1
|
Robinson TD, Chad JA, Sun YL, Chang PTH, Chen JJ. Testing retrogenesis and physiological explanations for tract-wise white matter aging: links to developmental order, fibre calibre, and vascularization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576373. [PMID: 38328223 PMCID: PMC10849490 DOI: 10.1101/2024.01.20.576373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
To understand the consistently observed spatial distribution of white-matter (WM) aging, developmentally driven theories termed "retrogenesis" have gained traction, positing that the order of WM tract development predicts the order of declines. Regions that develop first are expected to deteriorate the last, i.e. "last-in-first-out". Alternatively, regions which develop most rapidly may also decline most rapidly in aging, or "gains-predict-loss". The validity of such theories remains uncertain, in part due to lack of clarity on the definition of developmental order. Importantly, our recent findings suggest that WM aging is also associated with physiological parameters such as perfusion, which may be linked to fibre metabolic need, which in turn varies with fibre size. Here we address the extent to which the degree of WM aging is determined by development trajectory (i.e. retrogenesis) and/or by physiological state. We obtained microstructural and perfusion measures using data from the Human Connectome Project in Aging (HCP-A), complemented by a meta-analysis involving maps of fibre calibre and macrovascular volume. Our results suggest that (1) while tracts that appear last or finish myelinating first in development display the slowest aging, the pattern of aging is not fully explained by retrogenesis; in fact, time courses of tract emergence and myelination give rise to opposite associations with WM decline; (2) tracts that appear earlier also have higher mean axon calibre and are also associated with lower degrees of WM microstructural aging; (3) such tracts also tend to exhibit relatively sustained CBF with a higher rate of lengthening of the arterial transit times (ATT), suggestive of collateral blood supply. These findings were also sex dependent in a tract-specific manner. Future work will investigate whether these are ultimately influenced by each tract's metabolic demand and the role of macrovascular collateral flow.
Collapse
|
2
|
Taghvaei M, Jones CK, Luna LP, Gujar SK, Sair HI. Asymmetry of the Frontal Aslant Tract Depends on Handedness. AJNR Am J Neuroradiol 2024; 45:1090-1097. [PMID: 38964863 PMCID: PMC11383403 DOI: 10.3174/ajnr.a8270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND PURPOSE The human brain displays structural and functional disparities between its hemispheres, with such asymmetry extending to the frontal aslant tract. This plays a role in a variety of cognitive functions, including speech production, language processing, and executive functions. However, the factors influencing the laterality of the frontal aslant tract remain incompletely understood. Handedness is hypothesized to impact frontal aslant tract laterality, given its involvement in both language and motor control. In this study, we aimed to investigate the relationship between handedness and frontal aslant tract lateralization, providing insight into this aspect of brain organization. MATERIALS AND METHODS The Automated Tractography Pipeline was used to generate the frontal aslant tract for both right and left hemispheres in a cohort of 720 subjects sourced from the publicly available Human Connectome Project in Aging database. Subsequently, macrostructural and microstructural parameters of the right and left frontal aslant tract were extracted for each individual in the study population. The Edinburgh Handedness Inventory scores were used for the classification of handedness, and a comparative analysis across various handedness groups was performed. RESULTS An age-related decline in both macrostructural parameters and microstructural integrity was noted within the studied population. The frontal aslant tract demonstrated a greater volume and larger diameter in male subjects compared with female participants. Additionally, a left-side laterality of the frontal aslant tract was observed within the general population. In the right-handed group, the volume (P < .001), length (P < .001), and diameter (P = .004) of the left frontal aslant tract were found to be higher than those of the right frontal aslant tract. Conversely, in the left-handed group, the volume (P = .040) and diameter (P = .032) of the left frontal aslant tract were lower than those of the right frontal aslant tract. Furthermore, in the right-handed group, the volume and diameter of the frontal aslant tract showed left-sided lateralization, while in the left-handed group, a right-sided lateralization was evident. CONCLUSIONS The laterality of the frontal aslant tract appears to differ with handedness. This finding highlights the complex interaction between brain lateralization and handedness, emphasizing the importance of considering handedness as a factor in evaluating brain structure and function.
Collapse
Affiliation(s)
- Mohammad Taghvaei
- From the Department of Neurology (M.T.), University of Pennsylvania, Philadelphia, Pennsylvania
| | - Craig K Jones
- Department of Computer Science (C.K.J.), The Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
- The Malone Center for Engineering in Healthcare (C.K.J., H.I.S.), The Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
- The Russell. H. Morgan Department of Radiology and Radiological Science (C.K.J., L.P.L., S.K.G., H.I.S.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Licia P Luna
- The Russell. H. Morgan Department of Radiology and Radiological Science (C.K.J., L.P.L., S.K.G., H.I.S.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sachin K Gujar
- The Russell. H. Morgan Department of Radiology and Radiological Science (C.K.J., L.P.L., S.K.G., H.I.S.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Haris I Sair
- The Malone Center for Engineering in Healthcare (C.K.J., H.I.S.), The Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
- The Russell. H. Morgan Department of Radiology and Radiological Science (C.K.J., L.P.L., S.K.G., H.I.S.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Albadawi EA. Microstructural Changes in the Corpus Callosum in Neurodegenerative Diseases. Cureus 2024; 16:e67378. [PMID: 39310519 PMCID: PMC11413839 DOI: 10.7759/cureus.67378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
The corpus callosum, the largest white matter structure in the brain, plays a crucial role in interhemispheric communication and cognitive function. This review examines the microstructural changes observed in the corpus callosum across various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). New neuroimaging studies, mainly those that use diffusion tensor imaging (DTI) and advanced tractography methods, were put together to show how changes have happened in the organization of white matter and the connections between them. Some of the most common ways the corpus callosum breaks down are discussed, including less fractional anisotropy, higher mean diffusivity, and atrophy in certain regions. The relationship between these microstructural changes and cognitive decline, motor dysfunction, and disease progression is explored. Additionally, we consider the potential of corpus callosum imaging as a biomarker for early disease detection and monitoring. Studies show that people with these disorders have lower fractional anisotropy and higher mean diffusivity in the corpus callosum, often in ways that are specific to the disease. These changes often happen before gray matter atrophy and are linked to symptoms, which suggests that the corpus callosum could be used as an early sign of neurodegeneration. The review also highlights the implications of these findings for understanding disease mechanisms and developing therapeutic strategies. Future directions, including the application of advanced imaging techniques and longitudinal studies, are discussed to elucidate the role of corpus callosum degeneration in neurodegenerative processes. This review underscores the importance of the corpus callosum in understanding the pathophysiology of neurodegenerative diseases and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Emad A Albadawi
- Department of Basic Medical Sciences, College of Medicine, Taibah Univeristy, Madinah, SAU
| |
Collapse
|
4
|
Caban-Rivera DA, Williams LT, McGarry MDJ, Smith DR, Van Houten EEW, Paulsen KD, Bayly PV, Johnson CL. Mechanical Properties of White Matter Tracts in Aging Assessed via Anisotropic MR Elastography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593260. [PMID: 38766139 PMCID: PMC11100698 DOI: 10.1101/2024.05.08.593260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Magnetic resonance elastography (MRE) is a promising neuroimaging technique to probe tissue microstructure, which has revealed widespread softening with loss of structural integrity in the aging brain. Traditional MRE approaches assume mechanical isotropy. However, white matter is known to be anisotropic from aligned, myelinated axonal bundles, which can lead to uncertainty in mechanical property estimates in these areas when using isotropic MRE. Recent advances in anisotropic MRE now allow for estimation of shear and tensile anisotropy, along with substrate shear modulus, in white matter tracts. The objective of this study was to investigate age-related differences in anisotropic mechanical properties in human brain white matter tracts for the first time. Anisotropic mechanical properties in all tracts were found to be significantly lower in older adults compared to young adults, with average property differences ranging between 0.028-0.107 for shear anisotropy and between 0.139-0.347 for tensile anisotropy. Stiffness perpendicular to the axonal fiber direction was also significantly lower in older age, but only in certain tracts. When compared with fractional anisotropy measures from diffusion tensor imaging, we found that anisotropic MRE measures provided additional, complementary information in describing differences between the white matter integrity of young and older populations. Anisotropic MRE provides a new tool for studying white matter structural integrity in aging and neurodegeneration.
Collapse
|
5
|
Kraft JN, Matijevic S, Hoagey DA, Kennedy KM, Rodrigue KM. Differential Effects of Aging on Regional Corpus Callosum Microstructure and the Modifying Influence of Pulse Pressure. eNeuro 2024; 11:ENEURO.0449-23.2024. [PMID: 38719452 PMCID: PMC11106647 DOI: 10.1523/eneuro.0449-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
The corpus callosum is composed of several subregions, distinct in cellular and functional organization. This organization scheme may render these subregions differentially vulnerable to the aging process. Callosal integrity may be further compromised by cardiovascular risk factors, which negatively influence white matter health. Here, we test for heterochronicity of aging, hypothesizing an anteroposterior gradient of vulnerability to aging that may be altered by the effects of cardiovascular health. In 174 healthy adults across the adult lifespan (mean age = 53.56 ± 18.90; range, 20-94 years old, 58.62% women), pulse pressure (calculated as participant's systolic minus diastolic blood pressure) was assessed to determine cardiovascular risk. A deterministic tractography approach via diffusion-weighted imaging was utilized to extract fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) from each of five callosal subregions, serving as estimates of microstructural health. General linear models tested the effects of age, hypertension, and pulse pressure on these cross-sectional metrics. We observed no significant effect of hypertensive diagnosis on callosal microstructure. We found a significant main effect of age and an age-pulse pressure interaction whereby older age and elevated pulse pressure were associated with poorer FA, AD, and RD. Age effects revealed nonlinear components and occurred along an anteroposterior gradient of severity in the callosum. This gradient disappeared when pulse pressure was considered. These results indicate that age-related deterioration across the callosum is regionally variable and that pulse pressure, a proxy of arterial stiffness, exacerbates this aging pattern in a large lifespan cohort.
Collapse
Affiliation(s)
- Jessica N Kraft
- Center for Vital Longevity, Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75235
| | - Stephanie Matijevic
- Center for Vital Longevity, Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75235
- Department of Psychology, University of Arizona, Tucson, Arizona 85721
| | - David A Hoagey
- Center for Vital Longevity, Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75235
| | - Kristen M Kennedy
- Center for Vital Longevity, Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75235
| | - Karen M Rodrigue
- Center for Vital Longevity, Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75235
| |
Collapse
|
6
|
Revie L, Metzler-Baddeley C. Age-related fornix decline predicts conservative response strategy-based slowing in perceptual decision-making. AGING BRAIN 2024; 5:100106. [PMID: 38318456 PMCID: PMC10838937 DOI: 10.1016/j.nbas.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Aging leads to response slowing but the underpinning cognitive and neural mechanisms remain elusive. We modelled older and younger adults' response times (RT) from a flanker task with a diffusion drift model (DDM) and employed diffusion-weighted magnetic resonance imaging and spectroscopy to study neurobiological predictors of DDM components (drift-rate, boundary separation, non-decision time). Microstructural indices were derived from white matter pathways involved in visuo-perceptual and attention processing [optic radiation, inferior and superior longitudinal fasciculi (ILF, SLF), fornix]. Estimates of metabolite concentrations [N-acetyl aspartate (NAA), glutamate (Glx), and γ-aminobutyric acid (GABA), creatine (Cr), choline (Cho), myoinositol (mI)] were measured from occipital (OCC), anterior cingulate (ACC) and posterior parietal cortices (PPC). Age-related increases in RT, boundary separation, and non-decision time were observed with response conservatism acounting for RT slowing. Aging was associated with reductions in white matter microstructure (lower fractional anisotropy and restricted signal fraction, larger diffusivities) and in metabolites (NAA in ACC and PPC, Glx in ACC). Regression analyses identified brain regions involved in top-down (fornix, SLF, ACC, PPC) and bottom-up (ILF, optic radiation OCC) processing as predictors for DDM parameters and RT. Fornix FA was the strongest predictor for increases in boundary separation (beta = -0.8) and mediated the effects of age on RT. These findings demonstrate that response slowing in visual discrimination is driven by the adoption of a more conservative response strategy. Age-related fornix decline may result in noisier communication of contextual information from the hippocampus to anterior decision-making regions and thus contribute to the conservative response strategy shift.
