1
|
Numata-Uematsu Y, Uematsu M, Sakuraba R, Iwasaki M, Osawa S, Jin K, Nakasato N, Kure S. The Onset of Interictal Spike-Related Ripples Facilitates Detection of the Epileptogenic Zone. Front Neurol 2021; 12:724417. [PMID: 34803874 PMCID: PMC8599368 DOI: 10.3389/fneur.2021.724417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Accurate estimation of the epileptogenic zone (EZ) is essential for favorable outcomes in epilepsy surgery. Conventional ictal electrocorticography (ECoG) onset is generally used to detect the EZ but is insufficient in achieving seizure-free outcomes. By contrast, high-frequency oscillations (HFOs) could be useful markers of the EZ. Hence, we aimed to detect the EZ using interictal spikes and investigated whether the onset area of interictal spike-related HFOs was within the EZ. Methods: The EZ is considered to be included in the resection area among patients with seizure-free outcomes after surgery. Using a complex demodulation technique, we developed a method to determine the onset channels of interictal spike-related ripples (HFOs of 80-200 Hz) and investigated whether they are within the resection area. Results: We retrospectively examined 12 serial patients who achieved seizure-free status after focal resection surgery. Using the method that we developed, we determined the onset channels of interictal spike-related ripples and found that for all 12 patients, they were among the resection channels. The onset frequencies of ripples were in the range of 80-150 Hz. However, the ictal onset channels (evaluated based on ictal ECoG patterns) and ripple onset channels coincided in only 3 of 12 patients. Conclusions: Determining the onset area of interictal spike-related ripples could facilitate EZ estimation. This simple method that utilizes interictal ECoG may aid in preoperative evaluation and improve epilepsy surgery outcomes.
Collapse
Affiliation(s)
| | - Mitsugu Uematsu
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Rie Sakuraba
- Department of Epileptology, Tohoku University School of Medicine, Sendai, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, Tohoku University School of Medicine, Sendai, Japan.,Department of Neurosurgery, National Center Hospital of Neurology and Psychiatry, Tokyo, Japan
| | - Shinichiro Osawa
- Department of Neurosurgery, Tohoku University School of Medicine, Sendai, Japan
| | - Kazutaka Jin
- Department of Epileptology, Tohoku University School of Medicine, Sendai, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Zhu G, Wang J, Xiao L, Yang K, Huang K, Li B, Huang S, Hu B, Xiao B, Liu D, Feng L, Wang Q. Memory Deficit in Patients With Temporal Lobe Epilepsy: Evidence From Eye Tracking Technology. Front Neurosci 2021; 15:716476. [PMID: 34557066 PMCID: PMC8453169 DOI: 10.3389/fnins.2021.716476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: To explore quantitative measurements of the visual attention and neuroelectrophysiological relevance of memory deficits in temporal lobe epilepsy (TLE) by eye tracking and electroencephalography (EEG). Methods: Thirty-four TLE patients and twenty-eight healthy controls were invited to complete neurobehavioral assessments, cognitive oculomotor tasks, and 24-h video EEG (VEEG) recordings using an automated computer-based memory assessment platform with an eye tracker. Visit counts, visit time, and time of first fixation on areas of interest (AOIs) were recorded and analyzed in combination with interictal epileptic discharge (IED) characteristics from the bilateral temporal lobes. Results: The TLE patients had significantly worse Wechsler Digit Span scores [F(1, 58) = 7.49, p = 0.008]. In the Short-Term Memory Game with eye tracking, TLE patients took a longer time to find the memorized items [F(1, 57) = 17.30, p < 0.001]. They had longer first fixation [F(1, 57) = 4.06, p = 0.049] and more visit counts [F(1, 57) = 7.58, p = 0.008] on the target during the recall. Furthermore, the performance of the patients in the Digit Span task was negatively correlated with the total number of IEDs [r(28) = −0.463, p = 0.013] and the number of spikes per sleep cycle [r(28) = −0.420, p = 0.026]. Conclusion: Eye tracking appears to be a quantitative, objective measure of memory evaluation, demonstrating memory retrieval deficits but preserved visual attention in TLE patients. Nocturnal temporal lobe IEDs are closely associated with memory performance, which might be the electrophysiological mechanism for memory impairment in TLE.
Collapse
Affiliation(s)
- Guangpu Zhu
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Biomedical Spectroscopy of Xi'an, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, China
| | - Jing Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ke Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Kailing Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beibin Li
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, United States
| | - Sha Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bingliang Hu
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ding Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Wang
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, China.,Key Laboratory of Biomedical Spectroscopy of Xi'an, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, China
| |
Collapse
|
3
|
Gogia AS, Martin Del Campo-Vera R, Chen KH, Sebastian R, Nune G, Kramer DR, Lee MB, Tafreshi AR, Barbaro MF, Liu CY, Kellis S, Lee B. Gamma-band modulation in the human amygdala during reaching movements. Neurosurg Focus 2021; 49:E4. [PMID: 32610288 PMCID: PMC9651147 DOI: 10.3171/2020.4.focus20179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/14/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Motor brain-computer interface (BCI) represents a new frontier in neurological surgery that could provide significant benefits for patients living with motor deficits. Both the primary motor cortex and posterior parietal cortex have successfully been used as a neural source for human motor BCI, leading to interest in exploring other brain areas involved in motor control. The amygdala is one area that has been shown to have functional connectivity to the motor system; however, its role in movement execution is not well studied. Gamma oscillations (30-200 Hz) are known to be prokinetic in the human cortex, but their role is poorly understood in subcortical structures. Here, the authors use direct electrophysiological recordings and the classic "center-out" direct-reach experiment to study amygdaloid gamma-band modulation in 8 patients with medically refractory epilepsy. METHODS The study population consisted of 8 epilepsy patients (2 men; age range 21-62 years) who underwent implantation of micro-macro depth electrodes for seizure localization and EEG monitoring. Data from the macro contacts sampled at 2000 Hz were used for analysis. The classic center-out direct-reach experiment was used, which consists of an intertrial interval phase, a fixation phase, and a response phase. The authors assessed the statistical significance of neural modulation by inspecting for nonoverlapping areas in the 95% confidence intervals of spectral power for the response and fixation phases. RESULTS In 5 of the 8 patients, power spectral analysis showed a statistically significant increase in power within regions of the gamma band during the response phase compared with the fixation phase. In these 5 patients, the 95% bootstrapped confidence intervals of trial-averaged power in contiguous frequencies of the gamma band during the response phase were above, and did not overlap with, the confidence intervals of trial-averaged power during the fixation phase. CONCLUSIONS To the authors' knowledge, this is the first time that direct neural recordings have been used to show gamma-band modulation in the human amygdala during the execution of voluntary movement. This work indicates that gamma-band modulation in the amygdala could be a contributing source of neural signals for use in a motor BCI system.
Collapse
Affiliation(s)
| | | | | | | | - George Nune
- 2Neurology and.,3USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles; and
| | - Daniel R Kramer
- Departments of1Neurological Surgery and.,3USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles; and
| | | | | | | | - Charles Y Liu
- Departments of1Neurological Surgery and.,3USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles; and.,4Department of Biology and Biological Engineering and
| | - Spencer Kellis
- Departments of1Neurological Surgery and.,3USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles; and.,4Department of Biology and Biological Engineering and.,5Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, California
| | - Brian Lee
- Departments of1Neurological Surgery and.,3USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles; and.,4Department of Biology and Biological Engineering and
| |
Collapse
|
4
|
Kern M, Schulze-Bonhage A, Ball T. Blink- and saccade-related suppression effects in early visual areas of the human brain: Intracranial EEG investigations during natural viewing conditions. Neuroimage 2021; 230:117788. [PMID: 33503480 DOI: 10.1016/j.neuroimage.2021.117788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 01/07/2023] Open
Abstract
Blinks and saccades, both ubiquitous in natural viewing conditions, cause rapid changes of visual inputs that are hardly consciously perceived. The neural dynamics in early visual areas of the human brain underlying this remarkable visual stability are still incompletely understood. We used electrocorticography (ECoG) from electrodes directly implanted on the human early visual areas V1, V2, V3d/v, V4d/v and the fusiform gyrus to investigate blink- and saccade-related neuronal suppression effects during non-experimental, free viewing conditions. We found a characteristic, biphasic, broadband gamma power decrease-increase pattern in all investigated visual areas. During saccades, a decrease in gamma power clearly preceded eye movement onset, at least in V1. This may indicate that cortical information processing is actively suppressed in human early visual areas before and during saccades, which then possibly mediates perceptual visual suppression. The following eye movement offset-related increase in gamma power may indicate the recovery of visual perception and the resumption of visual processing.
Collapse
Affiliation(s)
- Markus Kern
- Neuromedical AI Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Engelbergerstr.21, D-79106 Freiburg im Breisgau, Germany; Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany.
