1
|
Psarris G, Eleftheriadis N, Sidiras C, Sereti A, Iliadou VM. Temporal resolution and pitch discrimination in music education: novel data in children. Eur Arch Otorhinolaryngol 2024; 281:4103-4111. [PMID: 38573511 PMCID: PMC11266274 DOI: 10.1007/s00405-024-08571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Rehabilitation of hearing and listening difficulties through neuroplasticity of the auditory nervous system is a promising technique. Evidence of enhanced auditory processing in adult musicians is often not based on clinical auditory processing tests and is lacking in children with musical education. PURPOSE The aim of this study is to investigate the temporal resolution and frequency discrimination elements of auditory processing both in adults and children with musical education and to compare them with those without any musical education. METHODS Participants consisted of ten children without musical training and ten children with musical training with mean age 11.3 years and range 8-15 years as well as ten adults without musical education and ten adults with musical education with mean age 38.1 years and range 30-45 years. All participants were tested with two temporal resolution tests (GIN:Gaps-In-Noise and RGDT:Random Gap Detection Test), a temporal ordering frequency test (FPT:Frequency Pattern Test), and a frequency discrimination test (DLF: Different Limen for Frequency). RESULTS All test results revealed better performance in both children and adults with musical training for both ears. CONCLUSION A positive effect of formal music education for specific auditory processing elements in both children and adults is documented. Larger samples, longitudinal studies, as well as groups with impaired hearing and/or auditory processing are needed to further substantiate the effect shown.
Collapse
Affiliation(s)
- Georgios Psarris
- School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | | | - Christos Sidiras
- School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | - Afroditi Sereti
- School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | | |
Collapse
|
2
|
MacLean J, Stirn J, Bidelman GM. Auditory-motor entrainment and listening experience shape the perceptual learning of concurrent speech. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604167. [PMID: 39071391 PMCID: PMC11275804 DOI: 10.1101/2024.07.18.604167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Plasticity from auditory experience shapes the brain's encoding and perception of sound. Though prior research demonstrates that neural entrainment (i.e., brain-to-acoustic synchronization) aids speech perception, how long- and short-term plasticity influence entrainment to concurrent speech has not been investigated. Here, we explored neural entrainment mechanisms and the interplay between short- and long-term neuroplasticity for rapid auditory perceptual learning of concurrent speech sounds in young, normal-hearing musicians and nonmusicians. Method Participants learned to identify double-vowel mixtures during ∼45 min training sessions with concurrent high-density EEG recordings. We examined the degree to which brain responses entrained to the speech-stimulus train (∼9 Hz) to investigate whether entrainment to speech prior to behavioral decision predicted task performance. Source and directed functional connectivity analyses of the EEG probed whether behavior was driven by group differences auditory-motor coupling. Results Both musicians and nonmusicians showed rapid perceptual learning in accuracy with training. Interestingly, listeners' neural entrainment strength prior to target speech mixtures predicted behavioral identification performance; stronger neural synchronization was observed preceding incorrect compared to correct trial responses. We also found stark hemispheric biases in auditory-motor coupling during speech entrainment, with greater auditory-motor connectivity in the right compared to left hemisphere for musicians (R>L) but not in nonmusicians (R=L). Conclusions Our findings confirm stronger neuroacoustic synchronization and auditory-motor coupling during speech processing in musicians. Stronger neural entrainment to rapid stimulus trains preceding incorrect behavioral responses supports the notion that alpha-band (∼10 Hz) arousal/suppression in brain activity is an important modulator of trial-by-trial success in perceptual processing.
Collapse
|
3
|
Rathcke T, Smit E, Zheng Y, Canzi M. Perception of temporal structure in speech is influenced by body movement and individual beat perception ability. Atten Percept Psychophys 2024; 86:1746-1762. [PMID: 38769276 PMCID: PMC11557672 DOI: 10.3758/s13414-024-02893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 05/22/2024]
Abstract
The subjective experience of time flow in speech deviates from the sound acoustics in substantial ways. The present study focuses on the perceptual tendency to regularize time intervals found in speech but not in other types of sounds with a similar temporal structure. We investigate to what extent individual beat perception ability is responsible for perceptual regularization and if the effect can be eliminated through the involvement of body movement during listening. Participants performed a musical beat perception task and compared spoken sentences to their drumbeat-based versions either after passive listening or after listening and moving along with the beat of the sentences. The results show that the interval regularization prevails in listeners with a low beat perception ability performing a passive listening task and is eliminated in an active listening task involving body movement. Body movement also helped to promote a veridical percept of temporal structure in speech at the group level. We suggest that body movement engages an internal timekeeping mechanism, promoting the fidelity of auditory encoding even in sounds of high temporal complexity and irregularity such as natural speech.
Collapse
Affiliation(s)
- Tamara Rathcke
- Department of Linguistics, University of Konstanz, Konstanz, 78464, Baden-Württemberg, Germany.
| | - Eline Smit
- Department of Linguistics, University of Konstanz, Konstanz, 78464, Baden-Württemberg, Germany
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Street, Penrith, 2751, NSW, Australia
| | - Yue Zheng
- Department of Psychology, University of York, York, YO10 5DD, UK
- Department of Hearing Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Massimiliano Canzi
- Department of Linguistics, University of Konstanz, Konstanz, 78464, Baden-Württemberg, Germany
| |
Collapse
|
4
|
Yu P, Dong R, Wang X, Tang Y, Liu Y, Wang C, Zhao L. Neuroimaging of motor recovery after ischemic stroke - functional reorganization of motor network. Neuroimage Clin 2024; 43:103636. [PMID: 38950504 PMCID: PMC11267109 DOI: 10.1016/j.nicl.2024.103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
The long-term motor outcome of acute stroke patients may be correlated to the reorganization of brain motor network. Abundant neuroimaging studies contribute to understand the pathological changes and recovery of motor networks after stroke. In this review, we summarized how current neuroimaging studies have increased understanding of reorganization and plasticity in post stroke motor recovery. Firstly, we discussed the changes in the motor network over time during the motor-activation and resting states, as well as the overall functional integration trend of the motor network. These studies indicate that the motor network undergoes dynamic bilateral hemispheric functional reorganization, as well as a trend towards network randomization. In the second part, we summarized the current study progress in the application of neuroimaging technology to early predict the post-stroke motor outcome. In the third part, we discuss the neuroimaging techniques commonly used in the post-stroke recovery. These methods provide direct or indirect visualization patterns to understand the neural mechanisms of post-stroke motor recovery, opening up new avenues for studying spontaneous and treatment-induced recovery and plasticity after stroke.
Collapse
Affiliation(s)
- Pei Yu
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ruoyu Dong
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Wang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuqi Tang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yaning Liu
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Can Wang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ling Zhao
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Dalla Bella S, Janaqi S, Benoit CE, Farrugia N, Bégel V, Verga L, Harding EE, Kotz SA. Unravelling individual rhythmic abilities using machine learning. Sci Rep 2024; 14:1135. [PMID: 38212632 PMCID: PMC10784578 DOI: 10.1038/s41598-024-51257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
Humans can easily extract the rhythm of a complex sound, like music, and move to its regular beat, like in dance. These abilities are modulated by musical training and vary significantly in untrained individuals. The causes of this variability are multidimensional and typically hard to grasp in single tasks. To date we lack a comprehensive model capturing the rhythmic fingerprints of both musicians and non-musicians. Here we harnessed machine learning to extract a parsimonious model of rhythmic abilities, based on behavioral testing (with perceptual and motor tasks) of individuals with and without formal musical training (n = 79). We demonstrate that variability in rhythmic abilities and their link with formal and informal music experience can be successfully captured by profiles including a minimal set of behavioral measures. These findings highlight that machine learning techniques can be employed successfully to distill profiles of rhythmic abilities, and ultimately shed light on individual variability and its relationship with both formal musical training and informal musical experiences.
Collapse
Affiliation(s)
- Simone Dalla Bella
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada.
- Department of Psychology, University of Montreal, Pavillon Marie-Victorin, CP 6128 Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada.
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada.
- University of Economics and Human Sciences in Warsaw, Warsaw, Poland.
| | - Stefan Janaqi
- EuroMov Digital Health in Motion, IMT Mines Ales and University of Montpellier, Ales and Montpellier, France
| | - Charles-Etienne Benoit
- Inter-University Laboratory of Human Movement Biology, EA 7424, University Claude Bernard Lyon 1, 69 622, Villeurbanne, France
| | | | | | - Laura Verga
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. 616, Maastricht, 6200 MD, The Netherlands
| | - Eleanor E Harding
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sonja A Kotz
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. 616, Maastricht, 6200 MD, The Netherlands.