Collapse
Affiliation(s)
- Lauren Revie
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff CF24 4HQ, United Kingdom
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
7
|
Xu X, Lin L, Wu S, Sun S. Exploring Successful Cognitive Aging: Insights Regarding Brain Structure, Function, and Demographics. Brain Sci 2023; 13:1651. [PMID: 38137099 PMCID: PMC10741933 DOI: 10.3390/brainsci13121651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
In the realm of cognitive science, the phenomenon of "successful cognitive aging" stands as a hallmark of individuals who exhibit cognitive abilities surpassing those of their age-matched counterparts. However, it is paramount to underscore a significant gap in the current research, which is marked by a paucity of comprehensive inquiries that deploy substantial sample sizes to methodically investigate the cerebral biomarkers and contributory elements underpinning this cognitive success. It is within this context that our present study emerges, harnessing data derived from the UK Biobank. In this study, a highly selective cohort of 1060 individuals aged 65 and above was meticulously curated from a larger pool of 17,072 subjects. The selection process was guided by their striking cognitive resilience, ascertained via rigorous evaluation encompassing both generic and specific cognitive assessments, compared to their peers within the same age stratum. Notably, the cognitive abilities of the chosen participants closely aligned with the cognitive acumen commonly observed in middle-aged individuals. Our study leveraged a comprehensive array of neuroimaging-derived metrics, obtained from three Tesla MRI scans (T1-weighted images, dMRI, and resting-state fMRI). The metrics included image-derived phenotypes (IDPs) that addressed grey matter morphology, the strength of brain network connectivity, and the microstructural attributes of white matter. Statistical analyses were performed employing ANOVA, Mann-Whitney U tests, and chi-square tests to evaluate the distinctive aspects of IDPs pertinent to the domain of successful cognitive aging. Furthermore, these analyses aimed to elucidate lifestyle practices that potentially underpin the maintenance of cognitive acumen throughout the aging process. Our findings unveiled a robust and compelling association between heightened cognitive aptitude and the integrity of white matter structures within the brain. Furthermore, individuals who exhibited successful cognitive aging demonstrated markedly enhanced activity in the cerebral regions responsible for auditory perception, voluntary motor control, memory retention, and emotional regulation. These advantageous cognitive attributes were mirrored in the health-related lifestyle choices of the surveyed cohort, characterized by elevated educational attainment, a lower incidence of smoking, and a penchant for moderate alcohol consumption. Moreover, they displayed superior grip strength and enhanced walking speeds. Collectively, these findings furnish valuable insights into the multifaceted determinants of successful cognitive aging, encompassing both neurobiological constituents and lifestyle practices. Such comprehensive comprehension significantly contributes to the broader discourse on aging, thereby establishing a solid foundation for the formulation of targeted interventions aimed at fostering cognitive well-being among aging populations.
Collapse
Affiliation(s)
- Xinze Xu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (X.X.); (S.W.); (S.S.)
| | - Lan Lin
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (X.X.); (S.W.); (S.S.)
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing University of Technology, Beijing 100124, China
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (X.X.); (S.W.); (S.S.)
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing University of Technology, Beijing 100124, China
| | - Shen Sun
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (X.X.); (S.W.); (S.S.)
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
8
|
Tulimieri DT, Semrau JA. Aging increases proprioceptive error for a broad range of movement speed and distance estimates in the upper limb. Front Hum Neurosci 2023; 17:1217105. [PMID: 37886690 PMCID: PMC10598783 DOI: 10.3389/fnhum.2023.1217105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Previous work has identified age-related declines in proprioception within a narrow range of limb movements. It is unclear whether these declines are consistent across a broad range of movement characteristics that more closely represent daily living. Here we aim to characterize upper limb error in younger and older adults across a range of movement speeds and distances. The objective of this study was to determine how proprioceptive matching accuracy changes as a function of movement speed and distance, as well as understand the effects of aging on these accuracies. We used an upper limb robotic test of proprioception to vary the speed and distance of movement in two groups: younger (n = 20, 24.25 ± 3.34 years) and older adults (n = 21, 63 ± 10.74 years). The robot moved one arm and the participant was instructed to mirror-match the movement with their opposite arm. Participants matched seven different movement speeds (0.1-0.4 m/s) and five distances (7.5-17.5 cm) over 350 trials. Spatial (e.g., End Point Error) and temporal (e.g., Peak Speed Ratio) outcomes were used to quantify proprioceptive accuracy. Regardless of the speed or distance of movement, we found that older controls had significantly reduced proprioceptive matching accuracy compared to younger control participants (p ≤ 0.05). When movement speed was varied, we observed that errors in proprioceptive matching estimates of spatial and temporal measures were significantly higher for older adults for all but the slowest tested speed (0.1 m/s) for the majority of parameters. When movement distance was varied, we observed that errors in proprioceptive matching estimates were significantly higher for all distances, except for the longest distance (17.5 cm) for older adults compared to younger adults. We found that the magnitude of proprioceptive matching errors was dependent on the characteristics of the reference movement, and that these errors scaled increasingly with age. Our results suggest that aging significantly negatively impacts proprioceptive matching accuracy and that proprioceptive matching errors made by both groups lies along a continuum that depends on movement characteristics and that these errors are amplified due to the typical aging process.
Collapse
Affiliation(s)
- Duncan Thibodeau Tulimieri
- Biomechanics and Movement Science (BIOMS), University of Delaware, Newark, DE, United States
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Jennifer A. Semrau
- Biomechanics and Movement Science (BIOMS), University of Delaware, Newark, DE, United States
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
9
|
Taghvaei M, Cook P, Sadaghiani S, Shakibajahromi B, Tackett W, Dolui S, De D, Brown C, Khandelwal P, Yushkevich P, Das S, Wolk DA, Detre JA. Young versus older subject diffusion magnetic resonance imaging data for virtual white matter lesion tractography. Hum Brain Mapp 2023; 44:3943-3953. [PMID: 37148501 PMCID: PMC10258527 DOI: 10.1002/hbm.26326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/08/2023] Open
Abstract
White matter hyperintensity (WMH) lesions on T2 fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) and changes in adjacent normal-appearing white matter can disrupt computerized tract reconstruction and result in inaccurate measures of structural brain connectivity. The virtual lesion approach provides an alternative strategy for estimating structural connectivity changes due to WMH. To assess the impact of using young versus older subject diffusion MRI data for virtual lesion tractography, we leveraged recently available diffusion MRI data from the Human Connectome Project (HCP) Lifespan database. Neuroimaging data from 50 healthy young (39.2 ± 1.6 years) and 46 healthy older (74.2 ± 2.5 years) subjects were obtained from the publicly available HCP-Aging database. Three WMH masks with low, moderate, and high lesion burdens were extracted from the WMH lesion frequency map of locally acquired FLAIR MRI data. Deterministic tractography was conducted to extract streamlines in 21 WM bundles with and without the WMH masks as regions of avoidance in both young and older cohorts. For intact tractography without virtual lesion masks, 7 out of 21 WM pathways showed a significantly lower number of streamlines in older subjects compared to young subjects. A decrease in streamline count with higher native lesion burden was found in corpus callosum, corticostriatal tract, and fornix pathways. Comparable percentages of affected streamlines were obtained in young and older groups with virtual lesion tractography using the three WMH lesion masks of increasing severity. We conclude that using normative diffusion MRI data from young subjects for virtual lesion tractography of WMH is, in most cases, preferable to using age-matched normative data.
Collapse
Affiliation(s)
- Mohammad Taghvaei
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Philip Cook
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shokufeh Sadaghiani
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - William Tackett
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sudipto Dolui
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Debarun De
- Department of Computer EngineeringUniversity of IllinoisUrbanaIllinoisUSA
| | - Christopher Brown
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Pulkit Khandelwal
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Paul Yushkevich
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sandhitsu Das
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - John A. Detre
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
10
|
Pietrasik W, Cribben I, Olsen F, Malykhin N. Diffusion tensor imaging of superficial prefrontal white matter in healthy aging. Brain Res 2023; 1799:148152. [PMID: 36343726 DOI: 10.1016/j.brainres.2022.148152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
The prefrontal cortex (PFC) is a heterogenous structure that is highly susceptible to the effects of aging. Few studies have investigated age effects on the superficial white matter (WM) contained within the PFC using in-vivo magnetic resonance imaging (MRI). This study used diffusion tensor imaging (DTI) tractography to examine the effects of age, sex, and intracranial volume (ICV) on superficial WM within specific PFC subregions, and to model the relationships with age using higher order polynomial regression modelling. PFC WM of 140 healthy individuals, aged 18-85, was segmented into medial and lateral orbitofrontal, medial prefrontal, and dorsolateral prefrontal subregions. Differences due to age in microstructural parameters such as fractional anisotropy (FA), axial and radial diffusivities, and macrostructural measures of tract volumes, fiber counts, average fiber lengths, and average number of fibers per voxel were examined. We found that most prefrontal subregions demonstrated age effects, with decreases in FA, tract volume, and fiber counts, and increases in all diffusivity measures. Age relationships were mostly non-linear, with higher order regressions chosen in most cases. Declines in PFC FA began at the onset of adulthood while the greatest changes in diffusivity and volume did not occur until middle age. The effects of age were most prominent in medial tracts while the lateral orbitofrontal tracts were less affected. Significant effects of sex and ICV were also observed in certain parameters. The patterns mostly followed myelination order, with late-myelinating prefrontal subregions experiencing earlier and more pronounced age effects, further supporting the frontal theory of aging.
Collapse
Affiliation(s)
- Wojciech Pietrasik
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ivor Cribben
- Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Accounting & Business Analytics, Alberta School of Business, University of Alberta, Edmonton, Alberta, Canada
| | - Fraser Olsen
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nikolai Malykhin
- Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
11
|
Grecco GG, Shahid SS, Atwood BK, Wu YC. Alterations of brain microstructures in a mouse model of prenatal opioid exposure detected by diffusion MRI. Sci Rep 2022; 12:17085. [PMID: 36224335 PMCID: PMC9556691 DOI: 10.1038/s41598-022-21416-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/27/2022] [Indexed: 01/04/2023] Open
Abstract
Growing opioid use among pregnant women is fueling a crisis of infants born with prenatal opioid exposure. A large body of research has been devoted to studying the management of opioid withdrawal during the neonatal period in these infants, but less substantive work has explored the long-term impact of prenatal opioid exposure on neurodevelopment. Using a translationally relevant mouse model of prenatal methadone exposure (PME), the aim of the study is to investigate the cerebral microstructural differences between the mice with PME and prenatal saline exposure (PSE). The brains of eight-week-old male offspring with either PME (n = 15) or PSE (n = 15) were imaged using high resolution in-vivo diffusion magnetic resonance imaging on a 9.4 Tesla small animal scanner. Brain microstructure was characterized using diffusion tensor imaging (DTI) and Bingham neurite orientation dispersion and density imaging (Bingham-NODDI). Voxel-based analysis (VBA) was performed using the calculated microstructural parametric maps. The VBA showed significant (p < 0.05) bilateral alterations in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), orientation dispersion index (ODI) and dispersion anisotropy index (DAI) across several cortical and subcortical regions, compared to PSE. Particularly, in PME offspring, FA, MD and AD were significantly higher in the hippocampus, dorsal amygdala, thalamus, septal nuclei, dorsal striatum and nucleus accumbens. These DTI-based results suggest widespread bilateral microstructural alterations across cortical and subcortical regions in PME offspring. Consistent with the observations in DTI, Bingham-NODDI derived ODI exhibited significant reduction in PME offspring within the hippocampus, dorsal striatum and cortex. NODDI-based results further suggest reduction in dendritic arborization in PME offspring across multiple cortical and subcortical regions. To our best knowledge, this is the first study of prenatal opioid exposure to examine microstructural organization in vivo. Our findings demonstrate perturbed microstructural complexity in cortical and subcortical regions persisting into early adulthood which could interfere with critical neurodevelopmental processes in individuals with prenatal opioid exposure.
