1
|
Cavaleri J, Sundaram S, Del Campo-Vera RM, Shao X, Chung RS, Parra M, Swarup A, Zhang S, Kammen A, Gogia A, Mason X, McGinn R, Heck C, Liu CY, Kellis SS, Lee B. Beta-band power modulation in the human amygdala during a Direct Reach arm reaching task. Neurosci Res 2025:S0168-0102(25)00083-5. [PMID: 40360082 DOI: 10.1016/j.neures.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 04/05/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
The human amygdala is primarily known for its involvement in processing emotional and fearful responses, but newer evidence has identified a role for this structure in motor processing. Our lab previously utilized an arm-reaching task and observed significant beta-band (13-30 Hz) modulation in the hippocampus. Given these results, we sought to characterize the role of beta-band modulation in the amygdala during movement execution in participants with stereoelectroencephalography (SEEG) depth electrodes in the amygdala for seizure localization. We show that 9 of 13 participants (69.2 %) showed decreased beta-band power in the amygdala during the Response (movement execution) phase of an arm-reaching task when compared to Fixation (baseline). Secondary analyses show that there are no statistically significant differences in beta-band modulation between ipsilateral and contralateral implanted electrodes, but there is a small difference between male and female participants. The decrease in beta-band power in the amygdala during the Response phase of a Direct Reach task is consistent with our previous findings in the hippocampus. Our study is the first to report beta-band modulation in the amygdala during motor processing and sets the stage for further studies into the involvement of the amygdala in motor control.
Collapse
Affiliation(s)
- Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Xiecheng Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering of USC, University of Southern California, Los Angeles, CA, United States
| | - Ryan S Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Miguel Parra
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering of USC, University of Southern California, Los Angeles, CA, United States
| | - Adith Swarup
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering of USC, University of Southern California, Los Angeles, CA, United States
| | - Selena Zhang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ryan McGinn
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
2
|
Liang M, Hou L, Liang J, Bao S. Ameliorating motor performance and quality of life in Parkinson's disease: a comparison of deep brain stimulation and focused ultrasound surgery. Front Neurol 2025; 16:1449973. [PMID: 40371072 PMCID: PMC12074956 DOI: 10.3389/fneur.2025.1449973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 04/21/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Deep brain stimulation (DBS) and magnetic resonance-guided focused ultrasound surgery (MRgFUS) have emerged as valuable treatment options for Parkinson's disease (PD) with drug-resistant symptoms. However, comparative studies of various DBS targets and MRgFUS are still limited. Methods We reviewed three databases for trials on the effects of DBS or MRgFUS on PD patients, focusing on motor performance and quality of life (QoL). A frequentist network meta-analysis was conducted to estimate the treatment effects. Results There were 39 trials in this study, comprising 3,002 patients. In the off-phase, subthalamic nucleus_DBS (STN_DBS [SMD, -0.94; 95%CI, -1.40 to -0.48]) significantly improved the UPDRS-III Total score compared to medication treatment alone (MT). In the on-phase, STN_DBS (SMD, -0.83; 95%CI, -1.13 to -0.53), internal globus pallidus_DBS (GPi_DBS [SMD, -0.80; 95%CI, -1.20 to -0.40]), and STN_Focused Ultrasound (STN_FUS [SMD, -1.83; 95%CI, -2.97 to -0.68]) significantly improved the UPDRS-III Total score. Regarding QoL, STN_DBS (SMD, -0.75; 95% CI, -1.46 to -0.05) and GPi_DBS (SMD, -0.58; 95% CI, -0.96 to -0.21) demonstrated better outcomes compared to MT. The SUCRA plot indicated that the top three treatments for UPDRS-III Total score in the off-phase were STN_FUS (79.6%), STN-GPi_DBS (73.7%), and STN_DBS (69.1%). In the on-phase, the top three treatments were STN_FUS (95.7%), STN_DBS (69.6%), and GPi_DBS (66.9%). Regarding QoL, GPi_DBS (77.2%) ranks first, followed by STN_DBS (67.3%), STN_FUS (56.9%) ranks third. Conclusion STN_DBS, GPi_DBS, and STN_FUS have exhibited efficacy in ameliorating motor performance and enhancing QoL in PD patients. Nevertheless, as a potential alternative to STN_DBS with comparable efficacy, STN-FUS may serve as another treatment option.
