fomenko
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| | | | - Andres M Lozano
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Zhao J, Ding X, Du Y, Wang X, Men G. Functional connectivity between white matter and gray matter based on fMRI for Alzheimer's disease classification. Brain Behav 2019; 9:e01407. [PMID: 31512413 PMCID: PMC6790327 DOI: 10.1002/brb3.1407] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/02/2019] [Accepted: 08/13/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a chronic neurodegenerative disease that generally starts slowly and leads to deterioration over time. Finding biomarkers more effective to predict AD transition is important for clinical medicine. And current research indicated that the lesion regions occur in both gray matter (GM) and white matter (WM). METHODS This paper extracted BOLD time series from WM and GM, combined WM and GM together for analysis, constructed functional connectivity (FC) of static (sWGFC) and dynamic (dWGFC) between WM and GM, as well as static (sGFC) and dynamic (dGFC) FC within GM in order to evaluate the methods and areas most useful as feature sets for distinguishing NC from AD. These features will be evaluated using support vector machine (SVM) classifiers. RESULTS The FC constructed by WM BOLD time series based on fMRI showed widely differences between the AD group and NC group. In terms of the results of the classification, the performance of feature subsets selected from sWGFC was better than sGFC, and the performance of feature subsets selected from dWGFC was better than dGFC. Overall, the feature subsets selected from dWGFC was the best. CONCLUSION These results indicated that there is a wide range of disconnection between WM and GM in AD, and association between WM and GM based on fMRI only is an effective strategy, and the FC between WM and GM could be a potential biomarker in the process of cognitive impairment and AD.
Collapse
Affiliation(s)
- Jie Zhao
- College of Electronic and Information Engineering, Hebei University, Baoding, China.,Research Center of Machine Vision Engineering & Technology of Hebei Province, Baoding, China.,Key Laboratory of Digital Medical Engineering of Hebei Province, Baoding, China
| | - Xuetong Ding
- College of Electronic and Information Engineering, Hebei University, Baoding, China
| | - Yuhang Du
- College of Electronic and Information Engineering, Hebei University, Baoding, China
| | - Xuehu Wang
- College of Electronic and Information Engineering, Hebei University, Baoding, China.,Research Center of Machine Vision Engineering & Technology of Hebei Province, Baoding, China.,Key Laboratory of Digital Medical Engineering of Hebei Province, Baoding, China
| | - Guozun Men
- School of Economics, Hebei University, Baoding, China
| |
Collapse
|
24
|
Rabin JS, Perea RD, Buckley RF, Johnson KA, Sperling RA, Hedden T. Synergism between fornix microstructure and beta amyloid accelerates memory decline in clinically normal older adults. Neurobiol Aging 2019; 81:38-46. [PMID: 31207468 PMCID: PMC6732225 DOI: 10.1016/j.neurobiolaging.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023]
Abstract
The fornix is the primary efferent white matter tract of the hippocampus and is implicated in episodic memory. In this study, we investigated whether baseline measures of altered fornix microstructure and elevated beta amyloid (Aβ) burden influence prospective cognitive decline. A secondary goal examined whether Aβ burden is negatively associated with fornix microstructure. 253 clinically normal older adults underwent diffusion-weighted imaging and Pittsburgh Compound B positron emission tomography at baseline. We applied a novel streamline tractography protocol to reconstruct a fornix bundle in native space. Cognition was measured annually in domains of episodic memory, executive function, and processing speed (median follow-up = 4.0 ± 1.4 years). After controlling for covariates, linear mixed-effects models demonstrated an interaction of fornix microstructure with Aβ burden on episodic memory, such that combined lower fornix microstructure and higher Aβ burden was associated with accelerated decline. By contrast, associations with executive function and processing speed were not significant. There was no cross-sectional association between Aβ burden and fornix microstructure. In conclusion, altered fornix microstructure may accelerate memory decline in preclinical Alzheimer's disease.
Collapse
Affiliation(s)
- Jennifer S Rabin
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rodrigo D Perea
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Florey Institutes of Neuroscience and Mental Health, Melbourne and Melbourne School of Psychological Science, University of Melbourne, Melbourne, Australia; Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA, USA; Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Reisa A Sperling
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, MA, USA
| | - Trey Hedden
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
25
|
Tarumi T, Thomas BP, Wang C, Zhang L, Liu J, Turner M, Riley J, Tangella N, Womack KB, Kerwin DR, Cullum CM, Lu H, Vongpatanasin W, Zhu DC, Zhang R. Ambulatory pulse pressure, brain neuronal fiber integrity, and cerebral blood flow in older adults. J Cereb Blood Flow Metab 2019; 39:926-936. [PMID: 29219028 PMCID: PMC6501504 DOI: 10.1177/0271678x17745027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ambulatory blood pressure (ABP) reflects the end-organ vascular stress in daily life; however, its influence on brain neuronal fiber integrity and cerebral blood flow (CBF) remains unclear. The objective of this study was to determine the associations among ABP, white matter (WM) neuronal fiber integrity, and CBF in older adults. We tested 144 participants via ABP monitoring and diffusion tensor imaging. The total level and pulsatile indices of CBF were measured by phase-contrast MRI and transcranial Doppler, respectively. Neuropsychological assessment was conducted in 72 participants. Among ambulatory and office BP measures, elevated 24-h pulse pressure (PP) was associated with the greatest number of WM skeleton voxels with decreased fractional anisotropy (FA) and increased mean diffusivity (MD). Furthermore, these associations remained significant after adjusting for age, antihypertensive use, aortic stiffness, WM lesion volume, and office PP. Radial diffusivity (RD) was elevated in the regions with decreased FA, while axial diffusivity was unaltered. The reduction in diastolic index explained a significant proportion of the individual variability in FA, MD, and RD. Executive function performance was correlated with WM fiber integrity. These findings suggest that elevated ambulatory PP may deteriorate brain neuronal fiber integrity via reduction in diastolic index.