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Tonio Ball
- Neuromedical AI Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Engelbergerstr.21, D-79106 Freiburg im Breisgau, Germany; Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Zheng W, Minama Reddy GK, Dai F, Chandramani A, Brang D, Hunter S, Kohrman MH, Rose S, Rossi M, Tao J, Wu S, Byrne R, Frim DM, Warnke P, Towle VL. Chasing language through the brain: Successive parallel networks. Clin Neurophysiol 2020; 132:80-93. [PMID: 33360179 DOI: 10.1016/j.clinph.2020.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To describe the spatio-temporal dynamics and interactions during linguistic and memory tasks. METHODS Event-related electrocorticographic (ECoG) spectral patterns obtained during cognitive tasks from 26 epilepsy patients (aged: 9-60 y) were analyzed in order to examine the spatio-temporal patterns of activation of cortical language areas. ECoGs (1024 Hz/channel) were recorded from 1567 subdural electrodes and 510 depth electrodes chronically implanted over or within the frontal, parietal, occipital and/or temporal lobes as part of their surgical work-up for intractable seizures. Six language/memory tasks were performed, which required responding verbally to auditory or visual word stimuli. Detailed analysis of electrode locations allowed combining results across patients. RESULTS Transient increases in induced ECoG gamma power (70-100 Hz) were observed in response to hearing words (central superior temporal gyrus), reading text and naming pictures (occipital and fusiform cortex) and speaking (pre-central, post-central and sub-central cortex). CONCLUSIONS Between these activations there was widespread spatial divergence followed by convergence of gamma activity that reliably identified cortical areas associated with task-specific processes. SIGNIFICANCE The combined dataset supports the concept of functionally-specific locally parallel language networks that are widely distributed, partially interacting in succession to serve the cognitive and behavioral demands of the tasks.
Collapse
Affiliation(s)
- Weili Zheng
- Department of Engineering, The University of Illinois, Chicago, IL, USA
| | | | - Falcon Dai
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | | | - David Brang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Scott Hunter
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Michael H Kohrman
- Department of Pediatrics, The University of Chicago, Chicago, IL 60487, USA
| | - Sandra Rose
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - Marvin Rossi
- Department of Neurology, Rush University, Chicago, IL, USA
| | - James Tao
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - Shasha Wu
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - Richard Byrne
- Department of Surgery, Rush University, Chicago, IL, USA
| | - David M Frim
- Department of Surgery, The University of Chicago, 5841 S. Maryland Ave, 60487 Chicago, IL, USA
| | - Peter Warnke
- Department of Surgery, The University of Chicago, 5841 S. Maryland Ave, 60487 Chicago, IL, USA
| | - Vernon L Towle
- Department of Neurology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Thomschewski A, Gerner N, Langthaler PB, Trinka E, Bathke AC, Fell J, Höller Y. Automatic vs. Manual Detection of High Frequency Oscillations in Intracranial Recordings From the Human Temporal Lobe. Front Neurol 2020; 11:563577. [PMID: 33192999 PMCID: PMC7604344 DOI: 10.3389/fneur.2020.563577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background: High frequency oscillations (HFOs) have attracted great interest among neuroscientists and epileptologists in recent years. Not only has their occurrence been linked to epileptogenesis, but also to physiologic processes, such as memory consolidation. There are at least two big challenges for HFO research. First, detection, when performed manually, is time consuming and prone to rater biases, but when performed automatically, it is biased by artifacts mimicking HFOs. Second, distinguishing physiologic from pathologic HFOs in patients with epilepsy is problematic. Here we automatically and manually detected HFOs in intracranial EEGs (iEEG) of patients with epilepsy, recorded during a visual memory task in order to assess the feasibility of the different detection approaches to identify task-related ripples, supporting the physiologic nature of HFOs in the temporal lobe. Methods: Ten patients with unclear seizure origin and bilaterally implanted macroelectrodes took part in a visual memory consolidation task. In addition to iEEG, scalp EEG, electrooculography (EOG), and facial electromyography (EMG) were recorded. iEEG channels contralateral to the suspected epileptogenic zone were inspected visually for HFOs. Furthermore, HFOs were marked automatically using an RMS detector and a Stockwell classifier. We compared the two detection approaches and assessed a possible link between task performance and HFO occurrence during encoding and retrieval trials. Results: HFO occurrence rates were significantly lower when events were marked manually. The automatic detection algorithm was greatly biased by filter-artifacts. Surprisingly, EOG artifacts as seen on scalp electrodes appeared to be linked to many HFOs in the iEEG. Occurrence rates could not be associated to memory performance, and we were not able to detect strictly defined "clear" ripples. Conclusion: Filtered graphoelements in the EEG are known to mimic HFOs and thus constitute a problem. So far, in invasive EEG recordings mostly technical artifacts and filtered epileptiform discharges have been considered as sources for these "false" HFOs. The data at hand suggests that even ocular artifacts might bias automatic detection in invasive recordings. Strict guidelines and standards for HFO detection are necessary in order to identify artifact-derived HFOs, especially in conditions when cognitive tasks might produce a high amount of artifacts.
Collapse
Affiliation(s)
- Aljoscha Thomschewski
- Department of Neurology, Christian-Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria,Department of Mathematics, Paris-Lodron University of Salzburg, Salzburg, Austria,Department of Psychology, Paris-Lodron University of Salzburg, Salzburg, Austria,*Correspondence: Aljoscha Thomschewski
| | - Nathalie Gerner
- Department of Neurology, Christian-Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Patrick B. Langthaler
- Department of Neurology, Christian-Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria,Department of Mathematics, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian-Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Arne C. Bathke
- Department of Mathematics, Paris-Lodron University of Salzburg, Salzburg, Austria,Intelligent Data Analytics Lab Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Jürgen Fell
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Yvonne Höller
- Faculty of Psychology, University of Akureyri, Akureyri, Iceland
| |
Collapse
|
7
|
Gerner N, Thomschewski A, Marcu A, Trinka E, Höller Y. Pitfalls in Scalp High-Frequency Oscillation Detection From Long-Term EEG Monitoring. Front Neurol 2020; 11:432. [PMID: 32582002 PMCID: PMC7280487 DOI: 10.3389/fneur.2020.00432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022] Open
Abstract
Aims: Intracranially recorded high-frequency oscillations (>80 Hz) are considered a candidate epilepsy biomarker. Recent studies claimed their detectability on the scalp surface. We aimed to investigate the applicability of high-frequency oscillation analysis to routine surface EEG obtained at an epilepsy monitoring unit. Methods: We retrospectively analyzed surface EEGs of 18 patients with focal epilepsy and six controls, recorded during sleep under maximal medication withdrawal. As a proof of principle, the occurrence of motor task-related events during wakefulness was analyzed in a subsample of six patients with seizure- or syncope-related motor symptoms. Ripples (80-250 Hz) and fast ripples (>250 Hz) were identified by semi-automatic detection. Using semi-parametric statistics, differences in spontaneous and task-related occurrence rates were examined within subjects and between diagnostic groups considering the factors diagnosis, brain region, ripple type, and task condition. Results: We detected high-frequency oscillations in 17 out of 18 patients and in four out of six controls. Results did not show statistically significant differences in the mean rates of event occurrences, neither regarding the laterality of the epileptic focus, nor with respect to active and inactive task conditions, or the moving hand laterality. Significant differences in general spontaneous incidence [WTS(1) = 9.594; p = 0.005] that indicated higher rates of fast ripples compared to ripples, notably in patients with epilepsy compared to the control group, may be explained by variations in data quality. Conclusion: The current analysis methods are prone to biases. A common agreement on a standard operating procedure is needed to ensure reliable and economic detection of high-frequency oscillations.
Collapse
Affiliation(s)
- Nathalie Gerner
- Department of Neurology, Christian-Doppler Medical Centre, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria,Department of Mathematics, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Aljoscha Thomschewski
- Department of Neurology, Christian-Doppler Medical Centre, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria,Department of Mathematics, Paris-Lodron University of Salzburg, Salzburg, Austria,*Correspondence: Aljoscha Thomschewski
| | - Adrian Marcu
- Department of Neurology, Christian-Doppler Medical Centre, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian-Doppler Medical Centre, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | - Yvonne Höller
- Department of Neurology, Christian-Doppler Medical Centre, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria,Department of Psychology, University of Akureyri, Akureyri, Iceland
| |
Collapse
|
8
|
Tao L, Wang Q, Liu D, Wang J, Zhu Z, Feng L. Eye tracking metrics to screen and assess cognitive impairment in patients with neurological disorders. Neurol Sci 2020; 41:1697-1704. [PMID: 32125540 DOI: 10.1007/s10072-020-04310-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Eye tracking is a powerful method to investigate the relationship between behavior and neural mechanisms. In recent years, eye movement analysis has been used in patients with neurological disorders to assess cognitive function. In this review, we explore the latest eye tracking researches in neurological disorders that are commonly associated with cognitive deficits, specifically, amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and epilepsy. We focus on the application of ocular measures in these disorders, with the goal of understanding how eye tracking technology can be used in the clinical setting. FINDINGS Eye tracking tasks (especially saccadic tasks) are often used as an adjunct to traditional scales for cognitive assessment. Eye tracking data confirmed that executive dysfunction is common in PD and ALS, whereas AD and MS are characterized by attention deficits. Research in evaluating cognitive function in epilepsy using eye tracking is still in its early stages, but this approach has shown advantages as a sensitive quantitative method with high temporal and spatial resolution. Eye tracking technology can facilitate the assessment of cognitive impairment with higher temporal resolution and finer granularity than traditional cognitive assessment. Oculomotor data collected during cognitive tasks can provide insight into biological processes. Eye tracking provides a nonverbal and less cognitively demanding method of measuring disease progression in cognitively impaired patients.
