1
|
Ghanem J, Totzek JF, Henri-Bellemare C, Raucher-Chéné D, Kiar G, Patel R, Chakravarty MM, Shah JL, Joober R, Malla A, Lepage M, Lavigne KM. White matter integrity and verbal memory following a first episode of psychosis: A longitudinal study. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111294. [PMID: 39986368 DOI: 10.1016/j.pnpbp.2025.111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Psychotic disorders are heterogeneous disorders for which there is evidence of structural and functional brain abnormalities. The role of white matter integrity, often measured via Fractional Anisotropy (FA), has played a controversial role in individuals with a first episode of psychosis (FEP). Similarly, some FEP studies have observed that higher FA is associated with better verbal memory, but others failed to find such an association. Studying the early stages of psychosis represents a promising avenue to overcome previous confounding factors and characterize the disease in its early clinical stages. Eighty individuals with a FEP were recruited from a specialized early intervention program for psychosis alongside 55 non-clinical controls from the community matched for age and sex. Both groups were followed and scanned 4 times: at baseline (within 3 months after program entry), 6 months, 12 months, and 18 months. Tract-Based Spatial Statistics (TBSS) were used on 3.0 Tesla diffusion-weighted images to extract fractional anisotropy values for white matter regions of interest in accordance with the John Hopkins University white-matter tractography atlas. The analysis revealed no significant main effect of group or time, and no significant associations between FA and verbal memory. Overall, differences in FA are small early in the course of illness and longer follow-up periods may be required to identify possible changes during a critical intervention window.
Collapse
Affiliation(s)
- Joseph Ghanem
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychology, McGill University, Montreal, QC, Canada
| | - Jana F Totzek
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Delphine Raucher-Chéné
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gregory Kiar
- Child Mind Institute, Center for Data Analytics, Innovation, and Rigor, New York, USA
| | - Raihaan Patel
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - M Mallar Chakravarty
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Jai L Shah
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Ridha Joober
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Ashok Malla
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Martin Lepage
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychology, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Katie M Lavigne
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Wang Y, Ouyang L, Fan L, Zheng W, Li Z, Tang J, Yuan L, Li C, Jin K, Liu W, Chen X, He Y, Ma X. Functional and structural abnormalities of thalamus in individuals at early stage of schizophrenia. Schizophr Res 2024; 271:292-299. [PMID: 39079406 DOI: 10.1016/j.schres.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Thalamic abnormalities in schizophrenia are recognized, alongside cognitive deficits. However, the current findings about these abnormalities during the prodromal period remain relatively few and inconsistent. This study applied multimodal methods to explore the alterations in thalamic function and structure and their relationship with cognitive function in first-episode schizophrenia (FES) patients and ultra-high-risk (UHR) individuals, aiming to affirm the thalamus's role in schizophrenia development and cognitive deficits. METHODS 75 FES patients, 60 UHR individuals, and 60 healthy controls (HC) were recruited. Among the three groups, gray matter volume (GMV) and functional connectivity (FC) were evaluated to reflect the structural and functional abnormalities in the thalamus. Pearson correlation was used to calculate the association between these abnormalities and cognitive impairments. RESULTS No significant difference in GMV of the thalamus was found among the abovementioned three groups. Compared with HC individuals, FES patients had decreased thalamocortical FC mostly in the thalamocortical triple network, including the default mode network (DMN), salience network (SN), and executive control network (ECN). UHR individuals had similar but milder dysconnectivity as the FES group. Furthermore, FC between the left thalamus and right putamen was significantly correlated with execution speed and attention in the FES group. CONCLUSIONS Our findings revealed decreased thalamocortical FC associated with cognitive deficits in FES and UHR subjects. This improves our understanding of the functional alterations in thalamus in prodromal stage of schizophrenia and the related factors of the cognitive impairment of the disease. TRIAL REGISTRATION ClinicalTrials.govNCT03965598; https://clinicaltrials.gov/ct2/show/NCT03965598.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lejia Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Wenxiao Zheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinsong Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Ke Jin
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Weiqing Liu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China; Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science (CBS), RIKEN, Wako, Saitama, Japan
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; China National Technology Institute on Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Institute of Mental Health, Changsha, Hunan, China; Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; China National Technology Institute on Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Institute of Mental Health, Changsha, Hunan, China; Hunan Medical Center for Mental Health, Changsha, Hunan, China.
| | - Xiaoqian Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; China National Technology Institute on Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Institute of Mental Health, Changsha, Hunan, China; Hunan Medical Center for Mental Health, Changsha, Hunan, China.
| |
Collapse
|
3
|
Zhao Q, Gao Z, Yu W, Xiao Y, Hu N, Wei X, Tao B, Zhu F, Li S, Lui S. Multivariate associations between neuroanatomy and cognition in unmedicated and medicated individuals with schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:62. [PMID: 39004627 PMCID: PMC11247086 DOI: 10.1038/s41537-024-00482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Previous studies that focused on univariate correlations between neuroanatomy and cognition in schizophrenia identified some inconsistent findings. Moreover, antipsychotic medication may impact the brain-behavior profiles in affected individuals. It remains unclear whether unmedicated and medicated individuals with schizophrenia would share common neuroanatomy-cognition associations. Therefore, we aimed to investigate multivariate neuroanatomy-cognition relationships in both groups. A sample of 59 drug-naïve individuals with first-episode schizophrenia (FES) and a sample of 115 antipsychotic-treated individuals with schizophrenia were finally included. Multivariate modeling was conducted in the two patient samples between multiple cognitive domains and neuroanatomic features, such as cortical thickness (CT), cortical surface area (CSA), and subcortical volume (SV). We observed distinct multivariate correlational patterns between the two samples of individuals with schizophrenia. In the FES sample, better performance in token motor, symbol coding, and verbal fluency tests was associated with greater thalamic volumes but lower CT in the prefrontal and anterior cingulate cortices. Two significant multivariate correlations were identified in antipsychotic-treated individuals: 1) worse verbal memory performance was related to smaller volumes for the most subcortical structures and smaller CSA mainly in the temporal regions and inferior parietal lobule; 2) a lower symbol coding test score was correlated with smaller CSA in the right parahippocampal gyrus but greater volume in the right caudate. These multivariate patterns were sample-specific and not confounded by imaging quality, illness duration, antipsychotic dose, or psychopathological symptoms. Our findings may help to understand the neurobiological basis of cognitive impairments and the development of cognition-targeted interventions.
Collapse
Affiliation(s)
- Qiannan Zhao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ziyang Gao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Wei Yu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Na Hu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xia Wei
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Bo Tao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Fei Zhu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Siyi Li
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
4
|
Reinen JM, Polosecki P, Castro E, Corcoran CM, Cecchi GA, Colibazzi T. Multimodal fusion of brain signals for robust prediction of psychosis transition. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:54. [PMID: 38773120 PMCID: PMC11109212 DOI: 10.1038/s41537-024-00464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/15/2024] [Indexed: 05/23/2024]
Abstract
The prospective study of youths at clinical high risk (CHR) for psychosis, including neuroimaging, can identify neural signatures predictive of psychosis outcomes using algorithms that integrate complex information. Here, to identify risk and psychosis conversion, we implemented multiple kernel learning (MKL), a multimodal machine learning approach allowing patterns from each modality to inform each other. Baseline multimodal scans (n = 74, 11 converters) included structural, resting-state functional imaging, and diffusion-weighted data. Multimodal MKL outperformed unimodal models (AUC = 0.73 vs. 0.66 in predicting conversion). Moreover, patterns learned by MKL were robust to training set variations, suggesting it can identify cross-modality redundancies and synergies to stabilize the predictive pattern. We identified many predictors consistent with the literature, including frontal cortices, cingulate, thalamus, and striatum. This highlights the advantage of methods that leverage the complex pathophysiology of psychosis.