Collapse
Affiliation(s)
- Takashi Tarumi
- 1 Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA.,2 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Binu P Thomas
- 3 Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ciwen Wang
- 1 Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
| | - Li Zhang
- 1 Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA.,4 Department of Ultrasound Diagnostics, Fourth Military Medical University, Xi'an, China
| | - Jie Liu
- 1 Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA.,4 Department of Ultrasound Diagnostics, Fourth Military Medical University, Xi'an, China
| | - Marcel Turner
- 1 Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
| | - Jonathan Riley
- 1 Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
| | - Nikita Tangella
- 1 Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
| | - Kyle B Womack
- 2 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,5 Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diana R Kerwin
- 6 Texas Alzheimer's and Memory Disorders, Texas Health Presbyterian Hospital, Dallas, TX, USA
| | - C Munro Cullum
- 2 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,5 Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hanzhang Lu
- 3 Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wanpen Vongpatanasin
- 7 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David C Zhu
- 8 Department of Radiology, Cognitive Imaging Research Center, Michigan State University, Lansing, MI, USA.,9 Department of Psychology, Cognitive Imaging Research Center, Michigan State University, Lansing, MI, USA
| | - Rong Zhang
- 1 Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA.,2 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,7 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
26
|
Zavaliangos-Petropulu A, Nir TM, Thomopoulos SI, Reid RI, Bernstein MA, Borowski B, Jack CR, Weiner MW, Jahanshad N, Thompson PM. Diffusion MRI Indices and Their Relation to Cognitive Impairment in Brain Aging: The Updated Multi-protocol Approach in ADNI3. Front Neuroinform 2019; 13:2. [PMID: 30837858 PMCID: PMC6390411 DOI: 10.3389/fninf.2019.00002] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/21/2019] [Indexed: 12/14/2022] Open
Abstract
Brain imaging with diffusion-weighted MRI (dMRI) is sensitive to microstructural white matter (WM) changes associated with brain aging and neurodegeneration. In its third phase, the Alzheimer's Disease Neuroimaging Initiative (ADNI3) is collecting data across multiple sites and scanners using different dMRI acquisition protocols, to better understand disease effects. It is vital to understand when data can be pooled across scanners, and how the choice of dMRI protocol affects the sensitivity of extracted measures to differences in clinical impairment. Here, we analyzed ADNI3 data from 317 participants (mean age: 75.4 ± 7.9 years; 143 men/174 women), who were each scanned at one of 47 sites with one of six dMRI protocols using scanners from three different manufacturers. We computed four standard diffusion tensor imaging (DTI) indices including fractional anisotropy (FADTI) and mean, radial, and axial diffusivity, and one FA index based on the tensor distribution function (FATDF), in 24 bilaterally averaged WM regions of interest. We found that protocol differences significantly affected dMRI indices, in particular FADTI. We ranked the diffusion indices for their strength of association with four clinical assessments. In addition to diagnosis, we evaluated cognitive impairment as indexed by three commonly used screening tools for detecting dementia and AD: the AD Assessment Scale (ADAS-cog), the Mini-Mental State Examination (MMSE), and the Clinical Dementia Rating scale sum-of-boxes (CDR-sob). Using a nested random-effects regression model to account for protocol and site, we found that across all dMRI indices and clinical measures, the hippocampal-cingulum and fornix (crus)/stria terminalis regions most consistently showed strong associations with clinical impairment. Overall, the greatest effect sizes were detected in the hippocampal-cingulum (CGH) and uncinate fasciculus (UNC) for associations between axial or mean diffusivity and CDR-sob. FATDF detected robust widespread associations with clinical measures, while FADTI was the weakest of the five indices for detecting associations. Ultimately, we were able to successfully pool dMRI data from multiple acquisition protocols from ADNI3 and detect consistent and robust associations with clinical impairment and age.
Collapse
Affiliation(s)
- Artemis Zavaliangos-Petropulu
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Talia M Nir
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Robert I Reid
- Department of Information Technology, Mayo Clinic and Foundation, Rochester, MN, United States
| | - Matt A Bernstein
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Bret Borowski
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Michael W Weiner
- Department of Radiology, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| |
Collapse
|
27
|
Mayo CD, Garcia-Barrera MA, Mazerolle EL, Ritchie LJ, Fisk JD, Gawryluk JR. Relationship Between DTI Metrics and Cognitive Function in Alzheimer's Disease. Front Aging Neurosci 2019; 10:436. [PMID: 30687081 PMCID: PMC6333848 DOI: 10.3389/fnagi.2018.00436] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: Alzheimer's disease (AD) is a neurodegenerative disorder with a clinical presentation characterized by memory impairment and executive dysfunction. Our group previously demonstrated significant alterations in white matter microstructural metrics in AD compared to healthy older adults. We aimed to further investigate the relationship between white matter microstructure in AD and cognitive function, including memory and executive function. Methods: Diffusion tensor imaging (DTI) and neuropsychological data were downloaded from the AD Neuroimaging Initiative database for 49 individuals with AD and 48 matched healthy older adults. The relationship between whole-brain fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AxD), radial diffusivity (RD), and composite scores of memory and executive function was examined. We also considered voxel-wise relationships using Tract-Based Spatial Statistics. Results: As expected, individuals with AD had lower composite scores on tests of memory and executive function, as well as disrupted white matter integrity (low FA, high MD, AxD, and RD) relative to healthy older adults in widespread regions, including the hippocampus. When the AD and healthy older adult groups were combined, we found significant relationships between DTI metrics (FA/MD/AxD/RD) and memory scores across widespread regions of the brain, including the medial temporal regions. We also found significant relationships between DTI metrics (FA/MD/AxD/RD) and executive function in widespread regions, including the frontal areas in the combined group. However, when the groups were examined separately, no significant relationships were found between DTI metrics (FA/MD/AxD/RD) and memory performance for either group. Further, we did not find any significant relationships between DTI metrics (FA/MD/AxD/RD) and executive function in the AD group, but we did observe significant relationships between FA/RD, and executive function in healthy older adults. Conclusion: White matter integrity is disrupted in AD. In a mixed sample of AD and healthy elderly persons, associations between measures of white matter microstructure and memory and executive cognitive test performance were evident. However, no significant linear relationship between the degree of white matter disruption and level of cognitive functioning (memory and executive abilities) was found in those with AD. Future longitudinal studies of the relations between DTI metrics and cognitive function in AD are required to determine whether DTI has potential to measure progression of AD and/or treatment efficacy.
Collapse
Affiliation(s)
- Chantel D Mayo
- Department of Psychology, University of Victoria, Victoria, BC, Canada
| | | | - Erin L Mazerolle
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Lesley J Ritchie
- Department of Clinical Health Psychology, University of Manitoba, Winnipeg, MB, Canada
| | - John D Fisk
- Department of Psychology, Nova Scotia Health Authority, Halifax, NS, Canada.,Department of Psychiatry, Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jodie R Gawryluk
- Department of Psychology, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
28
|
Alm KH, Bakker A. Relationships Between Diffusion Tensor Imaging and Cerebrospinal Fluid Metrics in Early Stages of the Alzheimer's Disease Continuum. J Alzheimers Dis 2019; 70:965-981. [PMID: 31306117 PMCID: PMC6860011 DOI: 10.3233/jad-181210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recently, the field of Alzheimer's disease (AD) research has adopted a new framework that places the progression of AD along a continuum consisting of a preclinical stage, followed by conversion to mild cognitive impairment, and ultimately dementia. Important neuropathological changes occur in the preclinical phase, necessitating the identification of metrics that can detect such early changes. While cerebrospinal fluid (CSF) measures of amyloid and tau are generally accepted as biomarkers of AD pathology, neuroimaging measures used to index white matter alterations throughout the brain remain less widely endorsed as candidate biomarkers. To explore the relationship between white matter alterations and AD pathology, we review the literature on multimodal studies that assessed both CSF markers and white matter indices, derived from diffusion tensor imaging (DTI) methods, across cohorts primarily in the early phases of AD. Our review indicates that abnormal CSF measures of Aβ42 and tau are associated with widespread alterations in white matter microstructure throughout the brain. Furthermore, white matter variability is related to individual differences in behavior and can aid in tracking longitudinal changes in cognition. Our review advocates for the utilization of DTI metrics in investigations of early AD and suggests that the combined use of DTI and CSF markers may better explain individual differences in cognition and disease progression. However, further research is needed to resolve certain mixed findings.
Collapse
Affiliation(s)
- Kylie H. Alm
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Song GP, Yao TT, Wang D, Li YH. Differentiating between Alzheimer's disease, amnestic mild cognitive impairment, and normal aging via diffusion kurtosis imaging. Neural Regen Res 2019; 14:2141-2146. [PMID: 31397353 PMCID: PMC6788254 DOI: 10.4103/1673-5374.262594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Diffusion kurtosis imaging can be used to assess pathophysiological changes in tissue structure and to diagnose central nervous system diseases. However, its sensitivity in assessing hippocampal differences between patients with Alzheimer's disease and those with amnestic mild cognitive impairment has not been characterized. Here, we examined 20 individuals with Alzheimer's disease (11 men and 9 women, mean 73.2 ± 4.49 years), 20 with amnestic mild cognitive impairment (10 men and 10 women, mean 71.55 ± 4.77 years), and 20 normal controls (11 men and 9 women, mean 70.45 ± 5.04 years). We conducted diffusion kurtosis imaging, using a 3.0 T magnetic resonance scanner, to compare hippocampal differences among the three groups. The results demonstrated that the right hippocampal volume and bilateral mean kurtosis were remarkably smaller in individuals with Alzheimer's disease compared with those with amnestic mild cognitive impairment and normal controls. Further, the mean kurtosis was lower in the amnestic mild cognitive impairment group compared with the normal control group. The mean diffusion in the left hippocampus was lower in the Alzheimer's disease group than in the amnestic mild cognitive impairment and normal control groups, while the mean diffusion in the right hippocampus was lower in the Alzheimer's disease group than in the normal control group. Fractional anisotropy was similar among the three groups. These results verify that bilateral mean kurtosis and mean diffusion are sensitive to the diagnosis of Alzheimer's disease and amnestic mild cognitive impairment. This study was approved by the Ethics Review Board of Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, China on May 4, 2010 (approval No. 2010(C)-6).