Collapse
Affiliation(s)
- Ling Tao
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Quan Wang
- Key Laboratory of Biomedical Spectroscopy of Xi' An, Key Laboratory of Spectral Imaging technology, Xi'an, Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi' An, China
| | - Ding Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziqing Zhu
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Sugiura A, Silverstein BH, Jeong JW, Nakai Y, Sonoda M, Motoi H, Asano E. Four-dimensional map of direct effective connectivity from posterior visual areas. Neuroimage 2020; 210:116548. [PMID: 31958582 DOI: 10.1016/j.neuroimage.2020.116548] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/17/2022] Open
Abstract
Lower- and higher-order visual cortices in the posterior brain, ranging from the medial- and lateral-occipital to fusiform regions, are suggested to support visual object recognition, whereas the frontal eye field (FEF) plays a role in saccadic eye movements which optimize visual processing. Previous studies using electrophysiology and functional MRI techniques have reported that tasks requiring visual object recognition elicited cortical activation sequentially in the aforementioned posterior visual regions and FEFs. The present study aims to provide unique evidence of direct effective connectivity outgoing from the posterior visual regions by measuring the early component (10-50 ms) of cortico-cortical spectral responses (CCSRs) elicited by weak single-pulse direct cortical electrical stimulation. We studied 22 patients who underwent extraoperative intracranial EEG recording for clinical localization of seizure foci and functionally-important brain regions. We used animations to visualize the spatiotemporal dynamics of gamma band CCSRs elicited by stimulation of three different posterior visual regions. We quantified the strength of CCSR-defined effective connectivity between the lower- and higher-order posterior visual regions as well as from the posterior visual regions to the FEFs. We found that effective connectivity within the posterior visual regions was larger in the feedforward (i.e., lower-to higher-order) direction compared to the opposite direction. Specifically, connectivity from the medial-occipital region was largest to the lateral-occipital region, whereas that from the lateral-occipital region was largest to the fusiform region. Among the posterior visual regions, connectivity to the FEF was largest from the lateral-occipital region and the mean peak latency of CCSR propagation from the lateral-occipital region to FEF was 26 ms. Our invasive study of the human brain using a stimulation-based intervention supports the model that the posterior visual regions have direct cortico-cortical connectivity pathways in which neural activity is transferred preferentially from the lower-to higher-order areas. The human brain has direct cortico-cortical connectivity allowing a rapid transfer of neural activity from the lateral-occipital region to the FEF.
Collapse
Affiliation(s)
- Ayaka Sugiura
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI, 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA; Department of Neurological Surgery, Wakayama Medical University, Wakayama-shi, 6418509, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Hirotaka Motoi
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
10
|
Ikegaya N, Motoi H, Iijima K, Takayama Y, Kambara T, Sugiura A, Silverstein BH, Iwasaki M, Asano E. Spatiotemporal dynamics of auditory and picture naming-related high-gamma modulations: A study of Japanese-speaking patients. Clin Neurophysiol 2019; 130:1446-1454. [PMID: 31056408 DOI: 10.1016/j.clinph.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To characterize the spatiotemporal dynamics of auditory and picture naming-related cortical activation in Japanese-speaking patients. METHODS Ten patients were assigned auditory naming and picture naming tasks during extraoperative intracranial EEG recording in a tertiary epilepsy center. Time-frequency analysis determined at what electrode sites and at what time windows during each task the amplitude of high-gamma activity (65-95 Hz) was modulated. RESULTS The superior-temporal gyrus on each hemisphere showed high-gamma augmentation during sentence listening, whereas the left middle-temporal and inferior-frontal gyri showed high-gamma augmentation peaking around stimulus offset. Auditory naming-specific high-gamma augmentation was noted in the bilateral superior-temporal gyri as well as left frontal-parietal-temporal perisylvian network regions, whereas picture naming-specific augmentation was noted in the occipital-fusiform regions, bilaterally. The inferior pre- and postcentral gyri on each hemisphere showed modality-common high-gamma augmentation time-locked to overt responses. CONCLUSIONS The spatiotemporal dynamics of auditory and picture naming-related high-gamma augmentation in Japanese-speaking patients were qualitatively similar to those previously reported in studies of English-speaking patients. SIGNIFICANCE The cortical dynamics for auditory sentence recognition are at least partly shared by cohorts speaking two distinct languages. Multicenter studies regarding the clinical utility of high-gamma language mapping across Eastern and Western hemispheres may be feasible.
Collapse
Affiliation(s)
- Naoki Ikegaya
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan; Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan
| | - Hirotaka Motoi
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan; Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan; Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan
| | - Toshimune Kambara
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA; Department of Psychology, Hiroshima University, Hiroshima 7398524, Japan
| | - Ayaka Sugiura
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48202, USA
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan.
| | - Eishi Asano
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA; Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA.
| |
Collapse
|
11
|
Kapeller C, Ogawa H, Schalk G, Kunii N, Coon WG, Scharinger J, Guger C, Kamada K. Real-time detection and discrimination of visual perception using electrocorticographic signals. J Neural Eng 2018; 15:036001. [PMID: 29359711 DOI: 10.1088/1741-2552/aaa9f6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Several neuroimaging studies have demonstrated that the ventral temporal cortex contains specialized regions that process visual stimuli. This study investigated the spatial and temporal dynamics of electrocorticographic (ECoG) responses to different types and colors of visual stimulation that were presented to four human participants, and demonstrated a real-time decoder that detects and discriminates responses to untrained natural images. APPROACH ECoG signals from the participants were recorded while they were shown colored and greyscale versions of seven types of visual stimuli (images of faces, objects, bodies, line drawings, digits, and kanji and hiragana characters), resulting in 14 classes for discrimination (experiment I). Additionally, a real-time system asynchronously classified ECoG responses to faces, kanji and black screens presented via a monitor (experiment II), or to natural scenes (i.e. the face of an experimenter, natural images of faces and kanji, and a mirror) (experiment III). Outcome measures in all experiments included the discrimination performance across types based on broadband γ activity. MAIN RESULTS Experiment I demonstrated an offline classification accuracy of 72.9% when discriminating among the seven types (without color separation). Further discrimination of grey versus colored images reached an accuracy of 67.1%. Discriminating all colors and types (14 classes) yielded an accuracy of 52.1%. In experiment II and III, the real-time decoder correctly detected 73.7% responses to face, kanji and black computer stimuli and 74.8% responses to presented natural scenes. SIGNIFICANCE Seven different types and their color information (either grey or color) could be detected and discriminated using broadband γ activity. Discrimination performance maximized for combined spatial-temporal information. The discrimination of stimulus color information provided the first ECoG-based evidence for color-related population-level cortical broadband γ responses in humans. Stimulus categories can be detected by their ECoG responses in real time within 500 ms with respect to stimulus onset.
Collapse
Affiliation(s)
- C Kapeller
- Guger Technologies OG, Graz, Austria. Department of Computational Perception, Johannes Kepler University, Linz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kambara T, Sood S, Alqatan Z, Klingert C, Ratnam D, Hayakawa A, Nakai Y, Luat AF, Agarwal R, Rothermel R, Asano E. Presurgical language mapping using event-related high-gamma activity: The Detroit procedure. Clin Neurophysiol 2017; 129:145-154. [PMID: 29190521 DOI: 10.1016/j.clinph.2017.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/25/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
A number of investigators have reported that event-related augmentation of high-gamma activity at 70-110 Hz on electrocorticography (ECoG) can localize functionally-important brain regions in children and adults who undergo epilepsy surgery. The advantages of ECoG-based language mapping over the gold-standard stimulation include: (i) lack of stimulation-induced seizures, (ii) better sensitivity of localization of language areas in young children, and (iii) shorter patient participant time. Despite its potential utility, ECoG-based language mapping is far less commonly practiced than stimulation mapping. Here, we have provided video presentations to explain, point-by-point, our own hardware setting and time-frequency analysis procedures. We also have provided standardized auditory stimuli, in multiple languages, ready to be used for ECoG-based language mapping. Finally, we discussed the technical aspects of ECoG-based mapping, including its pitfalls, to facilitate appropriate interpretation of the data.