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
6
|
Pollok B, Depperschmidt C, Koester M, Schmidt-Wilcke T, Krause V. Cathodal high-definition transcranial direct current stimulation (HD-tDCS) of the left ventral prefrontal cortex (vPFC) interferes with conscious error correction. Behav Brain Res 2023; 454:114661. [PMID: 37696453 DOI: 10.1016/j.bbr.2023.114661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Precise motor timing requires the ability to flexibly adapt one's own movements with respect to changes in the environment. Previous studies suggest that the correction of perceived as compared to non-perceived timing errors involves at least partially distinct brain networks. The dorsolateral prefrontal cortex (dPFC) has been linked to the correction of perceived timing errors and evidence for a contribution of the ventrolateral PFC (vPFC) specifically to the correction of non-perceived errors exists. The present study aimed at clarifying the functional contribution of the left vPFC for the correction of timing errors by adopting high-definition transcranial direct current stimulation (HD-tDCS). Twenty-one young healthy volunteers synchronized their right index finger taps with respect to an isochronous auditory pacing signal. Perceivable and non-perceivable step-changes of the metronome were interspersed, and error correction was analyzed by means of the phase-correction response (PCR). In subsequent sessions anodal and cathodal HD-tDCS was applied to the left vPFC to establish a brain-behavior relationship. Sham stimulation served as control condition. Synchronization accuracy as well as error correction were determined immediately prior to and after HD-tDCS. The analysis suggests a detrimental effect of cathodal HD-tDCS distinctively on error correction in trials with perceived timing errors. The data support the significance of the left vPFC for error correction in the temporal domain but contradicts the view of a role in the correction of non-perceived errors.
Collapse
Affiliation(s)
- Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany.
| | - Carina Depperschmidt
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Maximilian Koester
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Tobias Schmidt-Wilcke
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; Center of Neurology, District Hospital Mainkofen, 94469 Deggendorf, Germany
| | - Vanessa Krause
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; Department of Neuropsychology, Mauritius Hospital and Neurorehabilitation Center Meerbusch, 40670 Meerbusch, Germany
| |
Collapse
|
7
|
Pollok B, Hagedorn A, Krause V, Kotz SA. Age interferes with sensorimotor timing and error correction in the supra-second range. Front Aging Neurosci 2023; 14:1048610. [PMID: 36704500 PMCID: PMC9871492 DOI: 10.3389/fnagi.2022.1048610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Precise motor timing including the ability to adjust movements after changes in the environment is fundamental to many daily activities. Sensorimotor timing in the sub-and supra-second range might rely on at least partially distinct brain networks, with the latter including the basal ganglia (BG) and the prefrontal cortex (PFC). Since both structures are particularly vulnerable to age-related decline, the present study investigated whether age might distinctively affect sensorimotor timing and error correction in the supra-second range. Methods A total of 50 healthy right-handed volunteers with 22 older (age range: 50-60 years) and 28 younger (age range: 20-36 years) participants synchronized the tap-onsets of their right index finger with an isochronous auditory pacing signal. Stimulus onset asynchronies were either 900 or 1,600 ms. Positive or negative step-changes that were perceivable or non-perceivable were occasionally interspersed to the fixed intervals to induce error correction. A simple reaction time task served as control condition. Results and Discussion In line with our hypothesis, synchronization variability in trials with supra-second intervals was larger in the older group. While reaction times were not affected by age, the mean negative asynchrony was significantly smaller in the elderly in trials with positive step-changes, suggesting more pronounced tolerance of positive deviations at older age. The analysis of error correction by means of the phase correction response (PCR) suggests reduced error correction in the older group. This effect emerged in trials with supra-second intervals and large positive step-changes, only. Overall, these results support the hypothesis that sensorimotor synchronization in the sub-second range is maintained but synchronization accuracy and error correction in the supra-second range is reduced in the elderly as early as in the fifth decade of life suggesting that these measures are suitable for the early detection of age-related changes of the motor system.
Collapse
Affiliation(s)
- Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,*Correspondence: Bettina Pollok,
| | - Amelie Hagedorn
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Vanessa Krause
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Department of Neuropsychology, Mauritius Hospital and Neurorehabilitation Center Meerbusch, Meerbusch, Germany
| | - Sonja A. Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
8
|
Luo L, Lu L. Studying rhythm processing in speech through the lens of auditory-motor synchronization. Front Neurosci 2023; 17:1146298. [PMID: 36937684 PMCID: PMC10017839 DOI: 10.3389/fnins.2023.1146298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Continuous speech is organized into a hierarchy of rhythms. Accurate processing of this rhythmic hierarchy through the interactions of auditory and motor systems is fundamental to speech perception and production. In this mini-review, we aim to evaluate the implementation of behavioral auditory-motor synchronization paradigms when studying rhythm processing in speech. First, we present an overview of the classic finger-tapping paradigm and its application in revealing differences in auditory-motor synchronization between the typical and clinical populations. Next, we highlight key findings on rhythm hierarchy processing in speech and non-speech stimuli from finger-tapping studies. Following this, we discuss the potential caveats of the finger-tapping paradigm and propose the speech-speech synchronization (SSS) task as a promising tool for future studies. Overall, we seek to raise interest in developing new methods to shed light on the neural mechanisms of speech processing.
Collapse
Affiliation(s)
- Lu Luo
- School of Psychology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing, China
| | - Lingxi Lu
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, China
- *Correspondence: Lingxi Lu,
| |
Collapse
|
9
|
Neves L, Correia AI, Castro SL, Martins D, Lima CF. Does music training enhance auditory and linguistic processing? A systematic review and meta-analysis of behavioral and brain evidence. Neurosci Biobehav Rev 2022; 140:104777. [PMID: 35843347 DOI: 10.1016/j.neubiorev.2022.104777] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/02/2023]
Abstract
It is often claimed that music training improves auditory and linguistic skills. Results of individual studies are mixed, however, and most evidence is correlational, precluding inferences of causation. Here, we evaluated data from 62 longitudinal studies that examined whether music training programs affect behavioral and brain measures of auditory and linguistic processing (N = 3928). For the behavioral data, a multivariate meta-analysis revealed a small positive effect of music training on both auditory and linguistic measures, regardless of the type of assignment (random vs. non-random), training (instrumental vs. non-instrumental), and control group (active vs. passive). The trim-and-fill method provided suggestive evidence of publication bias, but meta-regression methods (PET-PEESE) did not. For the brain data, a narrative synthesis also documented benefits of music training, namely for measures of auditory processing and for measures of speech and prosody processing. Thus, the available literature provides evidence that music training produces small neurobehavioral enhancements in auditory and linguistic processing, although future studies are needed to confirm that such enhancements are not due to publication bias.
Collapse
Affiliation(s)
- Leonor Neves
- Centro de Investigação e Intervenção Social (CIS-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
| | - Ana Isabel Correia
- Centro de Investigação e Intervenção Social (CIS-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
| | - São Luís Castro
- Centro de Psicologia da Universidade do Porto (CPUP), Faculdade de Psicologia e de Ciências da Educação da Universidade do Porto (FPCEUP), Porto, Portugal
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; NIHR Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - César F Lima
- Centro de Investigação e Intervenção Social (CIS-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal.
| |
Collapse
|
10
|
Homma NY, Bajo VM. Lemniscal Corticothalamic Feedback in Auditory Scene Analysis. Front Neurosci 2021; 15:723893. [PMID: 34489635 PMCID: PMC8417129 DOI: 10.3389/fnins.2021.723893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Sound information is transmitted from the ear to central auditory stations of the brain via several nuclei. In addition to these ascending pathways there exist descending projections that can influence the information processing at each of these nuclei. A major descending pathway in the auditory system is the feedback projection from layer VI of the primary auditory cortex (A1) to the ventral division of medial geniculate body (MGBv) in the thalamus. The corticothalamic axons have small glutamatergic terminals that can modulate thalamic processing and thalamocortical information transmission. Corticothalamic neurons also provide input to GABAergic neurons of the thalamic reticular nucleus (TRN) that receives collaterals from the ascending thalamic axons. The balance of corticothalamic and TRN inputs has been shown to refine frequency tuning, firing patterns, and gating of MGBv neurons. Therefore, the thalamus is not merely a relay stage in the chain of auditory nuclei but does participate in complex aspects of sound processing that include top-down modulations. In this review, we aim (i) to examine how lemniscal corticothalamic feedback modulates responses in MGBv neurons, and (ii) to explore how the feedback contributes to auditory scene analysis, particularly on frequency and harmonic perception. Finally, we will discuss potential implications of the role of corticothalamic feedback in music and speech perception, where precise spectral and temporal processing is essential.
Collapse
Affiliation(s)
- Natsumi Y. Homma
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Coleman Memorial Laboratory, Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Victoria M. Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Liu Y, Lian W, Zhao X, Tang Q, Liu G. Spatial Connectivity and Temporal Dynamic Functional Network Connectivity of Musical Emotions Evoked by Dynamically Changing Tempo. Front Neurosci 2021; 15:700154. [PMID: 34421523 PMCID: PMC8375772 DOI: 10.3389/fnins.2021.700154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
Music tempo is closely connected to listeners' musical emotion and multifunctional neural activities. Music with increasing tempo evokes higher emotional responses and music with decreasing tempo enhances relaxation. However, the neural substrate of emotion evoked by dynamically changing tempo is still unclear. To investigate the spatial connectivity and temporal dynamic functional network connectivity (dFNC) of musical emotion evoked by dynamically changing tempo, we collected dynamic emotional ratings and conducted group independent component analysis (ICA), sliding time window correlations, and k-means clustering to assess the FNC of emotion evoked by music with decreasing tempo (180-65 bpm) and increasing tempo (60-180 bpm). Music with decreasing tempo (with more stable dynamic valences) evoked higher valence than increasing tempo both with stronger independent components (ICs) in the default mode network (DMN) and sensorimotor network (SMN). The dFNC analysis showed that with time-decreasing FNC across the whole brain, emotion evoked by decreasing music was associated with strong spatial connectivity within the DMN and SMN. Meanwhile, it was associated with strong FNC between the DMN-frontoparietal network (FPN) and DMN-cingulate-opercular network (CON). The paired t-test showed that music with a decreasing tempo evokes stronger activation of ICs within DMN and SMN than that with an increasing tempo, which indicated that faster music is more likely to enhance listeners' emotions with multifunctional brain activities even when the tempo is slowing down. With increasing FNC across the whole brain, music with an increasing tempo was associated with strong connectivity within FPN; time-decreasing connectivity was found within CON, SMN, VIS, and between CON and SMN, which explained its unstable valence during the dynamic valence rating. Overall, the FNC can help uncover the spatial and temporal neural substrates of musical emotions evoked by dynamically changing tempi.