Collapse
Affiliation(s)
- Guo-Ping Song
- Institute of Diagnostic and Interventional Radiology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Ting-Ting Yao
- Institute of Diagnostic and Interventional Radiology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Dan Wang
- Institute of Diagnostic and Interventional Radiology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Yue-Hua Li
- Institute of Diagnostic and Interventional Radiology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Schilling LP, Pascoal TA, Zimmer ER, Mathotaarachchi S, Shin M, de Mello Rieder CR, Gauthier S, Palmini A, Rosa-Neto P. Regional Amyloid-β Load and White Matter Abnormalities Contribute to Hypometabolism in Alzheimer's Dementia. Mol Neurobiol 2018; 56:4916-4924. [PMID: 30414086 DOI: 10.1007/s12035-018-1405-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022]
Abstract
We investigated the association between amyloid-β deposition and white matter (WM) integrity as a determinant of brain glucose hypometabolism across the Alzheimer's disease (AD) spectrum. We assessed ninety-six subjects (27 cognitively normal, 49 mild cognitive impairment, and 20 AD dementia) who underwent [18F]FDG and [18F]Florbetapir positron emission tomography (PET) as well as magnetic resonance imaging (MRI) with diffusion tensor imaging. Among the regions with reduced fractional anisotropy (FA) in the AD group, we selected a voxel of interest in the angular bundle bilaterally for subsequent analyses. Using voxel-based interaction models at voxel level, we tested whether the regional hypometabolism is associated with FA in the angular bundle and regional amyloid-β deposition. In the AD patients, [18F]FDG hypometabolism in the striatum, mesiobasal temporal, orbitofrontal, precuneus, and cingulate cortices were associated with the interaction between high levels of [18F]Florbetapir standard uptake value ratios (SUVR) in these regions and low FA in the angular bundle. We found that the interaction between, rather than the independent effects of, high levels of amyloid-β deposition and WM integrity disruption determined limbic hypometabolism in patients with AD. This finding highlights a more integrative model for AD, where the interaction between partially independent processes determines the glucose hypometabolism.
Collapse
Affiliation(s)
- Lucas Porcello Schilling
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, 6825, boul. LaSalle Blvd., Montréal, QC, H4H1R3, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montréal, Canada.,Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, 6825, boul. LaSalle Blvd., Montréal, QC, H4H1R3, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montréal, Canada
| | - Eduardo R Zimmer
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, 6825, boul. LaSalle Blvd., Montréal, QC, H4H1R3, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montréal, Canada.,Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Department of Pharmacology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Graduate Program in Biological Science: Biochemistry, UFRGS, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, Brazil
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, 6825, boul. LaSalle Blvd., Montréal, QC, H4H1R3, Canada
| | - Monica Shin
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, 6825, boul. LaSalle Blvd., Montréal, QC, H4H1R3, Canada
| | - Carlos Roberto de Mello Rieder
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Serge Gauthier
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, 6825, boul. LaSalle Blvd., Montréal, QC, H4H1R3, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montréal, Canada
| | - André Palmini
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, 6825, boul. LaSalle Blvd., Montréal, QC, H4H1R3, Canada. .,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montréal, Canada.
| | | |
Collapse
|
31
|
Ray NR, O'Connell MA, Nashiro K, Smith ET, Qin S, Basak C. Evaluating the relationship between white matter integrity, cognition, and varieties of video game learning. Restor Neurol Neurosci 2018; 35:437-456. [PMID: 28968249 DOI: 10.3233/rnn-160716] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Many studies are currently researching the effects of video games, particularly in the domain of cognitive training. Great variability exists among video games however, and few studies have attempted to compare different types of video games. Little is known, for instance, about the cognitive processes or brain structures that underlie learning of different genres of video games. OBJECTIVE To examine the cognitive and neural underpinnings of two different types of game learning in order to evaluate their common and separate correlates, with the hopes of informing future intervention research. METHODS Participants (31 younger adults and 31 older adults) completed an extensive cognitive battery and played two different genres of video games, one action game and one strategy game, for 1.5 hours each. DTI scans were acquired for each participant, and regional fractional anisotropy (FA) values were extracted using the JHU atlas. RESULTS Behavioral results indicated that better performance on tasks of working memory and perceptual discrimination was related to enhanced learning in both games, even after controlling for age, whereas better performance on a perceptual speed task was uniquely related with enhanced learning of the strategy game. DTI results indicated that white matter FA in the right fornix/stria terminalis was correlated with action game learning, whereas white matter FA in the left cingulum/hippocampus was correlated with strategy game learning, even after controlling for age. CONCLUSION Although cognition, to a large extent, was a common predictor of both types of game learning, regional white matter FA could separately predict action and strategy game learning. Given the neural and cognitive correlates of strategy game learning, strategy games may provide a more beneficial training tool for adults suffering from memory-related disorders or declines in processing speed, particularly older adults.
Collapse
Affiliation(s)
- Nicholas R Ray
- University of Texas at Dallas, Richardson, TX, USA.,The Center for Vital Longevity, Dallas, TX, USA
| | - Margaret A O'Connell
- University of Texas at Dallas, Richardson, TX, USA.,The Center for Vital Longevity, Dallas, TX, USA
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA, USA
| | - Evan T Smith
- University of Texas at Dallas, Richardson, TX, USA.,The Center for Vital Longevity, Dallas, TX, USA
| | - Shuo Qin
- University of Texas at Dallas, Richardson, TX, USA.,The Center for Vital Longevity, Dallas, TX, USA
| | - Chandramallika Basak
- University of Texas at Dallas, Richardson, TX, USA.,The Center for Vital Longevity, Dallas, TX, USA
| |
Collapse
|
32
|
Jung WS, Um YH, Kang DW, Lee CU, Woo YS, Bahk WM, Lim HK. Diagnostic Validity of an Automated Probabilistic Tractography in Amnestic Mild Cognitive Impairment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2018; 16:144-152. [PMID: 29739127 PMCID: PMC5953013 DOI: 10.9758/cpn.2018.16.2.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022]
Abstract
Objective Although several prior works showed the white matter (WM) integrity changes in amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease, it is still unclear the diagnostic accuracy of the WM integrity measurements using diffusion tensor imaging (DTI) in discriminating aMCI from normal controls. The aim of this study is to explore diagnostic validity of whole brain automated probabilistic tractography in discriminating aMCI from normal controls. Methods One hundred-two subjects (50 aMCI and 52 normal controls) were included and underwent DTI scans. Whole brain WM tracts were reconstructed with automated probabilistic tractography. Fractional anisotropy (FA) and mean diffusivity (MD) values of the memory related WM tracts were measured and compared between the aMCI and the normal control groups. In addition, the diagnostic validities of these WM tracts were evaluated. Results Decreased FA and increased MD values of memory related WM tracts were observed in the aMCI group compared with the control group. Among FA and MD value of each tract, the FA value of left cingulum angular bundle showed the highest area under the curve (AUC) of 0.85 with a sensitivity of 88.2%, a specificity of 76.9% in differentiating MCI patients from control subjects. Furthermore, the combination FA values of WM integrity measures of memory related WM tracts showed AUC value of 0.98, a sensitivity of 96%, a specificity of 94.2%. Conclusion Our results with good diagnostic validity of WM integrity measurements suggest DTI might be promising neuroimaging tool for early detection of aMCI and AD patients.