Collapse
Affiliation(s)
- Toshimune Kambara
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Postdoctoral Fellowship for Research Abroad, Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 1020083, Japan
| | - Sandeep Sood
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Zahraa Alqatan
- Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | | - Diksha Ratnam
- Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Akane Hayakawa
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Yasuo Nakai
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Aimee F Luat
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Rajkumar Agarwal
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Robert Rothermel
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Psychiatry, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Eishi Asano
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
13
|
Nakai Y, Jeong JW, Brown EC, Rothermel R, Kojima K, Kambara T, Shah A, Mittal S, Sood S, Asano E. Three- and four-dimensional mapping of speech and language in patients with epilepsy. Brain 2017; 140:1351-1370. [PMID: 28334963 PMCID: PMC5405238 DOI: 10.1093/brain/awx051] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/14/2017] [Indexed: 11/13/2022] Open
Abstract
We have provided 3-D and 4D mapping of speech and language function based upon the results of direct cortical stimulation and event-related modulation of electrocorticography signals. Patients estimated to have right-hemispheric language dominance were excluded. Thus, 100 patients who underwent two-stage epilepsy surgery with chronic electrocorticography recording were studied. An older group consisted of 84 patients at least 10 years of age (7367 artefact-free non-epileptic electrodes), whereas a younger group included 16 children younger than age 10 (1438 electrodes). The probability of symptoms transiently induced by electrical stimulation was delineated on a 3D average surface image. The electrocorticography amplitude changes of high-gamma (70-110 Hz) and beta (15-30 Hz) activities during an auditory-naming task were animated on the average surface image in a 4D manner. Thereby, high-gamma augmentation and beta attenuation were treated as summary measures of cortical activation. Stimulation data indicated the causal relationship between (i) superior-temporal gyrus of either hemisphere and auditory hallucination; (ii) left superior-/middle-temporal gyri and receptive aphasia; (iii) widespread temporal/frontal lobe regions of the left hemisphere and expressive aphasia; and (iv) bilateral precentral/left posterior superior-frontal regions and speech arrest. On electrocorticography analysis, high-gamma augmentation involved the bilateral superior-temporal and precentral gyri immediately following question onset; at the same time, high-gamma activity was attenuated in the left orbitofrontal gyrus. High-gamma activity was augmented in the left temporal/frontal lobe regions, as well as left inferior-parietal and cingulate regions, maximally around question offset, with high-gamma augmentation in the left pars orbitalis inferior-frontal, middle-frontal, and inferior-parietal regions preceded by high-gamma attenuation in the contralateral homotopic regions. Immediately before verbal response, high-gamma augmentation involved the posterior superior-frontal and pre/postcentral regions, bilaterally. Beta-attenuation was spatially and temporally correlated with high-gamma augmentation in general but with exceptions. The younger and older groups shared similar spatial-temporal profiles of high-gamma and beta modulation; except, the younger group failed to show left-dominant activation in the rostral middle-frontal and pars orbitalis inferior-frontal regions around stimulus offset. The human brain may rapidly and alternately activate and deactivate cortical areas advantageous or obtrusive to function directed toward speech and language at a given moment. Increased left-dominant activation in the anterior frontal structures in the older age group may reflect developmental consolidation of the language system. The results of our functional mapping may be useful in predicting, across not only space but also time and patient age, sites specific to language function for presurgical evaluation of focal epilepsy.
Collapse
Affiliation(s)
- Yasuo Nakai
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Neurological Surgery, Wakayama Medical University, Wakayama-shi, Wakayama, 6418510, Japan
| | - Jeong-Won Jeong
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Erik C Brown
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Robert Rothermel
- Department of Psychiatry, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Katsuaki Kojima
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Pediatrics, University of California San Francisco, CA, 94143, USA
| | - Toshimune Kambara
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Postdoctoral Fellowship for Research Abroad, Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, 1020083, Japan
| | - Aashit Shah
- Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| |
Collapse
|
14
|
Castelhano J, Duarte IC, Abuhaiba SI, Rito M, Sales F, Castelo-Branco M. Cortical functional topography of high-frequency gamma activity relates to perceptual decision: an Intracranial study. PLoS One 2017; 12:e0186428. [PMID: 29073154 PMCID: PMC5657999 DOI: 10.1371/journal.pone.0186428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/29/2017] [Indexed: 12/28/2022] Open
Abstract
High-frequency activity (HFA) is believed to subserve a functional role in cognition, but these patterns are often not accessible to scalp EEG recordings. Intracranial studies provide a unique opportunity to link the all-encompassing range of high-frequency patterns with holistic perception. We tested whether the functional topography of HFAs (up to 250Hz) is related to perceptual decision-making. Human intracortical data were recorded (6 subjects; >250channels) during an ambiguous object-recognition task. We found a spatial topography of HFAs reflecting processing anterior dorsal and ventral streams, linked to decision independently of the type of processed object/stimulus category. Three distinct regional fingerprints could be identified, with lower gamma frequency patterns (<45Hz) dominating in the anterior semantic ventral object processing and dorsoventral integrating networks and evolving later, during perceptual decision phases, than early sensory posterior patterns (60-250Hz). This suggests that accurate object recognition/perceptual decision-making is related to distinct spatiotemporal signatures in the low gamma frequency range.
Collapse
Affiliation(s)
- João Castelhano
- CIBIT, ICNAS, University of Coimbra, Coimbra Portugal
- IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel C. Duarte
- CIBIT, ICNAS, University of Coimbra, Coimbra Portugal
- IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sulaiman I. Abuhaiba
- CIBIT, ICNAS, University of Coimbra, Coimbra Portugal
- IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | - Miguel Castelo-Branco
- CIBIT, ICNAS, University of Coimbra, Coimbra Portugal
- IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
15
|
Cortical representation of persistent visual stimuli. Neuroimage 2017; 161:67-79. [PMID: 28807872 DOI: 10.1016/j.neuroimage.2017.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 08/08/2017] [Indexed: 11/21/2022] Open
Abstract
Research into visual neural activity has focused almost exclusively on onset- or change-driven responses and little is known about how information is encoded in the brain during sustained periods of visual perception. We used intracranial recordings in humans to determine the degree to which the presence of a visual stimulus is persistently encoded by neural activity. The correspondence between stimulus duration and neural response duration was strongest in early visual cortex and gradually diminished along the visual hierarchy, such that is was weakest in inferior-temporal category-selective regions. A similar posterior-anterior gradient was found within inferior temporal face-selective regions, with posterior but not anterior sites showing persistent face-selective activity. The results suggest that regions that appear uniform in terms of their category selectivity are dissociated by how they temporally represent a stimulus in support of ongoing visual perception, and delineate a large-scale organizing principle of the ventral visual stream.
Collapse
|
16
|
Balazs S, Kermanshahi K, Binder H, Rattay F, Bodis-Wollner I. Gamma-Band Modulation and Coherence in the EEG by Involuntary Eye Movements in Patients in Unresponsive Wakefulness Syndrome. Clin EEG Neurosci 2016; 47:196-206. [PMID: 26346965 DOI: 10.1177/1550059415601756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 07/20/2015] [Indexed: 11/15/2022]
Abstract
Gamma power and coherence in the electroencephalogram increase in healthy individuals in association with voluntary eye movements, saccades. Patients with unresponsive wakefulness syndrome show repetitive involuntary eye movements that are similar to saccades but progress at a much lower speed. In the present study, we explored the changes in gamma power and coherence related to these eye movements and investigated whether any relationship to the patients' clinical status could be found that would indicate first neurophysiological signs of recovery. To this end, we assessed the clinical status and registered classical scalp electroencephalography with 19 surface electrodes and electro-oculogram of 45 consecutive patients at admission and at 4 weekly intervals. Slow gamma activity (in the frequency range of 37-40 Hz) was analyzed before, during, and after eye movements (pre, -intra and post-eye movement) by means of "continuous wavelet transform." We graded recovery using clinical behavioral scales, taking into account the variables, age, gender, recovery (yes or no), as well as the patients diagnoses (traumatic brain injury, hypoxia, hemorrhage, infection). Statistical evaluation was performed using DataLab, R, and Kruskal-Wallis methods. Based on the clinical status, we distinguished between recovering and chronic groups of patients. In comparison with the chronic group, the recovering group showed significantly higher gamma power over the posterior electrodes and significant higher values of coherence in the gamma-band activity during the presaccadic period of eye movements. We suggest that our findings on the onset of involuntary eye movements in the recovering group of patients with unresponsive wakefulness syndrome indicates a first neurophysiological sign of favorable prognosis.
Collapse
Affiliation(s)
- Susanne Balazs
- Department of Neurology, Otto Wagner Spital, Vienna, Austria
| | - Kazem Kermanshahi
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Heinrich Binder
- Department of Neurology, Otto Wagner Spital, Vienna, Austria
| | - Frank Rattay
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Ivan Bodis-Wollner
- Department of Neurology and Department of Ophthalmology, State University of New York, Brooklyn, NY, USA
| |
Collapse
|
17
|
Asano E, Gotman J. Is electrocorticography-based language mapping ready to replace stimulation? Neurology 2016; 86:1174-6. [PMID: 26935896 DOI: 10.1212/wnl.0000000000002533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Eishi Asano
- From the Departments of Pediatrics and Neurology (E.A.), Wayne State University; Department of Neurodiagnostics (E.A.), Children's Hospital of Michigan, Detroit; and Montreal Neurological Institute (J.G.), McGill University, Montréal, Canada.
| | - Jean Gotman
- From the Departments of Pediatrics and Neurology (E.A.), Wayne State University; Department of Neurodiagnostics (E.A.), Children's Hospital of Michigan, Detroit; and Montreal Neurological Institute (J.G.), McGill University, Montréal, Canada
| |
Collapse
|
18
|
Unmasking local activity within local field potentials (LFPs) by removing distal electrical signals using independent component analysis. Neuroimage 2016; 132:79-92. [PMID: 26899209 PMCID: PMC4885644 DOI: 10.1016/j.neuroimage.2016.02.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 12/31/2022] Open
Abstract
Local field potentials (LFPs) are commonly thought to reflect the aggregate dynamics in local neural circuits around recording electrodes. However, we show that when LFPs are recorded in awake behaving animals against a distal reference on the skull as commonly practiced, LFPs are significantly contaminated by non-local and non-neural sources arising from the reference electrode and from movement-related noise. In a data set with simultaneously recorded LFPs and electroencephalograms (EEGs) across multiple brain regions while rats perform an auditory oddball task, we used independent component analysis (ICA) to identify signals arising from electrical reference and from volume-conducted noise based on their distributed spatial pattern across multiple electrodes and distinct power spectral features. These sources of distal electrical signals collectively accounted for 23–77% of total variance in unprocessed LFPs, as well as most of the gamma oscillation responses to the target stimulus in EEGs. Gamma oscillation power was concentrated in volume-conducted noise and was tightly coupled with the onset of licking behavior, suggesting a likely origin of muscle activity associated with body movement or orofacial movement. The removal of distal signal contamination also selectively reduced correlations of LFP/EEG signals between distant brain regions but not within the same region. Finally, the removal of contamination from distal electrical signals preserved an event-related potential (ERP) response to auditory stimuli in the frontal cortex and also increased the coupling between the frontal ERP amplitude and neuronal activity in the basal forebrain, supporting the conclusion that removing distal electrical signals unmasked local activity within LFPs. Together, these results highlight the significant contamination of LFPs by distal electrical signals and caution against the straightforward interpretation of unprocessed LFPs. Our results provide a principled approach to identify and remove such contamination to unmask local LFPs.