Collapse
Affiliation(s)
- Jenna M Reinen
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.
| | | | - Eduardo Castro
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Tiziano Colibazzi
- Department of Psychiatry, The New York State Psychiatric Institute, Columbia College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
5
|
Alemán-Gómez Y, Baumgartner T, Klauser P, Cleusix M, Jenni R, Hagmann P, Conus P, Do KQ, Bach Cuadra M, Baumann PS, Steullet P. Multimodal Magnetic Resonance Imaging Depicts Widespread and Subregion Specific Anomalies in the Thalamus of Early-Psychosis and Chronic Schizophrenia Patients. Schizophr Bull 2023; 49:196-207. [PMID: 36065156 PMCID: PMC9810016 DOI: 10.1093/schbul/sbac113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND HYPOTHESIS Although the thalamus has a central role in schizophrenia pathophysiology, contributing to sensory, cognitive, and sleep alterations, the nature and dynamics of the alterations occurring within this structure remain largely elusive. Using a multimodal magnetic resonance imaging (MRI) approach, we examined whether anomalies: (1) differ across thalamic subregions/nuclei, (2) are already present in the early phase of psychosis (EP), and (3) worsen in chronic schizophrenia (SCHZ). STUDY DESIGN T1-weighted and diffusion-weighted images were analyzed to estimate gray matter concentration (GMC) and microstructural parameters obtained from the spherical mean technique (intra-neurite volume fraction [VFINTRA)], intra-neurite diffusivity [DIFFINTRA], extra-neurite mean diffusivity [MDEXTRA], extra-neurite transversal diffusivity [TDEXTRA]) within 7 thalamic subregions. RESULTS Compared to age-matched controls, the thalamus of EP patients displays previously unreported widespread microstructural alterations (VFINTRA decrease, TDEXTRA increase) that are associated with similar alterations in the whole brain white matter, suggesting altered integrity of white matter fiber tracts in the thalamus. In both patient groups, we also observed more localized and heterogenous changes (either GMC decrease, MDEXTRA increase, or DIFFINTRA decrease) in mediodorsal, posterior, and ventral anterior parts of the thalamus in both patient groups, suggesting that the nature of the alterations varies across subregions. GMC and DIFFINTRA in the whole thalamus correlate with global functioning, while DIFFINTRA in the subregion encompassing the medial pulvinar is significantly associated with negative symptoms in SCHZ. CONCLUSION Our data reveals both widespread and more localized thalamic anomalies that are already present in the early phase of psychosis.
Collapse
Affiliation(s)
- Yasser Alemán-Gómez
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
| | - Thomas Baumgartner
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Paul Klauser
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
- Department of Psychiatry, Service of Child and Adolescent Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Martine Cleusix
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
| | - Raoul Jenni
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
| | - Patric Hagmann
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Philippe Conus
- Department of Psychiatry, Service of General Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Kim Q Do
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
| | - Meritxell Bach Cuadra
- Medical Image Analysis Laboratory (MIAL), Centre d’Imagerie BioMédicale (CIBM), Switzerland
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Philipp S Baumann
- Department of Psychiatry, Service of General Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Pascal Steullet
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
| |
Collapse
|
6
|
Avery SN, Huang AS, Sheffield JM, Rogers BP, Vandekar S, Anticevic A, Woodward ND. Development of Thalamocortical Structural Connectivity in Typically Developing and Psychosis Spectrum Youths. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:782-792. [PMID: 34655804 PMCID: PMC9008075 DOI: 10.1016/j.bpsc.2021.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Thalamocortical white matter connectivity is disrupted in psychosis and is hypothesized to play a role in its etiology and associated cognitive impairment. Attenuated cognitive symptoms often begin in adolescence, during a critical phase of white matter and cognitive development. However, little is known about the development of thalamocortical white matter connectivity and its association with cognition. METHODS This study characterized effects of age, sex, psychosis symptomatology, and cognition in thalamocortical networks in a large sample of youths (N = 1144, ages 8-22 years, 46% male) from the Philadelphia Neurodevelopmental Cohort, which included 316 typically developing youths, 330 youths on the psychosis spectrum, and 498 youths with other psychopathology. Probabilistic tractography was used to quantify percent total connectivity between the thalamus and six cortical regions and assess microstructural properties (i.e., fractional anisotropy) of thalamocortical white matter tracts. RESULTS Overall, percent total connectivity of the thalamus was weakly associated with age and was not associated with psychopathology or cognition. In contrast, fractional anisotropy of all thalamocortical tracts increased significantly with age, was generally higher in males than females, and was lowest in youths on the psychosis spectrum. Fractional anisotropy of tracts linking the thalamus to prefrontal and posterior parietal cortices was related to better cognitive function across subjects. CONCLUSIONS By characterizing the pattern of typical development and alterations in those at risk for psychotic disorders, this study provides a foundation for further conceptualization of thalamocortical white matter microstructure as a marker of neurodevelopment supporting cognition and an important risk marker for psychosis.
Collapse
Affiliation(s)
- Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Anna S Huang
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Sciences, Nashville, Tennessee
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
7
|
Abstract
CSF1R-related leukoencephalopathy is a rare white-matter encephalopathy characterized by motor and neuropsychiatric symptoms due to colony-stimulating factor 1 receptor (CSF1R) gene mutation. Few studies have investigated the intrinsic brain alternations of patients with CSF1R-related leukoencephalopathy. We aim to evaluate the structural and functional changes in those patients. Seven patients with CSF1R-related leukoencephalopathy and 15 age-matched healthy controls (HCs) underwent multimodal magnetic resonance imaging (MRI), including high-resolution T1-weighted imaging, T2-weighted fluid attenuated inversion recovery imaging, diffusion-weighted imaging, diffusion kurtosis imaging (DKI) and resting-state functional MRI. First, to detect structural alterations, the gray matter volumes were compared using voxel-based morphometry analyses. Second, DKI parametric maps were used to evaluate the white matter (WM) connectivity changes. Finally, we constructed a seed-based resting-state functional connectivity matrix based on 90 regions of interest and examined the functional network changes of CSF1R-related leukoencephalopathy. Unlike the HCs, patients with CSF1R-related leukoencephalopathy predominantly had morphological atrophy in the bilateral thalamus and left hippocampus. In addition, the abnormal diffusivity was mainly distributed in the splenium of the corpus callosum, periventricular regions, centrum semiovale, subcortical U-fibers and midline cortex structures. Moreover, the patients had significantly reduced functional connectivity between the bilateral caudate nucleus and their contralateral hippocampus. Therefore, in addition to hyperintensity on the T2-weighted images, CSF1R-related leukoencephalopathy also showed abnormal structural and functional alterations, including subcortical atrophy and reduced functional connectivity, as well as altered diffuse parameters in the WM and subcortical regions. These findings expand our understanding of the potential pathophysiologic mechanism behind this hereditary disease.
Collapse
|
8
|
Steullet P. Thalamus-related anomalies as candidate mechanism-based biomarkers for psychosis. Schizophr Res 2020; 226:147-157. [PMID: 31147286 DOI: 10.1016/j.schres.2019.05.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
Identification of reliable biomarkers of prognosis in subjects with high risk to psychosis is an essential step to improve care and treatment of this population of help-seekers. Longitudinal studies highlight some clinical criteria, cognitive deficits, patterns of gray matter alterations and profiles of blood metabolites that provide some levels of prediction regarding the conversion to psychosis. Further effort is warranted to validate these results and implement these types of approaches in clinical settings. Such biomarkers may however fall short in entangling the biological mechanisms underlying the disease progression, an essential step in the development of novel therapies. Circuit-based approaches, which map on well-identified cerebral functions, could meet these needs. Converging evidence indicates that thalamus abnormalities are central to schizophrenia pathophysiology, contributing to clinical symptoms, cognitive and sensory deficits. This review highlights the various thalamus-related anomalies reported in individuals with genetic risks and in the different phases of the disorder, from prodromal to chronic stages. Several anomalies are potent endophenotypes, while others exist in clinical high-risk subjects and worsen in those who convert to full psychosis. Aberrant functional coupling between thalamus and cortex, low glutamate content and readouts from resting EEG carry predictive values for transition to psychosis or functional outcome. In this context, thalamus-related anomalies represent a valuable entry point to tackle circuit-based alterations associated with the emergence of psychosis. This review also proposes that longitudinal surveys of neuroimaging, EEG readouts associated with circuits encompassing the mediodorsal, pulvinar in high-risk individuals could unveil biological mechanisms contributing to this psychiatric disorder.