Collapse
Affiliation(s)
- Won Sang Jung
- Department of Radiology, St. Vincent Hospital, Suwon, Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent Hospital, Suwon, Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Sup Woo
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won-Myong Bahk
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
33
|
Perea RD, Rabin JS, Fujiyoshi MG, Neal TE, Smith EE, Van Dijk KRA, Hedden T. Connectome-derived diffusion characteristics of the fornix in Alzheimer's disease. NEUROIMAGE-CLINICAL 2018; 19:331-342. [PMID: 30013916 PMCID: PMC6044183 DOI: 10.1016/j.nicl.2018.04.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
The fornix bundle is a major white matter pathway of the hippocampus. While volume of the hippocampus has been a primary imaging biomarker of Alzheimer's disease progression, recent research has suggested that the volume and microstructural characteristics of the fornix bundle connecting the hippocampus could add relevant information for diagnosing and staging Alzheimer's disease. Using a robust fornix bundle isolation technique in native diffusion space, this study investigated whether diffusion measurements of the fornix differed between normal older adults and Alzheimer's disease patients when controlling for volume measurements. Data were collected using high gradient multi-shell diffusion-weighted MRI from a Siemens CONNECTOM scanner in 23 Alzheimer's disease and 23 age- and sex-matched control older adults (age range = 53–92). These data were used to reconstruct a continuous fornix bundle in every participant's native diffusion space, from which tract-derived volumetric and diffusion metrics were extracted and compared between groups. Diffusion metrics included those from a tensor model and from a generalized q-sampling imaging model. Results showed no significant differences in tract-derived fornix volumes but did show altered diffusion metrics within tissue classified as the fornix in the Alzheimer's disease group. Comparisons to a manual tracing method indicated the same pattern of results and high correlations between the methods. These results suggest that in Alzheimer's disease, diffusion characteristics may provide more sensitive measures of fornix degeneration than do volume measures and may be a potential early marker for loss of medial temporal lobe connectivity. An enhanced method for measurement of continuous fornix bundles is described. Diffusion characteristics of the fornix were degraded in Alzheimer's disease. Alzheimer's disease primarily affected the crus and body of the fornix. Diffusion differences were observed controlling for fornix volume differences.
Collapse
Affiliation(s)
- Rodrigo D Perea
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Dept. of Radiology, Harvard Medical School, Boston, MA, United States
| | - Jennifer S Rabin
- Dept. of Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Dept. of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Megan G Fujiyoshi
- Dept. of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Taylor E Neal
- Dept. of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Emily E Smith
- Dept. of Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Dept. of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Koene R A Van Dijk
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Trey Hedden
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Dept. of Radiology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
34
|
Manual segmentation of the fornix, fimbria, and alveus on high-resolution 3T MRI: Application via fully-automated mapping of the human memory circuit white and grey matter in healthy and pathological aging. Neuroimage 2018; 170:132-150. [DOI: 10.1016/j.neuroimage.2016.10.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 01/18/2023] Open
|
35
|
Snow WM, Dale R, O'Brien-Moran Z, Buist R, Peirson D, Martin M, Albensi BC. In Vivo Detection of Gray Matter Neuropathology in the 3xTg Mouse Model of Alzheimer's Disease with Diffusion Tensor Imaging. J Alzheimers Dis 2018; 58:841-853. [PMID: 28505976 DOI: 10.3233/jad-170136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A diagnosis of Alzheimer's disease (AD), a neurodegenerative disorder accompanied by severe functional and cognitive decline, is based on clinical findings, with final confirmation of the disease at autopsy by the presence of amyloid-β (Aβ) plaques and neurofibrillary tangles. Given that microstructural brain alterations occur years prior to clinical symptoms, efforts to detect brain changes early could significantly enhance our ability to diagnose AD sooner. Diffusion tensor imaging (DTI), a type of MRI that characterizes the magnitude, orientation, and anisotropy of the diffusion of water in tissues, has been used to infer neuropathological changes in vivo. Its utility in AD, however, is still under investigation. The current study used DTI to examine brain regions susceptible to AD-related pathology; the cerebral cortex, entorhinal cortex, and hippocampus, in 12-14-month-old 3xTg AD mice that possess both Aβ plaques and neurofibrillary tangles. Mean diffusivity did not differ between 3xTg and control mice in any region. Decreased fractional anisotropy (p < 0.01) and axial diffusivity (p < 0.05) were detected only in the hippocampus, in which both congophilic Aβ plaques and hyperphosphorylated tau accumulation, consistent with neurofibrillary tangle formation, were detected. Pathological tau accumulation was seen in the cortex. The entorhinal cortex was largely spared from AD-related neuropathology. This is the first study to demonstrate DTI abnormalities in gray matter in a mouse model of AD in which both pathological hallmarks are present, suggesting the feasibility of DTI as a non-invasive means of detecting brain pathology in vivo in early-stage AD.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Ryan Dale
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | | | - Richard Buist
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Danial Peirson
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Melanie Martin
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada.,Department of Physics, University of Winnipeg, Winnipeg, MB, Canada.,Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
36
|
Gyebnár G, Szabó Á, Sirály E, Fodor Z, Sákovics A, Salacz P, Hidasi Z, Csibri É, Rudas G, Kozák LR, Csukly G. What can DTI tell about early cognitive impairment? - Differentiation between MCI subtypes and healthy controls by diffusion tensor imaging. Psychiatry Res Neuroimaging 2018; 272:46-57. [PMID: 29126669 DOI: 10.1016/j.pscychresns.2017.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 01/10/2023]
Abstract
Mild cognitive impairment (MCI) gained a lot of interest recently, especially that the conversion rate to Alzheimer Disease (AD) in the amnestic subtype (aMCI) is higher than in the non-amnestic subtype (naMCI). We aimed to determine whether and how diffusion-weighted MRI (DWI) using the diffusion tensor model (DTI) can differentiate MCI subtypes from healthy subjects. High resolution 3D T1W and DWI images of patients (aMCI, n = 18; naMCI, n = 20; according to Petersen criteria) and controls (n = 27) were acquired at 3T and processed using ExploreDTI and SPM. Voxel-wise and region of interest (ROI) analyses of fractional anisotropy (FA) and mean diffusivity (MD) were performed with ANCOVA; MD was higher in aMCI compared to controls or naMCI in several grey and white matter (GM, WM) regions (especially in the temporal pole and the inferior temporal lobes), while FA was lower in WM ROI-s (e.g. left Cingulum). Moreover, significant correlations were identified between verbal fluency, visual and verbal memory performance and DTI metrics. Logistic regression showed that measuring FA of the crus of fornix along GM volumetry improves the discrimination of aMCI from naMCI. Additional information from DWI/DTI aids preclinical detection of AD and may help detecting early non-Alzheimer type dementia, too.