Collapse
Affiliation(s)
- Gregory G Grecco
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University School of Medicine, Medical Scientist Training Program, Indianapolis, IN, 46202, USA
| | - Syed Salman Shahid
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16th Street, Suite 4100, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16th Street, Suite 4100, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
12
|
Eikenes L, Visser E, Vangberg T, Håberg AK. Both brain size and biological sex contribute to variation in white matter microstructure in middle-aged healthy adults. Hum Brain Mapp 2022; 44:691-709. [PMID: 36189786 PMCID: PMC9842919 DOI: 10.1002/hbm.26093] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 01/25/2023] Open
Abstract
Whether head size and/or biological sex influence proxies of white matter (WM) microstructure such as fractional anisotropy (FA) and mean diffusivity (MD) remains controversial. Diffusion tensor imaging (DTI) indices are also associated with age, but there are large discrepancies in the spatial distribution and timeline of age-related differences reported. The aim of this study was to evaluate the associations between intracranial volume (ICV), sex, and age and DTI indices from WM in a population-based study of healthy individuals (n = 812) aged 50-66 in the Nord-Trøndelag health survey. Semiautomated tractography and tract-based spatial statistics (TBSS) analyses were performed on the entire sample and in an ICV-matched sample of men and women. The tractography results showed a similar positive association between ICV and FA in all major WM tracts in men and women. Associations between ICV and MD, radial diffusivity and axial diffusivity were also found, but to a lesser extent than FA. The TBSS results showed that both men and women had areas of higher and lower FA when controlling for age, but after controlling for age and ICV only women had areas with higher FA. The ICV matched analysis also demonstrated that only women had areas of higher FA. Age was negatively associated with FA across the entire WM skeleton in the TBSS analysis, independent of both sex and ICV. Combined, these findings demonstrated that both ICV and sex contributed to variation in DTI indices and emphasized the importance of considering ICV as a covariate in DTI analysis.
Collapse
Affiliation(s)
- Live Eikenes
- Department of Circulation and Medical ImagingNorwegian University of Science and TechnologyTrondheimNorway
| | - Eelke Visser
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK,Donders InstituteRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Torgil Vangberg
- Department of Clinical MedicineUiT The Arctic University of NorwayTromsøNorway,PET CenterUniversity Hospital North NorwayTromsøNorway
| | - Asta K. Håberg
- Department of NeuroscienceNorwegian University of Science and TechnologyTrondheimNorway,Department of Diagnostic Imaging, MR‐CenterSt. Olav's University HospitalTrondheimNorway
| |
Collapse
|
13
|
Fortel I, Butler M, Korthauer LE, Zhan L, Ajilore O, Sidiropoulos A, Wu Y, Driscoll I, Schonfeld D, Leow A. Inferring excitation-inhibition dynamics using a maximum entropy model unifying brain structure and function. Netw Neurosci 2022; 6:420-444. [PMID: 35733430 PMCID: PMC9205431 DOI: 10.1162/netn_a_00220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022] Open
Abstract
Neural activity coordinated across different scales from neuronal circuits to large-scale brain networks gives rise to complex cognitive functions. Bridging the gap between micro- and macroscale processes, we present a novel framework based on the maximum entropy model to infer a hybrid resting-state structural connectome, representing functional interactions constrained by structural connectivity. We demonstrate that the structurally informed network outperforms the unconstrained model in simulating brain dynamics, wherein by constraining the inference model with the network structure we may improve the estimation of pairwise BOLD signal interactions. Further, we simulate brain network dynamics using Monte Carlo simulations with the new hybrid connectome to probe connectome-level differences in excitation-inhibition balance between apolipoprotein E (APOE)-ε4 carriers and noncarriers. Our results reveal sex differences among APOE-ε4 carriers in functional dynamics at criticality; specifically, female carriers appear to exhibit a lower tolerance to network disruptions resulting from increased excitatory interactions. In sum, the new multimodal network explored here enables analysis of brain dynamics through the integration of structure and function, providing insight into the complex interactions underlying neural activity such as the balance of excitation and inhibition.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mitchell Butler
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura E. Korthauer
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Yichao Wu
- Department of Math, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Dan Schonfeld
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Alex Leow
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Zhang F, Daducci A, He Y, Schiavi S, Seguin C, Smith RE, Yeh CH, Zhao T, O'Donnell LJ. Quantitative mapping of the brain's structural connectivity using diffusion MRI tractography: A review. Neuroimage 2022; 249:118870. [PMID: 34979249 PMCID: PMC9257891 DOI: 10.1016/j.neuroimage.2021.118870] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is an advanced imaging technique that enables in vivo reconstruction of the brain's white matter connections at macro scale. It provides an important tool for quantitative mapping of the brain's structural connectivity using measures of connectivity or tissue microstructure. Over the last two decades, the study of brain connectivity using dMRI tractography has played a prominent role in the neuroimaging research landscape. In this paper, we provide a high-level overview of how tractography is used to enable quantitative analysis of the brain's structural connectivity in health and disease. We focus on two types of quantitative analyses of tractography, including: 1) tract-specific analysis that refers to research that is typically hypothesis-driven and studies particular anatomical fiber tracts, and 2) connectome-based analysis that refers to research that is more data-driven and generally studies the structural connectivity of the entire brain. We first provide a review of methodology involved in three main processing steps that are common across most approaches for quantitative analysis of tractography, including methods for tractography correction, segmentation and quantification. For each step, we aim to describe methodological choices, their popularity, and potential pros and cons. We then review studies that have used quantitative tractography approaches to study the brain's white matter, focusing on applications in neurodevelopment, aging, neurological disorders, mental disorders, and neurosurgery. We conclude that, while there have been considerable advancements in methodological technologies and breadth of applications, there nevertheless remains no consensus about the "best" methodology in quantitative analysis of tractography, and researchers should remain cautious when interpreting results in research and clinical applications.
Collapse
Affiliation(s)
- Fan Zhang
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| | | | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia; The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| | - Robert E Smith
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | | |
Collapse
|
15
|
Tract-specific statistics based on diffusion-weighted probabilistic tractography. Commun Biol 2022; 5:138. [PMID: 35177755 PMCID: PMC8854429 DOI: 10.1038/s42003-022-03073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Diffusion-weighted neuroimaging approaches provide rich evidence for estimating the structural integrity of white matter in vivo, but typically do not assess white matter integrity for connections between two specific regions of the brain. Here, we present a method for deriving tract-specific diffusion statistics, based upon predefined regions of interest. Our approach derives a population distribution using probabilistic tractography, based on the Nathan Kline Institute (NKI) Enhanced Rockland sample. We determine the most likely geometry of a path between two regions and express this as a spatial distribution. We then estimate the average orientation of streamlines traversing this path, at discrete distances along its trajectory, and the fraction of diffusion directed along this orientation for each participant. The resulting participant-wise metrics (tract-specific anisotropy; TSA) can then be used for statistical analysis on any comparable population. Based on this method, we report both negative and positive associations between age and TSA for two networks derived from published meta-analytic studies (the “default mode” and “what-where” networks), along with more moderate sex differences and age-by-sex interactions. The proposed method can be applied to any arbitrary set of brain regions, to estimate both the spatial trajectory and DWI-based anisotropy specific to those regions. Andrew Reid et al. use publicly available data to present a method for deriving tract-specific statistics based on diffusion-weighted MRI, based upon arbitrarily-defined regions of interest. Their approach enables them to report both negative and positive associations between age and tract-specific anisotropy along with more moderate sex differences and age-by-sex interactions.
Collapse
|
16
|
Shirazi Y, Oghabian MA, Batouli SAH. Along-tract analysis of the white matter is more informative about brain ageing, compared to whole-tract analysis. Clin Neurol Neurosurg 2021; 211:107048. [PMID: 34826755 DOI: 10.1016/j.clineuro.2021.107048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/25/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022]
Abstract
Diffusion Tensor Imaging (DTI) enabled the investigation of brain White Matter (WM), both qualitatively to study the macrostructure, and quantitatively to study the microstructure. The quantitative analyses are mostly performed at the whole-tract level, i.e., providing one measure of interest per tract; however, along-tract approaches may provide finer details of the quality of the WM tracts. In this study, using the DWI data collected from 40 young and 40 old individuals, we compared the DTI measures of FA, MD, AD, and RD, estimated by both whole-tract and along-tract approaches in 18 WM bundles, between the two groups. The results of the whole-tract quantitative analysis showed a statistically significant (p-FWER < 0.05) difference between the old and young groups in 6 tracts for FA, 8 tracts for MD, 1 tract for AD, and 7 tracts for RD. On the contrary, the along-tract approach showed differences between the two groups in 10 tracts for FA, 14 tracts for MD, 8 tracts for AD, and 11 tracts for RD. All the differences between the along-tract measures of the two groups had a large effect size (Cohen'd > 0.80). This study showed that the along-tract approach for the analysis of brain WM reveals changes in some WM tracts which had not shown any changes in the whole-tract approach, and therefore this finding emphasizes the utilization of the along-tract approach along with the whole-tract method for a more accurate study of the brain WM.
Collapse
Affiliation(s)
- Yasin Shirazi
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran; Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Batouli
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Seo JP, Koo DK. Aging of the Nigrostriatal Tract in the Human Brain: A Diffusion Tensor Imaging Study. ACTA ACUST UNITED AC 2021; 57:medicina57090994. [PMID: 34577917 PMCID: PMC8464776 DOI: 10.3390/medicina57090994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
Background and Objectives: The loss of dopamine neurons in the nigrostriatal tract (NST) is one of the main pathological features of Parkinson’s disease (PD), and degeneration of the NST leads to the motor symptoms observed in PD, which include hypokinesia, tremors, rigidity, and postural imbalance. In this study, we used diffusion tensor tractography (DTT) to investigate the aging of the NST in normal human subjects to elucidate human brain structures. Materials and Methods: Fifty-nine healthy subjects were recruited for this study and allocated to three groups, that is, a 20 to ≤39 year old group (the young group), a 40 to ≤59 year old group (the middle-aged group), and a ≥60 year old group (the old group). DTT scanning was performed, and NSTs were reconstructed using the probabilistic tractography method. NSTs were defined by selecting fibers passing through seed and target regions of interest placed on the substantia nigra and the striatum. Results: A significant negative correlation was observed between age and fractional anisotropy and tract volume (TV) of the NST. Mean TV values of the NST were significantly lower in the old group than in the young and middle-aged groups (p < 0.05). The TV values of the NST were significantly reduced with age for men and women (p < 0.05). Conclusion: We found that aging of the NST began in the 3rd decile and progressed steadily throughout life until old age, when it exhibited significant degeneration. We suspect these results are related to the correlation between the incidence of PD and age.