Collapse
Affiliation(s)
- Mingqian Liang
- Department of Rehabilitation Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Le Hou
- Psychological Sleep Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Clinical Research Academy of Chinese Medicine), Guangzhou, Guangdong, China
| | - Jinjun Liang
- Department of Rehabilitation Medicine, Zhongshan Sixth People’s Hospital (Torch Development Zone People’s Hospital), Zhongshan, Guangdong, China
| | - Shengyong Bao
- Department of Rehabilitation Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Yan J, Sun J, Wei X, Qiu C, Zhao L, Luo B, Dong W, Liu J, Lu G, Zhang W. Sweet spot mapping and structural connectivity in subthalamic stimulation: predicting neuropsychiatric outcomes in Parkinson's disease. Front Neurosci 2025; 19:1577588. [PMID: 40356700 PMCID: PMC12066317 DOI: 10.3389/fnins.2025.1577588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Objective STN-DBS is an effective treatment for Parkinson's disease (PD), improving motor symptoms, but its impact on non-motor symptoms, such as anxiety and depression, remain unclear. This study investigates the relationship between electrode contact locations, their corresponding volume of tissue activated (VTA), and postoperative changes in emotional symptoms. It aims to identify optimal group-level stimulation sites for improving anxiety and depression in PD patients and to develop a structural connectome to explore how cortical regions targeted by fiber projections correlate with mood outcomes. Methods We retrospectively studied 56 PD patients who underwent bilateral STN-DBS, assessed 6 months post-surgery. Standardized scales evaluated motor, affective, and cognitive symptoms before and after the procedure. Electrode positions were reconstructed using Lead-DBS, and VTAs were calculated. Voxel-wise sweet spot and structural connectivity analyses investigated how stimulation sites influenced clinical outcomes. Results Compared to preoperative assessments, postoperative evaluations revealed varying degrees of improvement in motor function, quality of life, and symptoms of anxiety and depression in PD patients (p < 0.05). The amelioration of anxiety and depression was associated with electrode contacts located in the ventral region of the STN. Specifically, improvements in anxiety were positively correlated with the VTA in the limbic region of the right STN. Sweet spot analysis revealed that stimulation of the ventrocentral region of the left STN was significantly associated with emotional improvement. Structural connectivity analysis revealed that fiber tracts to the prefrontal cortex (PFC) were positively associated with anxiety and depression improvement, while those to the sensorimotor cortex (SMC) showed a negative correlation. Conclusion STN-DBS markedly improves motor symptoms and quality of life in PD patients while also positively impacting anxiety and depressive symptoms. The ventral STN is likely the optimal stimulation target for ameliorating anxiety and depressive symptoms. The therapeutic effects of STN-DBS electrodes may promote postoperative improvements in anxiety and depression by modulating fiber tracts connected to prefrontal regions. Future research should leverage connectome mapping and isolated fiber tracts to refine electrode placement, using directional leads to target specific STN subregions for improved symptom management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Li J, Wang L, Pan Y, Huang P, Xu L, Zhang Y, De Ridder D, Voon V, Li D. Subthalamic nucleus oscillations during facial emotion processing and apathy in Parkinson's disease. J Affect Disord 2025; 373:314-324. [PMID: 39761756 DOI: 10.1016/j.jad.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Parkinson's disease (PD) is primarily characterized by motor symptoms, but patients also experience a relatively high prevalence of non-motor symptoms, including emotional and cognitive impairments. While the subthalamic nucleus (STN) is a common target for deep brain stimulation to treat motor symptoms in PD, its role in emotion processing is still under investigation. This study examines the subthalamic neural oscillatory activities during facial emotion processing and its association with affective characteristics. METHODS Twenty PD patients who underwent subthalamic deep brain stimulation surgery performed a facial-expression-recognition task while STN local field potential (LFP) and frontal electroencephalography (EEG) were recorded. The facial-emotion-induced time-frequency decomposition of the STN-LFP and the frontal EEG, as well as the LFP-EEG coherence, were analyzed. Furthermore, the correlation between STN activities and affective characteristics was examined. RESULTS Facial expressions elicited increased delta-theta-band and decreased alpha-beta-band activities in STN-LFP. Reduced alpha-beta-band LFP desynchronization was correlated with the severity of apathy. Increased theta-band and decreased alpha-beta-band EEG activities responded to facial emotion. Notably, lower coherence between STN-LFP and frontal EEG in delta-theta-band activity and alpha-band activity correlated with the degree of anhedonia. CONCLUSION These results indicate that subthalamic activities during facial emotion processing are associated with apathy and anhedonia, emphasizing the cognitive-limbic function of STN and its role as a physiological target for apathy neuromodulation in PD.