Collapse
Affiliation(s)
- Gyula Gyebnár
- Magnetic Resonance Research Centre, Semmelweis University, Budapest, Hungary.
| | - Ádám Szabó
- Magnetic Resonance Research Centre, Semmelweis University, Budapest, Hungary
| | - Enikő Sirály
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Fodor
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Anna Sákovics
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Pál Salacz
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Department of Neurology, Péterfy Hospital and Trauma Centre, Budapest, Hungary
| | - Zoltán Hidasi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Éva Csibri
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gábor Rudas
- Magnetic Resonance Research Centre, Semmelweis University, Budapest, Hungary
| | - Lajos R Kozák
- Magnetic Resonance Research Centre, Semmelweis University, Budapest, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
37
|
Zhu Q, Lin M, Bi S, Ni Z, Zhao J, Chen B, Fan G, Shang X. Impaired Frontolimbic Connectivity and Depressive Symptoms in Patients with Alzheimer's Disease. Dement Geriatr Cogn Disord 2018; 41:281-91. [PMID: 27331920 DOI: 10.1159/000447056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Depressive symptoms are commonly observed in Alzheimer's disease (AD). The underlying mechanisms of depressive symptoms in AD remain unclear; frontolimbic circuitry dysfunction may play a role. We aimed to investigate the microstructural integrity of frontolimbic connectivity of specific fiber tracts in AD patients with and without depressive symptoms using diffusion tensor imaging (DTI). METHODS Eleven AD patients with depressive symptoms (dep-AD), 18 AD patients without depressive symptoms (nondep-AD), and 18 normal control (NC) subjects were included. The cingulum bundle (CB), uncinate fasciculus (UF), and fornix, mainly frontolimbic connectivity, were measured by DTI tractography and the metrics of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity, and radial diffusivity (RD) were calculated. RESULTS Compared with NC subjects, both dep-AD and nondep-AD patients showed significant differences for all indices in the fornix and significantly decreased FA and increased MD and RD in the bilateral CB and UF. When compared to nondep-AD patients, dep-AD patients showed significantly increased MD and RD in the bilateral CB and right UF. CONCLUSION Depressive symptoms in AD patients may be involved in greater microstructural abnormalities of frontolimbic connectivity and myelin injury in the bilateral CB and right UF might contribute to the pathophysiology of depressive symptoms in AD.
Collapse
Affiliation(s)
- Qingyong Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Praet J, Manyakov NV, Muchene L, Mai Z, Terzopoulos V, de Backer S, Torremans A, Guns PJ, Van De Casteele T, Bottelbergs A, Van Broeck B, Sijbers J, Smeets D, Shkedy Z, Bijnens L, Pemberton DJ, Schmidt ME, Van der Linden A, Verhoye M. Diffusion kurtosis imaging allows the early detection and longitudinal follow-up of amyloid-β-induced pathology. ALZHEIMERS RESEARCH & THERAPY 2018; 10:1. [PMID: 29370870 PMCID: PMC6389136 DOI: 10.1186/s13195-017-0329-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in the elderly population. In this study, we used the APP/PS1 transgenic mouse model to explore the feasibility of using diffusion kurtosis imaging (DKI) as a tool for the early detection of microstructural changes in the brain due to amyloid-β (Aβ) plaque deposition. METHODS We longitudinally acquired DKI data of wild-type (WT) and APP/PS1 mice at 2, 4, 6 and 8 months of age, after which these mice were sacrificed for histological examination. Three additional cohorts of mice were also included at 2, 4 and 6 months of age to allow voxel-based co-registration between diffusion tensor and diffusion kurtosis metrics and immunohistochemistry. RESULTS Changes were observed in diffusion tensor (DT) and diffusion kurtosis (DK) metrics in many of the 23 regions of interest that were analysed. Mean and axial kurtosis were greatly increased owing to Aβ-induced pathological changes in the motor cortex of APP/PS1 mice at 4, 6 and 8 months of age. Additionally, fractional anisotropy (FA) was decreased in APP/PS1 mice at these respective ages. Linear discriminant analysis of the motor cortex data indicated that combining diffusion tensor and diffusion kurtosis metrics permits improved separation of WT from APP/PS1 mice compared with either diffusion tensor or diffusion kurtosis metrics alone. We observed that mean kurtosis and FA are the critical metrics for a correct genotype classification. Furthermore, using a newly developed platform to co-register the in vivo diffusion-weighted magnetic resonance imaging with multiple 3D histological stacks, we found high correlations between DK metrics and anti-Aβ (clone 4G8) antibody, glial fibrillary acidic protein, ionised calcium-binding adapter molecule 1 and myelin basic protein immunohistochemistry. Finally, we observed reduced FA in the septal nuclei of APP/PS1 mice at all ages investigated. The latter was at least partially also observed by voxel-based statistical parametric mapping, which showed significantly reduced FA in the septal nuclei, as well as in the corpus callosum, of 8-month-old APP/PS1 mice compared with WT mice. CONCLUSIONS Our results indicate that DKI metrics hold tremendous potential for the early detection and longitudinal follow-up of Aβ-induced pathology.
Collapse
Affiliation(s)
- Jelle Praet
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium
| | | | - Leacky Muchene
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | - Zhenhua Mai
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium.,Icometrix R&D, Leuven, Belgium
| | - Vasilis Terzopoulos
- Icometrix R&D, Leuven, Belgium.,Institute for Biological and Medical Imaging, Technische Universität München, Munich, Germany
| | | | | | - Pieter-Jan Guns
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium.,Expert Group Antwerp Molecular Imaging (EGAMI), University of Antwerp, Antwerp, Belgium
| | | | | | | | - Jan Sijbers
- imec-Vision Lab, University of Antwerp, Antwerp, Belgium
| | - Dirk Smeets
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium.,Icometrix R&D, Leuven, Belgium
| | - Ziv Shkedy
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | - Luc Bijnens
- Janssen Research and Development, Beerse, Belgium
| | | | | | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium.
| |
Collapse
|
39
|
Powell F, Tosun D, Sadeghi R, Weiner M, Raj A. Preserved Structural Network Organization Mediates Pathology Spread in Alzheimer's Disease Spectrum Despite Loss of White Matter Tract Integrity. J Alzheimers Dis 2018; 65:747-764. [PMID: 29578480 PMCID: PMC6152926 DOI: 10.3233/jad-170798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Models of Alzheimer's disease (AD) hypothesize stereotyped progression via white matter (WM) fiber connections, most likely via trans-synaptic transmission of toxic proteins along neuronal pathways. An important question in the field is whether and how organization of fiber pathways is affected by disease. It remains unknown whether fibers act as conduits of degenerative pathologies, or if they also degenerate with the gray matter network. This work uses graph theoretic modeling in a longitudinal design to investigate the impact of WM network organization on AD pathology spread. We hypothesize if altered WM network organization mediates disease progression, then a previously published network diffusion model will yield higher prediction accuracy using subject-specific connectomes in place of a healthy template connectome. Neuroimaging data in 124 subjects from ADNI were assessed. Graph topology metrics show preserved network organization in patients compared to controls. Using a published diffusion model, we further probe the effect of network alterations on degeneration spread in AD. We show that choice of connectome does not significantly impact the model's predictive ability. These results suggest that, despite measurable changes in integrity of specific fiber tracts, WM network organization in AD is preserved. Further, there is no difference in the mediation of putative pathology spread between healthy and AD-impaired networks. This conclusion is somewhat at variance with previous results, which report global topological disturbances in AD. Our data indicates the combined effect of edge thresholding, binarization, and inclusion of subcortical regions to network graphs may be responsible for previously reported effects.
Collapse
Affiliation(s)
- Fon Powell
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Duygu Tosun
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Roksana Sadeghi
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Michael Weiner
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Ashish Raj
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
40
|
Yu J, Lam CLM, Lee TMC. White matter microstructural abnormalities in amnestic mild cognitive impairment: A meta-analysis of whole-brain and ROI-based studies. Neurosci Biobehav Rev 2017; 83:405-416. [PMID: 29092777 DOI: 10.1016/j.neubiorev.2017.10.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/29/2022]
Abstract
Studies that examined white matter (WM) alterations in amnestic mild cognitive impairment (aMCI) abound. This timely meta-analysis aims to synthesize the results of these studies. Seventy-seven studies (totalNaMCI=1844) were included. Fourteen region-of-interest-based (ROI-based) (k≥8;NaMCI≥284 per ROI) and two activation likelihood estimation (ALE) meta-analyses (fractional anisotropy [FA]: k=15;NaMCI=463; mean diffusivity [MD]: k=8;NaMCI=193) were carried out. Among the many significant ROI-related findings, reliable FA and MD alterations in the fornix, uncinate fasciculus, and parahippocampal cingulum were observed in aMCI. Larger effects were observed in MD relative to FA. The ALE meta-analysis revealed a significant FA decrease among aMCI subjects in the posterior corona radiata. These results provide robust evidence of the presence of WM abnormalities in aMCI. Our findings also highlight the importance of carrying out both ROI-based and whole-brain-based research to obtain a complete picture of WM microstructural alterations associated with the condition..