Collapse
Affiliation(s)
- Ying Liu
- School of Mathematics and Statistics, Southwest University, Chongqing, China
- School of Music, Southwest University, Chongqing, China
| | - Weili Lian
- College of Preschool Education, Chongqing Youth Vocational and Technical College, Chongqing, China
| | - Xingcong Zhao
- School of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Qingting Tang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Guangyuan Liu
- School of Electronic and Information Engineering, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Ceravolo L, Schaerlaeken S, Frühholz S, Glowinski D, Grandjean D. Frontoparietal, Cerebellum Network Codes for Accurate Intention Prediction in Altered Perceptual Conditions. Cereb Cortex Commun 2021; 2:tgab031. [PMID: 34296176 PMCID: PMC8190560 DOI: 10.1093/texcom/tgab031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Integrating and predicting the intentions and actions of others are critical components of social interactions, but the behavioral and neural bases of such mechanisms under altered perceptual conditions are poorly understood. In the present study, we recruited expert violinists and age-matched controls with no musical training and asked them to evaluate simplified dynamic stimuli of violinists playing in a piano or forte communicative intent while undergoing functional magnetic resonance imaging. We show that expertise is needed to successfully understand and evaluate communicative intentions in spatially and temporally altered visual representations of musical performance. Frontoparietal regions-such as the dorsolateral prefrontal cortex and the inferior parietal lobule and sulcus-and various subregions of the cerebellum-such as cerebellar lobules I-IV, V, VI, VIIb, VIIIa, X-a re recruited in the process. Functional connectivity between these brain areas reveals widespread organization, particularly in the dorsolateral prefrontal cortex, inferior frontal gyrus, inferior parietal sulcus, and in the cerebellum. This network may be essential to successfully assess communicative intent in ambiguous or complex visual scenes.
Collapse
Affiliation(s)
- L Ceravolo
- Neuroscience of Emotion and Affective Dynamics Lab, Department of Psychology and Educational Sciences and Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - S Schaerlaeken
- Neuroscience of Emotion and Affective Dynamics Lab, Department of Psychology and Educational Sciences and Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - S Frühholz
- Department of Psychology, University of Zurich, Zurich, Switzerland.,Department of Psychology, University of Oslo, Oslo, Norway
| | - D Glowinski
- Neuroscience of Emotion and Affective Dynamics Lab, Department of Psychology and Educational Sciences and Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - D Grandjean
- Neuroscience of Emotion and Affective Dynamics Lab, Department of Psychology and Educational Sciences and Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Beveridge S, Herff SA, Buck B, Madden GB, Jabusch HC. Expertise-Related Differences in Wrist Muscle Co-contraction in Drummers. Front Psychol 2020; 11:1360. [PMID: 32793020 PMCID: PMC7393804 DOI: 10.3389/fpsyg.2020.01360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
Background and Aim: Drumming requires excellent motor control and temporal coordination. Deploying specific muscle activation patterns may help achieve these requirements. Muscle activation patterns that involve reciprocal contraction of antagonist muscles are particularly favorable as they enable a high level of muscular economy while maintaining performance. In contrast, simultaneous contraction of antagonist muscles is an inefficient muscle activation pattern. In drumming, co-contraction can lead to increased movement variability and greater fatigue over time. In this study we examine how muscle activation patterns develop with increased drumming expertise. Methods: Eleven expert drummers (ED) and eleven amateur drummers (AD) were recorded using 3D motion capture while performing five different uni-manual and bi-manual repetitive drumming tasks across different tempi. Electromyography was used to record muscle activation of wrist flexor and extensor muscles. Results: Findings indicate that reduced co-contraction resulted in more even drumming performance. Co-contraction also increased in extremely slow and very high tempi. Furthermore, regardless of task or tempo, muscle co-contraction was decreased in participants with higher levels of expertise. In addition to anti-phasic activity of wrist flexor and extensor muscles, expert drummers exhibited a flexor dominance, suggesting more efficient usage of rebound. Conclusion: Taken together, we found that higher levels of drumming expertise go hand in hand with specific muscle activation patterns that can be linked to more precise and efficient drumming performance.
Collapse
Affiliation(s)
- Scott Beveridge
- Institut für Musikermedizin (IMM), Hochschule für Musik Carl Maria von Weber, Dresden, Germany
| | - Steffen A Herff
- Digital and Cognitive Musicology Lab (DCML), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Music Cognition and Action Research Group (MCA), MARCS Institute for Brain, Behaviour & Development, Western Sydney University (WSU), Sydney, NSW, Australia
| | - Bryony Buck
- Institut für Musikermedizin (IMM), Hochschule für Musik Carl Maria von Weber, Dresden, Germany
| | - Gerard Breaden Madden
- Institut für Musikermedizin (IMM), Hochschule für Musik Carl Maria von Weber, Dresden, Germany
| | - Hans-Christian Jabusch
- Institut für Musikermedizin (IMM), Hochschule für Musik Carl Maria von Weber, Dresden, Germany
| |
Collapse
|
14
|
Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neurosci Biobehav Rev 2020; 112:553-584. [DOI: 10.1016/j.neubiorev.2019.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/20/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023]
|
15
|
Slayton MA, Romero-Sosa JL, Shore K, Buonomano DV, Viskontas IV. Musical expertise generalizes to superior temporal scaling in a Morse code tapping task. PLoS One 2020; 15:e0221000. [PMID: 31905200 PMCID: PMC6944339 DOI: 10.1371/journal.pone.0221000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/10/2019] [Indexed: 11/26/2022] Open
Abstract
A key feature of the brain’s ability to tell time and generate complex temporal patterns is its capacity to produce similar temporal patterns at different speeds. For example, humans can tie a shoe, type, or play an instrument at different speeds or tempi—a phenomenon referred to as temporal scaling. While it is well established that training improves timing precision and accuracy, it is not known whether expertise improves temporal scaling, and if so, whether it generalizes across skill domains. We quantified temporal scaling and timing precision in musicians and non-musicians as they learned to tap a Morse code sequence. We found that non-musicians improved significantly over the course of days of training at the standard speed. In contrast, musicians exhibited a high level of temporal precision on the first day, which did not improve significantly with training. Although there was no significant difference in performance at the end of training at the standard speed, musicians were significantly better at temporal scaling—i.e., at reproducing the learned Morse code pattern at faster and slower speeds. Interestingly, both musicians and non-musicians exhibited a Weber-speed effect, where temporal precision at the same absolute time was higher when producing patterns at the faster speed. These results are the first to establish that the ability to generate the same motor patterns at different speeds improves with extensive training and generalizes to non-musical domains.
Collapse
Affiliation(s)
- Matthew A. Slayton
- San Francisco Conservatory of Music, San Francisco, CA, United States of America
| | - Juan L. Romero-Sosa
- Department of Neurobiology, University of California Los Angeles, Los Angeles, CA, United States of America
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Katrina Shore
- San Francisco Conservatory of Music, San Francisco, CA, United States of America
| | - Dean V. Buonomano
- Department of Neurobiology, University of California Los Angeles, Los Angeles, CA, United States of America
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, United States of America
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, United States of America
- * E-mail: (DVB); (IVV)
| | - Indre V. Viskontas
- San Francisco Conservatory of Music, San Francisco, CA, United States of America
- Department of Psychology, University of San Francisco, San Francisco, CA, United States of America
- * E-mail: (DVB); (IVV)
| |
Collapse
|
16
|
Hidalgo C, Pesnot-Lerousseau J, Marquis P, Roman S, Schön D. Rhythmic Training Improves Temporal Anticipation and Adaptation Abilities in Children With Hearing Loss During Verbal Interaction. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:3234-3247. [PMID: 31433722 DOI: 10.1044/2019_jslhr-s-18-0349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose In this study, we investigate temporal adaptation capacities of children with normal hearing and children with cochlear implants and/or hearing aids during verbal exchange. We also address the question of the efficiency of a rhythmic training on temporal adaptation during speech interaction in children with hearing loss. Method We recorded electroencephalogram data in children while they named pictures delivered on a screen, in alternation with a virtual partner. We manipulated the virtual partner's speech rate (fast vs. slow) and the regularity of alternation (regular vs. irregular). The group of children with normal hearing was tested once, and the group of children with hearing loss was tested twice: once after 30 min of auditory training and once after 30 min of rhythmic training. Results Both groups of children adjusted their speech rate to that of the virtual partner and were sensitive to the regularity of alternation with a less accurate performance following irregular turns. Moreover, irregular turns elicited a negative event-related potential in both groups, showing a detection of temporal deviancy. Notably, the amplitude of this negative component positively correlated with accuracy in the alternation task. In children with hearing loss, the effect was more pronounced and long-lasting following rhythmic training compared with auditory training. Conclusion These results are discussed in terms of temporal adaptation abilities in speech interaction and suggest the use of rhythmic training to improve these skills of children with hearing loss.