Collapse
|
19
|
Jacobs J, Vogt C, LeVan P, Zelmann R, Gotman J, Kobayashi K. The identification of distinct high-frequency oscillations during spikes delineates the seizure onset zone better than high-frequency spectral power changes. Clin Neurophysiol 2016; 127:129-142. [DOI: 10.1016/j.clinph.2015.04.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 03/12/2015] [Accepted: 04/04/2015] [Indexed: 10/23/2022]
|
20
|
Simola J, Le Fevre K, Torniainen J, Baccino T. Affective processing in natural scene viewing: Valence and arousal interactions in eye-fixation-related potentials. Neuroimage 2015; 106:21-33. [DOI: 10.1016/j.neuroimage.2014.11.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 11/03/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022] Open
|
21
|
Matsuzaki N, Schwarzlose RF, Nishida M, Ofen N, Asano E. Upright face-preferential high-gamma responses in lower-order visual areas: evidence from intracranial recordings in children. Neuroimage 2015; 109:249-59. [PMID: 25579446 DOI: 10.1016/j.neuroimage.2015.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/30/2014] [Accepted: 01/05/2015] [Indexed: 11/18/2022] Open
Abstract
Behavioral studies demonstrate that a face presented in the upright orientation attracts attention more rapidly than an inverted face. Saccades toward an upright face take place in 100-140 ms following presentation. The present study using electrocorticography determined whether upright face-preferential neural activation, as reflected by augmentation of high-gamma activity at 80-150 Hz, involved the lower-order visual cortex within the first 100 ms post-stimulus presentation. Sampled lower-order visual areas were verified by the induction of phosphenes upon electrical stimulation. These areas resided in the lateral-occipital, lingual, and cuneus gyri along the calcarine sulcus, roughly corresponding to V1 and V2. Measurement of high-gamma augmentation during central (circular) and peripheral (annular) checkerboard reversal pattern stimulation indicated that central-field stimuli were processed by the more polar surface whereas peripheral-field stimuli by the more anterior medial surface. Upright face stimuli, compared to inverted ones, elicited up to 23% larger augmentation of high-gamma activity in the lower-order visual regions at 40-90 ms. Upright face-preferential high-gamma augmentation was more highly correlated with high-gamma augmentation for central than peripheral stimuli. Our observations are consistent with the hypothesis that lower-order visual regions, especially those for the central field, are involved in visual cues for rapid detection of upright face stimuli.
Collapse
Affiliation(s)
- Naoyuki Matsuzaki
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Rebecca F Schwarzlose
- Institute of Gerontology, Wayne State University, Detroit, MI, USA; Trends in Cognitive Sciences, Cell Press, Cambridge, MA 02139, USA
| | - Masaaki Nishida
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Anesthesiology, Hanyu General Hospital, Hanyu City, Saitama 348-8505, Japan
| | - Noa Ofen
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
22
|
Singer N, Podlipsky I, Esposito F, Okon-Singer H, Andelman F, Kipervasser S, Neufeld MY, Goebel R, Fried I, Hendler T. Distinct iEEG activity patterns in temporal-limbic and prefrontal sites induced by emotional intentionality. Cortex 2014; 60:121-38. [PMID: 25288171 DOI: 10.1016/j.cortex.2014.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 04/09/2014] [Accepted: 07/29/2014] [Indexed: 12/30/2022]
Abstract
Our emotions tend to be directed towards someone or something. Such emotional intentionality calls for the integration between two streams of information; abstract hedonic value and its associated concrete content. In a previous functional magnetic resonance imaging (fMRI) study we found that the combination of these two streams, as modeled by short emotional music excerpts and neutral film clips, was associated with synergistic activation in both temporal-limbic (TL) and ventral-lateral PFC (vLPFC) regions. This additive effect implies the integration of domain-specific 'affective' and 'cognitive' processes. Yet, the low temporal resolution of the fMRI limits the characterization of such cross-domain integration. To this end, we complemented the fMRI data with intracranial electroencephalogram (iEEG) recordings from twelve patients with intractable epilepsy. As expected, the additive fMRI activation in the amygdala and vLPFC was associated with distinct spatio-temporal iEEG patterns among electrodes situated within the vicinity of the fMRI activation foci. On the one hand, TL channels exhibited a transient (0-500 msec) increase in gamma power (61-69 Hz), possibly reflecting initial relevance detection or hedonic value tagging. On the other hand, vLPFC channels showed sustained (1-12 sec) suppression of low frequency power (2.3-24 Hz), possibly mediating changes in gating, enabling an on-going readiness for content-based processing of emotionally tagged signals. Moreover, an additive effect in delta-gamma phase-amplitude coupling (PAC) was found among the TL channels, possibly reflecting the integration between distinct domain specific processes. Together, this study provides a multi-faceted neurophysiological signature for computations that possibly underlie emotional intentionality in humans.
Collapse
Affiliation(s)
- Neomi Singer
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel; School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Ilana Podlipsky
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Fabrizio Esposito
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Hadas Okon-Singer
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Fani Andelman
- Functional Neurosurgery Unit, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Svetlana Kipervasser
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Epilepsy Unit, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Miri Y Neufeld
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Epilepsy Unit, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Itzhak Fried
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Functional Neurosurgery Unit, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel; Division of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, USA
| | - Talma Hendler
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel; School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
23
|
Functional selectivity in the human occipitotemporal cortex during natural vision: Evidence from combined intracranial EEG and eye-tracking. Neuroimage 2014; 95:276-86. [DOI: 10.1016/j.neuroimage.2014.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/12/2014] [Accepted: 03/10/2014] [Indexed: 11/20/2022] Open
|
24
|
Cho-Hisamoto Y, Kojima K, Brown EC, Matsuzaki N, Asano E. Gamma activity modulated by naming of ambiguous and unambiguous images: intracranial recording. Clin Neurophysiol 2014; 126:17-26. [PMID: 24815577 DOI: 10.1016/j.clinph.2014.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Humans sometimes need to recognize objects based on vague and ambiguous silhouettes. Recognition of such images may require an intuitive guess. We determined the spatial-temporal characteristics of intracranially-recorded gamma activity (at 50-120Hz) augmented differentially by naming of ambiguous and unambiguous images. METHODS We studied 10 patients who underwent epilepsy surgery. Ambiguous and unambiguous images were presented during extraoperative electrocorticography recording, and patients were instructed to overtly name the object as it is first perceived. RESULTS Both naming tasks were commonly associated with gamma-augmentation sequentially involving the occipital and occipital-temporal regions, bilaterally, within 200ms after the onset of image presentation. Naming of ambiguous images elicited gamma-augmentation specifically involving portions of the inferior-frontal, orbitofrontal, and inferior-parietal regions at 400ms and after. Unambiguous images were associated with more intense gamma-augmentation in portions of the occipital and occipital-temporal regions. CONCLUSIONS Frontal-parietal gamma-augmentation specific to ambiguous images may reflect the additional cortical processing involved in exerting intuitive guess. Occipital gamma-augmentation enhanced during naming of unambiguous images can be explained by visual processing of stimuli with richer detail. SIGNIFICANCE Our results support the theoretical model that guessing processes in visual domain occur following the accumulation of sensory evidence resulting from the bottom-up processing in the occipital-temporal visual pathways.