Collapse
Affiliation(s)
- Junhong Yu
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong
| | - Charlene L M Lam
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong
| | - Tatia M C Lee
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong.
| |
Collapse
|
41
|
Tang SX, Feng QL, Wang GH, Duan S, Shan BC, Dai JP. Diffusion characteristics of the fornix in patients with Alzheimer's disease. Psychiatry Res Neuroimaging 2017; 265:72-76. [PMID: 28017479 DOI: 10.1016/j.pscychresns.2016.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/25/2016] [Accepted: 09/27/2016] [Indexed: 02/05/2023]
Abstract
White matter degradation is a major part of the pathogenesis of Alzheimer's disease (AD). The fornix is the predominant outflow tract from the hippocampus, and alterations to its microstructure in patients with AD are still being explored. Diffusion tensor imaging (DTI) is an in vivo neuroimaging technique that can provide unique information about alterations in tissue microstructure, which can indicate underlying neurobiological process at the microstructural level. In this prospective study, DTI was used to assess and analyze the microstructural features of the fornix in subjects with AD (n = 17), mild cognitive impairment (MCI; n = 12) and healthy controls (n = 17). DTI was performed using Explore DTI software and the FSL package. Within the fornix, patients with AD showed decreased fractional anisotropy values and length of fiber tracts of the fornix relative to healthy controls, but higher mean diffusivity values. MCI subjects showed a trend towards elevated mean diffusivity values in the fornix. The data suggest that DTI provides supporting information on the microstructural alteration of the fornix in patients with AD, and that these diffusion characteristics of the fornix may be helpful for the clinical diagnosis of AD.
Collapse
Affiliation(s)
- Shou Xian Tang
- Neuroimaging center, Department of Radiology, Beijing Tiantan Hospital, Capital Medical University,6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Qing Liang Feng
- Department of Radiology, Linyi Central Hospital, 17 Kangfu Lu Linyi Shandong, 276400, China
| | - Gui Hong Wang
- Center for Neurodegenerative Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Shaofeng Duan
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Ci Shan
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Ping Dai
- Neuroimaging center, Department of Radiology, Beijing Tiantan Hospital, Capital Medical University,6 Tiantan Xili, Dongcheng District, Beijing 100050, China.
| |
Collapse
|
42
|
Tu MC, Lo CP, Huang CF, Hsu YH, Huang WH, Deng JF, Lee YC. Effectiveness of diffusion tensor imaging in differentiating early-stage subcortical ischemic vascular disease, Alzheimer's disease and normal ageing. PLoS One 2017; 12:e0175143. [PMID: 28388630 PMCID: PMC5384760 DOI: 10.1371/journal.pone.0175143] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/21/2017] [Indexed: 11/24/2022] Open
Abstract
Objective To describe and compare diffusion tensor imaging (DTI) parameters between patients with subcortical ischemic vascular disease (SIVD) and Alzheimer’s disease (AD) diagnosed using structuralized neuropsychiatric assessments, and investigate potential neuronal substrates related to cognitive performance. Methods Thirty-five patients with SIVD, 40 patients with AD, and 33 cognitively normal control (NC) subjects matched by age and education level were consecutively recruited and underwent cognitive function assessments and DTI examinations. Comparisons among these three subgroups with regards to cognitive performance and DTI parameters including fractional anisotropy (FA) and mean diffusivity (MD) values were performed. Partial correlation analysis after controlling for age and education was used to evaluate associations between cognitive performance and DTI parameters. Results With regards to cognitive performance, the patients with SIVD had lower total scores in frontal assessment battery (FAB) compared to those with AD (p < 0.05) in the context of comparable Mini-Mental Status Examination and Cognitive Abilities Screening Instrument scores. With regards to DTI parameters, there were more regions of significant differences in FA among these three subgroups compared with MD. Compared with NC group, the patients with SIVD had significant global reductions in FA (p < 0.001 ~ 0.05), while significant reductions in FA among the patients with AD were regionally confined within the left superior longitudinal fasciculus, genu and splenium of the corpus callosum, and bilateral forceps major, and the anterior thalamic radiation, uncinate fasciculus, and cingulum of the left side (p < 0.01 ~ 0.05). Analysis of FA values within the left forceps major, left anterior thalamic radiation, and genu of the corpus callosum revealed a 71.8% overall correct classification (p < 0.001) with sensitivity of 69.4%, specificity of 73.8%, positive predictive value of 69.4%, and negative predictive value of 73.8% in discriminating patients with SIVD from those with AD. In combined analysis of the patients with SIVD and AD (n = 75), the total FAB score was positively correlated with FA within the bilateral forceps minor, genu of the corpus callosum, left forceps major, left uncinate fasciculus, and right inferior longitudinal fasciculus (p = 0.001 ~ 0.038), and inversely correlated with MD within the right superior longitudinal fasciculus, genu and body of the corpus callosum, bilateral forceps minor, right uncinate fasciculus, and right inferior longitudinal fasciculus (p = 0.003 ~ 0.040) Conclusions Our findings suggest the effectiveness of DTI measurements in distinguishing patients with early-stage AD from those with SIVD, with discernible changes in spatial distribution and magnitude of significance of the DTI parameters. Strategic FA assessments provided the most robust discriminative power to differentiate SIVD from AD, and FAB may serve as an additional cognitive marker. We also identified the neuronal substrates responsible for FAB performance.
Collapse
Affiliation(s)
- Min-Chien Tu
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- * E-mail:
| | - Chung-Ping Lo
- Department of Radiology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Ching-Feng Huang
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Yen-Hsuan Hsu
- Department of Psychology, National Chung Cheng University, Chiayi, Taiwan
| | - Wen-Hui Huang
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Jie Fu Deng
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Yung-Chuan Lee
- Department of Business Administration, Asia University, Taichung, Taiwan
| |
Collapse
|
43
|
Shobin E, Bowley MP, Estrada LI, Heyworth NC, Orczykowski ME, Eldridge SA, Calderazzo SM, Mortazavi F, Moore TL, Rosene DL. Microglia activation and phagocytosis: relationship with aging and cognitive impairment in the rhesus monkey. GeroScience 2017; 39:199-220. [PMID: 28238188 PMCID: PMC5411373 DOI: 10.1007/s11357-017-9965-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
While cognitive decline is observed in the normal aging monkey, neurons are not lost with age. Instead, frontal white matter is lost as myelin degenerates and both correlate with age-related cognitive decline. As age-related myelin damage increases, there should be an increase in clearance of damaged myelin by microglial phagocytosis. In this study, brains of behaviorally tested rhesus monkeys were assessed using unbiased stereology to quantify the density of activated microglia (LN3 antibody positive) and phagocytic microglia (galectin-3 (Gal-3) antibody positive) in three white matter regions: the corpus callosum, cingulum bundle (CGB), and frontal white matter (FWM). LN3 cell density was significantly increased in the CGB, whereas Gal-3 cell density was significantly increased in all regions. Increases in Gal-3 cell density in the FWM were associated with cognitive impairment. In the FWM of old animals, Gal-3-positive microglia were classified by morphological subtype as ramified, hypertrophic, or amoeboid. The densities of hypertrophic and amoeboid microglia significantly correlated with cognitive impairment. Finally, microglia were double-labeled with LN3 and Gal-3 showing that 91% of Gal-3 cells were also LN3 positive, thus expressing an "activated" phenotype. Furthermore, 15% of all double-labeled cells formed phagocytic cups. Overall, these results suggest that microglia become activated in white matter with age where the majority express a phagocytic phenotype. We hypothesize that age-related phagocytic activation of microglia is a response to accumulating myelin pathology. The association of Gal-3 in the FWM with cognitive impairment may reflect regional differences in damage or dysfunction of normal clearance mechanisms.