Collapse
Affiliation(s)
- Jun Li
- Center for Functional Neurosurgery, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Linbin Wang
- Center for Functional Neurosurgery, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Yixin Pan
- Center for Functional Neurosurgery, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Center for Functional Neurosurgery, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Xu
- Center for Functional Neurosurgery, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dirk De Ridder
- Unit of Neurosurgery, Department of Surgical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Dianyou Li
- Center for Functional Neurosurgery, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Osada T, Nakajima K, Shirokoshi T, Ogawa A, Oka S, Kamagata K, Aoki S, Oshima Y, Tanaka S, Konishi S. Multiple insular-prefrontal pathways underlie perception to execution during response inhibition in humans. Nat Commun 2024; 15:10380. [PMID: 39627197 PMCID: PMC11615282 DOI: 10.1038/s41467-024-54564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Inhibiting prepotent responses in the face of external stop signals requires complex information processing, from perceptual to control processing. However, the cerebral circuits underlying these processes remain elusive. In this study, we used neuroimaging and brain stimulation to investigate the interplay between human brain regions during response inhibition at the whole-brain level. Magnetic resonance imaging suggested a sequential four-step processing pathway: initiating from the primary visual cortex (V1), progressing to the dorsal anterior insula (daINS), then involving two essential regions in the inferior frontal cortex (IFC), namely the ventral posterior IFC (vpIFC) and anterior IFC (aIFC), and reaching the basal ganglia (BG)/primary motor cortex (M1). A combination of ultrasound stimulation and time-resolved magnetic stimulation elucidated the causal influence of daINS on vpIFC and the unidirectional dependence of aIFC on vpIFC. These results unveil asymmetric pathways in the insular-prefrontal cortex and outline the macroscopic cerebral circuits for response inhibition: V1→daINS→vpIFC/aIFC→BG/M1.
Collapse
Affiliation(s)
- Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | - Koji Nakajima
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tomohiko Shirokoshi
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Oka
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasushi Oshima
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
- Sportology Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
- Advanced Research Institute for Health Science, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
6
|
Guarracino I, Lettieri C, Mondani M, D’Auria S, Sciacca G, Lavezzi F, Skrap M, D’Agostini S, Gigli GL, Valente M, Tomasino B. Monitoring Cognitive Functions During Deep Brain Stimulation Interventions by Real Time Neuropsychological Testing. J Mov Disord 2024; 17:442-446. [PMID: 39313238 PMCID: PMC11540533 DOI: 10.14802/jmd.24102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVE We monitored cognition in 14 Parkinson's disease (PD) patients during deep brain stimulation (DBS) surgery when the electrode was positioned at the target subthalamic nucleus (STN) (i.e., the STN motor area). METHODS We present the DBS-real-time neuropsychological testing (DBS-RTNT) protocol and our preliminary experience with it; we also compared the intraoperative patient performance with the baseline data. RESULTS Compared with the baseline data, patients undergoing DBS-RTNT in the target area demonstrated a significantly decreased performance on some tasks belonging to the memory and executive function domains. Patients undergoing right hemisphere DBS-RTNT had significantly lower short-term memory and sequencing scores than did patients undergoing left hemisphere DBS-RTNT. CONCLUSION PD patient cognitive performance should be monitored during DBS surgery, as STN-DBS may induce changes. These preliminary data contribute to improving our understanding of the anatomo-functional topography of the STN during DBS surgery, which will enable the identification of the best site for producing positive motor effects without causing negative cognitive and/or emotional changes in individual patients in the future. In principle, medications (i.e., patients who underwent surgery in a levodopa-off state) could have influenced our results; therefore, future studies are needed to address the possible confounding effects of levodopa use.