Collapse
Affiliation(s)
- Yoshimi Cho-Hisamoto
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Katsuaki Kojima
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Erik C Brown
- MD-PhD Program, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Naoyuki Matsuzaki
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
25
|
Collinger JL, Vinjamuri R, Degenhart AD, Weber DJ, Sudre GP, Boninger ML, Tyler-Kabara EC, Wang W. Motor-related brain activity during action observation: a neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury. Front Integr Neurosci 2014; 8:17. [PMID: 24600359 PMCID: PMC3928793 DOI: 10.3389/fnint.2014.00017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/30/2014] [Indexed: 12/02/2022] Open
Abstract
After spinal cord injury (SCI), motor commands from the brain are unable to reach peripheral nerves and muscles below the level of the lesion. Action observation (AO), in which a person observes someone else performing an action, has been used to augment traditional rehabilitation paradigms. Similarly, AO can be used to derive the relationship between brain activity and movement kinematics for a motor-based brain-computer interface (BCI) even when the user cannot generate overt movements. BCIs use brain signals to control external devices to replace functions that have been lost due to SCI or other motor impairment. Previous studies have reported congruent motor cortical activity during observed and overt movements using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). Recent single-unit studies using intracortical microelectrodes also demonstrated that a large number of motor cortical neurons had similar firing rate patterns between overt and observed movements. Given the increasing interest in electrocorticography (ECoG)-based BCIs, our goal was to identify whether action observation-related cortical activity could be recorded using ECoG during grasping tasks. Specifically, we aimed to identify congruent neural activity during observed and executed movements in both the sensorimotor rhythm (10–40 Hz) and the high-gamma band (65–115 Hz) which contains significant movement-related information. We observed significant motor-related high-gamma band activity during AO in both able-bodied individuals and one participant with a complete C4 SCI. Furthermore, in able-bodied participants, both the low and high frequency bands demonstrated congruent activity between action execution and observation. Our results suggest that AO could be an effective and critical procedure for deriving the mapping from ECoG signals to intended movement for an ECoG-based BCI system for individuals with paralysis.
Collapse
Affiliation(s)
- Jennifer L Collinger
- Human Engineering Research Laboratories, Department of Veterans Affairs Pittsburgh, PA, USA ; Department of Physical Medicine and Rehabilitation, University of Pittsburgh Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh Pittsburgh, PA, USA
| | - Ramana Vinjamuri
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh Pittsburgh, PA, USA
| | - Alan D Degenhart
- Department of Bioengineering, University of Pittsburgh Pittsburgh, PA, USA
| | - Douglas J Weber
- Human Engineering Research Laboratories, Department of Veterans Affairs Pittsburgh, PA, USA ; Department of Physical Medicine and Rehabilitation, University of Pittsburgh Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh Pittsburgh, PA, USA
| | - Gustavo P Sudre
- Program in Neural Computation, Carnegie Mellon University Pittsburgh, PA, USA
| | - Michael L Boninger
- Human Engineering Research Laboratories, Department of Veterans Affairs Pittsburgh, PA, USA ; Department of Physical Medicine and Rehabilitation, University of Pittsburgh Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh Pittsburgh, PA, USA ; Clinical and Translational Science Institute, University of Pittsburgh Pittsburgh, PA, USA
| | - Elizabeth C Tyler-Kabara
- Department of Bioengineering, University of Pittsburgh Pittsburgh, PA, USA ; Department of Neurological Surgery, University of Pittsburgh Pittsburgh, PA, USA
| | - Wei Wang
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh Pittsburgh, PA, USA ; Clinical and Translational Science Institute, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
26
|
Hoffman KL, Dragan MC, Leonard TK, Micheli C, Montefusco-Siegmund R, Valiante TA. Saccades during visual exploration align hippocampal 3-8 Hz rhythms in human and non-human primates. Front Syst Neurosci 2013; 7:43. [PMID: 24009562 PMCID: PMC3757337 DOI: 10.3389/fnsys.2013.00043] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022] Open
Abstract
Visual exploration in primates depends on saccadic eye movements (SEMs) that cause alternations of neural suppression and enhancement. This modulation extends beyond retinotopic areas, and is thought to facilitate perception; yet saccades may also influence brain regions critical for forming memories of these exploratory episodes. The hippocampus, for example, shows oscillatory activity that is generally associated with encoding of information. Whether or how hippocampal oscillations are influenced by eye movements is unknown. We recorded the neural activity in the human and macaque hippocampus during visual scene search. Across species, SEMs were associated with a time-limited alignment of a low-frequency (3–8 Hz) rhythm. The phase alignment depended on the task and not only on eye movements per se, and the frequency band was not a direct consequence of saccade rate. Hippocampal theta-frequency oscillations are produced by other mammals during repetitive exploratory behaviors, including whisking, sniffing, echolocation, and locomotion. The present results may reflect a similar yet distinct primate homologue supporting active perception during exploration.
Collapse
Affiliation(s)
- Kari L Hoffman
- Department of Psychology, Centre for Vision Research, York University Toronto, ON, Canada ; Department of Biology, Centre for Vision Research, York University Toronto, ON, Canada ; Neuroscience Graduate Diploma Program, York University Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Kojima K, Brown EC, Matsuzaki N, Asano E. Animal category-preferential gamma-band responses in the lower- and higher-order visual areas: intracranial recording in children. Clin Neurophysiol 2013; 124:2368-77. [PMID: 23910987 DOI: 10.1016/j.clinph.2013.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/20/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE We determined where and when category-preferential augmentation of gamma activity took place during naming of animal or non-animal pictures. METHODS We studied 41 patients with focal epilepsy who underwent measurement of naming-related gamma-augmentation at 50-120 Hz during extraoperative electrocorticography. The assigned task consisted of naming of a visually-presented object classified as either 'animal' or 'non-animal'. RESULTS Within 80 ms following the onset of picture presentation, regardless of stimulus type, gamma-activity in bilateral occipital regions began to be augmented compared to the resting period. Initially in the occipital poles (at 140 ms and after) and subsequently in the lateral, inferior and medial occipital regions (at 320 ms and after), the degree of gamma-augmentation elicited by 'animal naming' became larger (by up to 52%) than that by 'non-animal naming'. Immediately prior to the overt response, left inferior frontal gamma-augmentation became modestly larger during 'animal naming' compared to 'non-animal naming'. CONCLUSIONS Animal category-preferential gamma-augmentation sequentially involved the lower- and higher-order visual areas. Relatively larger occipital gamma-augmentation during 'animal naming' can be attributed to the more attentive analysis of animal stimuli including the face. Animal-preferential gamma-augmentation in the left inferior frontal region could be attributed to a need for selective semantic retrieval during 'animal naming'. SIGNIFICANCE A specific program of cortical processing to distinguish an animal (or face) from other objects might be initiated in the lower-order visual cortex.
Collapse
Affiliation(s)
- Katsuaki Kojima
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
28
|
Uematsu M, Matsuzaki N, Brown EC, Kojima K, Asano E. Human occipital cortices differentially exert saccadic suppression: Intracranial recording in children. Neuroimage 2013; 83:224-36. [PMID: 23792979 DOI: 10.1016/j.neuroimage.2013.06.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 04/27/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022] Open
Abstract
By repeating saccades unconsciously, humans explore the surrounding world every day. Saccades inevitably move external visual images across the retina at high velocity; nonetheless, healthy humans don't perceive transient blurring of the visual scene during saccades. This perceptual stability is referred to as saccadic suppression. Functional suppression is believed to take place transiently in the visual systems, but it remains unknown how commonly or differentially the human occipital lobe activities are suppressed at the large-scale cortical network level. We determined the spatial-temporal dynamics of intracranially-recorded gamma activity at 80-150 Hz around spontaneous saccades under no-task conditions during wakefulness and those in darkness during REM sleep. Regardless of wakefulness or REM sleep, a small degree of attenuation of gamma activity was noted in the occipital regions during saccades, most extensively in the polar and least in the medial portions. Longer saccades were associated with more intense gamma-attenuation. Gamma-attenuation was subsequently followed by gamma-augmentation most extensively involving the medial and least involving the polar occipital region. Such gamma-augmentation was more intense during wakefulness and temporally locked to the offset of saccades. The polarities of initial peaks of perisaccadic event-related potentials (ERPs) were frequently positive in the medial and negative in the polar occipital regions. The present study, for the first time, provided the electrophysiological evidence that human occipital cortices differentially exert perisaccadic modulation. Transiently suppressed sensitivity of the primary visual cortex in the polar region may be an important neural basis for saccadic suppression. Presence of occipital gamma-attenuation even during REM sleep suggests that saccadic suppression might be exerted even without external visual inputs. The primary visual cortex in the medial region, compared to the polar region, may be more sensitive to an upcoming visual scene provided at the offset of each saccade.
Collapse
Affiliation(s)
- Mitsugu Uematsu
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA; Department of Pediatrics, Tohoku University, Graduate School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | |
Collapse
|
29
|
Castelhano J, Rebola J, Leitão B, Rodriguez E, Castelo-Branco M. To perceive or not perceive: the role of gamma-band activity in signaling object percepts. PLoS One 2013; 8:e66363. [PMID: 23785494 PMCID: PMC3681966 DOI: 10.1371/journal.pone.0066363] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/03/2013] [Indexed: 12/31/2022] Open
Abstract
The relation of gamma-band synchrony to holistic perception in which concerns the effects of sensory processing, high level perceptual gestalt formation, motor planning and response is still controversial. To provide a more direct link to emergent perceptual states we have used holistic EEG/ERP paradigms where the moment of perceptual “discovery” of a global pattern was variable. Using a rapid visual presentation of short-lived Mooney objects we found an increase of gamma-band activity locked to perceptual events. Additional experiments using dynamic Mooney stimuli showed that gamma activity increases well before the report of an emergent holistic percept. To confirm these findings in a data driven manner we have further used a support vector machine classification approach to distinguish between perceptual vs. non perceptual states, based on time-frequency features. Sensitivity, specificity and accuracy were all above 95%. Modulations in the 30–75 Hz range were larger for perception states. Interestingly, phase synchrony was larger for perception states for high frequency bands. By focusing on global gestalt mechanisms instead of local processing we conclude that gamma-band activity and synchrony provide a signature of holistic perceptual states of variable onset, which are separable from sensory and motor processing.