Collapse
Affiliation(s)
- Pascal Steullet
- Center of Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Site de Cery, 1008 Prilly-Lausanne, Switzerland.
| |
Collapse
|
9
|
Alemán-Gómez Y, Najdenovska E, Roine T, Fartaria MJ, Canales-Rodríguez EJ, Rovó Z, Hagmann P, Conus P, Do KQ, Klauser P, Steullet P, Baumann PS, Bach Cuadra M. Partial-volume modeling reveals reduced gray matter in specific thalamic nuclei early in the time course of psychosis and chronic schizophrenia. Hum Brain Mapp 2020; 41:4041-4061. [PMID: 33448519 PMCID: PMC7469814 DOI: 10.1002/hbm.25108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022] Open
Abstract
The structural complexity of the thalamus, due to its mixed composition of gray and white matter, make it challenging to disjoint and quantify each tissue contribution to the thalamic anatomy. This work promotes the use of partial‐volume‐based over probabilistic‐based tissue segmentation approaches to better capture thalamic gray matter differences between patients at different stages of psychosis (early and chronic) and healthy controls. The study was performed on a cohort of 23 patients with schizophrenia, 41 with early psychosis and 69 age and sex‐matched healthy subjects. Six tissue segmentation approaches were employed to obtain the gray matter concentration/probability images. The statistical tests were applied at three different anatomical scales: whole thalamus, thalamic subregions and voxel‐wise. The results suggest that the partial volume model estimation of gray matter is more sensitive to detect atrophies within the thalamus of patients with psychosis. However all the methods detected gray matter deficit in the pulvinar, particularly in early stages of psychosis. This study demonstrates also that the gray matter decrease varies nonlinearly with age and between nuclei. While a gray matter loss was found in the pulvinar of patients in both stages of psychosis, reduced gray matter in the mediodorsal was only observed in early psychosis subjects. Finally, our analyses point to alterations in a sub‐region comprising the lateral posterior and ventral posterior nuclei. The obtained results reinforce the hypothesis that thalamic gray matter assessment is more reliable when the tissues segmentation method takes into account the partial volume effect.
Collapse
Affiliation(s)
- Yasser Alemán-Gómez
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Switzerland
| | - Elena Najdenovska
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Switzerland.,Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Timo Roine
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Switzerland
| | - Mário João Fartaria
- Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Switzerland.,Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Erick J Canales-Rodríguez
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,FIDMAG Germanes Hospitalàries Research Foundation, Sant Boi de Llobregat, Barcelona, Spain
| | - Zita Rovó
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Philipp S Baumann
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Service of General Psychiatry, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Meritxell Bach Cuadra
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Switzerland.,Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
10
|
Abstract
Throughout evolution the frontal lobes have progressively acquired a central role in most aspects of cognition and behavior. In humans, frontal lobe functions are conditional on the development of an intricate set of short- and long-range connections that guarantee direct access to sensory information and control over regions dedicated to planning and motor execution. Here the frontal cortical anatomy and the major connections that constitute the local and extended frontal connectivity are reviewed in the context of diffusion tractography studies, contemporary models of frontal lobe functions, and clinical syndromes. A particular focus of this chapter is the use of comparative anatomy and neurodevelopmental data to address the question of how frontal networks evolved and what this signified for unique human abilities.
Collapse
Affiliation(s)
- Marco Catani
- NatBrainLab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
11
|
Kuo SS, Pogue-Geile MF. Variation in fourteen brain structure volumes in schizophrenia: A comprehensive meta-analysis of 246 studies. Neurosci Biobehav Rev 2019; 98:85-94. [PMID: 30615934 PMCID: PMC6401304 DOI: 10.1016/j.neubiorev.2018.12.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Despite hundreds of structural MRI studies documenting smaller brain volumes on average in schizophrenia compared to controls, little attention has been paid to group differences in the variability of brain volumes. Examination of variability may help interpret mean group differences in brain volumes and aid in better understanding the heterogeneity of schizophrenia. Variability in 246 MRI studies was meta-analyzed for 13 structures that have shown medium to large mean effect sizes (Cohen's d≥0.4): intracranial volume, total brain volume, lateral ventricles, third ventricle, total gray matter, frontal gray matter, prefrontal gray matter, temporal gray matter, superior temporal gyrus gray matter, planum temporale, hippocampus, fusiform gyrus, insula; and a control structure, caudate nucleus. No significant differences in variability in cortical/subcortical volumes were detected in schizophrenia relative to controls. In contrast, increased variability was found in schizophrenia compared to controls for intracranial and especially lateral and third ventricle volumes. These findings highlight the need for more attention to ventricles and detailed analyses of brain volume distributions to better elucidate the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Susan S Kuo
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| | - Michael F Pogue-Geile
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA; Department of Psychology and Department of Psychiatry, University of Pittsburgh, 4207 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| |
Collapse
|
12
|
Lyall AE, Rathi Y, Kubicki M, Shenton ME. Diffusion Magnetic Resonance Imaging Advances the Study of Nuclei-Specific Thalamocortical Connectivity in Early Stage Psychosis. Biol Psychiatry 2019; 85:10-12. [PMID: 30527208 DOI: 10.1016/j.biopsych.2018.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Havard Medical School, Boston, Massachusetts; Department of Psychiatry, Massachussetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Havard Medical School, Boston, Massachusetts; Department of Radiology, Brigham and Women's Hospital, Havard Medical School, Boston, Massachusetts; Department of Psychiatry, Massachussetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Havard Medical School, Boston, Massachusetts; Department of Radiology, Brigham and Women's Hospital, Havard Medical School, Boston, Massachusetts; Department of Psychiatry, Massachussetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Havard Medical School, Boston, Massachusetts; Department of Radiology, Brigham and Women's Hospital, Havard Medical School, Boston, Massachusetts; Department of Psychiatry, Massachussetts General Hospital, Harvard Medical School, Boston, Massachusetts; Veterans Affairs Boston Healthcare System, Boston, Massachusetts.
| |
Collapse
|
13
|
Asmal L, du Plessis S, Vink M, Fouche JP, Chiliza B, Emsley R. Insight and white matter fractional anisotropy in first-episode schizophrenia. Schizophr Res 2017; 183:88-94. [PMID: 27887780 DOI: 10.1016/j.schres.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
Abstract
Impaired insight is a hallmark feature of schizophrenia. Structural studies implicate predominantly prefrontal, cingulate, cuneus/precuneus, and inferior temporal brain regions. The cortical midline structures (CMS) are also implicated in functional studies primarily through self-reflective processing tasks. However, few studies have explored the relationship between white matter tracts and insight in schizophrenia, and none in first-episode schizophrenia (FES). Here, we examined for fractional anisotropy (FA) differences in 89 minimally treated FES patients and 98 matched controls, and identified those FA differences associated with impaired clinical insight in patients. We found widespread FA reduction in FES patients compared to controls. Poorer insight in patients was predicted by lower FA values in a number of white matter tracts with a predilection for tracts associated with cortical midline structures (fronto-occipital, cingulate, cingulate hippocampus, uncinate, anterior corona radiata), and more severe depressive symptoms. The association between FA abnormalities and insight was most robust for the awareness of symptoms and illness awareness domains. Our study implicates a network of tracts involved in impaired insight in schizophrenia with a predilection for the CMS. This study is a first step in delineating the white matter tracts involved in insight impairment in schizophrenia prior to chronicity.