Collapse
Affiliation(s)
- Céline Hidalgo
- Laboratoire Parole et Langage, CNRS, Aix-Marseille University, Aix-en Provence, France
- Institut de Neurosciences des Systèmes, Inserm, Aix-Marseille University, Marseille, France
| | | | - Patrick Marquis
- Institut de Neurosciences des Systèmes, Inserm, Aix-Marseille University, Marseille, France
| | - Stéphane Roman
- Institut de Neurosciences des Systèmes, Inserm, Aix-Marseille University, Marseille, France
- Pediatric Otolaryngology Department, La Timone Children's Hospital (AP-HM), Marseille, France
| | - Daniele Schön
- Institut de Neurosciences des Systèmes, Inserm, Aix-Marseille University, Marseille, France
| |
Collapse
|
17
|
Frischen U, Schwarzer G, Degé F. Comparing the Effects of Rhythm-Based Music Training and Pitch-Based Music Training on Executive Functions in Preschoolers. Front Integr Neurosci 2019; 13:41. [PMID: 31507385 PMCID: PMC6718722 DOI: 10.3389/fnint.2019.00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Previous research has indicated the beneficial effects of music training on executive functions (EFs) in children. However, researchers have not clearly determined which component of music training produces these beneficial effects or whether different components exert different effects on EFs. In the present study, we examined the impact of rhythm-based music training compared to pitch-based music training and sports training as a control on EFs in preschoolers. Children aged between 5 and 6 years (N = 76) were randomly assigned to one of the three training groups and received training in small groups three times a week for 20 min in German kindergartens. Before and after training, children completed tests designed to assess inhibition, set-shifting, and visuospatial working memory. Parental education, family income, personality, and IQ served as control variables. We observed a significant training group × time interaction for the measure of inhibition. Children from the rhythm group exhibited significant improvements in inhibition from pre- to post-tests (dRM = 0.56), whereas children from the other groups did not. Furthermore, children from the rhythm group significantly differed from the sports control group at post-test (dcorr = 0.82). Concerning the measures of set-shifting and visuospatial working memory, the descriptive data revealed similar results; however, we did not observe significant training group × time interactions. Based on our findings, rhythm-based music training specifically enhances inhibition in preschoolers and might affect other EFs, such as set-shifting and visuospatial working memory.
Collapse
Affiliation(s)
- Ulrike Frischen
- Department of Developmental Psychology, Faculty of Psychology and Sports Science, Justus-Liebig-University, Giessen, Germany
| | - Gudrun Schwarzer
- Department of Developmental Psychology, Faculty of Psychology and Sports Science, Justus-Liebig-University, Giessen, Germany
| | - Franziska Degé
- Department of Developmental Psychology, Faculty of Psychology and Sports Science, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
18
|
Trajectory formation during sensorimotor synchronization and syncopation to auditory and visual metronomes. Exp Brain Res 2018; 236:2847-2856. [PMID: 30051262 DOI: 10.1007/s00221-018-5343-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
Previous work on sensorimotor synchronization has investigated the dynamics of finger tapping and how individual movement trajectories contribute to timing accuracy via asymmetry in movement velocities. The present study investigated sensorimotor synchronization (in-phase) and syncopation (anti-phase) to both an auditory metronome and a visual flashing light at multiple frequencies to understand how individual movement phases contribute to the variability of timekeeping and error correction in different sensory modalities and with different task constraints. Results demonstrate that the proportional time spent in both the upward phase of movement and the holding phase of movement (time spent on the surface of the table) remain relatively invariant across both stimulus modalities and across tapping styles (syncopation and synchronization), but changes with interval duration, increasing as interval duration increases. The time spent in the downward phase of movement did significantly differ across stimulus modality and tapping style, increasing during both visuomotor timing and syncopation, accompanied by a significant decrease in flexion velocity during syncopation. Extension velocity and flexion time were found to be the main contributors to differences between visual and auditory timing, while flexion velocity and flexion time were found to be the main contributors to differences between synchronization and syncopation. No correlations were found between asynchrony and the upward, downward, or holding phases of movement, suggesting the existence of multiple error correction strategies.
Collapse
|
19
|
Slater JL, Tate MC. Timing Deficits in ADHD: Insights From the Neuroscience of Musical Rhythm. Front Comput Neurosci 2018; 12:51. [PMID: 30034331 PMCID: PMC6043674 DOI: 10.3389/fncom.2018.00051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022] Open
Abstract
Everyday human behavior relies upon extraordinary feats of coordination within the brain. In this perspective paper, we argue that the rich temporal structure of music provides an informative context in which to investigate how the brain coordinates its complex activities in time, and how that coordination can be disrupted. We bring insights from the neuroscience of musical rhythm to considerations of timing deficits in Attention Deficit/Hyperactivity Disorder (ADHD), highlighting the significant overlap between neural systems involved in processing musical rhythm and those implicated in ADHD. We suggest that timing deficits warrant closer investigation since they could lead to the identification of potentially informative phenotypes, tied to neurobiological and genetic factors. Our novel interdisciplinary approach builds upon recent trends in both fields of research: in the neuroscience of rhythm, an increasingly nuanced understanding of the specific contributions of neural systems to rhythm processing, and in ADHD, an increasing focus on differentiating phenotypes and identifying distinct etiological pathways associated with the disorder. Finally, we consider the impact of musical experience on rhythm processing and the potential value of musical rhythm in therapeutic interventions.
Collapse
Affiliation(s)
- Jessica L. Slater
- Department of Neurological Surgery, Northwestern University, Chicago, IL, United States
| | - Matthew C. Tate
- Department of Neurological Surgery, Northwestern University, Chicago, IL, United States
- Department of Neurology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
20
|
Poikonen H, Toiviainen P, Tervaniemi M. Naturalistic music and dance: Cortical phase synchrony in musicians and dancers. PLoS One 2018; 13:e0196065. [PMID: 29672597 PMCID: PMC5908167 DOI: 10.1371/journal.pone.0196065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
Expertise in music has been investigated for decades and the results have been applied not only in composition, performance and music education, but also in understanding brain plasticity in a larger context. Several studies have revealed a strong connection between auditory and motor processes and listening to and performing music, and music imagination. Recently, as a logical next step in music and movement, the cognitive and affective neurosciences have been directed towards expertise in dance. To understand the versatile and overlapping processes during artistic stimuli, such as music and dance, it is necessary to study them with continuous naturalistic stimuli. Thus, we used long excerpts from the contemporary dance piece Carmen presented with and without music to professional dancers, musicians, and laymen in an EEG laboratory. We were interested in the cortical phase synchrony within each participant group over several frequency bands during uni- and multimodal processing. Dancers had strengthened theta and gamma synchrony during music relative to silence and silent dance, whereas the presence of music decreased systematically the alpha and beta synchrony in musicians. Laymen were the only group of participants with significant results related to dance. Future studies are required to understand whether these results are related to some other factor (such as familiarity to the stimuli), or if our results reveal a new point of view to dance observation and expertise.
Collapse
Affiliation(s)
- Hanna Poikonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Petri Toiviainen
- Department of Music, Art and Culture Studies, University of Jyväskylä, Jyväskylä, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Cicero Learning, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Slater J, Kraus N, Carr KW, Tierney A, Azem A, Ashley R. Speech-in-noise perception is linked to rhythm production skills in adult percussionists and non-musicians. LANGUAGE, COGNITION AND NEUROSCIENCE 2017; 33:710-717. [PMID: 31475217 PMCID: PMC6716596 DOI: 10.1080/23273798.2017.1411960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 10/25/2017] [Indexed: 06/10/2023]
Abstract
Speech rhythms guide perception, especially in noise. We recently revealed that percussionists outperform non-musicians in speech-in-noise perception, with better speech-in-noise perception associated with better rhythm discrimination across a range of rhythmic expertise. Here, we consider rhythm production skills, specifically drumming to a beat (metronome or music) and to sequences (metrical or jittered patterns), as well as speech-in-noise perception in adult percussionists and non-musicians. Given the absence of a regular beat in speech, we hypothesise that processing of sequences is more important for speech-in-noise perception than the ability to entrain to a regular beat. Consistent with our hypotheses, we find that the sequence-based drumming measures predict speech-in-noise perception, above and beyond hearing thresholds and IQ, whereas the beat-based measures do not. Outcomes suggest temporal patterns may help disambiguate speech under degraded listening conditions, extending theoretical considerations about speech rhythm to the everyday challenge of listening in noise.