Collapse
Affiliation(s)
| | - Dong-Kyun Koo
- Correspondence: ; Tel.: +82-41-550-6103; Fax: +82-41-559-7934
| |
Collapse
|
18
|
Shokri-Kojori E, Bennett IJ, Tomeldan ZA, Krawczyk DC, Rypma B. Estimates of brain age for gray matter and white matter in younger and older adults: Insights into human intelligence. Brain Res 2021; 1763:147431. [PMID: 33737067 PMCID: PMC8428193 DOI: 10.1016/j.brainres.2021.147431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/01/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Aging entails a multifaceted complex of changes in macro- and micro-structural properties of human brain gray matter (GM) and white matter (WM) tissues, as well as in intellectual abilities. To better capture tissue-specific brain aging, we combined volume and distribution properties of diffusivity indices to derive subject-specific age scores for each tissue. We compared age-related variance between younger and older adults for GM and WM age scores, and tested whether tissue-specific age scores could explain different effects of aging on fluid (Gf) and crystalized (Gc) intelligence in younger and older adults. Chronological age was strongly associated with GM (R2 = 0.73) and WM (R2 = 0.57) age scores. The GM age score accounted for significantly more variance in chronological age in younger relative to older adults (p < 0.001), whereas the WM age score accounted for significantly more variance in chronological age in older compared to younger adults (p < 0.025). Consistent with existing literature, younger adults outperformed older adults in Gf while older adults outperformed younger adults in Gc. The GM age score was negatively associated with Gf in younger adults (p < 0.02), whereas the WM age score was negatively associated with Gc in older adults (p < 0.02). Our results provide evidence for differences in the effects of age on GM and WM in younger versus older adults that may contribute to age-related differences in Gf and Gc.
Collapse
Affiliation(s)
- Ehsan Shokri-Kojori
- Center for BrainHealth®, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA.
| | - Ilana J Bennett
- Center for BrainHealth®, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA; Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Zuri A Tomeldan
- Center for BrainHealth®, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Daniel C Krawczyk
- Center for BrainHealth®, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA; Department of Psychiatry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Bart Rypma
- Center for BrainHealth®, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA; Department of Psychiatry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
19
|
Merenstein JL, Corrada MM, Kawas CH, Bennett IJ. Age affects white matter microstructure and episodic memory across the older adult lifespan. Neurobiol Aging 2021; 106:282-291. [PMID: 34332220 DOI: 10.1016/j.neurobiolaging.2021.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Diffusion imaging studies have observed age-related degradation of white matter that contributes to cognitive deficits separately in younger-old (ages 65-89) and oldest-old (ages 90+) adults. But it remains unclear whether these age effects are magnified in advanced age groups, which may reflect disease-related pathology. Here, we tested whether age-related differences in white matter microstructure followed linear or nonlinear patterns across the entire older adult lifespan (65-98 years), these patterns were influenced by oldest-old adults at increased risk of dementia (cognitive impairment no dementia, CIND), and they explained age effects on episodic memory. Results revealed nonlinear microstructure declines across fiber classes (medial temporal, callosal, association, projection and/or thalamic) that were largest for medial temporal fibers. These patterns remained after excluding oldest-old participants with CIND, indicating that aging of white matter microstructure cannot solely be explained by pathology associated with early cognitive impairment. Moreover, finding that the effect of age on episodic memory was mediated by medial temporal fiber microstructure suggests it is essential for facilitating memory-related neural signals across the older adult lifespan.
Collapse
Affiliation(s)
| | - María M Corrada
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA; Department of Epidemiology, University of California, Irvine, CA, USA
| | - Claudia H Kawas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, CA, USA
| |
Collapse
|
20
|
Aghamohammadi-Sereshki A, Olsen F, Seres P, Malykhin NV. Selective Effects of Healthy Cognitive Aging and Catechol- O-Methyl Transferase Polymorphism on Limbic White Matter Tracts. Brain Connect 2021; 12:146-163. [PMID: 34015958 DOI: 10.1089/brain.2020.0919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: The cingulum bundle and uncinate fasciculus are major limbic white matter tracts involved in emotion, memory, and cognition. The main goal of the present study was to investigate the relationship between age and structural properties of the uncinate fasciculus and the cingulum bundle using diffusion tensor imaging (DTI) tractography in a large cohort of healthy individuals. The second goal was to determine the effects of the catechol-O-methyl transferase (COMT) gene polymorphism on the DTI measurements of these white matter tracts. Methods: We recruited 140 healthy participants (18-85 years old). DTI data sets were acquired on a 1.5T magnetic resonance imaging system. The rostral, dorsal, and parahippocampal cingulum, as well as uncinate fasciculus, were delineated using deterministic tractography. Fractional anisotropy (FA), mean (MD), radial (RD), and axial (AD) diffusivities, tract volume, linear (Cl), planar (Cp), and spherical (Cs) tensor shapes were calculated. The COMT polymorphism (methionine homozygous vs. valine carriers) was determined using single nucleotide polymorphism. Results: We found that age was negatively associated with FA, but positively associated with MD and RD for the rostral cingulum, dorsal cingulum, and the uncinate fasciculus but not for the parahippocampal cingulum. Furthermore, individuals with the COMT methionine homozygous had higher FA and lower MD, RD, AD, and Cs values in the right rostral cingulum compared with the valine carriers across the entire adult life span. Discussion: This study indicates that limbic tracts might be nonuniformly affected by healthy aging, and the methionine homozygous genotype might be associated with micro/macro white matter properties of the right rostral cingulum.
Collapse
Affiliation(s)
| | - Fraser Olsen
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Nikolai V Malykhin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Behler A, Kassubek J, Müller HP. Age-Related Alterations in DTI Metrics in the Human Brain-Consequences for Age Correction. Front Aging Neurosci 2021; 13:682109. [PMID: 34211389 PMCID: PMC8239142 DOI: 10.3389/fnagi.2021.682109] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Over the life span, the diffusion metrics in brain MRI show different, partly nonlinear changes. These age-dependent changes also seem to exhibit regional differences with respect to the brain anatomy. The age correction of a study cohort's diffusion metrics might thus require consideration of age-related factors. Methods: Diffusion tensor imaging data sets were acquired from 219 healthy participants at ages between 19 and 81 years. Fractional anisotropy (FA), mean diffusivity (MD), and axial and radial diffusivity (AD and RD, respectively) maps were analyzed by a tract of interest-based fiber tracking approach. To describe diffusion metrics as a function of the participant age, linear splines were used to perform curve fitting in 21 specific tract systems covering different functional areas and diffusion directions. Results: In the majority of tracts, an interpolation with a change of alteration rate during adult life described the diffusion properties more accurately than a linear model. Consequently, the diffusion properties remained relatively stable until a decrease (of FA) or increase (of MD, AD, and RD) started at a region-specific time point, whereas a uniform change of diffusion properties was observed only in a few tracts. Single tracts, e.g., located in the cerebellum, remained nearly unaltered throughout the ages between 19 and 81 years. Conclusions: Age corrections of diffusion properties should not be applied to all white matter regions and all age spans in the same way. Therefore, we propose three different approaches for age correction based on fiber tracking techniques, i.e., no correction for areas that do not experience age-related changes and two variants of an age correction depending on the age range of the cohort and the tracts considered.
Collapse
Affiliation(s)
- Anna Behler
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
22
|
Irimia A. Cross-Sectional Volumes and Trajectories of the Human Brain, Gray Matter, White Matter and Cerebrospinal Fluid in 9473 Typically Aging Adults. Neuroinformatics 2021; 19:347-366. [PMID: 32856237 DOI: 10.1007/s12021-020-09480-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Accurate knowledge of adult human brain volume (BV) is critical for studies of aging- and disease-related brain alterations, and for monitoring the trajectories of neural and cognitive functions in conditions like Alzheimer's disease and traumatic brain injury. This scoping meta-analysis aggregates normative reference values for BV and three related volumetrics-gray matter volume (GMV), white matter volume (WMV) and cerebrospinal fluid volume (CSFV)-from typically-aging adults studied cross-sectionally using magnetic resonance imaging (MRI). Drawing from an aggregate sample of 9473 adults, this study provides (A) regression coefficients β describing the age-dependent trajectories of volumetric measures by sex within the range from 20 to 70 years based on both linear and quadratic models, and (B) average values for BV, GMV, WMV and CSFV at the representative ages of 20 (young age), 45 (middle age) and 70 (old age). The results provided synthesize ~20 years of brain volumetrics research and allow one to estimate BV at any age between 20 and 70. Importantly, however, such estimates should be used and interpreted with caution because they depend on MRI hardware specifications (e.g. scanner manufacturer, magnetic field strength), data acquisition parameters (e.g. spatial resolution, weighting), and brain segmentation algorithms. Guidelines are proposed to facilitate future meta- and mega-analyses of brain volumetrics.
Collapse
Affiliation(s)
- Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, USA.
- Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA.
| |
Collapse
|
23
|
Reduced frontal white matter microstructure in healthy older adults with low tactile recognition performance. Sci Rep 2021; 11:11689. [PMID: 34083614 PMCID: PMC8175740 DOI: 10.1038/s41598-021-90995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/12/2021] [Indexed: 11/08/2022] Open
Abstract
The aging of the nervous system is a heterogeneous process. It remains a significant challenge to identify relevant markers of pathological and healthy brain aging. A central aspect of aging are decreased sensory acuities, especially because they correlate with the decline in higher cognitive functioning. Sensory and higher cognitive processing relies on information flow between distant brain areas. Aging leads to disintegration of the underlying white matter tracts. While this disintegration is assumed to contribute to higher cognitive decline, data linking structural integrity and sensory function are sparse. The investigation of their interrelation may provide valuable insight into the mechanisms of brain aging. We used a combined behavioral and neuroimaging approach and investigated to what extent changes in microstructural white matter integrity reflect performance declines in tactile pattern recognition with aging. Poor performance in older participants was related to decreased integrity in the anterior corpus callosum. Probabilistic tractography showed that this structure is connected to the prefrontal cortices. Our data point to decreased integrity in the anterior corpus callosum as a marker for advanced brain aging. The correlation between impaired tactile recognition and disintegration in frontal brain networks could provide an explanation why the decrease of sensory function predicts cognitive decline.
Collapse
|
24
|
Kelley S, Plass J, Bender AR, Polk TA. Age-Related Differences in White Matter: Understanding Tensor-Based Results Using Fixel-Based Analysis. Cereb Cortex 2021; 31:3881-3898. [PMID: 33791797 DOI: 10.1093/cercor/bhab056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with widespread alterations in cerebral white matter (WM). Most prior studies of age differences in WM have used diffusion tensor imaging (DTI), but typical DTI metrics (e.g., fractional anisotropy; FA) can reflect multiple neurobiological features, making interpretation challenging. Here, we used fixel-based analysis (FBA) to investigate age-related WM differences observed using DTI in a sample of 45 older and 25 younger healthy adults. Age-related FA differences were widespread but were strongly associated with differences in multi-fiber complexity (CX), suggesting that they reflected differences in crossing fibers in addition to structural differences in individual fiber segments. FBA also revealed a frontolimbic locus of age-related effects and provided insights into distinct microstructural changes underlying them. Specifically, age differences in fiber density were prominent in fornix, bilateral anterior internal capsule, forceps minor, body of the corpus callosum, and corticospinal tract, while age differences in fiber cross section were largest in cingulum bundle and forceps minor. These results provide novel insights into specific structural differences underlying major WM differences associated with aging.