Collapse
Affiliation(s)
- Eli Shobin
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA.
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA.
| | - Michael P Bowley
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02144, USA
| | - Larissa I Estrada
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, 02118, USA
| | - Nadine C Heyworth
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA
| | - Mary E Orczykowski
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA
| | - Sherri A Eldridge
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA, 02747, USA
| | | | - Farzad Mortazavi
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA
| | - Tara L Moore
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA
| |
Collapse
|
44
|
Moon CM, Shin IS, Jeong GW. Alterations in white matter volume and its correlation with neuropsychological scales in patients with Alzheimer's disease: a DARTEL-based voxel-based morphometry study. Acta Radiol 2017; 58:204-210. [PMID: 27081089 DOI: 10.1177/0284185116640162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Non-invasive imaging markers can be used to diagnose Alzheimer's disease (AD) in its early stages, but an optimized quantification analysis to measure the brain integrity has been less studied. Purpose To evaluate white matter volume change and its correlation with neuropsychological scales in patients with AD using a diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL)-based voxel-based morphometry (VBM). Material and Methods The 21 participants comprised 11 patients with AD and 10 age-matched healthy controls. High-resolution magnetic resonance imaging (MRI) data were processed by VBM analysis based on DARTEL algorithm. Results The patients showed significant white matter volume reductions in the posterior limb of the internal capsule, cerebral peduncle of the midbrain, and parahippocampal gyrus compared to healthy controls. In correlation analysis, the parahippocampal volume was positively correlated with the Korean-mini mental state examination score in AD. Conclusion This study provides an evidence for localized white matter volume deficits in conjunction with cognitive dysfunction in AD. These findings would be helpful to understand the neuroanatomical mechanisms in AD and to robust the diagnostic accuracy for AD.
Collapse
Affiliation(s)
- Chung-Man Moon
- Research Institute for Medical Imaging, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Il-Seon Shin
- Department of Psychiatry, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Gwang-Woo Jeong
- Research Institute for Medical Imaging, Chonnam National University Medical School, Gwangju, Republic of Korea
- Department of Radiology, Chonnam National University Hospital, Chonnam Natioanl University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
45
|
Lin SH, Hsu WC, Ng SH, Cheng JS, Khegai O, Huang CC, Chen YL, Chen YC, Wang JJ. Increased Water Diffusion in the Parcellated Cortical Regions from the Patients with Amnestic Mild Cognitive Impairment and Alzheimer's Disease. Front Aging Neurosci 2017; 8:325. [PMID: 28123367 PMCID: PMC5225103 DOI: 10.3389/fnagi.2016.00325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 11/13/2022] Open
Abstract
Background: The loss of cortical neuron environment integrity is the hallmark of neurodegeneration diseases such as Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI). To reveal the microenvironment changes in cerebral cortex, the current study aimed to examine the changes of mean diffusivity (MD) in parcellated brain among AD, aMCI patients and normal controls (NC). Methods: Diffusion tensor imaging data with the whole brain coverage were acquired from 28 AD (aged 69.4 ± 8.2 year old), 41 aMCI patients (aged 68.2 ± 6.4 year old) and 40 NC subjects (aged 65.7 ± 6.4 year old). Subsequently, the MD values were parcellated according to the standard automatic anatomic labeling (AAL) template. Only the 90 regions located in the cerebral cortex were used in the final analysis. The mean values of MD from each brain region were extracted and compared among the participant groups. The integrity of the white matter tracts and gray matter atrophy was analyzed using the track-based spatial statistics and voxel-based morphometry approaches, respectively. Results: Significant differences of MD were noticed both in aMCI and AD patients, in terms of the affected regions and the amount of increase. The hippocampus, parahippocampal gyrus and cingulum were the most significantly affected regions in AD patients. From all the 90 cerebral cortex regions, significant increase of MD in the AD patients was found in 40 regions, compared to only one (fusiform gyrus on the right) in aMCI patients. In the disease affected regions, the MD from aMCI patients is in state between NC and AD patients. Conclusions: Increased MD in the specific regions of the brain shows the feasibility of MD as an indicator of the early stage cortical degeneration in aMCI and AD patients.
Collapse
Affiliation(s)
- Sung-Han Lin
- Department of Medical Imaging and Radiological Sciences, Chang Gung UniversityTaoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung UniversityTaoyuan, Taiwan
| | - Wen-Chuin Hsu
- Department of Neurology, Chang Gung Memorial HospitalTaoyuan, Taiwan; Dementia Center, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Radiological Sciences, Chang Gung UniversityTaoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial HospitalLinkou, Taiwan
| | - Jur-Shan Cheng
- Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University Taoyuan, Taiwan
| | - Oleksandr Khegai
- Department of Medical Imaging and Radiological Sciences, Chang Gung University Taoyuan, Taiwan
| | - Chin-Chang Huang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine Taoyuan, Taiwan
| | - Yao-Liang Chen
- Department of Medical Imaging and Intervention, Chang Gung Memorial HospitalLinkou, Taiwan; Department of Diagnostic Radiology, Chang Gung Memorial HospitalKeelung, Taiwan
| | - Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial HospitalTaoyuan, Taiwan; Dementia Center, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung UniversityTaoyuan, Taiwan; Department of Medical Imaging and Radiological Sciences, Healthy Aging Research Center, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial HospitalTaoyuan, Taiwan; Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial HospitalTaoyuan, Taiwan; Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial HospitalLinkou, Taiwan
| |
Collapse
|
46
|
Sánchez-Valle R, Monté GC, Sala-Llonch R, Bosch B, Fortea J, Lladó A, Antonell A, Balasa M, Bargalló N, Molinuevo JL. White Matter Abnormalities Track Disease Progression in PSEN1 Autosomal Dominant Alzheimer's Disease. J Alzheimers Dis 2016; 51:827-35. [PMID: 26923015 DOI: 10.3233/jad-150899] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PSEN1 mutations are the most frequent cause of autosomal dominant Alzheimer's disease (ADAD), and show nearly full penetrance. There is presently increasing interest in the study of biomarkers that track disease progression in order to test therapeutic interventions in ADAD. We used white mater (WM) volumetric characteristics and diffusion tensor imaging (DTI) metrics to investigate correlations with the normalized time to expected symptoms onset (relative age ratio) and group differences in a cohort of 36 subjects from PSEN1 ADAD families: 22 mutation carriers, 10 symptomatic (SMC) and 12 asymptomatic (AMC), and 14 non-carriers (NC). Subjects underwent a 3T MRI. WM morphometric data and DTI metrics were analyzed. We found that PSEN1 MC showed significant negative correlation between fractional anisotropy (FA) and the relative age ratio in the genus and body of corpus callosum and corona radiate (p < 0.05 Family-wise error correction (FWE) at cluster level) and positive correlation with mean diffusivity (MD), axial diffusivity (AxD), and radial diffusivity (RD) in the splenium of corpus callosum. SMC presented WM volume loss, reduced FA and increased MD, AxD, and RD in the anterior and posterior corona radiate, corpus callosum (p < 0.05 FWE) compared with NC. No significant differences were observed between AMC and NC in WM volume or DTI measures. These findings suggest that the integrity of the WM deteriorates linearly in PSEN1 ADAD from the early phases of the disease; thus DTI metrics might be useful to monitor the disease progression. However, the lack of significant alterations at the preclinical stages suggests that these indexes might not be good candidates for early markers of the disease.