Collapse
Affiliation(s)
- Ilaria Guarracino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy
| | - Christian Lettieri
- Clinical Neurology Unit, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Massimo Mondani
- Neurosurgery Unit, Department Head-Neck and Neurosciences, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Stanislao D’Auria
- Neurosurgery Unit, Department Head-Neck and Neurosciences, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Giovanni Sciacca
- Neurosurgery Unit, Department Head-Neck and Neurosciences, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Flavia Lavezzi
- Clinical Neurology Unit, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department Head-Neck and Neurosciences, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Serena D’Agostini
- Neuroradiology Unit, Department of Radiology, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Gian Luigi Gigli
- Clinical Neurology Unit, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy
| |
Collapse
|
7
|
Ricci A, Rubino E, Serra GP, Wallén-Mackenzie Å. Concerning neuromodulation as treatment of neurological and neuropsychiatric disorder: Insights gained from selective targeting of the subthalamic nucleus, para-subthalamic nucleus and zona incerta in rodents. Neuropharmacology 2024; 256:110003. [PMID: 38789078 DOI: 10.1016/j.neuropharm.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.
Collapse
Affiliation(s)
- Alessia Ricci
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Åsa Wallén-Mackenzie
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
8
|
Lellis CDA, Herbas MAM, da Silva LJ. Psychiatric disorders after deep brain stimulation of the subthalamic nucleus in Parkinson's disease: a systematic review. EINSTEIN-SAO PAULO 2024; 22:eRW0182. [PMID: 39046070 PMCID: PMC11221831 DOI: 10.31744/einstein_journal/2024rw0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/06/2023] [Indexed: 07/25/2024] Open
Abstract
OBJECTIVE To evaluate the psychiatric alterations resulting from deep brain stimulation of the subthalamic nucleus in the management of Parkinson's disease. METHODS Articles were searched using three databases: Public/Publisher MEDLINE, Virtual Health Library, and Cochrane Library. RESULTS Eleven studies were included in the analysis. Manic syndrome alone was reported in two of the 11 studies analyzed. Psychosis alone was not reported in any of them, but it was found in association with other psychiatric alterations in two studies, not including manic syndrome. In one case report, hypersexuality was associated with depression and self-alienation. Depressive disorder was the most frequent psychiatric disorder after deep brain stimulation of the subthalamic nucleus, according to five of the reviewed articles, encompassing 26 patients. In four of these articles, depression was associated with other psychiatric disorders, such as psychosis, suicidal ideation, hypersexuality, and anxiety. Hypomanic syndrome was reported in two cases. CONCLUSION More common psychiatric disorders related to the neuroanatomy of the nucleus were observed, probably because of the microlesions caused by the implantation of deep brain stimulation and the regulation of the stimulation of the device. The most common disorders include depression, mania/hypomania, psychosis, anxiety, suicidal ideation, and hypersexuality.
Collapse
Affiliation(s)
- Caio de Almeida Lellis
- Escola de Ciências Médicas e da VidaPontifícia Universidade Católica de GoiásGoiâniaGOBrazilEscola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brazil.
| | - Marco Alejandro Menacho Herbas
- Escola de Ciências Médicas e da VidaPontifícia Universidade Católica de GoiásGoiâniaGOBrazilEscola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brazil.