Collapse
Affiliation(s)
- Jessica Slater
- Auditory Neuroscience Laboratory (www.brainvolts.northwestern.edu
- Department of Communication Sciences
| | - Nina Kraus
- Auditory Neuroscience Laboratory (www.brainvolts.northwestern.edu
- Department of Communication Sciences
- Institute for Neuroscience
- Department of Neurobiology
- Department of Otolaryngology, Northwestern University,
Evanston, Illinois USA
| | - Kali Woodruff Carr
- Auditory Neuroscience Laboratory (www.brainvolts.northwestern.edu
- Department of Communication Sciences
| | - Adam Tierney
- Auditory Neuroscience Laboratory (www.brainvolts.northwestern.edu
- Department of Communication Sciences
| | - Andrea Azem
- Auditory Neuroscience Laboratory (www.brainvolts.northwestern.edu
- Department of Communication Sciences
| | - Richard Ashley
- School of Music, Northwestern University, Evanston, IL,
USA
- Program of Cognitive Science, Northwestern University,
Evanston, IL, USA
| |
Collapse
|
22
|
Slater J, Ashley R, Tierney A, Kraus N. Got Rhythm? Better Inhibitory Control Is Linked with More Consistent Drumming and Enhanced Neural Tracking of the Musical Beat in Adult Percussionists and Nonpercussionists. J Cogn Neurosci 2017; 30:14-24. [PMID: 28949825 DOI: 10.1162/jocn_a_01189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Musical rhythm engages motor and reward circuitry that is important for cognitive control, and there is evidence for enhanced inhibitory control in musicians. We recently revealed an inhibitory control advantage in percussionists compared with vocalists, highlighting the potential importance of rhythmic expertise in mediating this advantage. Previous research has shown that better inhibitory control is associated with less variable performance in simple sensorimotor synchronization tasks; however, this relationship has not been examined through the lens of rhythmic expertise. We hypothesize that the development of rhythm skills strengthens inhibitory control in two ways: by fine-tuning motor networks through the precise coordination of movements "in time" and by activating reward-based mechanisms, such as predictive processing and conflict monitoring, which are involved in tracking temporal structure in music. Here, we assess adult percussionists and nonpercussionists on inhibitory control, selective attention, basic drumming skills (self-paced, paced, and continuation drumming), and cortical evoked responses to an auditory stimulus presented on versus off the beat of music. Consistent with our hypotheses, we find that better inhibitory control is correlated with more consistent drumming and enhanced neural tracking of the musical beat. Drumming variability and the neural index of beat alignment each contribute unique predictive power to a regression model, explaining 57% of variance in inhibitory control. These outcomes present the first evidence that enhanced inhibitory control in musicians may be mediated by rhythmic expertise and provide a foundation for future research investigating the potential for rhythm-based training to strengthen cognitive function.
Collapse
|
23
|
Lappe C, Bodeck S, Lappe M, Pantev C. Shared Neural Mechanisms for the Prediction of Own and Partner Musical Sequences after Short-term Piano Duet Training. Front Neurosci 2017; 11:165. [PMID: 28420951 PMCID: PMC5378800 DOI: 10.3389/fnins.2017.00165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/13/2017] [Indexed: 11/22/2022] Open
Abstract
Predictive mechanisms in the human brain can be investigated using markers for prediction violations like the mismatch negativity (MMN). Short-term piano training increases the MMN for melodic and rhythmic deviations in the training material. This increase occurs only when the material is actually played, not when it is only perceived through listening, suggesting that learning predictions about upcoming musical events are derived from motor involvement. However, music is often performed in concert with others. In this case, predictions about upcoming actions from a partner are a crucial part of the performance. In the present experiment, we use magnetoencephalography (MEG) to measure MMNs to deviations in one's own and a partner's musical material after both engaged in musical duet training. Event-related field (ERF) results revealed that the MMN increased significantly for own and partner material suggesting a neural representation of the partner's part in a duet situation. Source analysis using beamforming revealed common activations in auditory, inferior frontal, and parietal areas, similar to previous results for single players, but also a pronounced contribution from the cerebellum. In addition, activation of the precuneus and the medial frontal cortex was observed, presumably related to the need to distinguish between own and partner material.
Collapse
Affiliation(s)
- Claudia Lappe
- Department of Medicine, Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünster, Germany
| | - Sabine Bodeck
- Department of Medicine, Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünster, Germany
| | - Markus Lappe
- Department of Psychology, University of MünsterMünster, Germany
| | - Christo Pantev
- Department of Medicine, Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünster, Germany
| |
Collapse
|
24
|
Pollok B, Stephan K, Keitel A, Krause V, Schaal NK. The Posterior Parietal Cortex Subserves Precise Motor Timing in Professional Drummers. Front Hum Neurosci 2017; 11:183. [PMID: 28443012 PMCID: PMC5387751 DOI: 10.3389/fnhum.2017.00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/28/2017] [Indexed: 11/13/2022] Open
Abstract
The synchronization task is a well-established paradigm for the investigation of motor timing with respect to an external pacing signal. It requires subjects to synchronize their finger taps in synchrony with a regular metronome. A specific significance of the posterior parietal cortex (PPC) for superior synchronization in professional drummers has been suggested. In non-musicians, modulation of the excitability of the left PPC by means of transcranial direct current stimulation (tDCS) modulates synchronization performance of the right hand. In order to determine the significance of the left PPC for superior synchronization in drummers, we here investigate the effects of cathodal and anodal tDCS in 20 professional drummers on auditory-motor synchronization of the right hand. A continuation and a reaction time task served as control conditions. Moreover, the interaction between baseline performance and tDCS polarity was estimated in precise as compared to less precise synchronizers according to median split. Previously published data from 16 non-musicians were re-analyzed accordingly in order to highlight possible differences of tDCS effects in drummers and non-musicians. TDCS was applied for 10 min with an intensity of 0.25 mA over the left PPC. Behavioral measures were determined prior to and immediately after tDCS. In drummers the overall analysis of synchronization performance revealed significantly larger tap-to-tone asynchronies following anodal tDCS with the tap preceding the tone replicating findings in non-musicians. No significant effects were found on control tasks. The analysis for participants with large as compared to small baseline asynchronies revealed that only in drummers with small asynchronies tDCS interfered with synchronization performance. The re-analysis of the data from non-musicians indicated the reversed pattern. The data support the hypothesis that the PPC is involved in auditory-motor synchronization and extend previous findings by showing that its functional significance varies with musical expertise.
Collapse
Affiliation(s)
- Bettina Pollok
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University DuesseldorfDuesseldorf, Germany
| | - Katharina Stephan
- Department of Experimental Psychology, Heinrich-Heine University DuesseldorfDuesseldorf, Germany
| | - Ariane Keitel
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University DuesseldorfDuesseldorf, Germany
| | - Vanessa Krause
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University DuesseldorfDuesseldorf, Germany
| | - Nora K Schaal
- Department of Experimental Psychology, Heinrich-Heine University DuesseldorfDuesseldorf, Germany
| |
Collapse
|
25
|
Rhythmic entrainment as a musical affect induction mechanism. Neuropsychologia 2017; 96:96-110. [DOI: 10.1016/j.neuropsychologia.2017.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 12/10/2016] [Accepted: 01/06/2017] [Indexed: 01/04/2023]
|
26
|
Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL. Dance and music share gray matter structural correlates. Brain Res 2017; 1657:62-73. [PMID: 27923638 DOI: 10.1016/j.brainres.2016.11.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 01/31/2023]
Affiliation(s)
- Falisha J Karpati
- International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128, Succ. Centre Ville, Montréal, QC H3C 3J7, Canada; Faculty of Medicine, McGill University, 3605 Rue de la Montagne, Montreal, QC H3G 2M1, Canada.
| | - Chiara Giacosa
- International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128, Succ. Centre Ville, Montréal, QC H3C 3J7, Canada; Dept. of Psychology, Concordia University, 7141 Sherbrooke West, PY-146, Montreal, QC H4B 1R6, Canada.
| | - Nicholas E V Foster
- International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128, Succ. Centre Ville, Montréal, QC H3C 3J7, Canada; Dept. of Psychology, University of Montreal, Pavillon Marie-Victorin, 90 Avenue Vincent d'Indy, Montreal, QC H2V 2S9, Canada.
| | - Virginia B Penhune
- International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128, Succ. Centre Ville, Montréal, QC H3C 3J7, Canada; Dept. of Psychology, Concordia University, 7141 Sherbrooke West, PY-146, Montreal, QC H4B 1R6, Canada.
| | - Krista L Hyde
- International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128, Succ. Centre Ville, Montréal, QC H3C 3J7, Canada; Faculty of Medicine, McGill University, 3605 Rue de la Montagne, Montreal, QC H3G 2M1, Canada; Dept. of Psychology, University of Montreal, Pavillon Marie-Victorin, 90 Avenue Vincent d'Indy, Montreal, QC H2V 2S9, Canada.