Collapse
Affiliation(s)
- Shannon Kelley
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Plass
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew R Bender
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Matijevic S, Ryan L. Tract Specificity of Age Effects on Diffusion Tensor Imaging Measures of White Matter Health. Front Aging Neurosci 2021; 13:628865. [PMID: 33790778 PMCID: PMC8006297 DOI: 10.3389/fnagi.2021.628865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Well-established literature indicates that older adults have poorer cerebral white matter integrity, as measured through diffusion tensor imaging (DTI). Age differences in DTI have been observed widely across white matter, although some tracts appear more sensitive to the effects of aging than others. Factors like APOE ε4 status and sex may contribute to individual differences in white matter integrity that also selectively impact certain tracts, and could influence DTI changes in aging. The present study explored the degree to which age, APOE ε4, and sex exerted global vs. tract specific effects on DTI metrics in cognitively healthy late middle-aged to older adults. Data from 49 older adults (ages 54–92) at two time-points separated by approximately 2.7 years were collected. DTI metrics, including fractional anisotropy (FA) and mean diffusivity (MD), were extracted from nine white matter tracts and global white matter. Results showed that across timepoints, FA and MD increased globally, with no tract-specific changes observed. Baseline age had a global influence on both measures, with increasing age associated with lower FA and higher MD. After controlling for global white matter FA, age additionally predicted FA for the genu, callosum body, inferior fronto-occipital fasciculus (IFOF), and both anterior and posterior cingulum. Females exhibited lower global FA on average compared to males. In contrast, MD was selectively elevated in the anterior cingulum and superior longitudinal fasciculus (SLF), for females compared to males. APOE ε4 status was not predictive of either measure. In summary, these results indicate that age and sex are associated with both global and tract-specific alterations to DTI metrics among a healthy older adult cohort. Older women have poorer white matter integrity compared to older men, perhaps related to menopause-induced metabolic changes. While age-related alterations to white matter integrity are global, there is substantial variation in the degree to which tracts are impacted, possibly as a consequence of tract anatomical variability. The present study highlights the importance of accounting for global sources of variation in DTI metrics when attempting to investigate individual differences (due to age, sex, or other factors) in specific white matter tracts.
Collapse
Affiliation(s)
- Stephanie Matijevic
- Cognition and Neuroimaging Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Lee Ryan
- Cognition and Neuroimaging Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
26
|
Berkes M, Calvo N, Anderson JAE, Bialystok E. Poorer clinical outcomes for older adult monolinguals when matched to bilinguals on brain health. Brain Struct Funct 2021; 226:415-424. [PMID: 33432426 DOI: 10.1007/s00429-020-02185-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022]
Abstract
Previous studies have reported bilingualism to be a proxy of cognitive reserve (CR) based on evidence that bilinguals express dementia symptoms ~ 4 years later than monolinguals yet present with greater neuropathology at time of diagnosis when clinical levels are similar. The current study provides new evidence supporting bilingualism's contribution to CR using a novel brain health matching paradigm. Forty cognitively normal bilinguals with diffusion-weighted magnetic resonance images recruited from the community were matched with monolinguals drawn from a pool of 165 individuals in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. White matter integrity was determined for all participants using fractional anisotropy, axial diffusivity, and radial diffusivity scores. Propensity scores were obtained using white matter measures, sex, age, and education as predictive covariates, and then used in one-to-one matching between language groups, creating a matched sample of 32 participants per group. Matched monolinguals had poorer clinical diagnoses than that predicted by chance from a theoretical null distribution, and poorer cognitive performances than matched bilinguals as measured by scores on the MMSE. The findings provide support for the interpretation that bilingualism acts as a proxy of CR such that monolinguals have poorer clinical and cognitive outcomes than bilinguals for similar levels of white matter integrity even before clinical symptoms appear.
Collapse
Affiliation(s)
- Matthias Berkes
- Department of Psychology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Noelia Calvo
- Department of Psychology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | | | - Ellen Bialystok
- Department of Psychology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | | |
Collapse
|
27
|
Lynn JD, Anand C, Arshad M, Homayouni R, Rosenberg DR, Ofen N, Raz N, Stanley JA. Microstructure of Human Corpus Callosum across the Lifespan: Regional Variations in Axon Caliber, Density, and Myelin Content. Cereb Cortex 2021; 31:1032-1045. [PMID: 32995843 PMCID: PMC7906774 DOI: 10.1093/cercor/bhaa272] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
The myeloarchitecture of the corpus callosum (CC) is characterized as a mosaic of distinct differences in fiber density of small- and large-diameter axons along the anterior-posterior axis; however, regional and age differences across the lifespan are not fully understood. Using multiecho T2 magnetic resonance imaging combined with multi-T2 fitting, the myelin water fraction (MWF) and geometric-mean of the intra-/extracellular water T2 (geomT2IEW) in 395 individuals (7-85 years; 41% males) were examined. The approach was validated where regional patterns along the CC closely resembled the histology; MWF matched mean axon diameter and geomT2IEW mirrored the density of large-caliber axons. Across the lifespan, MWF exhibited a quadratic association with age in all 10 CC regions with evidence of a positive linear MWF-age relationship among younger participants and minimal age differences in the remainder of the lifespan. Regarding geomT2IEW, a significant linear age × region interaction reflected positive linear age dependence mostly prominent in the regions with the highest density of small-caliber fibers-genu and splenium. In all, these two indicators characterize distinct attributes that are consistent with histology, which is a first. In addition, these results conform to rapid developmental progression of CC myelination leveling in middle age as well as age-related degradation of axon sheaths in older adults.
Collapse
Affiliation(s)
- Jonathan D Lynn
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
| | - Chaitali Anand
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
| | - Muzamil Arshad
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
- Department of Psychology, Wayne State University, Detroit MI 48201, USA
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
- Department of Psychology, Wayne State University, Detroit MI 48201, USA
- Lifespan Cognitive Neuroscience, Merrill Palmer Skillman Institute, Wayne State University, Detroit MI 14195, USA
| | - Naftali Raz
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
- Department of Psychology, Wayne State University, Detroit MI 48201, USA
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| | - Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
| |
Collapse
|
28
|
Diffusion properties of the fornix assessed by deterministic tractography shows age, sex, volume, cognitive, hemispheric, and twin relationships in young adults from the Human Connectome Project. Brain Struct Funct 2021; 226:381-395. [PMID: 33386420 DOI: 10.1007/s00429-020-02181-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The fornix is the primary efferent pathway of the hippocampus and plays a central role in memory circuitry. Diffusion tensor imaging has shown changes in the fornix with typical development and aging. Here, the fornix was investigated in 903 healthy young adult participants aged 22-36 years old from the high-spatial resolution 1.25 mm isotropic Human Connectome Project (HCP) diffusion dataset. Manual deterministic tractography was used to assess relationships between fornix diffusion parameters and age, sex, laterality, hippocampus volume, memory scores, and genetic effects in a subgroup of mono- and dizygotic twins. Fornix diffusion metrics were weakly correlated with age over the given age span. While significant hemispheric and sex differences were observed (greater fractional anisotropy (FA) and volume in the right hemisphere; greater FA and volume in females), there was great overlap between the groups. Hippocampus volume measurements showed greater volume in the right hemisphere, were found to be larger in males, and were weakly correlated with fornix FA and volume. Interestingly, all fornix diffusion measurements correlated strongly with fornix volume, suggesting the presence of partial volume effects despite the high-spatial resolution of the data. Both fornix diffusion parameters and hippocampal volumes were able to explain some variance (0.6-5.5%) in the memory tests evaluated. The fornix diffusion parameters were influenced by both genetic and shared environmental factors, displaying greater variability in dizygotic than in monozygotic twins. These findings provide a comprehensive depiction of the fornix in healthy, young individuals, upon which future typical development/aging and pathological studies could anchor.
Collapse
|
29
|
Frontoparietal microstructural damage mediates age-dependent working memory decline in face and body information processing: Evidence for dichotomic hemispheric bias mechanisms. Neuropsychologia 2020; 151:107726. [PMID: 33321120 DOI: 10.1016/j.neuropsychologia.2020.107726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/28/2020] [Accepted: 12/09/2020] [Indexed: 11/24/2022]
Abstract
Age-associated damage in the microstructure of frontally-based connections (e.g. genu of the corpus callosum and superior longitudinal fasciculus) is believed to lead to impairments in processing speed and executive function. Using mediation analysis, we tested the potential contribution of callosal and frontoparietal association tracts to age-dependent effects on cognition/executive function as measured with 1-back working memory tasks for visual stimulus categories (i.e. faces and non-emotional bodies) in a group of 55 healthy adults (age range 23-79 years). Constrained spherical deconvolution-based tractography was employed to reconstruct the genu/prefrontal section of the corpus callosum (GCC) and the central/second branch of the superior longitudinal fasciculus (CB-SLF). Age was associated with (i) reductions in fractional anisotropy (FA) in the GCC and in the right and left CB-SLF and (iii) decline in visual object category processing. Mediation analysis revealed that microstructural damage in right hemispheric CB-SLF is associated with age-dependent decline in face processing likely reflecting the stimulus-specific/holistic nature of face processing within dedicated/specialized frontoparietal routes. By contrast, microstructural damage in left hemispheric CB-SLF associated with age-dependent decline in non-emotional body processing, consistent with the more abstract nature of non-emotional body categories. In sum, our findings suggest that frontoparietal microstructural damage mediates age-dependent decline in face and body information processing in a manner that reflects the hemispheric bias of holistic vs. abstract nature of face and non-emotional body category processing.
Collapse
|
30
|
Zhou L, Tian N, Geng ZJ, Wu BK, Dong LY, Wang MR. Diffusion tensor imaging study of brain precentral gyrus and postcentral gyrus during normal brain aging process. Brain Behav 2020; 10:e01758. [PMID: 32844600 PMCID: PMC7559610 DOI: 10.1002/brb3.1758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To study the changes of white matter tracts in precentral gyrus and postcentral gyrus during normal brain aging process by analyzing fractional anisotropy (FA) values obtained from diffusion tensor imaging (DTI) technology. METHODS Magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) were conducted on 120 healthy right-handed subjects. The subjects were separated into four age groups, namely Young Male/Female (<45 years old) and Senior Male/Female (>45 years old). Each subject undertakes routine MRI and DTI scans. Left/right precentral and left/right postcentral gyrus are automatically detected on the image. The area for region of interest (ROI) is set to be 18 ± 2 mm2 . RESULTS For each age group, the FA values of white matter in precentral gyrus and postcentral gyrus are statistically different (p < .05) in both left and right sides of the brain across different age groups and genders. Additionally, the FA values are statistically different (p < .05) between two young and senior age groups across different genders, brain regions, and hemispheres. CONCLUSION The FA values of precentral gyrus and postcentral gyrus are statistically different across genders, age groups, and hemispheres. Additionally, the FA values of both precentral gyrus and postcentral gyrus decrease over time, which is a strong indication of aging.
Collapse
Affiliation(s)
- Ling Zhou
- Department of MRI, Xinle City Hospital, Xinle, Hebei, China
| | - Na Tian
- Department of Infectious Diseases, Xinle City Hospital, Xinle, Hebei, China
| | - Zuo-Jun Geng
- Department of Radiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bing-Kun Wu
- Department of MRI, Xinle City Hospital, Xinle, Hebei, China
| | - Li-Ying Dong
- Department of MRI, Xinle City Hospital, Xinle, Hebei, China
| | - Mei-Rong Wang
- Department of CT, The Fifth People's Hospital of Hengshui, Hengshui, Hebei, China
| |
Collapse
|
31
|
Age-related assessment of diffusion parameters in specific brain tracts correlated with cortical thinning. Neurol Sci 2020; 42:1799-1809. [PMID: 32886260 DOI: 10.1007/s10072-020-04688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
The aging process is associated with many brain structural alterations. These changes are not associated with neuronal loss but can be due to cortical structural changes that may be related to white matter (WM) structural alterations. In this study, we evaluated age-related changes in WM and gray matter (GM) parameters and how they correlate for specific brain tracts in a cohort of 158 healthy individuals, aged between 18 and 83 years old. In the tract-cortical analysis, cortical regions connected by tracts demonstrated similar thinning patterns for the majority of tracts. Additionally, a significant relationship was found between mean cortical thinning rate with fractional anisotropy (FA) and mean diffusivity (MD) alteration rates. For all tracts, age was the main effect controlling diffusion parameter alterations. We found no direct correlations between cortical thickness and FA or MD, except for in the fornix, for which the subcallosal gyrus thickness was significantly correlated to FA and MD (p < 0.05 FDR corrected). Our findings lead to the conclusion that alterations in the WM diffusion parameters are explained by the aging process, also associated with cortical thickness changes. Also, the alteration rates of the structural parameters are correlated to the different brain tracts in the aging process.