Collapse
Affiliation(s)
- Laila Asmal
- Stellenbosch University, Faculty of Medicine and Health Sciences, Psychiatry, PO Box 19063, Tygerberg, Cape Town ZA 7505, South Africa.
| | - Stefan du Plessis
- Stellenbosch University, Faculty of Medicine and Health Sciences, Psychiatry, PO Box 19063, Tygerberg, Cape Town ZA 7505, South Africa
| | - Matthijs Vink
- Departments of Developmental and Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town ZA 8001, South Africa
| | - Bonginkosi Chiliza
- Stellenbosch University, Faculty of Medicine and Health Sciences, Psychiatry, PO Box 19063, Tygerberg, Cape Town ZA 7505, South Africa
| | - Robin Emsley
- Stellenbosch University, Faculty of Medicine and Health Sciences, Psychiatry, PO Box 19063, Tygerberg, Cape Town ZA 7505, South Africa
| |
Collapse
|
14
|
Age-related differences in the structural complexity of subcortical and ventricular structures. Neurobiol Aging 2016; 50:87-95. [PMID: 27939959 DOI: 10.1016/j.neurobiolaging.2016.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 02/05/2023]
Abstract
It has been well established that the volume of several subcortical structures decreases in relation to age. Different metrics of cortical structure (e.g., volume, thickness, surface area, and gyrification) have been shown to index distinct characteristics of interindividual differences; thus, it is important to consider the relation of age to multiple structural measures. Here, we compare age-related differences in subcortical and ventricular volume to those differences revealed with a measure of structural complexity, quantified as fractal dimensionality. Across 3 large data sets, totaling nearly 900 individuals across the adult lifespan (aged 18-94 years), we found greater age-related differences in complexity than volume for the subcortical structures, particularly in the caudate and thalamus. The structural complexity of ventricular structures was not more strongly related to age than volume. These results demonstrate that considering shape-related characteristics improves sensitivity to detect age-related differences in subcortical structures.
Collapse
|
15
|
Hahn C, Lee CU, Won WY, Joo SH, Lim HK. Thalamic Shape and Cognitive Performance in Amnestic Mild Cognitive Impairment. Psychiatry Investig 2016; 13:504-510. [PMID: 27757128 PMCID: PMC5067344 DOI: 10.4306/pi.2016.13.5.504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/20/2015] [Accepted: 12/08/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study aimed to investigate thalamic shape alterations and their relationships with various episodic memory impairments in subjects with amnestic mild cognitive impairment (aMCI). METHODS We compared volumes and morphological alterations of the thalamus between aMCI subjects and healthy controls. In addition, we investigated the correlation between thalamic deformations and various memory impairments in aMCI subjects using a comprehensive neuropsychological battery. RESULTS The normalized left thalamic volumes of the aMCI group were significantly smaller than those of the healthy control group (p<0.0001). aMCI subjects exhibited significant thalamic deformations in the left thalamic dorso-medial and antero-medial areas compared with healthy individuals. CERAD-K Word List Memory scores were significantly correlated with the left dorso-medial areas in aMCI subjects. There were no significant correlations between verbal fluency, Boston naming test, constructional praxis, Word List Recognition, and Visuospatial Recall scores and thalamic shape in aMCI subjects. Verbal delayed recall scores were also significantly correlated with the left dorso-medial areas in the aMCI group. CONCLUSION Structural alterations in the thalamic deformations in the left dorso-medial and antero-medial areas might be core underlying neurobiological mechanisms of thalamic dysfunction related to Word List Memory and delayed verbal recall in individuals with aMCI.
Collapse
Affiliation(s)
- Changtae Hahn
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Chang-Uk Lee
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Wang Yeon Won
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Soo-Hyun Joo
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| |
Collapse
|
16
|
Zhao G, Denisova K, Sehatpour P, Long J, Gui W, Qiao J, Javitt DC, Wang Z. Fractal Dimension Analysis of Subcortical Gray Matter Structures in Schizophrenia. PLoS One 2016; 11:e0155415. [PMID: 27176232 PMCID: PMC4866699 DOI: 10.1371/journal.pone.0155415] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
A failure of adaptive inference—misinterpreting available sensory information for appropriate perception and action—is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D) fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci) in subcortical gray matter (GM) in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD), a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth) surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales) of subcortical GM in this disorder. Probabilistic (entropy-based) information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR) images in chronic patients with schizophrenia (n = 19) and age-matched healthy controls (n = 19) (age ranges: patients, 22.7–54.3 and healthy controls, 24.9–51.6 years old). We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07–2.18 vs. median: 2.1730, range: 2.15–2.23, p<0.001; Cohen’s effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0)), the right hippocampus (median: 2.1430, range: 2.05–2.19 vs. median: 2.1760, range: 2.12–2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1)), as well as left thalamus (median: 2.4230, range: 2.40–2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473)) in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM surface detected in schizophrenia.
Collapse
Affiliation(s)
- Guihu Zhao
- School of Information Science and Engineering, Central South University, Changsha 410083, China
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
| | - Kristina Denisova
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
- Sackler Institute for Psychobiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Pejman Sehatpour
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America
| | - Jun Long
- School of Information Science and Engineering, Central South University, Changsha 410083, China
- * E-mail: ; ; (ZW); (JL)
| | - Weihua Gui
- School of Information Science and Engineering, Central South University, Changsha 410083, China
| | - Jianping Qiao
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Daniel C. Javitt
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America
| | - Zhishun Wang
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
- * E-mail: ; ; (ZW); (JL)
| |
Collapse
|
17
|
Bernard JA, Orr JM, Mittal VA. Abnormal hippocampal-thalamic white matter tract development and positive symptom course in individuals at ultra-high risk for psychosis. NPJ SCHIZOPHRENIA 2015; 1. [PMID: 26120591 PMCID: PMC4479398 DOI: 10.1038/npjschz.2015.9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background/Objectives: Abnormal development of the hippocampus has been reported in adolescents at ultra-high risk (UHR) for psychosis and thalamic abnormalities have been found. However, the white matter connections between the hippocampus and the thalamus have not been studied. The connections between these regions are of key importance to our understanding of the pathophysiology of psychosis. Methods: Twenty-six UHR and 21 healthy age-matched controls were tested at a baseline assessment and 12 months later. Symptoms were assessed at both the time points and all the participants underwent diffusion tensor imaging scans. We used tractography to trace the white matter connections in each individual between the thalamus and hippocampus and then extracted fractional anisotropy (FA) to assess white matter structural integrity. Results: There was a significant group by time interaction indicating that FA decreased in UHR, and increased in controls over 12 months. Across both groups, baseline FA of the thalamic–hippocampal tract was predictive of positive symptoms at 12-month follow-up. Critically, this pattern remained significant in UHR individual group alone. At baseline, those with higher FA, indicative of abnormal white matter development, show higher positive symptoms 1 year later. Conclusions: Here, we provide evidence to indicate that there are differences in white matter development in hippocampal–thalamic connections, both of which are important nodes in networks associated with schizophrenia. Furthermore, abnormal developmental patterns in UHR individuals are associated with positive symptom course.
Collapse
Affiliation(s)
- Jessica A Bernard
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Joseph M Orr
- Institute for Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
| | - Vijay A Mittal
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA ; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
18
|
Karbasforoushan H, Duffy B, Blackford JU, Woodward ND. Processing speed impairment in schizophrenia is mediated by white matter integrity. Psychol Med 2015; 45:109-120. [PMID: 25066842 PMCID: PMC5297385 DOI: 10.1017/s0033291714001111] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Processing speed predicts functional outcome and is a potential endophenotype for schizophrenia. Establishing the neural basis of processing speed impairment may inform the treatment and etiology of schizophrenia. Neuroimaging investigations in healthy subjects have linked processing speed to brain anatomical connectivity. However, the relationship between processing speed impairment and white matter (WM) integrity in schizophrenia is unclear. METHOD Individuals with schizophrenia and healthy subjects underwent diffusion tensor imaging (DTI) and completed a brief neuropsychological assessment that included measures of processing speed, verbal learning, working memory and executive functioning. Group differences in WM integrity, inferred from fractional anisotropy (FA), were examined throughout the brain and the hypothesis that processing speed impairment in schizophrenia is mediated by diminished WM integrity was tested. RESULTS WM integrity of the corpus callosum, cingulum, superior and inferior frontal gyri, and precuneus was reduced in schizophrenia. Average FA in these regions mediated group differences in processing speed but not in other cognitive domains. Diminished WM integrity in schizophrenia was accounted for, in large part, by individual differences in processing speed. CONCLUSIONS Cognitive impairment in schizophrenia was mediated by reduced WM integrity. This relationship was strongest for processing speed because deficits in working memory, verbal learning and executive functioning were not mediated by WM integrity. Larger sample sizes may be required to detect more subtle mediation effects in these domains. Interventions that preserve WM integrity or ameliorate WM disruption may enhance processing speed and functional outcome in schizophrenia.