| | - Ledismar José da Silva
- Escola de Ciências Médicas e da VidaPontifícia Universidade Católica de GoiásGoiâniaGOBrazilEscola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
9
|
Cai W, Young CB, Yuan R, Lee B, Ryman S, Kim J, Yang L, Levine TF, Henderson VW, Poston KL, Menon V. Subthalamic nucleus-language network connectivity predicts dopaminergic modulation of speech function in Parkinson's disease. Proc Natl Acad Sci U S A 2024; 121:e2316149121. [PMID: 38768342 PMCID: PMC11145286 DOI: 10.1073/pnas.2316149121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Speech impediments are a prominent yet understudied symptom of Parkinson's disease (PD). While the subthalamic nucleus (STN) is an established clinical target for treating motor symptoms, these interventions can lead to further worsening of speech. The interplay between dopaminergic medication, STN circuitry, and their downstream effects on speech in PD is not yet fully understood. Here, we investigate the effect of dopaminergic medication on STN circuitry and probe its association with speech and cognitive functions in PD patients. We found that changes in intrinsic functional connectivity of the STN were associated with alterations in speech functions in PD. Interestingly, this relationship was characterized by altered functional connectivity of the dorsolateral and ventromedial subdivisions of the STN with the language network. Crucially, medication-induced changes in functional connectivity between the STN's dorsolateral subdivision and key regions in the language network, including the left inferior frontal cortex and the left superior temporal gyrus, correlated with alterations on a standardized neuropsychological test requiring oral responses. This relation was not observed in the written version of the same test. Furthermore, changes in functional connectivity between STN and language regions predicted the medication's downstream effects on speech-related cognitive performance. These findings reveal a previously unidentified brain mechanism through which dopaminergic medication influences speech function in PD. Our study sheds light into the subcortical-cortical circuit mechanisms underlying impaired speech control in PD. The insights gained here could inform treatment strategies aimed at mitigating speech deficits in PD and enhancing the quality of life for affected individuals.
Collapse
Affiliation(s)
- Weidong Cai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Rui Yuan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Byeongwook Lee
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Sephira Ryman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Jeehyun Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Laurice Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Taylor F Levine
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Victor W Henderson
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305
| | - Kathleen L Poston
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
10
|
Wang Y, Ma L, Wang J, Liu N, Men W, Tan S, Gao JH, Qin S, He Y, Dong Q, Tao S. Association of emotional and behavioral problems with the development of the substantia nigra, subthalamic nucleus, and red nucleus volumes and asymmetries from childhood to adolescence: A longitudinal cohort study. Transl Psychiatry 2024; 14:117. [PMID: 38403656 PMCID: PMC10894865 DOI: 10.1038/s41398-024-02803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
The substantia nigra (SN), subthalamic nucleus (STN), and red nucleus (RN) have been widely studied as important biomarkers of degenerative diseases. However, how they develop in childhood and adolescence and are affected by emotional behavior has not been studied thus far. This population-based longitudinal cohort study used data from a representative sample followed two to five times. Emotional and behavioral problems were assessed with the Strengths and Difficulties Questionnaire (SDQ). Linear mixed models were used to map developmental trajectories and behavioral regulation. Using an innovative automated image segmentation technique, we quantified the volumes and asymmetries of the SN, STN and RN with 1226 MRI scans of a large longitudinal sample of 667 subjects aged 6-15 years and mapped their developmental trajectories. The results showed that the absolute and relative volumes of the bilateral SN and right STN showed linear increases, while the absolute volume of the right RN and relative volume of the bilateral RN decreased linearly, these effects were not affected by gender. Hyperactivity/inattention weakened the increase in SN volume and reduced the absolute volume of the STN, conduct problems impeded the RN volume from decreasing, and emotional symptoms changed the direction of SN lateralization. This longitudinal cohort study mapped the developmental trajectories of SN, STN, and RN volumes and asymmetries from childhood to adolescence, and found the association of emotional symptoms, conduct problems, and hyperactivity/inattention with these trajectories, providing guidance for preventing and intervening in cognitive and emotional behavioral problems.