| |
Collapse
|
27
|
Music and words in the visual cortex: The impact of musical expertise. Cortex 2017; 86:260-274. [DOI: 10.1016/j.cortex.2016.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/11/2016] [Accepted: 05/19/2016] [Indexed: 11/21/2022]
|
28
|
Haslinger B, Noé J, Altenmüller E, Riedl V, Zimmer C, Mantel T, Dresel C. Changes in resting-state connectivity in musicians with embouchure dystonia. Mov Disord 2016; 32:450-458. [PMID: 27911020 DOI: 10.1002/mds.26893] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 10/21/2016] [Accepted: 11/09/2016] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Embouchure dystonia is a highly disabling task-specific dystonia in professional brass musicians leading to spasms of perioral muscles while playing the instrument. As they are asymptomatic at rest, resting-state functional magnetic resonance imaging in these patients can reveal changes in functional connectivity within and between brain networks independent from dystonic symptoms. METHODS We therefore compared embouchure dystonia patients to healthy musicians with resting-state functional magnetic resonance imaging in combination with independent component analyses. RESULTS Patients showed increased functional connectivity of the bilateral sensorimotor mouth area and right secondary somatosensory cortex, but reduced functional connectivity of the bilateral sensorimotor hand representation, left inferior parietal cortex, and mesial premotor cortex within the lateral motor function network. Within the auditory function network, the functional connectivity of bilateral secondary auditory cortices, right posterior parietal cortex and left sensorimotor hand area was increased, the functional connectivity of right primary auditory cortex, right secondary somatosensory cortex, right sensorimotor mouth representation, bilateral thalamus, and anterior cingulate cortex was reduced. Negative functional connectivity between the cerebellar and lateral motor function network and positive functional connectivity between the cerebellar and primary visual network were reduced. CONCLUSIONS Abnormal resting-state functional connectivity of sensorimotor representations of affected and unaffected body parts suggests a pathophysiological predisposition for abnormal sensorimotor and audiomotor integration in embouchure dystonia. Altered connectivity to the cerebellar network highlights the important role of the cerebellum in this disease. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Bernhard Haslinger
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Jonas Noé
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Eckart Altenmüller
- Institut für Musikphysiologie und Musikermedizin, Hochschule für Musik, Theater und Medien Hannover, Hannover, Germany
| | - Valentin Riedl
- Abteilung für diagnostische und interventionelle Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Claus Zimmer
- Abteilung für diagnostische und interventionelle Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Tobias Mantel
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Christian Dresel
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, München, Germany
| |
Collapse
|
29
|
Tierney A, Kraus N. Getting back on the beat: links between auditory–motor integration and precise auditory processing at fast time scales. Eur J Neurosci 2016; 43:782-91. [DOI: 10.1111/ejn.13171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Adam Tierney
- Auditory Neuroscience Laboratory Institute for Neuroscience Department of Communication Sciences Northwestern University 2240 Campus Drive Evanston IL 60208 USA
- Department of Neurobiology and Physiology Northwestern University 2240 Campus Drive Evanston IL 60208 USA
- Department of Otolaryngology Northwestern University 2240 Campus Drive Evanston IL 60208 USA
| | - Nina Kraus
- Auditory Neuroscience Laboratory Institute for Neuroscience Department of Communication Sciences Northwestern University 2240 Campus Drive Evanston IL 60208 USA
- Department of Neurobiology and Physiology Northwestern University 2240 Campus Drive Evanston IL 60208 USA
- Department of Otolaryngology Northwestern University 2240 Campus Drive Evanston IL 60208 USA
| |
Collapse
|
30
|
Tal I, Abeles M. Temporal accuracy of human cortico-cortical interactions. J Neurophysiol 2016; 115:1810-20. [PMID: 26843604 PMCID: PMC4869482 DOI: 10.1152/jn.00956.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/29/2016] [Indexed: 11/22/2022] Open
Abstract
The precision in space and time of interactions among multiple cortical sites was evaluated by examining repeating precise spatiotemporal patterns of instances in which cortical currents showed brief amplitude undulations. The amplitudes of the cortical current dipoles were estimated by applying a variant of synthetic aperture magnetometry to magnetoencephalographic (MEG) recordings of subjects tapping to metric auditory rhythms of drum beats. Brief amplitude undulations were detected in the currents by template matching at a rate of 2–3 per second. Their timing was treated as point processes, and precise spatiotemporal patterns were searched for. By randomly teetering these point processes within a time window W, we estimated the accuracy of the timing of these brief amplitude undulations and compared the results with those obtained by applying the same analysis to traces composed of random numbers. The results demonstrated that the timing accuracy of patterns was better than 3 ms. Successful classification of two different cognitive processes based on these patterns suggests that at least some of the repeating patterns are specific to a cognitive process.
Collapse
Affiliation(s)
- Idan Tal
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; and
| | - Moshe Abeles
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; and The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
31
|
Abstract
Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta-theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15-30 Hz)-often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition.
Collapse
|
32
|
Ozdemir A, Bolanos M, Bernat E, Aviyente S. Hierarchical Spectral Consensus Clustering for Group Analysis of Functional Brain Networks. IEEE Trans Biomed Eng 2015; 62:2158-69. [DOI: 10.1109/tbme.2015.2415733] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Mills PF, van der Steen MC(M, Schultz BG, Keller PE. Individual Differences in Temporal Anticipation and Adaptation During Sensorimotor Synchronization. TIMING & TIME PERCEPTION 2015. [DOI: 10.1163/22134468-03002040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interpersonal coordination during musical joint action (e.g., ensemble performance) requires individuals to anticipate and adapt to each other’s action timing. Individuals differ in their ability to both anticipate and adapt, however, little is known about the relationship between these skills. The present study used paced finger tapping tasks to examine the relationship between anticipatory skill and adaptive (error correction) processes. Based on a computational model, it was hypothesized that temporal anticipation and adaptation will act together to facilitate synchronization accuracy and precision. Adaptive ability was measured as the degree of temporal error correction that participants (N= 52) engaged in when synchronizing with a ‘virtual partner’, that is, an auditory pacing signal that modulated its timing based on the participant’s performance. Anticipation was measured through a prediction index that reflected the degree to which participants’ inter-tap intervals led or lagged behind inter-onset intervals in tempo-changing sequences. A correlational analysis revealed a significant positive relationship between the prediction index and temporal error correction estimates, suggesting that anticipation and adaptation interact to facilitate synchronization performance. Hierarchical regression analyses revealed that adaptation was the best predictor of synchronization accuracy, whereas both adaptation and anticipation predicted synchronization precision. Together these results demonstrate a relationship between anticipatory and adaptive mechanisms, and indicate that individual differences in these two abilities are predictive of synchronization performance.
Collapse
Affiliation(s)
- Peta F. Mills
- The MARCS InstituteUniversity of Western SydneyAustralia
| | | | | | | |
Collapse
|
34
|
Heinrichs-Graham E, Wilson TW. Spatiotemporal oscillatory dynamics during the encoding and maintenance phases of a visual working memory task. Cortex 2015; 69:121-30. [PMID: 26043156 DOI: 10.1016/j.cortex.2015.04.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/25/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
Many electrophysiology studies have examined neural oscillatory activity during the encoding, maintenance, and/or retrieval phases of various working memory tasks. Together, these studies have helped illuminate the underlying neural dynamics, although much remains to be discovered and some findings have not replicated in subsequent work. In this study, we examined the oscillatory dynamics that serve visual working memory operations using high-density magnetoencephalography (MEG) and advanced time-frequency and beamforming methodology. Specifically, we recorded healthy adults while they performed a high-load, Sternberg-type working memory task, and focused on the encoding and maintenance phases. We found significant 9-16 Hz desynchronizations in the bilateral occipital cortices, left dorsolateral prefrontal cortex (DLPFC), and left superior temporal areas throughout the encoding phase. Our analysis of the dynamics showed that the left DLPFC and superior temporal desynchronization became stronger as a function of time during the encoding period, and was sustained throughout most of the maintenance phase until sharply decreasing in the milliseconds preceding retrieval. In contrast, desynchronization in occipital areas became weaker as a function of time during encoding and eventually evolved into a strong synchronization during the maintenance period, consistent with previous studies. These results provide clear evidence of dynamic network-level processes during the encoding and maintenance phases of working memory, and support the notion of a dynamic pattern of functionally-discrete subprocesses within each working memory phase. The presence of such dynamic oscillatory networks may be a potential source of inconsistent findings in this literature, as neural activity within these networks changes dramatically with time.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Department of Psychology, University of Nebraska - Omaha, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Tony W Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, NE, USA; Department of Neurological Sciences, UNMC, Omaha, NE, USA.
| |
Collapse
|
35
|
Ono K, Nakamura A, Maess B. Keeping an eye on the conductor: neural correlates of visuo-motor synchronization and musical experience. Front Hum Neurosci 2015; 9:154. [PMID: 25883561 PMCID: PMC4382975 DOI: 10.3389/fnhum.2015.00154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/06/2015] [Indexed: 11/13/2022] Open
Abstract
For orchestra musicians, synchronized playing under a conductor’s direction is necessary to achieve optimal performance. Previous studies using simple auditory/visual stimuli have reported cortico-subcortical networks underlying synchronization and that training improves the accuracy of synchronization. However, it is unclear whether people who played regularly under a conductor and non-musicians activate the same networks when synchronizing with a conductor’s gestures. We conducted a functional magnetic resonance imaging (fMRI) experiment testing nonmusicians and musicians who regularly play music under a conductor. Participants were required to tap the rhythm they perceived from silent movies displaying either conductor’s gestures or a swinging metronome. Musicians performed tapping under a conductor with more precision than nonmusicians. Results from fMRI measurement showed greater activity in the anterior part of the left superior frontal gyrus (SFG) in musicians with more frequent practice under a conductor. Conversely, tapping with the metronome did not show any difference between musicians and nonmusicians, indicating that the expertize effect in tapping under the conductor does not result in a general increase in tapping performance for musicians. These results suggest that orchestra musicians have developed an advanced ability to predict conductor’s next action from the gestures.