Collapse
Affiliation(s)
- H Karbasforoushan
- Psychotic Disorders and Psychiatric Neuroimaging Programs, Department of Psychiatry,Vanderbilt University School of Medicine,Nashville, TN,USA
| | - B Duffy
- Psychotic Disorders and Psychiatric Neuroimaging Programs, Department of Psychiatry,Vanderbilt University School of Medicine,Nashville, TN,USA
| | - J U Blackford
- Psychotic Disorders and Psychiatric Neuroimaging Programs, Department of Psychiatry,Vanderbilt University School of Medicine,Nashville, TN,USA
| | - N D Woodward
- Psychotic Disorders and Psychiatric Neuroimaging Programs, Department of Psychiatry,Vanderbilt University School of Medicine,Nashville, TN,USA
| |
Collapse
|
19
|
Wheeler AL, Voineskos AN. A review of structural neuroimaging in schizophrenia: from connectivity to connectomics. Front Hum Neurosci 2014; 8:653. [PMID: 25202257 PMCID: PMC4142355 DOI: 10.3389/fnhum.2014.00653] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/05/2014] [Indexed: 11/13/2022] Open
Abstract
In patients with schizophrenia neuroimaging studies have revealed global differences with some brain regions showing focal abnormalities. Examining neurocircuitry, diffusion-weighted imaging studies have identified altered structural integrity of white matter in frontal and temporal brain regions and tracts such as the cingulum bundles, uncinate fasciculi, internal capsules and corpus callosum associated with the illness. Furthermore, structural co-variance analyses have revealed altered structural relationships among regional morphology in the thalamus, frontal, temporal and parietal cortices in schizophrenia patients. The distributed nature of these abnormalities in schizophrenia suggests that multiple brain circuits are impaired, a neural feature that may be better addressed with network level analyses. However, even with the advent of these newer analyses, a large amount of variability in findings remains, likely partially due to the considerable heterogeneity present in this disorder.
Collapse
Affiliation(s)
- Anne L Wheeler
- Kimel Family Translational Imaging Genetics Laboratory, Centre for Addiction and Mental Health, Research Imaging Centre Toronto, ON, Canada ; Department of Psychiatry, University of Toronto Toronto, ON, Canada
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging Genetics Laboratory, Centre for Addiction and Mental Health, Research Imaging Centre Toronto, ON, Canada ; Department of Psychiatry, University of Toronto Toronto, ON, Canada
| |
Collapse
|
20
|
Smith MJ, Cobia DJ, Wang L, Alpert KI, Cronenwett WJ, Goldman MB, Mamah D, Barch DM, Breiter HC, Csernansky JG. Cannabis-related working memory deficits and associated subcortical morphological differences in healthy individuals and schizophrenia subjects. Schizophr Bull 2014; 40:287-99. [PMID: 24342821 PMCID: PMC3932091 DOI: 10.1093/schbul/sbt176] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cannabis use is associated with working memory (WM) impairments; however, the relationship between cannabis use and WM neural circuitry is unclear. We examined whether a cannabis use disorder (CUD) was associated with differences in brain morphology between control subjects with and without a CUD and between schizophrenia subjects with and without a CUD, and whether these differences related to WM and CUD history. Subjects group-matched on demographics included 44 healthy controls, 10 subjects with a CUD history, 28 schizophrenia subjects with no history of substance use disorders, and 15 schizophrenia subjects with a CUD history. Large-deformation high-dimensional brain mapping with magnetic resonance imaging was used to obtain surface-based representations of the striatum, globus pallidus, and thalamus, compared across groups, and correlated with WM and CUD history. Surface maps were generated to visualize morphological differences. There were significant cannabis-related parametric decreases in WM across groups. Similar cannabis-related shape differences were observed in the striatum, globus pallidus, and thalamus in controls and schizophrenia subjects. Cannabis-related striatal and thalamic shape differences correlated with poorer WM and younger age of CUD onset in both groups. Schizophrenia subjects demonstrated cannabis-related neuroanatomical differences that were consistent and exaggerated compared with cannabis-related differences found in controls. The cross-sectional results suggest that both CUD groups were characterized by WM deficits and subcortical neuroanatomical differences. Future longitudinal studies could help determine whether cannabis use contributes to these observed shape differences or whether they are biomarkers of a vulnerability to the effects of cannabis that predate its misuse.
Collapse
Affiliation(s)
- Matthew J. Smith
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL;,*To whom correspondence should be addressed; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 710 N. Lake Shore Drive, 13th Floor, Abbott Hall, Chicago, IL 60611, US; tel: 1-312-503-2542, fax: 1-312-503-0527, e-mail:
| | - Derin J. Cobia
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL;,Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kathryn I. Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Will J. Cronenwett
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Morris B. Goldman
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Daniel Mamah
- Department of Psychiatry, Washington University, St Louis, MO
| | | | - Hans C. Breiter
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL;,Warren Wright Adolescent Center, Northwestern University Feinberg School of Medicine, Chicago, IL,Denotes shared senior authorship on this article
| | - John G. Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL;,Denotes shared senior authorship on this article
| |
Collapse
|
21
|
Thong JYJ, Qiu A, Sum MY, Kuswanto CN, Tuan TA, Donohoe G, Sitoh YY, Sim K. Effects of the neurogranin variant rs12807809 on thalamocortical morphology in schizophrenia. PLoS One 2013; 8:e85603. [PMID: 24386483 PMCID: PMC3875583 DOI: 10.1371/journal.pone.0085603] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/28/2013] [Indexed: 12/31/2022] Open
Abstract
Although the genome wide supported psychosis susceptibility neurogranin (NRGN) gene is expressed in human brains, it is unclear how it impacts brain morphology in schizophrenia. We investigated the influence of NRGN rs12807809 on cortical thickness, subcortical volumes and shapes in patients with schizophrenia. One hundred and fifty six subjects (91 patients with schizophrenia and 65 healthy controls) underwent structural MRI scans and their blood samples were genotyped. A brain mapping algorithm, large deformation diffeomorphic metric mapping, was used to perform group analysis of subcortical shapes and cortical thickness. Patients with risk TT genotype were associated with widespread cortical thinning involving frontal, parietal and temporal cortices compared with controls with TT genotype. No volumetric difference in subcortical structures (hippocampus, thalamus, amygdala, basal ganglia) was observed between risk TT genotype in patients and controls. However, patients with risk TT genotype were associated with thalamic shape abnormalities involving regions related to pulvinar and medial dorsal nuclei. Our results revealed the influence of the NRGN gene on thalamocortical morphology in schizophrenia involving widespread cortical thinning and thalamic shape abnormalities. These findings help to clarify underlying NRGN mediated pathophysiological mechanisms involving cortical-subcortical brain networks in schizophrenia.