Collapse
Affiliation(s)
- João Castelhano
- Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - José Rebola
- Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Bruno Leitão
- Center for Informatics and Systems, University of Coimbra, Coimbra, Portugal
| | - Eugenio Rodriguez
- Max-Planck for Brain Research, Frankfurt am Main, Germany; and Pontificia Universidad Católica de Chile, Escuela de psicología, Santiago, Chile
| | - Miguel Castelo-Branco
- Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
30
|
Melani F, Zelmann R, Mari F, Gotman J. Continuous High Frequency Activity: a peculiar SEEG pattern related to specific brain regions. Clin Neurophysiol 2013; 124:1507-16. [PMID: 23768436 DOI: 10.1016/j.clinph.2012.11.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/30/2012] [Accepted: 11/14/2012] [Indexed: 11/16/2022]
Abstract
OBJECTIVE While visually marking the high frequency oscillations in the stereo-EEG of epileptic patients, we observed a continuous/semicontinuous activity in the ripple band (80-250 Hz), which we defined continuous High Frequency Activity (HFA). We aim to analyze in all brain regions the occurrence and significance of this particular pattern. METHODS Twenty patients implanted in mesial temporal and neocortical areas were studied. One minute of slow-wave sleep was reviewed. The background was classified as continuous/semicontinuous, irregular, or sporadic based on the duration of the fast oscillations. Each channel was classified as inside/outside the seizure onset zone (SOZ) or a lesion. RESULTS The continuous/semicontinuous HFA occurred in 54 of the 790 channels analyzed, with a clearly higher prevalence in hippocampus and occipital lobe. No correlation was found with the SOZ or lesions. In the occipital lobe the continuous/semicontinuous HFA was present independently of whether eyes were open or closed. CONCLUSIONS We describe what appears to be a new physiological High Frequency Activity, independent of epileptogenicity, present almost exclusively in the hippocampus and occipital cortex but independent of the alpha rhythm. SIGNIFICANCE The continuous HFA may be an intrinsic characteristic of specific brain regions, reflecting a particular type of physiological neuronal activity.
Collapse
Affiliation(s)
- Federico Melani
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
31
|
Gamma activity modulated by picture and auditory naming tasks: intracranial recording in patients with focal epilepsy. Clin Neurophysiol 2013; 124:1737-44. [PMID: 23688918 DOI: 10.1016/j.clinph.2013.01.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/27/2013] [Accepted: 01/30/2013] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We measured the spatial, temporal and developmental patterns of gamma activity augmented by picture- and auditory-naming tasks and determined the clinical significance of naming-related gamma-augmentation. METHODS We studied 56 epileptic patients (age: 4-56 years) who underwent extraoperative electrocorticography. The picture-naming task consisted of naming of a visually-presented object; the auditory-naming task consisted of answering an auditorily-presented sentence question. RESULTS Naming-related gamma-augmentation at 50-120 Hz involved the modality-specific sensory cortices during stimulus presentation and inferior-Rolandic regions during responses. Gamma-augmentation in the bilateral occipital and inferior/medial-temporal regions was more intense in the picture-naming than auditory-naming task, whereas that in the bilateral superior-temporal, left middle-temporal, left inferior-parietal, and left frontal regions was more intense in the auditory-naming task. Patients above 10 years old, compared to those younger, showed more extensive gamma-augmentation in the left dorsolateral-premotor region. Resection of sites showing naming-related gamma-augmentation in the left hemisphere assumed to contain essential language function was associated with increased risk of post-operative language deficits requiring speech therapy (p < 0.05). CONCLUSIONS Measurement of gamma-augmentation elicited by either naming task was useful to predict postoperative language deficits. SIGNIFICANCE A smaller degree of frontal engagement in the picture-naming task can be explained by no requirement of syntactic processing or less working memory load. More extensive gamma-augmentation in the left dorsolateral-premotor region in older individuals may suggest more proficient processing by the mature brain.
Collapse
|
32
|
Belyusar D, Snyder AC, Frey HP, Harwood MR, Wallman J, Foxe JJ. Oscillatory alpha-band suppression mechanisms during the rapid attentional shifts required to perform an anti-saccade task. Neuroimage 2013; 65:395-407. [PMID: 23041338 PMCID: PMC4380346 DOI: 10.1016/j.neuroimage.2012.09.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/25/2012] [Accepted: 09/27/2012] [Indexed: 10/27/2022] Open
Abstract
Neuroimaging has demonstrated anatomical overlap between covert and overt attention systems, although behavioral and electrophysiological studies have suggested that the two systems do not rely on entirely identical circuits or mechanisms. In a parallel line of research, topographically-specific modulations of alpha-band power (~8-14 Hz) have been consistently correlated with anticipatory states during tasks requiring covert attention shifts. These tasks, however, typically employ cue-target-interval paradigms where attentional processes are examined across relatively protracted periods of time and not at the rapid timescales implicated during overt attention tasks. The anti-saccade task, where one must first covertly attend for a peripheral target, before executing a rapid overt attention shift (i.e. a saccade) to the opposite side of space, is particularly well-suited for examining the rapid dynamics of overt attentional deployments. Here, we asked whether alpha-band oscillatory mechanisms would also be associated with these very rapid overt shifts, potentially representing a common neural mechanism across overt and covert attention systems. High-density electroencephalography in conjunction with infra-red eye-tracking was recorded while participants engaged in both pro- and anti-saccade task blocks. Alpha power, time-locked to saccade onset, showed three distinct phases of significantly lateralized topographic shifts, all occurring within a period of less than 1s, closely reflecting the temporal dynamics of anti-saccade performance. Only two such phases were observed during the pro-saccade task. These data point to substantially more rapid temporal dynamics of alpha-band suppressive mechanisms than previously established, and implicate oscillatory alpha-band activity as a common mechanism across both overt and covert attentional deployments.
Collapse
Affiliation(s)
- Daniel Belyusar
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory Children's Evaluation and Rehabilitation Center (CERC) Departments of Pediatrics and Neuroscience Albert Einstein College of Medicine Van Etten Building – Wing 1C 1225 Morris Park Avenue Bronx, N.Y. 10461, USA
| | - Adam C. Snyder
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory Children's Evaluation and Rehabilitation Center (CERC) Departments of Pediatrics and Neuroscience Albert Einstein College of Medicine Van Etten Building – Wing 1C 1225 Morris Park Avenue Bronx, N.Y. 10461, USA
- Program in Cognitive Neuroscience Departments of Psychology & Biology City College of the City University of New York 138th Street & Convent Avenue New York, N.Y. 10031, USA
| | - Hans-Peter Frey
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory Children's Evaluation and Rehabilitation Center (CERC) Departments of Pediatrics and Neuroscience Albert Einstein College of Medicine Van Etten Building – Wing 1C 1225 Morris Park Avenue Bronx, N.Y. 10461, USA
| | - Mark R. Harwood
- Program in Cognitive Neuroscience Departments of Psychology & Biology City College of the City University of New York 138th Street & Convent Avenue New York, N.Y. 10031, USA
| | - Josh Wallman
- Program in Cognitive Neuroscience Departments of Psychology & Biology City College of the City University of New York 138th Street & Convent Avenue New York, N.Y. 10031, USA
| | - John J. Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory Children's Evaluation and Rehabilitation Center (CERC) Departments of Pediatrics and Neuroscience Albert Einstein College of Medicine Van Etten Building – Wing 1C 1225 Morris Park Avenue Bronx, N.Y. 10461, USA
- Program in Cognitive Neuroscience Departments of Psychology & Biology City College of the City University of New York 138th Street & Convent Avenue New York, N.Y. 10031, USA
| |
Collapse
|
33
|
The dynamics of language-related high-gamma activity assessed on a spatially-normalized brain. Clin Neurophysiol 2013; 124:91-100. [DOI: 10.1016/j.clinph.2012.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 06/04/2012] [Accepted: 06/08/2012] [Indexed: 11/22/2022]
|
34
|
Clinical significance and developmental changes of auditory-language-related gamma activity. Clin Neurophysiol 2012; 124:857-69. [PMID: 23141882 DOI: 10.1016/j.clinph.2012.09.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/20/2012] [Accepted: 09/22/2012] [Indexed: 11/21/2022]
Abstract
OBJECTIVE We determined the clinical impact and developmental changes of auditory-language-related augmentation of gamma activity at 50-120 Hz recorded on electrocorticography (ECoG). METHODS We analyzed data from 77 epileptic patients ranging 4-56 years in age. We determined the effects of seizure-onset zone, electrode location, and patient-age upon gamma-augmentation elicited by an auditory-naming task. RESULTS Gamma-augmentation was less frequently elicited within seizure-onset sites compared to other sites. Regardless of age, gamma-augmentation most often involved the 80-100 Hz frequency band. Gamma-augmentation initially involved bilateral superior-temporal regions, followed by left-side dominant involvement in the middle-temporal, medial-temporal, inferior-frontal, dorsolateral-premotor, and medial-frontal regions and concluded with bilateral inferior-Rolandic involvement. Compared to younger patients, those older than 10 years had a larger proportion of left dorsolateral-premotor and right inferior-frontal sites showing gamma-augmentation. The incidence of a post-operative language deficit requiring speech therapy was predicted by the number of resected sites with gamma-augmentation in the superior-temporal, inferior-frontal, dorsolateral-premotor, and inferior-Rolandic regions of the left hemisphere assumed to contain essential language function (r(2) = 0.59; p = 0.001; odds ratio = 6.04 [95% confidence-interval: 2.26-16.15]). CONCLUSIONS Auditory-language-related gamma-augmentation can provide additional information useful to localize the primary language areas. SIGNIFICANCE These results derived from a large sample of patients support the utility of auditory-language-related gamma-augmentation in presurgical evaluation.