Collapse
Affiliation(s)
- Kentaro Ono
- Human Brain Research Center, Kyoto University Kyoto, Japan ; Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; National Center for Geriatrics and Gerontology Aichi, Japan
| | | | - Burkhard Maess
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| |
Collapse
|
36
|
Xiang J, Korman A, Samarasinghe KM, Wang X, Zhang F, Qiao H, Sun B, Wang F, Fan HH, Thompson EA. Volumetric imaging of brain activity with spatial-frequency decoding of neuromagnetic signals. J Neurosci Methods 2014; 239:114-28. [PMID: 25455340 DOI: 10.1016/j.jneumeth.2014.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND The brain generates signals in a wide frequency range (∼2840 Hz). Existing magnetoencephalography (MEG) methods typically detect brain activity in a median-frequency range (1-70 Hz). The objective of the present study was to develop a new method to utilize the frequency signatures for source imaging. NEW METHOD Morlet wavelet transform and two-step beamforming were integrated into a systematic approach to estimate magnetic sources in time-frequency domains. A grid-frequency kernel (GFK) was developed to decode the correlation between each time-frequency representation and grid voxel. Brain activity was reconstructed by accumulating spatial- and frequency-locked signals in the full spectral data for all grid voxels. To test the new method, MEG data were recorded from 20 healthy subjects and 3 patients with verified epileptic foci. RESULTS The experimental results showed that the new method could accurately localize brain activation in auditory cortices. The epileptic foci localized with the new method were spatially concordant with invasive recordings. COMPARISON WITH EXISTING METHODS Compared with well-known existing methods, the new method is objective because it scans the entire brain without making any assumption about the number of sources. The novel feature of the new method is its ability to localize high-frequency sources. CONCLUSIONS The new method could accurately localize both low- and high-frequency brain activities. The detection of high-frequency MEG signals can open a new avenue in the study of the human brain function as well as a variety of brain disorders.
Collapse
Affiliation(s)
- Jing Xiang
- MEG Center, Department of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, USA.
| | - Abraham Korman
- MEG Center, Department of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, USA
| | - Kasun M Samarasinghe
- Department of Electrical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Xiaopei Wang
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Fawen Zhang
- Department of Communication Sciences and Disorders, University of Cincinnati, OH, USA
| | - Hui Qiao
- MEG Laboratory, Beijing Tiantan Hospital, Beijing, People's Republic of China
| | - Bo Sun
- MEG Laboratory, Beijing Tiantan Hospital, Beijing, People's Republic of China
| | - Fengbin Wang
- MEG Laboratory, Beijing Tiantan Hospital, Beijing, People's Republic of China
| | - Howard H Fan
- Department of Electrical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | | |
Collapse
|
37
|
Krause V, Weber J, Pollok B. The posterior parietal cortex (PPC) mediates anticipatory motor control. Brain Stimul 2014; 7:800-6. [PMID: 25216648 DOI: 10.1016/j.brs.2014.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Flexible and precisely timed motor control is based on functional interaction within a cortico-subcortical network. The left posterior parietal cortex (PPC) is supposed to be crucial for anticipatory motor control by sensorimotor feedback matching. OBJECTIVE Intention of the present study was to disentangle the specific relevance of the left PPC for anticipatory motor control using transcranial direct current stimulation (tDCS) since a causal link remains to be established. METHODS Anodal vs. cathodal tDCS was applied for 10 min over the left PPC in 16 right-handed subjects in separate sessions. Left primary motor cortex (M1) tDCS served as control condition and was applied in additional 15 subjects. Prior to and immediately after tDCS, subjects performed three tasks demanding temporal motor precision with respect to an auditory stimulus: sensorimotor synchronization as measure of anticipatory motor control, interval reproduction and simple reaction. RESULTS Left PPC tDCS affected right hand synchronization but not simple reaction times. Motor anticipation was deteriorated by anodal tDCS, while cathodal tDCS yielded the reverse effect. The variability of interval reproduction was increased by anodal left M1 tDCS, whereas it was reduced by cathodal tDCS. No significant effects on simple reaction times were found. CONCLUSION The present data support the hypothesis that left PPC is causally involved in right hand anticipatory motor control exceeding pure motor implementation as processed by M1 and possibly indicating subjective timing. Since M1 tDCS particularly affects motor implementation, the observed PPC effects are not likely to be explained by alterations of motor-cortical excitability.
Collapse
Affiliation(s)
- Vanessa Krause
- Heinrich-Heine-University Duesseldorf, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| | - Juliane Weber
- Heinrich-Heine-University Duesseldorf, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Bettina Pollok
- Heinrich-Heine-University Duesseldorf, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| |
Collapse
|
38
|
Chan C, Ackermann B. Evidence-informed physical therapy management of performance-related musculoskeletal disorders in musicians. Front Psychol 2014; 5:706. [PMID: 25071671 PMCID: PMC4086404 DOI: 10.3389/fpsyg.2014.00706] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/19/2014] [Indexed: 12/26/2022] Open
Abstract
Playing a musical instrument at an elite level is a highly complex motor skill. The regular daily training loads resulting from practice, rehearsals and performances place great demands on the neuromusculoskeletal systems of the body. As a consequence, performance-related musculoskeletal disorders (PRMDs) are globally recognized as common phenomena amongst professional orchestral musicians. These disorders create a significant financial burden to individuals and orchestras as well as lead to serious consequences to the musicians’ performance and ultimately their career. Physical therapists are experts in treating musculoskeletal injuries and are ideally placed to apply their skills to manage PRMDs in this hyper-functioning population, but there is little available evidence to guide specific injury management approaches. An Australia-wide survey of professional orchestral musicians revealed that the musicians attributed excessively high or sudden increase in playing-load as major contributors to their PRMDs. Therefore, facilitating musicians to better manage these loads should be a cornerstone of physical therapy management. The Sound Practice orchestral musicians work health and safety project used formative and process evaluation approaches to develop evidence-informed and clinically applicable physical therapy interventions, ultimately resulting in favorable outcomes. After these methodologies were employed, the intervention studies were conducted with a national cohort of professional musicians including: health education, onsite injury management, cross-training exercise regimes, performance postural analysis, and music performance biomechanics feedback. The outcomes of all these interventions will be discussed alongside a focussed review on the existing literature of these management strategies. Finally, a framework for best-practice physical therapy management of PRMDs in musicians will be provided.
Collapse
Affiliation(s)
- Cliffton Chan
- Discipline of Biomedical Science, Sydney Medical School, The University of Sydney Sydney, NSW, Australia
| | - Bronwen Ackermann
- Discipline of Biomedical Science, Sydney Medical School, The University of Sydney Sydney, NSW, Australia
| |
Collapse
|
39
|
Tan YT, McPherson GE, Peretz I, Berkovic SF, Wilson SJ. The genetic basis of music ability. Front Psychol 2014; 5:658. [PMID: 25018744 PMCID: PMC4073543 DOI: 10.3389/fpsyg.2014.00658] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 06/08/2014] [Indexed: 01/18/2023] Open
Abstract
Music is an integral part of the cultural heritage of all known human societies, with the capacity for music perception and production present in most people. Researchers generally agree that both genetic and environmental factors contribute to the broader realization of music ability, with the degree of music aptitude varying, not only from individual to individual, but across various components of music ability within the same individual. While environmental factors influencing music development and expertise have been well investigated in the psychological and music literature, the interrogation of possible genetic influences has not progressed at the same rate. Recent advances in genetic research offer fertile ground for exploring the genetic basis of music ability. This paper begins with a brief overview of behavioral and molecular genetic approaches commonly used in human genetic analyses, and then critically reviews the key findings of genetic investigations of the components of music ability. Some promising and converging findings have emerged, with several loci on chromosome 4 implicated in singing and music perception, and certain loci on chromosome 8q implicated in absolute pitch and music perception. The gene AVPR1A on chromosome 12q has also been implicated in music perception, music memory, and music listening, whereas SLC6A4 on chromosome 17q has been associated with music memory and choir participation. Replication of these results in alternate populations and with larger samples is warranted to confirm the findings. Through increased research efforts, a clearer picture of the genetic mechanisms underpinning music ability will hopefully emerge.
Collapse
Affiliation(s)
- Yi Ting Tan
- Melbourne Conservatorium of Music, University of Melbourne Parkville, VIC, Australia
| | - Gary E McPherson
- Melbourne Conservatorium of Music, University of Melbourne Parkville, VIC, Australia
| | - Isabelle Peretz
- International Laboratory for Brain, Music and Sound Research and Department of Psychology, Université de Montréal Montreal, QC, Canada
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Centre, University of Melbourne Heidelberg, VIC, Australia
| | - Sarah J Wilson
- Department of Medicine, Epilepsy Research Centre, University of Melbourne Heidelberg, VIC, Australia ; Melbourne School of Psychological Sciences, University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
40
|
Abstract
Sensorimotor synchronization (SMS) is the coordination of rhythmic movement with an external rhythm, ranging from finger tapping in time with a metronome to musical ensemble performance. An earlier review (Repp, 2005) covered tapping studies; two additional reviews (Repp, 2006a, b) focused on music performance and on rate limits of SMS, respectively. The present article supplements and extends these earlier reviews by surveying more recent research in what appears to be a burgeoning field. The article comprises four parts, dealing with (1) conventional tapping studies, (2) other forms of moving in synchrony with external rhythms (including dance and nonhuman animals' synchronization abilities), (3) interpersonal synchronization (including musical ensemble performance), and (4) the neuroscience of SMS. It is evident that much new knowledge about SMS has been acquired in the last 7 years.