Collapse
|
32
|
Wiggins M, Arias F, Urman RD, Richman DC, Sweitzer BJ, Edwards AF, Armstrong MJ, Chopra A, Libon DJ, Price C. Common neurodegenerative disorders in the perioperative setting: Recommendations for screening from the Society for Perioperative Assessment and Quality Improvement (SPAQI). PERIOPERATIVE CARE AND OPERATING ROOM MANAGEMENT 2020; 20:100092. [PMID: 32577538 PMCID: PMC7311090 DOI: 10.1016/j.pcorm.2020.100092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aging is associated with normal and abnormal brain and cognitive changes. Due to the expected increase in older adults requiring surgery, perioperative clinicians will be increasingly encountering patients with neurodegenerative disease. To help perioperative clinicians understand signs of abnormal behaviors that may mark an undiagnosed neurodegenerative disorder and alert additional patient monitoring, The Society for Perioperative Assessment and Quality Improvement (SPAQI) worked with experts in dementia, neuropsychology, geriatric medicine, neurology, and anesthesiology to provide a summary of cognitive and behavioral considerations for patients with common neurodegenerative disorders being evaluated at preoperative centers. Patients with neurodegenerative disorders are at high risk for delirium due to known neurochemical disruptions, medication interactions, associated frailty, or vascular risk profiles presenting risk for repeat strokes. We provide basic information on the expected cognitive changes with aging, most common neurodegenerative disorders, a list of behavioral features and considerations to help differentiate neurodegenerative disorders. Finally, we propose screening recommendations intended for a multidisciplinary team in the perioperative setting.
Collapse
Affiliation(s)
- Margaret Wiggins
- Department of Clinical and Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL 32603
| | - Franchesca Arias
- Department of Clinical and Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL 32603
- Pain Research and Intervention Center of Excellence (PRICE), 101 S. Newell Drive, Gainesville, FL 32610
- Perioperative Cognitive Anesthesia Network (PeCAN), UF Health Shands Hospital, 1600 SW Archer Road Suite 1111, Gainesville, FL 32608
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115
| | - Deborah C Richman
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Health Sciences Center, Level 4, 101 Nicolls Road, Stony Brook, NY 11794-8480
| | - Bobbie Jean Sweitzer
- Northwestern University Feinberg School of Medicine, 251 East Huron, Chicago, IL 60611
| | - Angela F Edwards
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Melissa J Armstrong
- Norman Fixel Institute for Neurological Diseases, University of Florida, 3009 Williston Road, Gainesville, Florida 32608
- Neurology Department, University of Florida, 101 S Newell Drive, Gainesville, FL 32610
| | - Anita Chopra
- Department of Geriatrics and Gerontology, Department of Psychology, New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - David J Libon
- Department of Geriatrics and Gerontology, Department of Psychology, New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Catherine Price
- Department of Clinical and Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL 32603
- Perioperative Cognitive Anesthesia Network (PeCAN), UF Health Shands Hospital, 1600 SW Archer Road Suite 1111, Gainesville, FL 32608
- Department of Anesthesiology, The University of Florida, Department of Anesthesiology, 1600 SW Archer Road PO Box 100254, Gainesville, FL 32610
| |
Collapse
|
33
|
Malykhin NV, Travis S, Fujiwara E, Huang Y, Camicioli R, Olsen F. The associations of the
BDNF
and
APOE
polymorphisms, hippocampal subfield volumes, and episodic memory performance across the lifespan. Hippocampus 2020; 30:1081-1097. [DOI: 10.1002/hipo.23217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Nikolai V. Malykhin
- Neuroscience and Mental Health Institute University of Alberta Edmonton Alberta Canada
- Department of Biomedical Engineering University of Alberta Edmonton Alberta Canada
- Department of Psychiatry University of Alberta Edmonton Alberta Canada
| | - Scott Travis
- Neuroscience and Mental Health Institute University of Alberta Edmonton Alberta Canada
| | - Esther Fujiwara
- Neuroscience and Mental Health Institute University of Alberta Edmonton Alberta Canada
- Department of Psychiatry University of Alberta Edmonton Alberta Canada
| | - Yushan Huang
- Department of Biomedical Engineering University of Alberta Edmonton Alberta Canada
| | | | - Fraser Olsen
- Department of Biomedical Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|
34
|
Diffusion tensor imaging of the corpus callosum in healthy aging: Investigating higher order polynomial regression modelling. Neuroimage 2020; 213:116675. [PMID: 32112960 DOI: 10.1016/j.neuroimage.2020.116675] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Previous diffusion tensor imaging (DTI) studies confirmed the vulnerability of corpus callosum (CC) fibers to aging. However, most studies employed lower order regressions to study the relationship between age and white matter microstructure. The present study investigated whether higher order polynomial regression modelling can better describe the relationship between age and CC DTI metrics compared to lower order models in 140 healthy participants (ages 18-85). The CC was found to be non-uniformly affected by aging, with accelerated and earlier degradation occurring in anterior portion; callosal volume, fiber count, fiber length, mean fibers per voxel, and FA decreased with age while mean, axial, and radial diffusivities increased. Half of the parameters studied also displayed significant age-sex interaction or intracranial volume effects. Higher order models were chosen as the best fit, based on Bayesian Information Criterion minimization, in 16 out of 23 significant cases when describing the relationship between DTI measurements and age. Higher order model fits provided different estimations of aging trajectory peaks and decline onsets than lower order models; however, a likelihood ratio test found that higher order regressions generally did not fit the data significantly better than lower order polynomial or linear models. The results contrast the modelling approaches and highlight the importance of using higher order polynomial regression modelling when investigating associations between age and CC white matter microstructure.
Collapse
|
35
|
Abstract
Frontal lobe-executive functions are heavily dependent on distal white matter connectivity. Even with healthy aging there is an increase in leukoaraiosis that might interrupt this connectivity. The goal of this study is to learn 1) the location, depth, and percentage of leukoaraiosis in white matter among a sample of non-demented older adults and 2) associations between these leukoarioasis metrics and composites of cognitive efficiency (processing speed, working memory, and inhibitory function), and episodic memory. Participants were 154 non-demented older adults (age range 60-85) who completed a brain MRI and neuropsychological testing on the same day. Brain MRIs were segmented via Freesurfer and white matter leukoaraiosis depth segmentations was based on published criteria. On average, leukoaraiosis occupied 1 % of total white matter. There was no difference in LA distribution in the frontal (1.12%), parietal (1.10%), and occipital (0.95%) lobes; there was less LA load within the temporal lobe (0.23%). For cortical depth, leukoaraiosis was predominantly in the periventricular region (3.39%; deep 1.46%, infracortical 0.15%). Only increasing frontal lobe and periventricular leukoaraiosis were associated with a reduction in processing speed, working memory, and inhibitory function. Despite the general presence of LA throughout the brain, only frontal and periventricular LA contributed to the speeded and mental manipulation of executive functioning. This study provides a normative description of LA for non-demented adults to use as a comparison to more disease samples.
Collapse
|
36
|
Zuo N, Salami A, Liu H, Yang Z, Jiang T. Functional maintenance in the multiple demand network characterizes superior fluid intelligence in aging. Neurobiol Aging 2020; 85:145-153. [DOI: 10.1016/j.neurobiolaging.2019.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/20/2019] [Accepted: 09/14/2019] [Indexed: 12/13/2022]
|
37
|
Rau YA, Wang SM, Tournier JD, Lin SH, Lu CS, Weng YH, Chen YL, Ng SH, Yu SW, Wu YM, Tsai CC, Wang JJ. A longitudinal fixel-based analysis of white matter alterations in patients with Parkinson's disease. Neuroimage Clin 2019; 24:102098. [PMID: 31795054 PMCID: PMC6889638 DOI: 10.1016/j.nicl.2019.102098] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/01/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Disruption to white matter pathways is an important contributor to the pathogenesis of Parkinson's disease. Fixel-based analysis has recently emerged as a useful fiber-specific tool for examining white matter structure. In this longitudinal study, we used Fixel-based analysis to investigate white matter changes occurring over time in patients with Parkinson's disease. METHODS Fifty patients with idiopathic Parkinson's disease (27 men and 23 women; mean age: 61.8 ± 6.1 years), were enrolled. Diffusion-weighted imaging and clinical examinations were performed at three different time points (baseline, first follow-up [after a mean of 24±2 months], and second follow-up [after a mean of 40 ± 3 months]). Additional 76 healthy control subjects (38 men and 38 women; mean age: 62.3 ± 5.5 years) were examined at baseline. The following fixel-based metrics were obtained: fiber density (FD), fiber bundle cross-section (FC), and a combined measure of both (FDC). Paired comparisons of metrics between three different time points were performed in patients. Linear regression was implemented between longitudinal changes of fixel-based metrics and the corresponding modifications in clinical parameters. A family-wise error corrected p < 0.05 was considered statistically significant. RESULTS AND DISCUSSIONS Early degeneration in the splenium of corpus callosum was identified as a typical alteration of Parkinson's disease over time. At follow-up, we observed significant FDC reductions compared with baseline in white matter, noticeably in corpus callosum; tapetum; cingulum, posterior thalamic radiation, corona radiata, and sagittal stratum. We also identified significant FC decreases that reflected damage to white matter structures involved in Parkinson's disease -related pathways. Fixel-based metrics were found to relate with a deterioration of 39-item Parkinson's Disease Questionnaire, Unified Parkinson's Disease Rating Scale and activity of daily living. A Parkinson's disease -facilitated aging effect was observed in terms of white matter disruption. CONCLUSION This study provides a thorough fixel-based profile of longitudinal white matter alterations occurring in patients with Parkinson's disease and new evidence of FC as an important role in white matter degeneration in this setting.
Collapse
Affiliation(s)
- Yi-Ai Rau
- Division of Chinese Acupuncture and Traumatology, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Shi-Ming Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Jacques-Donald Tournier
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Sung-Han Lin
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yao-Liang Chen
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Shao-Wen Yu
- Division of Chinese Acupuncture and Traumatology, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Yi-Ming Wu
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Chih-Chien Tsai
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan; Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
38
|
Quantitative age-dependent differences in human brainstem myelination assessed using high-resolution magnetic resonance mapping. Neuroimage 2019; 206:116307. [PMID: 31669302 DOI: 10.1016/j.neuroimage.2019.116307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Previous in-vivo magnetic resonance imaging (MRI)-based studies of age-related differences in the human brainstem have focused on volumetric morphometry. These investigations have provided pivotal insights into regional brainstem atrophy but have not addressed microstructural age differences. However, growing evidence indicates the sensitivity of quantitative MRI to microstructural tissue changes in the brain. These studies have largely focused on the cerebrum, with very few MR investigations addressing age-dependent differences in the brainstem, in spite of its central role in the regulation of vital functions. Several studies indicate early brainstem alterations in a myriad of neurodegenerative diseases and dementias. The paucity of MR-focused investigations is likely due in part to the challenges imposed by the small structural scale of the brainstem itself as well as of substructures within, requiring accurate high spatial resolution imaging studies. In this work, we applied our recently developed approach to high-resolution myelin water fraction (MWF) mapping, a proxy for myelin content, to investigate myelin differences with normal aging within the brainstem. In this cross-sectional investigation, we studied a large cohort (n = 125) of cognitively unimpaired participants spanning a wide age range (21-94 years) and found a decrease in myelination with age in most brainstem regions studied, with several regions exhibiting a quadratic association between myelin and age. We believe that this study is the first investigation of MWF differences with normative aging in the adult brainstem. Further, our results provide reference MWF values.