Collapse
|
35
|
Jacobs J, Staba R, Asano E, Otsubo H, Wu JY, Zijlmans M, Mohamed I, Kahane P, Dubeau F, Navarro V, Gotman J. High-frequency oscillations (HFOs) in clinical epilepsy. Prog Neurobiol 2012; 98:302-15. [PMID: 22480752 PMCID: PMC3674884 DOI: 10.1016/j.pneurobio.2012.03.001] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/04/2012] [Accepted: 03/06/2012] [Indexed: 11/18/2022]
Abstract
Epilepsy is one of the most frequent neurological diseases. In focal medically refractory epilepsies, successful surgical treatment largely depends on the identification of epileptogenic zone. High-frequency oscillations (HFOs) between 80 and 500Hz, which can be recorded with EEG, may be novel markers of the epileptogenic zone. This review discusses the clinical importance of HFOs as markers of epileptogenicity and their application in different types of epilepsies. HFOs are clearly linked to the seizure onset zone, and the surgical removal of regions generating them correlates with a seizure free post-surgical outcome. Moreover, HFOs reflect the seizure-generating capability of the underlying tissue, since they are more frequent after the reduction of antiepileptic drugs. They can be successfully used in pediatric epilepsies such as epileptic spasms and help to understand the generation of this specific type of seizures. While mostly recorded on intracranial EEGs, new studies suggest that identification of HFOs on scalp EEG or magnetoencephalography (MEG) is possible as well. Thus not only patients with refractory epilepsies and invasive recordings but all patients might profit from the analysis of HFOs. Despite these promising results, the analysis of HFOs is not a routine clinical procedure; most results are derived from relatively small cohorts of patients and many aspects are not yet fully understood. Thus the review concludes that even if HFOs are promising biomarkers of epileptic tissue, there are still uncertainties about mechanisms of generation, methods of analysis, and clinical applicability. Large multicenter prospective studies are needed prior to widespread clinical application.
Collapse
Affiliation(s)
- J Jacobs
- Department of Neuropediatrics and Muscular Diseases, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bastin J, Lebranchu P, Jerbi K, Kahane P, Orban G, Lachaux JP, Berthoz A. Direct recordings in human cortex reveal the dynamics of gamma-band [50-150 Hz] activity during pursuit eye movement control. Neuroimage 2012; 63:339-47. [PMID: 22819950 DOI: 10.1016/j.neuroimage.2012.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/02/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022] Open
Abstract
The time course of neural activity in human brain regions involved in mediating pursuit eye movements is unclear. To address this question, we recorded intracerebral electroencephalography activity in eight epileptic patients while they performed a pursuit task that dissociates reactive, predictive and inhibited pursuits. A sustained gamma band (50-150 Hz) activity corresponding to pursuit maintenance was observed in the pursuit (and not saccade) area of the frontal eye field (FEF), in the ventral intraparietal sulcus (VIPS) and in occipital areas. The latency of gamma increase was found to precede target onset in FEF and VIPS, suggesting that those areas could also be involved during pursuit preparation/initiation. During pursuit inhibition, a sustained gamma band response was observed within prefrontal areas (pre-supplementary-motor-area, dorso-lateral prefrontal and frontopolar cortex). This study describes for the first time the dynamics of the neural activity in four areas of the pursuit system, not previously available in humans. These findings provide novel timing constraints to current models of the human pursuit system and establish the relevance of direct recordings to precisely relate eye movement behavior with neural activity in humans.
Collapse
Affiliation(s)
- Julien Bastin
- UMR 7152, CNRS-Collège de France, Laboratoire de Physiologie de Perception et de l'Action, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
37
|
Oscillatory modulations in human fusiform cortex during motion-induced blindness: intracranial recording. Clin Neurophysiol 2012; 123:1925-30. [PMID: 22503904 DOI: 10.1016/j.clinph.2012.02.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/07/2012] [Accepted: 02/25/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Motion-induced blindness (MIB) is an illusory phenomenon, in which a static target surrounded by moving distracters is perceived to disappear. We determined the electrocorticographic (ECoG) correlates of MIB. METHODS While undergoing intracranial ECoG recording, a patient with focal epilepsy was instructed to report the transitions of a visual target, which was designed to illusorily or physically disappear and reappear. We then determined the neural modulations associated with illusory and physical transitions of the target. We also tested whether the phase of local delta activity could predict exclusively illusory transitions. RESULTS High-gamma activity at 80-150 Hz was attenuated in the fusiform region prior to the reports of illusory and real visual target disappearance. Conversely, such high-gamma activity was augmented prior to the report of real target reappearance. Exclusively around illusory disappearance but not around real one, the delta phases in the fusiform region showed a highly skewed distribution with preference of the negative peak. CONCLUSIONS Neuronal modulations in the fusiform region may be involved in visual awareness, while spontaneous fluctuations of neural states entrained on delta rhythm may be involved in generation of MIB. SIGNIFICANCE Our study increases our understanding of the mechanisms of visual awareness.
Collapse
|
38
|
Kojima K, Brown EC, Rothermel R, Carlson A, Matsuzaki N, Shah A, Atkinson M, Mittal S, Fuerst D, Sood S, Asano E. Multimodality language mapping in patients with left-hemispheric language dominance on Wada test. Clin Neurophysiol 2012; 123:1917-24. [PMID: 22503906 DOI: 10.1016/j.clinph.2012.01.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 01/20/2012] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE We determined the utility of electrocorticography (ECoG) and stimulation for detecting language-related sites in patients with left-hemispheric language-dominance on Wada test. METHODS We studied 13 epileptic patients who underwent language mapping using event-related gamma-oscillations on ECoG and stimulation via subdural electrodes. Sites showing significant gamma-augmentation during an auditory-naming task were defined as language-related ECoG sites. Sites at which stimulation resulted in auditory perceptual changes, failure to verbalize a correct answer, or sensorimotor symptoms involving the mouth were defined as language-related stimulation sites. We determined how frequently these methods revealed language-related sites in the superior-temporal, inferior-frontal, dorsolateral-premotor, and inferior-Rolandic regions. RESULTS Language-related sites in the superior-temporal and inferior-frontal gyri were detected by ECoG more frequently than stimulation (p < 0.05), while those in the dorsolateral-premotor and inferior-Rolandic regions were detected by both methods equally. Stimulation of language-related ECoG sites, compared to the others, more frequently elicited language symptoms (p < 0.00001). One patient developed dysphasia requiring in-patient speech therapy following resection of the dorsolateral-premotor and inferior-Rolandic regions containing language-related ECoG sites not otherwise detected by stimulation. CONCLUSIONS Language-related gamma-oscillations may serve as an alternative biomarker of underlying language function in patients with left-hemispheric language-dominance. SIGNIFICANCE Measurement of language-related gamma-oscillations is warranted in presurgical evaluation of epileptic patients.
Collapse
Affiliation(s)
- Katsuaki Kojima
- Department of Pediatrics, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hupé JM, Bordier C, Dojat M. A BOLD signature of eyeblinks in the visual cortex. Neuroimage 2012; 61:149-61. [PMID: 22426351 DOI: 10.1016/j.neuroimage.2012.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 11/17/2022] Open
Abstract
We are usually unaware of the brief but large illumination changes caused by blinks, presumably because of blink suppression mechanisms. In fMRI however, increase of the BOLD signal was reported in the visual cortex, e.g. during blocks of voluntary blinks (Bristow, Frith and Rees, 2005) or after spontaneous blinks recorded during the prolonged fixation of a static stimulus (Tse, Baumgartner and Greenlee, 2010). We tested whether such activation, possibly related to illumination changes, was also present during standard fMRI retinotopic and visual experiments and was large enough to contaminate the BOLD signal we are interested in. We monitored in a 3T scanner the eyeblinks of 14 subjects who observed three different types of visual stimuli, including periodic rotating wedges and contracting/expanding rings, event-related Mondrians and graphemes, while fixating. We performed event-related analyses on the set of detected spontaneous blinks. We observed large and widespread BOLD responses related to blinks in the visual cortex of every subject and whatever the visual stimulus. The magnitude of the modulation was comparable to visual stimulation. However, blink-related activations lay mostly in the anterior parts of retinotopic visual areas, coding the periphery of the visual field well beyond the extent of our stimuli. Blinks therefore represent an important source of BOLD variations in the visual cortex and a troublesome source of noise since any correlation, even weak, between the distribution of blinks and a tested protocol could trigger artifactual activities. However, the typical signature of blinks along the anterior calcarine and the parieto-occipital sulcus allows identifying, even in the absence of eyetracking, fMRI protocols possibly contaminated by a heterogeneous distribution of blinks.
Collapse
Affiliation(s)
- Jean-Michel Hupé
- Centre de Recherche Cerveau & Cognition, Université de Toulouse, 31300 Toulouse, France.
| | | | | |
Collapse
|