Collapse
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jiali Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Ningyu Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, 100096, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
11
|
Bertrand M, Chabardes S, Fontanier V, Procyk E, Bastin J, Piallat B. Contribution of the subthalamic nucleus to motor, cognitive and limbic processes: an electrophysiological and stimulation study in monkeys. Front Neurosci 2024; 18:1257579. [PMID: 38456146 PMCID: PMC10918855 DOI: 10.3389/fnins.2024.1257579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Deep brain stimulation of the subthalamic nucleus (STN) has become the gold standard surgical treatment for Parkinson's disease and is being investigated for obsessive compulsive disorders. Even if the role of the STN in the behavior is well documented, its organization and especially its division into several functional territories is still debated. A better characterization of these territories and a better knowledge of the impact of stimulation would address this issue. We aimed to find specific electrophysiological markers of motor, cognitive and limbic functions within the STN and to specifically modulate these components. Two healthy non-human primates (Macaca fascicularis) performed a behavioral task allowing the assessment of motor, cognitive and limbic reward-related behavioral components. During the task, four contacts in the STN allowed recordings and stimulations, using low frequency stimulation (LFS) and high frequency stimulation (HFS). Specific electrophysiological functional markers were found in the STN with beta band activity for the motor component of behavior, theta band activity for the cognitive component, and, gamma and theta activity bands for the limbic component. For both monkeys, dorsolateral HFS and LFS of the STN significantly modulated motor performances, whereas only ventromedial HFS modulated cognitive performances. Our results validated the functional overlap of dorsal motor and ventral cognitive subthalamic territories, and, provide information that tends toward a diffuse limbic territory sensitive to the reward within the STN.
Collapse
Affiliation(s)
- Mathilde Bertrand
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
| | - Stephan Chabardes
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
- Univ. Grenoble Alpes, Department of Neurosurgery, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Grenoble, France
- Clinatec-CEA Leti, Grenoble, France
| | - Vincent Fontanier
- Univ. Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
- Medinetic Learning, Research Department, Paris, France
| | - Emmanuel Procyk
- Univ. Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
| | - Brigitte Piallat
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
| |
Collapse
|
12
|
Prasad AA, Wallén-Mackenzie Å. Architecture of the subthalamic nucleus. Commun Biol 2024; 7:78. [PMID: 38200143 PMCID: PMC10782020 DOI: 10.1038/s42003-023-05691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The subthalamic nucleus (STN) is a major neuromodulation target for the alleviation of neurological and neuropsychiatric symptoms using deep brain stimulation (DBS). STN-DBS is today applied as treatment in Parkinson´s disease, dystonia, essential tremor, and obsessive-compulsive disorder (OCD). STN-DBS also shows promise as a treatment for refractory Tourette syndrome. However, the internal organization of the STN has remained elusive and challenges researchers and clinicians: How can this small brain structure engage in the multitude of functions that renders it a key hub for therapeutic intervention of a variety of brain disorders ranging from motor to affective to cognitive? Based on recent gene expression studies of the STN, a comprehensive view of the anatomical and cellular organization, including revelations of spatio-molecular heterogeneity, is now possible to outline. In this review, we focus attention to the neurobiological architecture of the STN with specific emphasis on molecular patterns discovered within this complex brain area. Studies from human, non-human primate, and rodent brains now reveal anatomically defined distribution of specific molecular markers. Together their spatial patterns indicate a heterogeneous molecular architecture within the STN. Considering the translational capacity of targeting the STN in severe brain disorders, the addition of molecular profiling of the STN will allow for advancement in precision of clinical STN-based interventions.
Collapse
Affiliation(s)
- Asheeta A Prasad
- University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia.