Collapse
|
39
|
Zarnani K, Nichols TE, Alfaro-Almagro F, Fagerlund B, Lauritzen M, Rostrup E, Smith SM. Discovering markers of healthy aging: a prospective study in a Danish male birth cohort. Aging (Albany NY) 2019; 11:5943-5974. [PMID: 31480020 PMCID: PMC6738442 DOI: 10.18632/aging.102151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/31/2019] [Indexed: 01/23/2023]
Abstract
There is a pressing need to identify markers of cognitive and neural decline in healthy late-midlife participants. We explored the relationship between cross-sectional structural brain-imaging derived phenotypes (IDPs) and cognitive ability, demographic, health and lifestyle factors (non-IDPs). Participants were recruited from the 1953 Danish Male Birth Cohort (N=193). Applying an extreme group design, members were selected in 2 groups based on cognitive change between IQ at age ~20y (IQ-20) and age ~57y (IQ-57). Subjects showing the highest (n=95) and lowest (n=98) change were selected (at age ~57) for assessments on multiple IDPs and non-IDPs. We investigated the relationship between 453 IDPs and 70 non-IDPs through pairwise correlation and multivariate canonical correlation analysis (CCA) models. Significant pairwise associations included positive associations between IQ-20 and gray-matter volume of the temporal pole. CCA identified a richer pattern - a single "positive-negative" mode of population co-variation coupling individual cross-subject variations in IDPs to an extensive range of non-IDP measures (r = 0.75, Pcorrected < 0.01). Specifically, this mode linked higher cognitive performance, positive early-life social factors, and mental health to a larger brain volume of several brain structures, overall volume, and microstructural properties of some white matter tracts. Interestingly, both statistical models identified IQ-20 and gray-matter volume of the temporal pole as important contributors to the inter-individual variation observed. The converging patterns provide novel insight into the importance of early adulthood intelligence as a significant marker of late-midlife neural decline and motivates additional study.
Collapse
Affiliation(s)
- Kiyana Zarnani
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.,Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Thomas E Nichols
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Big Data Institute, Li Ka Shing, Centre For Health Information and Discovery, Nuffield Department of Population Health University of Oxford, Oxford, UK.,Department of Statistics, University of Warwick, Coventry, UK
| | - Fidel Alfaro-Almagro
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Lauritzen
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Glostrup, Denmark
| | - Egill Rostrup
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark.,Center for Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Hernaiz Alonso C, Tanner JJ, Wiggins ME, Sinha P, Parvataneni HK, Ding M, Seubert CN, Rice MJ, Garvan CW, Price CC. Proof of principle: Preoperative cognitive reserve and brain integrity predicts intra-individual variability in processed EEG (Bispectral Index Monitor) during general anesthesia. PLoS One 2019; 14:e0216209. [PMID: 31120896 PMCID: PMC6532861 DOI: 10.1371/journal.pone.0216209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/16/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Preoperative cognitive reserve and brain integrity may explain commonly observed intraoperative fluctuations seen on a standard anesthesia depth monitor used ubiquitously in operating rooms throughout the nation. Neurophysiological variability indicates compromised regulation and organization of neural networks. Based on theories of neuronal integrity changes that accompany aging, we assessed the relative contribution of: 1) premorbid cognitive reserve, 2) current brain integrity (gray and white matter markers of neurodegenerative disease), and 3) current cognition (specifically domains of processing speed/working memory, episodic memory, and motor function) on intraoperative neurophysiological variability as measured from a common intraoperative tool, the Bispectral Index Monitor (BIS). METHODS This sub-study included participants from a parent study of non-demented older adults electing unilateral Total Knee Arthroplasty (TKA) with the same surgeon and anesthesia protocol, who also completed a preoperative neuropsychological assessment and preoperative 3T brain magnetic resonance imaging scan. Left frontal two-channel derived EEG via the BIS was acquired preoperatively (un-medicated and awake) and continuously intraoperatively with time from tourniquet up to tourniquet down. Data analyses used correlation and regression modeling. RESULTS Fifty-four participants met inclusion criteria for the sub-study. The mean (SD) age was 69.5 (7.4) years, 54% were male, 89% were white, and the mean (SD) American Society of Anesthesiologists score was 2.76 (0.47). We confirmed that brain integrity positively and significantly associated with each of the cognitive domains of interest. EEG intra-individual variability (squared deviation from the mean BIS value between tourniquet up and down) was significantly correlated with cognitive reserve (r = -.40, p = .003), brain integrity (r = -.37, p = .007), and a domain of processing speed/working memory (termed cognitive efficiency; r = -.31, p = .021). Hierarchical regression models that sequentially included age, propofol bolus dose, cognitive reserve, brain integrity, and cognitive efficiency found that intraoperative propofol bolus dose (p = .001), premorbid cognitive reserve (p = .008), and current brain integrity (p = .004) explained a significant portion of intraoperative intra-individual variability from the BIS monitor. CONCLUSIONS Older adults with higher premorbid reserve and less brain disease were more stable intraoperatively on a depth of anesthesia monitor. Researchers need to replicate findings within larger cohorts and other surgery types.
Collapse
Affiliation(s)
- Carlos Hernaiz Alonso
- Department of Clinical and Health Psychology, University of Florida College of Public Health and Health Professions, Gainesville, Florida, United States of America
| | - Jared J. Tanner
- Department of Clinical and Health Psychology, University of Florida College of Public Health and Health Professions, Gainesville, Florida, United States of America
| | - Margaret E. Wiggins
- Department of Clinical and Health Psychology, University of Florida College of Public Health and Health Professions, Gainesville, Florida, United States of America
| | - Preeti Sinha
- Department of Clinical and Health Psychology, University of Florida College of Public Health and Health Professions, Gainesville, Florida, United States of America
| | - Hari K. Parvataneni
- Department of Orthopedic Surgery, University of Florida College of Medicine; Gainesville, Florida, United States of America
| | - Mingzhou Ding
- Department of Biomedical Engineering, University of Florida Herbert Wertheim College of Engineering, Gainesville, Florida, United States of America
| | - Christoph N. Seubert
- Department of Anesthesiology, University of Florida, Gainesville, Florida, United States of America
| | - Mark J. Rice
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Cynthia W. Garvan
- Department of Anesthesiology, University of Florida, Gainesville, Florida, United States of America
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida College of Public Health and Health Professions, Gainesville, Florida, United States of America
- Department of Anesthesiology, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
41
|
Johnson NF, Gold BT, Ross D, Bailey AL, Clasey JL, Gupta V, Leung SW, Powell DK. Non-fasting High-Density Lipoprotein Is Associated With White Matter Microstructure in Healthy Older Adults. Front Aging Neurosci 2019; 11:100. [PMID: 31133843 PMCID: PMC6513892 DOI: 10.3389/fnagi.2019.00100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/11/2019] [Indexed: 11/13/2022] Open
Abstract
A growing body of evidence indicates that biomarkers of cardiovascular risk may be related to cerebral health. However, little is known about the role that non-fasting lipoproteins play in assessing age-related declines in a cerebral biomarker sensitive to vascular compromise, white matter (WM) microstructure. High-density lipoprotein cholesterol (HDL-C) is atheroprotective and low-density lipoprotein cholesterol (LDL-C) is a major atherogenic lipoprotein. This study explored the relationships between non-fasting levels of cholesterol and WM microstructure in healthy older adults. A voxelwise and region of interest approach was used to determine the relationship between cholesterol and fractional anisotropy (FA). Participants included 87 older adults between the ages of 59 and 77 (mean age = 65.5 years, SD = 3.9). Results indicated that higher HDL-C was associated with higher FA in diffuse regions of the brain when controlling for age, sex, and body mass index (BMI). HDL-C was also positively associated with FA in the corpus callosum and fornix. No relationship was observed between LDL-C and FA. Findings suggest that a modifiable lifestyle variable associated with cardiovascular health may help to preserve cerebral WM.
Collapse
Affiliation(s)
- Nathan F Johnson
- Department of Rehabilitation Sciences, Division of Physical Therapy, University of Kentucky, Lexington, KY, United States
| | - Brian T Gold
- Neuroscience Department, University of Kentucky, Lexington, KY, United States.,Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Dorothy Ross
- Clinical Services Core, University of Kentucky, Lexington, KY, United States
| | - Alison L Bailey
- Erlanger Heart and Lung Institute, University of Tennessee College of Medicine Chattanooga, Chattanooga, TN, United States
| | - Jody L Clasey
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, United States
| | - Vedant Gupta
- Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States
| | - Steve W Leung
- Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States
| | - David K Powell
- Neuroscience Department, University of Kentucky, Lexington, KY, United States.,Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
42
|
McPhee GM, Downey LA, Stough C. Effects of sustained cognitive activity on white matter microstructure and cognitive outcomes in healthy middle-aged adults: A systematic review. Ageing Res Rev 2019; 51:35-47. [PMID: 30802543 DOI: 10.1016/j.arr.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/27/2023]
Abstract
Adults who remain cognitively active may be protected from age-associated changes in white matter (WM) and cognitive decline. To determine if cognitive activity is a precursor for WM plasticity, the available literature was systematically searched for Region of Interest (ROI) and whole-brain studies assessing the efficacy of cognitive training (CT) on WM microstructure using Diffusion Tensor Imaging (DTI) in healthy adults (> 40 years). Seven studies were identified and included in this review. Results suggest there are beneficial effects to WM microstructure after CT in frontal and medial brain regions, with some studies showing improved performance in cognitive outcomes. Benefits of CT were shown to be protective against age-related WM microstructure decline by either maintaining or improving WM after training. These results have implications for determining the capacity for training-dependent WM plasticity in older adults and whether CT can be utilised to prevent age-associated cognitive decline. Additional studies with standardised training and imaging protocols are needed to confirm these outcomes.
Collapse
|
43
|
Sabisz A, Naumczyk P, Marcinkowska A, Graff B, Gąsecki D, Glińska A, Witkowska M, Jankowska A, Konarzewska A, Kwela J, Jodzio K, Szurowska E, Narkiewicz K. Aging and Hypertension - Independent or Intertwined White Matter Impairing Factors? Insights From the Quantitative Diffusion Tensor Imaging. Front Aging Neurosci 2019; 11:35. [PMID: 30837864 PMCID: PMC6389787 DOI: 10.3389/fnagi.2019.00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 02/05/2019] [Indexed: 01/17/2023] Open
Abstract
Aging disrupts white matter integrity, and so does continuous elevated blood pressure that accompanies hypertension (HTN). Yet, our understanding of the interrelationship between these factors is still limited. The study aimed at evaluating patterns of changes in diffusion parameters (as assessed by quantitative diffusion fiber tracking - qDTI) following both aging, and hypertension, as well as the nature of their linkage. 146 participants took part in the study: the control group (N = 61) and the patients with hypertension (N = 85), and were divided into three age subgroups (25-47, 48-56, 57-71 years). qDTI was used to calculate the values of fractional anisotropy, mean, radial and axial diffusivity in 20 main tracts of the brain. The effects of factors (aging and hypertension) on diffusion parameters of tracts were tested with a two-way ANOVA. In the right hemisphere there was no clear effect of the HTN, nor an interaction between the factors, though some age-related effects were observed. Contrary, in the left hemisphere both aging and hypertension contributed to the white matter decline, following a functional pattern. In the projection pathways and the fornix, HTN and aging played part independent of each other, whereas in association fibers and the corpus callosum if the hypertension effect was significant, an interaction was observed. HTN patients manifested faster decline of diffusion parameters but also reached a plateau earlier, with highest between-group differences noted in the middle-aged subgroup. Healthy and hypertensive participants have different brain aging patterns. The HTN is associated with acceleration of white matter integrity decline, observed mainly in association fibers of the left hemisphere.