Collapse
Affiliation(s)
- Jamie Yu Jin Thong
- Department of Bioengineering, National University of Singapore, Singapore
| | - Anqi Qiu
- Department of Bioengineering, National University of Singapore, Singapore
- Clinical Imaging Research Center, National University of Singapore, Singapore
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore
- * E-mail:
| | - Min Yi Sum
- Research Division, Institute of Mental Health, Singapore
| | | | - Ta Ahn Tuan
- Department of Bioengineering, National University of Singapore, Singapore
| | - Gary Donohoe
- Department of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Republic of Ireland
| | - Yih Yian Sitoh
- Department of Neuroradiology, National Neuroscience Institute, Singapore
| | - Kang Sim
- Research Division, Institute of Mental Health, Singapore
- Department of General Psychiatry, Institute of Mental Health, Singapore
| |
Collapse
|
22
|
Abstract
Freely available automated MR image analysis techniques are being increasingly used to investigate neuroanatomical abnormalities in patients with neurological disorders. It is important to assess the specificity and validity of automated measurements of structure volumes with respect to reliable manual methods that rely on human anatomical expertise. The thalamus is widely investigated in many neurological and neuropsychiatric disorders using MRI, but thalamic volumes are notoriously difficult to quantify given the poor between-tissue contrast at the thalamic gray-white matter interface. In the present study we investigated the reliability of automatically determined thalamic volume measurements obtained using FreeSurfer software with respect to a manual stereological technique on 3D T1-weighted MR images obtained from a 3 T MR system. Further to demonstrating impressive consistency between stereological and FreeSurfer volume estimates of the thalamus in healthy subjects and neurological patients, we demonstrate that the extent of agreeability between stereology and FreeSurfer is equal to the agreeability between two human anatomists estimating thalamic volume using stereological methods. Using patients with juvenile myoclonic epilepsy as a model for thalamic atrophy, we also show that both automated and manual methods provide very similar ratios of thalamic volume loss in patients. This work promotes the use of FreeSurfer for reliable estimation of global volume in healthy and diseased thalami.
Collapse
|
23
|
Samartzis L, Dima D, Fusar-Poli P, Kyriakopoulos M. White Matter Alterations in Early Stages of Schizophrenia: A Systematic Review of Diffusion Tensor Imaging Studies. J Neuroimaging 2013; 24:101-10. [DOI: 10.1111/j.1552-6569.2012.00779.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/18/2012] [Accepted: 10/06/2012] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lampros Samartzis
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
- Athalassa Psychiatric Hospital; Cyprus Mental Health Services; Nicosia Cyprus
| | - Danai Dima
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
| | - Paolo Fusar-Poli
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
| | - Marinos Kyriakopoulos
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
- National and Specialist Children's Inpatient Unit; South London and Maudsley NHS Foundation Trust; London UK
| |
Collapse
|
24
|
Crail-Melendez D, Atriano-Mendieta C, Carrillo-Meza R, Ramirez-Bermudez J. Schizophrenia-like psychosis associated with right lacunar thalamic infarct. Neurocase 2013; 19:22-6. [PMID: 22494316 DOI: 10.1080/13554794.2011.654211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Thalamic dysfunction has been associated with schizophrenia and other psychotic disorders. We describe an adult patient with a lacunar infarct in the posterior region of the right thalamus exhibiting a paranoid schizophrenia-like psychosis as the only clinical manifestation. Neuropsychological assessment showed alterations in visuospatial memory and executive functions at follow up. This case highlights the role of information processing by the thalamus in the development of delusions. We suggest that dysfunction of the right mediodorsal and pulvinar thalamic nuclei disrupts both thalamic sensory processing and thalamo-prefrontal circuits mediating belief evaluation, leading to delusional beliefs.
Collapse
Affiliation(s)
- D Crail-Melendez
- Department of Neuropsychiatry, National Institute of Neurology and Neurosurgery, Mexico City, Mexico.
| | | | | | | |
Collapse
|
25
|
Danivas V, Kalmady SV, Venkatasubramanian G, Gangadhar BN. Thalamic shape abnormalities in antipsychotic naïve schizophrenia. Indian J Psychol Med 2013; 35:34-8. [PMID: 23833340 PMCID: PMC3701357 DOI: 10.4103/0253-7176.112198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neurodevelopmental hypothesis of schizophrenia states abnormal pruning as one of the pathogenetic mechanism in schizophrenia. Though thalamic volume abnormalities have been documented, the shape differences of thalamus in antipsychotic-free schizophrenia in comparison with age- and sex-matched healthy volunteers need validation. MATERIALS AND METHODS We examined antipsychotic naïve schizophrenia patients (n=60) and age- and sex-matched healthy volunteers (n=44). The thalamic shape abnormalities were analyzed from their coded structural magnetic resonance imaging (MRI) data using three-dimensional automated image analysis software, FMRIB's (Oxford Center for the functional MRI of the brain) tools-FIRST (FMRIB's Integrated Registration and Segmentation Tool) by creating deformable mesh model. Correlation with the psychopathology scores was carried out using F-statistics. RESULTS Patients with schizophrenia showed significant inward deformations in the regions corresponding to anterior, ventromedial, mediodorsal, and pulvinar nuclei. There was a direct correlation between negative syndrome score and the deformation in the right mediodorsal and right pulvinar nuclei. CONCLUSION The inward deformations of thalamus in antipsychotic naive schizophrenia patients correspond to those nuclei which have reciprocal connections with frontal, superior temporal, and anterior cingulate regions and support the neurodevelopmental hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Vijay Danivas
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India ; Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, Bangalore, Karnataka, India
| | | | | | | |
Collapse
|
26
|
Guo W, Liu F, Liu Z, Gao K, Xiao C, Chen H, Zhao J. Right lateralized white matter abnormalities in first-episode, drug-naive paranoid schizophrenia. Neurosci Lett 2012; 531:5-9. [PMID: 23022507 DOI: 10.1016/j.neulet.2012.09.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 11/25/2022]
Abstract
Numerous studies in first-episode schizophrenia suggest the involvement of white matter (WM) abnormalities in multiple regions underlying the pathogenesis of this condition. However, there has never been a neuroimaging study in patients with first-episode, drug-naive paranoid schizophrenia by using tract-based spatial statistics (TBSS) method. Here, we used diffusion tensor imaging (DTI) with TBSS method to investigate the brain WM integrity in patients with first-episode, drug-naive paranoid schizophrenia. Twenty patients with first-episode, drug-naive paranoid schizophrenia and 26 healthy subjects matched with age, gender, and education level were scanned with DTI. An automated TBSS approach was employed to analyze the data. Voxel-wise statistics revealed that patients with paranoid schizophrenia had decreased fractional anisotropy (FA) values in the right superior longitudinal fasciculus (SLF) II, the right fornix, the right internal capsule, and the right external capsule compared to healthy subjects. Patients did not have increased FA values in any brain regions compared to healthy subjects. There was no correlation between the FA values in any brain regions and patient demographics and the severity of illness. Our findings suggest right-sided alterations of WM integrity in the WM tracts of cortical and subcortical regions may play an important role in the pathogenesis of paranoid schizophrenia.
Collapse
Affiliation(s)
- Wenbin Guo
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan 410011, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Jones DK, Knösche TR, Turner R. White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. Neuroimage 2012; 73:239-54. [PMID: 22846632 DOI: 10.1016/j.neuroimage.2012.06.081] [Citation(s) in RCA: 1740] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 06/08/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022] Open
Abstract
Diffusion-weighted MRI (DW-MRI) has been increasingly used in imaging neuroscience over the last decade. An early form of this technique, diffusion tensor imaging (DTI) was rapidly implemented by major MRI scanner companies as a scanner selling point. Due to the ease of use of such implementations, and the plausibility of some of their results, DTI was leapt on by imaging neuroscientists who saw it as a powerful and unique new tool for exploring the structural connectivity of human brain. However, DTI is a rather approximate technique, and its results have frequently been given implausible interpretations that have escaped proper critique and have appeared misleadingly in journals of high reputation. In order to encourage the use of improved DW-MRI methods, which have a better chance of characterizing the actual fiber structure of white matter, and to warn against the misuse and misinterpretation of DTI, we review the physics of DW-MRI, indicate currently preferred methodology, and explain the limits of interpretation of its results. We conclude with a list of 'Do's and Don'ts' which define good practice in this expanding area of imaging neuroscience.