Collapse
Affiliation(s)
- Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gemma C Monté
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roser Sala-Llonch
- Research Group for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de Sant Pau, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Nuria Bargalló
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Radiology, Hospital Clínic, Barcelona, Spain
| | - José Luis Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
47
|
Lacalle-Aurioles M, Navas-Sánchez FJ, Alemán-Gómez Y, Olazarán J, Guzmán-De-Villoria JA, Cruz-Orduña I, Mateos-Pérez JM, Desco M. The Disconnection Hypothesis in Alzheimer's Disease Studied Through Multimodal Magnetic Resonance Imaging: Structural, Perfusion, and Diffusion Tensor Imaging. J Alzheimers Dis 2016; 50:1051-64. [PMID: 26890735 DOI: 10.3233/jad-150288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
According to the so-called disconnection hypothesis, the loss of synaptic inputs from the medial temporal lobes (MTL) in Alzheimer's disease (AD) may lead to reduced activity of target neurons in cortical areas and, consequently, to decreased cerebral blood flow (CBF) in those areas. The aim of this study was to assess whether hypoperfusion in parietotemporal and frontal cortices of patients with mild cognitive impairment who converted to AD (MCI-c) and patients with mild AD is associated with atrophy in the MTL and/or microstructural changes in the white matter (WM) tracts connecting these areas. We assessed these relationships by investigating correlations between CBF in hypoperfused areas, mean cortical thickness in atrophied regions of the MTL, and fractional anisotropy (FA) in WM tracts. In the MCI-c group, a strong correlation was observed between CBF of the superior parietal gyri and FA in the parahippocampal tracts (left: r = 0.90, p < 0.0001; right: r = 0.597, p = 0.024), and between FA in the right parahippocampal tract and the right precuneus (r = 0.551, p = 0.041). No significant correlations between CBF in hypoperfused regions and FA in the WM tract were observed in the AD group. These results suggest an association between perfusion deficits and altered WM tracts in prodromal AD, while microvasculature impairments may have a greater influence in more advanced stages. We did not find correlations between cortical thinning in the medial temporal lobes and decreased FA in the WM tracts of the limbic system in either group.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Francisco Javier Navas-Sánchez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Yasser Alemán-Gómez
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Javier Olazarán
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Isabel Cruz-Orduña
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - José María Mateos-Pérez
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| |
Collapse
|
48
|
Salminen LE, Conturo TE, Laidlaw DH, Cabeen RP, Akbudak E, Lane EM, Heaps JM, Bolzenius JD, Baker LM, Cooley S, Scott S, Cagle LM, Phillips S, Paul RH. Regional age differences in gray matter diffusivity among healthy older adults. Brain Imaging Behav 2016; 10:203-11. [PMID: 25864197 DOI: 10.1007/s11682-015-9383-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aging is associated with microstructural changes in brain tissue that can be visualized using diffusion tensor imaging (DTI). While previous studies have established age-related changes in white matter (WM) diffusion using DTI, the impact of age on gray matter (GM) diffusion remains unclear. The present study utilized DTI metrics of mean diffusivity (MD) to identify age differences in GM/WM microstructure in a sample of healthy older adults (N = 60). A secondary aim was to determine the functional significance of whole-brain GM/WM MD on global cognitive function using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Participants were divided into three age brackets (ages 50-59, 60-69, and 70+) to examine differences in MD and cognition by decade. MD was examined bilaterally in the frontal, temporal, parietal, and occipital lobes for the primary analyses and an aggregate measure of whole-brain MD was used to test relationships with cognition. Significantly higher MD was observed in bilateral GM of the temporal and parietal lobes, and in right hemisphere WM of the frontal and temporal lobes of older individuals. The most robust differences in MD were between the 50-59 and 70+ age groups. Higher whole-brain GM MD was associated with poorer RBANS performance in the 60-69 age group. Results suggest that aging has a significant and differential impact on GM/WM diffusion in healthy older adults, which may explain a modest degree of cognitive variability at specific time points during older adulthood.
Collapse
Affiliation(s)
- Lauren E Salminen
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA.
| | - Thomas E Conturo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA
| | - David H Laidlaw
- Computer Science Department, Brown University, Providence, RI, 02912, USA
| | - Ryan P Cabeen
- Computer Science Department, Brown University, Providence, RI, 02912, USA
| | - Erbil Akbudak
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA
| | - Elizabeth M Lane
- Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA
| | - Jodi M Heaps
- Missouri Institute of Mental Health, 4633 World Parkway Circle, Berkeley, MO, 63134-3115, USA
| | - Jacob D Bolzenius
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA
| | - Laurie M Baker
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA
| | - Sarah Cooley
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA
| | - Staci Scott
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA
| | - Lee M Cagle
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA
| | - Sarah Phillips
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA
| | - Robert H Paul
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA
- Missouri Institute of Mental Health, 4633 World Parkway Circle, Berkeley, MO, 63134-3115, USA
| |
Collapse
|
49
|
Bilateral Cortical Encephalomalacia in a Patient Implanted With Bilateral Deep Brain Stimulation for Alzheimer's Disease: A Case Report. Alzheimer Dis Assoc Disord 2016; 30:70-2. [PMID: 25850733 DOI: 10.1097/wad.0000000000000095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Badea A, Kane L, Anderson RJ, Qi Y, Foster M, Cofer GP, Medvitz N, Buckley AF, Badea AK, Wetsel WC, Colton CA. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage 2016; 142:498-511. [PMID: 27521741 DOI: 10.1016/j.neuroimage.2016.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/23/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
Multivariate biomarkers are needed for detecting Alzheimer's disease (AD), understanding its etiology, and quantifying the effect of therapies. Mouse models provide opportunities to study characteristics of AD in well-controlled environments that can help facilitate development of early interventions. The CVN-AD mouse model replicates multiple AD hallmark pathologies, and we identified multivariate biomarkers characterizing a brain circuit disruption predictive of cognitive decline. In vivo and ex vivo magnetic resonance imaging (MRI) revealed that CVN-AD mice replicate the hippocampal atrophy (6%), characteristic of humans with AD, and also present changes in subcortical areas. The largest effect was in the fornix (23% smaller), which connects the septum, hippocampus, and hypothalamus. In characterizing the fornix with diffusion tensor imaging, fractional anisotropy was most sensitive (20% reduction), followed by radial (15%) and axial diffusivity (2%), in detecting pathological changes. These findings were strengthened by optical microscopy and ultrastructural analyses. Ultrastructual analysis provided estimates of axonal density, diameters, and myelination-through the g-ratio, defined as the ratio between the axonal diameter, and the diameter of the axon plus the myelin sheath. The fornix had reduced axonal density (47% fewer), axonal degeneration (13% larger axons), and abnormal myelination (1.5% smaller g-ratios). CD68 staining showed that white matter pathology could be secondary to neuronal degeneration, or due to direct microglial attack. In conclusion, these findings strengthen the hypothesis that the fornix plays a role in AD, and can be used as a disease biomarker and as a target for therapy.
Collapse
Affiliation(s)
- Alexandra Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA.
| | - Lauren Kane
- Trinity College of Arts & Sciences, Duke University, Durham, NC 27710, USA
| | - Robert J Anderson
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Mark Foster
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Gary P Cofer
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Neil Medvitz
- Department of Pathology, and Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Anne F Buckley
- Department of Pathology, and Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Andreas K Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carol A Colton
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|