Collapse
Affiliation(s)
- Agnieszka Sabisz
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Anna Marcinkowska
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Beata Graff
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
| | - Dariusz Gąsecki
- Department of Neurology of Adults, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Glińska
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marta Witkowska
- Institute of Psychology, University of Gdańsk, Gdańsk, Poland
| | - Anna Jankowska
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Jerzy Kwela
- Institute of Experimental Physics, University of Gdańsk, Gdańsk, Poland
| | | | - Edyta Szurowska
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
44
|
Kim Y, Im S, Kim SH, Park GY. Laterality of cerebellar afferent and efferent pathways in a healthy right-handed population: A diffusion tensor imaging study. J Neurosci Res 2018; 97:582-596. [PMID: 30582195 DOI: 10.1002/jnr.24378] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 11/11/2022]
Abstract
The cerebellum communicates with the cerebral cortex through the cortico-ponto-cerebellar tract (CPCT, cerebellar afferent) and the dentato-rubro-thalamo-cortical tract (DRTCT, cerebellar efferent). This study explored the laterality of CPCT and DRTCT in a right-handed population. Forty healthy right-handed subjects (18 males and 22 females with age range of 26-79 years old) who underwent diffusion tensor imaging (DTI) were retrospectively enrolled. Bilateral CPCT, DRTCT, and the corticospinal tract (CST) were reconstructed using probabilistic diffusion tensor tractography (DTT). Tract volume (TV) and fractional anisotropy (FA) were compared between dominant and non-dominant tracts. Subjects were divided into age groups (20-40, 41-60, and 61-80 years), and the DTI-derived parameters of the groups were compared to determine age-related differences. TV and FA of non-dominant CPCT were higher than those of dominant CPCT, and the dominant CST was higher than the non-dominant CST. The TV and FA of DRTCT showed no side-to-side difference. The 61-80 years age group had the highest TV of the dominant and non-dominant DRTCT among the three groups and the highest FA of the non-dominant CPCT and DRTCT. The results revealed the structural characteristics of CPCT and DRTCT using probabilistic DTT. Normal asymmetric patterns and age-related changes in cerebellar white matter tracts may be important to researchers investigating cerebro-cerebellar structural connectivity.
Collapse
Affiliation(s)
- Youngkook Kim
- Department of Rehabilitation Medicine, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Rehabilitation Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun Im
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Se-Hong Kim
- Department of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Geun-Young Park
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
45
|
Aghamohammadi-Sereshki A, Hrybouski S, Travis S, Huang Y, Olsen F, Carter R, Camicioli R, Malykhin NV. Amygdala subnuclei and healthy cognitive aging. Hum Brain Mapp 2018; 40:34-52. [PMID: 30291764 DOI: 10.1002/hbm.24353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/13/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
Amygdala is a group of nuclei involved in the neural circuits of fear, reward learning, and stress. The main goal of this magnetic resonance imaging (MRI) study was to investigate the relationship between age and the amygdala subnuclei volumes in a large cohort of healthy individuals. Our second goal was to determine effects of the apolipoprotein E (APOE) and brain-derived neurotrophic factor (BDNF) polymorphisms on the amygdala structure. One hundred and twenty-six healthy participants (18-85 years old) were recruited for this study. MRI datasets were acquired on a 4.7 T system. Amygdala was manually segmented into five major subdivisions (lateral, basal, accessory basal nuclei, and cortical, and centromedial groups). The BDNF (methionine and homozygous valine) and APOE genotypes (ε2, homozygous ε3, and ε4) were obtained using single nucleotide polymorphisms. We found significant nonlinear negative associations between age and the total amygdala and its lateral, basal, and accessory basal nuclei volumes, while the cortical amygdala showed a trend. These age-related associations were found only in males but not in females. Centromedial amygdala did not show any relationship with age. We did not observe any statistically significant effects of APOE and BDNF polymorphisms on the amygdala subnuclei volumes. In contrast to APOE ε2 allele carriers, both older APOE ε4 and ε3 allele carriers had smaller lateral, basal, accessory basal nuclei volumes compared to their younger counterparts. This study indicates that amygdala subnuclei might be nonuniformly affected by aging and that age-related association might be gender specific.
Collapse
Affiliation(s)
| | - Stanislau Hrybouski
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Scott Travis
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Yushan Huang
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Fraser Olsen
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Rawle Carter
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Nikolai V Malykhin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
46
|
Korthauer LE, Zhan L, Ajilore O, Leow A, Driscoll I. Disrupted topology of the resting state structural connectome in middle-aged APOE ε4 carriers. Neuroimage 2018; 178:295-305. [PMID: 29803958 PMCID: PMC6249680 DOI: 10.1016/j.neuroimage.2018.05.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/04/2018] [Accepted: 05/22/2018] [Indexed: 01/08/2023] Open
Abstract
The apolipoprotein E (APOE) ε4 allele is the best characterized genetic risk factor for Alzheimer's disease to date. Older APOE ε4 carriers (aged 60 + years) are known to have disrupted structural and functional connectivity, but less is known about APOE-associated network integrity in middle age. The goal of this study was to characterize APOE-related differences in network topology in middle age, as disentangling the early effects of healthy versus pathological aging may aid early detection of Alzheimer's disease and inform treatments. We performed resting state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) in healthy, cognitively normal, middle-aged adults (age 40-60; N = 76, 38 APOE ε4 carriers). Graph theoretical analysis was used to calculate local and global efficiency of 1) a whole brain rs-fMRI network; 2) a whole brain DTI network; and 3) the resting state structural connectome (rsSC), an integrated functional-structural network derived using functional-by-structural hierarchical (FSH) mapping. Our results indicated no APOE ε4-associated differences in network topology of the rs-fMRI or DTI networks alone. However, ε4 carriers had significantly lower global and local efficiency of the integrated rsSC compared to non-carriers. Furthermore, ε4 carriers were less resilient to targeted node failure of the rsSC, which mimics the neuropathological process of Alzheimer's disease. Collectively, these findings suggest that integrating multiple neuroimaging modalities and employing graph theoretical analysis may reveal network-level vulnerabilities that may serve as biomarkers of age-related cognitive decline in middle age, decades before the onset of overt cognitive impairment.
Collapse
Affiliation(s)
- L E Korthauer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; Warren Alpert Medical School, Brown University, Providence, RI, USA.
| | - L Zhan
- Engineering and Technology Department, University of Wisconsin-Stout, Menomonie, WI, USA; Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - O Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - A Leow
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - I Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
47
|
Faskowitz J, Yan X, Zuo XN, Sporns O. Weighted Stochastic Block Models of the Human Connectome across the Life Span. Sci Rep 2018; 8:12997. [PMID: 30158553 PMCID: PMC6115421 DOI: 10.1038/s41598-018-31202-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/14/2018] [Indexed: 01/19/2023] Open
Abstract
The human brain can be described as a complex network of anatomical connections between distinct areas, referred to as the human connectome. Fundamental characteristics of connectome organization can be revealed using the tools of network science and graph theory. Of particular interest is the network's community structure, commonly identified by modularity maximization, where communities are conceptualized as densely intra-connected and sparsely inter-connected. Here we adopt a generative modeling approach called weighted stochastic block models (WSBM) that can describe a wider range of community structure topologies by explicitly considering patterned interactions between communities. We apply this method to the study of changes in the human connectome that occur across the life span (between 6-85 years old). We find that WSBM communities exhibit greater hemispheric symmetry and are spatially less compact than those derived from modularity maximization. We identify several network blocks that exhibit significant linear and non-linear changes across age, with the most significant changes involving subregions of prefrontal cortex. Overall, we show that the WSBM generative modeling approach can be an effective tool for describing types of community structure in brain networks that go beyond modularity.
Collapse
Affiliation(s)
- Joshua Faskowitz
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Xiaoran Yan
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Xi-Nian Zuo
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Research Center for Lifespan Development of Mind and Brain (CLIMB), Institute of Psychology, Beijing, China
- Key Laboratory for Brain and Education Sciences, Nanning Normal University, Nanning, Guangxi, 530001, China
| | - Olaf Sporns
- Program in Neuroscience, Indiana University, Bloomington, IN, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
48
|
Delvenne JF, Castronovo J. Reduced inter-hemispheric interference in ageing: Evidence from a divided field Stroop paradigm. Brain Cogn 2018; 122:26-33. [PMID: 29407788 DOI: 10.1016/j.bandc.2018.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 10/26/2017] [Accepted: 01/25/2018] [Indexed: 10/18/2022]
Abstract
One of the most important structural changes that occur in the brain during the course of life relates to the corpus callosum, the largest neural pathway that connects the two cerebral hemispheres. It has been shown that the corpus callosum, and in particular its anterior sections, endures a process of degeneration in ageing. Hence, a primary question is whether such structural changes in the brain of older adults have functional consequences on inter-hemispheric communication. In particular, whether the atrophy of the corpus callosum in ageing may lead to a higher or lower level of inter-hemispheric interference is currently unknown. To investigate this question, we asked young and healthy older adults to perform modified versions of the classic Stroop paradigm in which the target and distracter were spatially separated. Across two experiments, we found that the Stroop effect was significantly reduced in older adults when the two stimuli were distributed in two different hemifields as opposed to the same single hemifield. This new finding suggests that age-related callosal thinning reduces inter-hemispheric interference by facilitating the two hemispheres to process information in parallel.
Collapse
|
49
|
Liu X, Gao X, Zhang L, Yuan Z, Zhang C, Lu W, Cui D, Zheng F, Qiu J, Xie J. Age-related changes in fiber tracts in healthy adult brains: A generalized q-sampling and connectometry study. J Magn Reson Imaging 2018; 48:369-381. [DOI: 10.1002/jmri.25949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/22/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Xiaojing Liu
- Department of Radiology; Taishan Medical University; Tai'an Shandong China
- Center for Medical Engineer Technology Research; Taishan Medical University; Tai'an Shandong China
| | - Xiaodong Gao
- Department of Radiology; Hubei Cancer Hospital; Wu'han Hubei China
| | - Li Zhang
- Department of Radiology; Taishan Medical University; Tai'an Shandong China
- Center for Medical Engineer Technology Research; Taishan Medical University; Tai'an Shandong China
| | - Zilong Yuan
- Department of Radiology; Hubei Cancer Hospital; Wu'han Hubei China
| | - Chen Zhang
- Department of Radiology; Taishan Medical University; Tai'an Shandong China
- Center for Medical Engineer Technology Research; Taishan Medical University; Tai'an Shandong China
| | - Weizhao Lu
- Department of Radiology; Taishan Medical University; Tai'an Shandong China
- Center for Medical Engineer Technology Research; Taishan Medical University; Tai'an Shandong China
| | - Dong Cui
- Department of Radiology; Taishan Medical University; Tai'an Shandong China
| | - Fenglian Zheng
- Department of Radiology; Taishan Medical University; Tai'an Shandong China
- Center for Medical Engineer Technology Research; Taishan Medical University; Tai'an Shandong China
| | - Jianfeng Qiu
- Department of Radiology; Taishan Medical University; Tai'an Shandong China
- Center for Medical Engineer Technology Research; Taishan Medical University; Tai'an Shandong China
| | - Jindong Xie
- Department of Radiology; Taishan Medical University; Tai'an Shandong China
| |
Collapse
|
50
|
Malykhin NV, Huang Y, Hrybouski S, Olsen F. Differential vulnerability of hippocampal subfields and anteroposterior hippocampal subregions in healthy cognitive aging. Neurobiol Aging 2017; 59:121-134. [DOI: 10.1016/j.neurobiolaging.2017.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/29/2022]
|