Collapse
Affiliation(s)
- Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | | | | |
Collapse
|
28
|
Kuswanto CN, Teh I, Lee TS, Sim K. Diffusion tensor imaging findings of white matter changes in first episode schizophrenia: a systematic review. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2012; 10:13-24. [PMID: 23429992 PMCID: PMC3569158 DOI: 10.9758/cpn.2012.10.1.13] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/19/2012] [Accepted: 03/28/2012] [Indexed: 01/12/2023]
Abstract
Earlier structural magnetic resonance imaging in schizophrenia have noted smaller white matter volumes in diverse brain regions and recent diffusion tensor imaging (DTI) studies have allowed better elucidation of changes in brain white matter integrity within the illness. As white matter abnormalities have been reported to occur early in the course of schizophrenia, we systematically review extant DTI studies of anomalies of white matter integrity in first episode schizophrenia (FES) up till October 2011. Overall, disruptions of white matter integrity were found in the cortical, subcortical brain regions and white matter associative and commissural tracts, suggesting that changes of cortical-subcortical white matter integrity were found at an early stage of the disorder. These changes in white matter integrity were correlated with specific cognitive deficits (verbal and spatial working memory) as well as psychopathology (positive more than negative symptoms) in patients with FES. The correlation of these white matter integrity changes with cognitive and phenomenological factors may shed light on neurobiological substrates underlying these clinical manifestations. Future studies need to validate these findings in larger samples of subjects and in different populations as well as chart the progress of these cerebral white matter changes over time so as to better appreciate their trajectory with illness course, treatment and chronicity.
Collapse
|
29
|
Hirjak D, Wolf RC, Stieltjes B, Seidl U, Schröder J, Thomann PA. Neurological soft signs and subcortical brain morphology in recent onset schizophrenia. J Psychiatr Res 2012; 46:533-9. [PMID: 22316638 DOI: 10.1016/j.jpsychires.2012.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND Minor motor and sensory deficits or neurological soft signs (NSS) are frequently found in patients with schizophrenia at any stage of their illness. The thalamus and basal ganglia are accepted as being important for both motor control and integration of sensory input. However, whether NSS are related to alterations of these brain regions remains controversial. METHOD Twenty patients with recent onset schizophrenia were investigated using high-resolution magnetic resonance imaging (MRI) at 3 Tesla. NSS were examined on the Heidelberg Scale after remission of acute symptoms and related to both volumetric and shape measurements of thalamus, caudate nucleus, putamen, and globus pallidus, respectively. Age, education, medication and duration of illness were considered as potential confounders. RESULTS NSS were associated with structural alterations predominantly in the thalamus, the left caudate nucleus, and in the right globus pallidus. According to shape analyses these associations referred to regionally specific morphometric alterations rather than to global atrophy of the respective structures. CONCLUSION Our findings provide new insights into the association of NSS with brain morphometric alterations and lend further support to an involvement of multiple subcortical regions in schizophrenia.
Collapse
Affiliation(s)
- Dusan Hirjak
- Structural Neuroimaging Group, Department of General Psychiatry, University of Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Kim GH, Jeon S, Seo SW, Kim MJ, Kim JH, Roh JH, Shin JS, Kim CH, Im K, Lee JM, Qiu A, Kim ST, Na DL. Topography of cortical thinning areas associated with hippocampal atrophy (HA) in patients with Alzheimer's disease (AD). Arch Gerontol Geriatr 2012; 54:e122-9. [DOI: 10.1016/j.archger.2011.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/05/2011] [Accepted: 10/22/2011] [Indexed: 01/03/2023]
|
31
|
Marenco S, Stein JL, Savostyanova AA, Sambataro F, Tan HY, Goldman AL, Verchinski BA, Barnett AS, Dickinson D, Apud JA, Callicott JH, Meyer-Lindenberg A, Weinberger DR. Investigation of anatomical thalamo-cortical connectivity and FMRI activation in schizophrenia. Neuropsychopharmacology 2012; 37:499-507. [PMID: 21956440 PMCID: PMC3242311 DOI: 10.1038/npp.2011.215] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The purpose of this study was to examine measures of anatomical connectivity between the thalamus and lateral prefrontal cortex (LPFC) in schizophrenia and to assess their functional implications. We measured thalamocortical connectivity with diffusion tensor imaging (DTI) and probabilistic tractography in 15 patients with schizophrenia and 22 age- and sex-matched controls. The relationship between thalamocortical connectivity and prefrontal cortical blood-oxygenation-level-dependent (BOLD) functional activity as well as behavioral performance during working memory was examined in a subsample of 9 patients and 18 controls. Compared with controls, schizophrenia patients showed reduced total connectivity of the thalamus to only one of six cortical regions, the LPFC. The size of the thalamic region with at least 25% of model fibers reaching the LPFC was also reduced in patients compared with controls. The total thalamocortical connectivity to the LPFC predicted working memory task performance and also correlated with LPFC BOLD activation. Notably, the correlation with BOLD activation was accentuated in patients as compared with controls in the ventral LPFC. These results suggest that thalamocortical connectivity to the LPFC is altered in schizophrenia with functional consequences on working memory processing in LPFC.
Collapse
Affiliation(s)
- Stefano Marenco
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA.
| | - Jason L Stein
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Antonina A Savostyanova
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Fabio Sambataro
- Brain Center for Motor and Social Cognition, Italian Institute of Technology, Parma, Italy
| | - Hao-Yang Tan
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Aaron L Goldman
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Beth A Verchinski
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Alan S Barnett
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Dwight Dickinson
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - José A Apud
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Joseph H Callicott
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
| | - Daniel R Weinberger
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| |
Collapse
|
32
|
Waters-Metenier SL, Toulopoulou T. Putative diffusion tensor neuroimaging endophenotypes in schizophrenia: a review of the early evidence. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although schizophrenia has a high heritability, the genetic effects conferring diathesis to schizophrenia are thought to be complex and underlain by multifactorial polygenic inheritance. ‘Endophenotypes’, or ‘intermediate phenotypes’, are narrowed constructs of genetic risk that are assumed to be more proximal to the gene effects in the disease pathway than clinical phenotypes. A current aim in schizophrenia research is to identify promising putative endophenotypes for use in molecular genetics studies. Recently, much of the focus has been on neurocognitive, conventional T1-weighted structural MRI, functional MRI and electrophysiological endophenotypes. Diffusion tensor imaging has emerged as another important structural neuroimaging modality in the aim to identify abnormalities in brain connectivity and diffusivity in schizophrenia, and abnormalities detected via this method may be promising candidate endophenotypes. In this article, we present the first comprehensive review of the early evidence that qualifies diffusion tensor abnormalities as potentially appropriate endophenotypes of schizophrenia.
Collapse
Affiliation(s)
- Sheena Lindsey Waters-Metenier
- Department of Psychosis Studies, King’s College London, King’s Health Partners, Institute of Psychiatry, London SE5 8AF, UK
| | | |
Collapse
|
33
|
Fernández-Espejo D, Junque C, Bernabeu M, Roig-Rovira T, Vendrell P, Mercader JM. Reductions of thalamic volume and regional shape changes in the vegetative and the minimally conscious states. J Neurotrauma 2011; 27:1187-93. [PMID: 20392136 DOI: 10.1089/neu.2010.1297] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The thalamus is known to play a key role in arousal regulation and support of human consciousness. Neuropathological studies have identified thalamic damage as one of the most common abnormalities present in the brains of patients who were in a vegetative state (VS) or a minimally-conscious state (MCS) state at the time of their deaths. Nonetheless, no in vivo studies of thalamic abnormalities in these patients have been conducted. Using high-resolution T1-weighted magnetic resonance images and a novel approach to shape analysis, we investigated thalamic global and regional changes in a sample of patients in a VS or an MCS. Group comparisons and correlations with clinical variables were performed for the total thalamic volume and for each surface vertex. Total thalamic volume was significantly lower in patients than in healthy volunteers. Shape analysis revealed significant bilateral regional atrophy in the dorso-medial body in patients compared to controls; this atrophy was more widespread in VS than in MCS patients. Lower thalamic volume was significantly correlated with worse Disability Rating Scale scores. Shape analysis suggested that the dorso-medial nucleus and the internal medullar lamina were the main regions responsible for this correlation. Our findings suggest that MCS and VS patients present different patterns of regional thalamic abnormalities, and that these differences partially explain their clinical profile.