Collapse
|
41
|
Miendlarzewska EA, Trost WJ. How musical training affects cognitive development: rhythm, reward and other modulating variables. Front Neurosci 2014; 7:279. [PMID: 24672420 PMCID: PMC3957486 DOI: 10.3389/fnins.2013.00279] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 12/31/2013] [Indexed: 01/08/2023] Open
Abstract
Musical training has recently gained additional interest in education as increasing neuroscientific research demonstrates its positive effects on brain development. Neuroimaging revealed plastic changes in the brains of adult musicians but it is still unclear to what extent they are the product of intensive music training rather than of other factors, such as preexisting biological markers of musicality. In this review, we synthesize a large body of studies demonstrating that benefits of musical training extend beyond the skills it directly aims to train and last well into adulthood. For example, children who undergo musical training have better verbal memory, second language pronunciation accuracy, reading ability and executive functions. Learning to play an instrument as a child may even predict academic performance and IQ in young adulthood. The degree of observed structural and functional adaptation in the brain correlates with intensity and duration of practice. Importantly, the effects on cognitive development depend on the timing of musical initiation due to sensitive periods during development, as well as on several other modulating variables. Notably, we point to motivation, reward and social context of musical education, which are important yet neglected factors affecting the long-term benefits of musical training. Further, we introduce the notion of rhythmic entrainment and suggest that it may represent a mechanism supporting learning and development of executive functions. It also hones temporal processing and orienting of attention in time that may underlie enhancements observed in reading and verbal memory. We conclude that musical training uniquely engenders near and far transfer effects, preparing a foundation for a range of skills, and thus fostering cognitive development.
Collapse
Affiliation(s)
- Ewa A Miendlarzewska
- Department of Fundamental Neurosciences, (CMU), University of Geneva Geneva, Switzerland ; Swiss Centre of Affective Sciences, University of Geneva Geneva, Switzerland
| | - Wiebke J Trost
- Swiss Centre of Affective Sciences, University of Geneva Geneva, Switzerland
| |
Collapse
|
42
|
Abstract
The ability to synchronize movement to a steady beat is a fundamental skill underlying musical performance and has been studied for decades as a model of sensorimotor synchronization. Nevertheless, little is known about the neural correlates of individual differences in the ability to synchronize to a beat. In particular, links between auditory-motor synchronization ability and characteristics of the brain's response to sound have not yet been explored. Given direct connections between the inferior colliculus (IC) and subcortical motor structures, we hypothesized that consistency of the neural response to sound within the IC is linked to the ability to tap consistently to a beat. Here, we show that adolescent humans who demonstrate less variability when tapping to a beat have auditory brainstem responses that are less variable as well. One of the sources of this enhanced consistency in subjects who can steadily tap to a beat may be decreased variability in the timing of the response, as these subjects also show greater between-trial phase-locking in the auditory brainstem response. Thus, musical training with a heavy emphasis on synchronization of movement to musical beats may improve auditory neural synchrony, potentially benefiting children with auditory-based language impairments characterized by excessively variable neural responses.
Collapse
|
43
|
Temporally specific sensory signals for the detection of stimulus omission in the primate deep cerebellar nuclei. J Neurosci 2013; 33:15432-41. [PMID: 24068812 DOI: 10.1523/jneurosci.1698-13.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cerebellum is implicated in sensory prediction in the subsecond range. To explore how neurons in the cerebellum encode temporal information for the prediction of sensory events, we trained monkeys to make a saccade in response to either a single omission or deviation of isochronous repetitive stimuli. We found that neurons in the cerebellar dentate nucleus exhibited a gradual elevation of the baseline firing rate as the repetition progressed. Most neurons showed a transient suppression for each stimulus, and this firing modulation also increased gradually, opposed to the sensory adaptation. The magnitude of the enhanced sensory response positively correlated with interstimulus interval. Furthermore, when stimuli appeared unexpectedly earlier than the regular timing, the neuronal modulation became smaller, suggesting that the sensory response depended on the time elapsed since the previous stimulus. The enhancement of neuronal modulation was context dependent and was reduced or even absent when monkeys were unmotivated to detect stimulus omission. A significant negative correlation between neuronal activity at stimulus omission and saccade latency suggested that the timing of each stimulus was predicted by the amount of recovery from the transient response. Because inactivation of the recording sites delayed the detection of stimulus omission but only slightly altered the detection of stimulus deviation, these signals might be necessary for the prediction of stimulus timing but may not be involved only in the generation of saccades. Our results demonstrate a novel mechanism for temporal prediction of upcoming stimuli that accompanies the time-dependent modification of sensory gain in the cerebellum.
Collapse
|
44
|
Developmental changes of functional and directed resting-state connectivities associated with neuronal oscillations in EEG. Neuroimage 2013; 81:231-242. [DOI: 10.1016/j.neuroimage.2013.04.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 04/02/2013] [Accepted: 04/10/2013] [Indexed: 11/23/2022] Open
|
45
|
Thalamocortical mechanisms for integrating musical tone and rhythm. Hear Res 2013; 308:50-9. [PMID: 24103509 DOI: 10.1016/j.heares.2013.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 11/24/2022]
Abstract
Studies over several decades have identified many of the neuronal substrates of music perception by pursuing pitch and rhythm perception separately. Here, we address the question of how these mechanisms interact, starting with the observation that the peripheral pathways of the so-called "Core" and "Matrix" thalamocortical system provide the anatomical bases for tone and rhythm channels. We then examine the hypothesis that these specialized inputs integrate acoustic content within rhythm context in auditory cortex using classical types of "driving" and "modulatory" mechanisms. This hypothesis provides a framework for deriving testable predictions about the early stages of music processing. Furthermore, because thalamocortical circuits are shared by speech and music processing, such a model provides concrete implications for how music experience contributes to the development of robust speech encoding mechanisms.
Collapse
|
46
|
Individual differences in motor timing and its relation to cognitive and fine motor skills. PLoS One 2013; 8:e69353. [PMID: 23874952 PMCID: PMC3706394 DOI: 10.1371/journal.pone.0069353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/07/2013] [Indexed: 11/30/2022] Open
Abstract
The present study investigated the relationship between individual differences in timing movements at the level of milliseconds and performance on selected cognitive and fine motor skills. For this purpose, young adult participants (N = 100) performed a repetitive movement task paced by an auditory metronome at different rates. Psychometric measures included the digit-span and symbol search subtasks from the Wechsler battery as well as the Raven SPM. Fine motor skills were assessed with the Purdue Pegboard test. Motor timing performance was significantly related (mean r = .3) to cognitive measures, and explained both unique and shared variance with information-processing speed of Raven's scores. No significant relations were found between motor timing measures and fine motor skills. These results show that individual differences in cognitive and motor timing performance is to some extent dependent upon shared processing not associated with individual differences in manual dexterity.
Collapse
|
47
|
Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J Neurosci 2013; 33:1282-90. [PMID: 23325263 DOI: 10.1523/jneurosci.3578-12.2013] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Training during a sensitive period in development may have greater effects on brain structure and behavior than training later in life. Musicians are an excellent model for investigating sensitive periods because training starts early and can be quantified. Previous studies suggested that early training might be related to greater amounts of white matter in the corpus callosum, but did not control for length of training or identify behavioral correlates of structural change. The current study compared white-matter organization using diffusion tensor imaging in early- and late-trained musicians matched for years of training and experience. We found that early-trained musicians had greater connectivity in the posterior midbody/isthmus of the corpus callosum and that fractional anisotropy in this region was related to age of onset of training and sensorimotor synchronization performance. We propose that training before the age of 7 years results in changes in white-matter connectivity that may serve as a scaffold upon which ongoing experience can build.
Collapse
|
48
|
Hardy MW, LaGasse AB. Rhythm, movement, and autism: using rhythmic rehabilitation research as a model for autism. Front Integr Neurosci 2013; 7:19. [PMID: 23543915 PMCID: PMC3610079 DOI: 10.3389/fnint.2013.00019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/10/2013] [Indexed: 11/13/2022] Open
Abstract
Recently, there has been increased focus on movement and sensory abnormalities in autism spectrum disorders (ASD). This has come from research demonstrating cortical and cerebellar differences in autism, with suggestion of early cerebellar dysfunction. As evidence for an extended profile of ASD grows, there are vast implications for treatment and therapy for individuals with autism. Persons with autism are often provided behavioral or cognitive strategies for navigating their environment; however, these strategies do not consider differences in motor functioning. One accommodation that has not yet been explored in the literature is the use of auditory rhythmic cueing to improve motor functioning in ASD. The purpose of this paper is to illustrate the potential impact of auditory rhythmic cueing for motor functioning in persons with ASD. To this effect, we review research on rhythm in motor rehabilitation, draw parallels to motor dysfunction in ASD, and propose a rationale for how rhythmic input can improve sensorimotor functioning, thereby allowing individuals with autism to demonstrate their full cognitive, behavioral, social, and communicative potential.
Collapse
Affiliation(s)
| | - A. Blythe LaGasse
- Center for Biomedical Research in Music, Colorado State UniversityFort Collins, CO, USA
| |
Collapse
|
49
|
Effects of 10Hz and 20Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behav Brain Res 2013; 241:1-6. [DOI: 10.1016/j.bbr.2012.11.038] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/22/2012] [Accepted: 11/26/2012] [Indexed: 11/21/2022]
|
50
|
Uehara K, Morishita T, Kubota S, Funase K. Neural mechanisms underlying the changes in ipsilateral primary motor cortex excitability during unilateral rhythmic muscle contraction. Behav Brain Res 2013; 240:33-45. [DOI: 10.1016/j.bbr.2012.10.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/23/2012] [Accepted: 10/28/2012] [Indexed: 01/09/2023]
|