Collapse
|
34
|
Roh JH, Qiu A, Seo SW, Soon HW, Kim JH, Kim GH, Kim MJ, Lee JM, Na DL. Volume reduction in subcortical regions according to severity of Alzheimer's disease. J Neurol 2011; 258:1013-20. [PMID: 21240517 DOI: 10.1007/s00415-010-5872-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 11/24/2022]
Abstract
We investigated whether there exists a hierarchical vulnerability of subcortical structures with respect to the severity of Alzheimer's disease (AD). A total of 236 subjects (179 with AD and 57 with normal cognition) underwent 1.5-T magnetic resonance (MR) imaging. The volumes of the five subcortical structures (amygdala, thalamus, putamen, globus pallidus, and caudate nucleus) and hippocampus were analyzed using a large deformation diffeomorphic metric mapping algorithm. The volume changes were evaluated according to the Clinical Dementia Rating (CDR). Correlation between the volumes of the subcortical structures and scores of the cognitive domain-specific neuropsychological tests were evaluated. Volume loss of the amygdala occurred even in the very mild stage of AD (CDR 0.5), as did volume loss in the hippocampus. Similar reductions in volume occurred in the thalamus and putamen, however during the mild (CDR 1) and moderate (CDR 2) stages of AD, respectively. The globus pallidus and caudate nucleus remained devoid of changes until the moderate stage of AD (p < 0.01). Volume loss in those subcortical structures correlated with the neuropsychological test scores (p < 0.01). Our results suggest that there is a hierarchical vulnerability in subcortical structures according to the clinical severity of AD and that subcortical volume reductions correlate with cognitive impairment.
Collapse
Affiliation(s)
- Jee Hoon Roh
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong Kangnam-ku, Seoul, 135-710, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Peters BD, Blaas J, de Haan L. Diffusion tensor imaging in the early phase of schizophrenia: what have we learned? J Psychiatr Res 2010; 44:993-1004. [PMID: 20554292 DOI: 10.1016/j.jpsychires.2010.05.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/13/2010] [Accepted: 05/05/2010] [Indexed: 01/08/2023]
Abstract
The dysconnectivity model suggests that disturbed integration of neural communication is central to schizophrenia. The integrity of macro-structural brain circuits can be examined with diffusion tensor imaging (DTI), an MRI application sensitive to microstructural abnormalities of brain white matter. DTI studies in first-episode schizophrenia patients and individuals at high-risk of psychosis can provide insight into the role of structural dysconnectivity in the liability, onset and early course of psychosis. This review discusses (i) views on the role of white matter abnormalities in schizophrenia, (ii) DTI and its application in schizophrenia, (iii) DTI findings in first-episode patients and subjects at high-risk of psychosis; their timing, anatomical location and early course, (iv) the hypothesized underlying pathological substrate and possible causes of DTI white matter alterations, including effects of adolescent cannabis use, and (v) some methodological issues and future recommendations. In summary, there is evidence that DTI abnormalities convey a liability for psychosis and additional abnormalities occur around onset of psychosis. However, findings in first-episode patients are less robust than in chronic patients, and progression of disturbances may occur in the early course of poor-outcome patients. In addition, acceleration of the normal aging process may occur. Adolescent cannabis use has specific effects on DTI measures. An unresolved issue is the underlying pathology of DTI abnormalities, and combining DTI with other MRI indices can provide more insight. More research is needed on which genetic and environmental factors play a role in the variability of current results.
Collapse
Affiliation(s)
- Bart D Peters
- Rivierduinen, Langevelderweg 27, 2211 AB Noordwijkerhout, The Netherlands.
| | | | | |
Collapse
|
36
|
Chiang MC, McMahon KL, de Zubicaray GI, Martin NG, Hickie I, Toga AW, Wright MJ, Thompson PM. Genetics of white matter development: a DTI study of 705 twins and their siblings aged 12 to 29. Neuroimage 2010; 54:2308-17. [PMID: 20950689 DOI: 10.1016/j.neuroimage.2010.10.015] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 09/18/2010] [Accepted: 10/05/2010] [Indexed: 11/15/2022] Open
Abstract
White matter microstructure is under strong genetic control, yet it is largely unknown how genetic influences change from childhood into adulthood. In one of the largest brain mapping studies ever performed, we determined whether the genetic control over white matter architecture depends on age, sex, socioeconomic status (SES), and intelligence quotient (IQ). We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4-Tesla), in 705 twins and their siblings (age range 12-29; 290 M/415 F). White matter integrity was quantified using a widely accepted measure, fractional anisotropy (FA). We fitted gene-environment interaction models pointwise, to visualize brain regions where age, sex, SES and IQ modulate heritability of fiber integrity. We hypothesized that environmental factors would start to outweigh genetic factors during late childhood and adolescence. Genetic influences were greater in adolescence versus adulthood, and greater in males than in females. Socioeconomic status significantly interacted with genes that affect fiber integrity: heritability was higher in those with higher SES. In people with above-average IQ, genetic factors explained over 80% of the observed FA variability in the thalamus, genu, posterior internal capsule, and superior corona radiata. In those with below-average IQ, however, only around 40% FA variability in the same regions was attributable to genetic factors. Genes affect fiber integrity, but their effects vary with age, sex, SES and IQ. Gene-environment interactions are vital to consider in the search for specific genetic polymorphisms that affect brain integrity and connectivity.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095-7332, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hippocampal-cortical structural connectivity disruptions in schizophrenia: An integrated perspective from hippocampal shape, cortical thickness, and integrity of white matter bundles. Neuroimage 2010; 52:1181-9. [DOI: 10.1016/j.neuroimage.2010.05.046] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/08/2010] [Accepted: 05/16/2010] [Indexed: 11/22/2022] Open
|
38
|
Adriano F, Spoletini I, Caltagirone C, Spalletta G. Updated meta-analyses reveal thalamus volume reduction in patients with first-episode and chronic schizophrenia. Schizophr Res 2010; 123:1-14. [PMID: 20682456 DOI: 10.1016/j.schres.2010.07.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 07/09/2010] [Accepted: 07/11/2010] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Although several structural MRI studies report significant thalamus volume reduction in patients with schizophrenia, many other studies do not. Therefore, the present meta-analyses aimed to clarify whether a reduction in thalamic volume characterizes patients diagnosed with schizophrenia by considering first-episode and chronic phases of the illness and right and left thalamus separately. METHODS Using Pubmed databases, we made a detailed literature search for structural MRI studies on patients with schizophrenia that reported physical volumetric measures of the right and left thalamus. Thirteen structural MRI studies were considered eligible for meta-analysis of the entire sample of patients and of the healthy control subjects. Individual meta-analyses were also performed on 6 studies of first-episode patients only and on 7 studies of chronic patients only. These were followed by additional meta-analyses to investigate the role of the factors "illness phase" and "side" on thalamic volume reduction. RESULTS Overall, the patient group showed a significant bilateral thalamus volume reduction compared to healthy control subjects. This was found in both first-episode and chronic patients. Furthermore, left thalamus was smaller than right in both patients and healthy control subjects. CONCLUSIONS When only studies that used physical volumetric measures were considered, the present meta-analyses confirmed that thalamic volume reduction characterizes patients with schizophrenia, both at the first-episode and chronic phases of the illness.
Collapse
Affiliation(s)
- Fulvia Adriano
- IRCCS Santa Lucia Foundation, Via Ardeatina, 00179 Rome, Italy
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- O Rapalino
- Neuroradiology Division, Department of RadiologyMassachusetts General Hospital, Boston, Mass, USA
| |
Collapse
|