| | | |
Collapse
|
13
|
Brandt GA, Stopic V, van der Linden C, Strelow JN, Petry-Schmelzer JN, Baldermann JC, Visser-Vandewalle V, Fink GR, Barbe MT, Dembek TA. A Retrospective Comparison of Multiple Approaches to Anatomically Informed Contact Selection in Subthalamic Deep Brain Stimulation for Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:575-587. [PMID: 38427498 PMCID: PMC11091589 DOI: 10.3233/jpd-230200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Background Conventional deep brain stimulation (DBS) programming via trial-and-error warrants improvement to ensure swift achievement of optimal outcomes. The definition of a sweet spot for subthalamic DBS in Parkinson's disease (PD-STN-DBS) may offer such advancement. Objective This investigation examines the association of long-term motor outcomes with contact selection during monopolar review and different strategies for anatomically informed contact selection in a retrospective real-life cohort of PD-STN-DBS. Methods We compared contact selection based on a monopolar review (MPR) to multiple anatomically informed contact selection strategies in a cohort of 28 PD patients with STN-DBS. We employed a commercial software package for contact selection based on visual assessment of individual anatomy following two predefined strategies and two algorithmic approaches with automatic targeting of either the sensorimotor STN or our previously published sweet spot. Similarity indices between chronic stimulation and contact selection strategies were correlated to motor outcomes at 12 months follow-up. Results Lateralized motor outcomes of chronic DBS were correlated to the similarity between chronic stimulation and visual contact selection targeting the dorsal part of the posterior STN (rho = 0.36, p = 0.007). Similar relationships could not be established for MPR or any of the other investigated strategies. Conclusions Our data demonstrates that a visual contact selection following a predefined strategy can be linked to beneficial long-term motor outcomes in PD-STN-DBS. Since similar correlations could not be observed for the other approaches to anatomically informed contact selection, we conclude that clear definitions and prospective validation of any approach to imaging-based DBS-programming is warranted.
Collapse
Affiliation(s)
- Gregor A. Brandt
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Vasilija Stopic
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Christina van der Linden
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Joshua N. Strelow
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Jan N. Petry-Schmelzer
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Juan Carlos Baldermann
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Gereon R. Fink
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Michael T. Barbe
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Till A. Dembek
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
14
|
Xu W, Wang J, Li XN, Liang J, Song L, Wu Y, Liu Z, Sun B, Li WG. Neuronal and synaptic adaptations underlying the benefits of deep brain stimulation for Parkinson's disease. Transl Neurodegener 2023; 12:55. [PMID: 38037124 PMCID: PMC10688037 DOI: 10.1186/s40035-023-00390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Deep brain stimulation (DBS) is a well-established and effective treatment for patients with advanced Parkinson's disease (PD), yet its underlying mechanisms remain enigmatic. Optogenetics, primarily conducted in animal models, provides a unique approach that allows cell type- and projection-specific modulation that mirrors the frequency-dependent stimulus effects of DBS. Opto-DBS research in animal models plays a pivotal role in unraveling the neuronal and synaptic adaptations that contribute to the efficacy of DBS in PD treatment. DBS-induced neuronal responses rely on a complex interplay between the distributions of presynaptic inputs, frequency-dependent synaptic depression, and the intrinsic excitability of postsynaptic neurons. This orchestration leads to conversion of firing patterns, enabling both antidromic and orthodromic modulation of neural circuits. Understanding these mechanisms is vital for decoding position- and programming-dependent effects of DBS. Furthermore, patterned stimulation is emerging as a promising strategy yielding long-lasting therapeutic benefits. Research on the neuronal and synaptic adaptations to DBS may pave the way for the development of more enduring and precise modulation patterns. Advanced technologies, such as adaptive DBS or directional electrodes, can also be integrated for circuit-specific neuromodulation. These insights hold the potential to greatly improve the effectiveness of DBS and advance PD treatment to new levels.
Collapse
Affiliation(s)
- Wenying Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jingxue Liang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
15
|
Kremer NI, Roberts MJ, Potters WV, Dilai J, Mathiopoulou V, Rijks N, Drost G, van Laar T, van Dijk JMC, Beudel M, de Bie RMA, van den Munckhof P, Janssen MLF, Schuurman PR, Bot M. Dorsal subthalamic nucleus targeting in deep brain stimulation: microelectrode recording versus 7-Tesla connectivity. Brain Commun 2023; 5:fcad298. [PMID: 38025271 PMCID: PMC10664414 DOI: 10.1093/braincomms/fcad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Connectivity-derived 7-Tesla MRI segmentation and intraoperative microelectrode recording can both assist subthalamic nucleus targeting for deep brain stimulation in Parkinson's disease. It remains unclear whether deep brain stimulation electrodes placed in the 7-Tesla MRI segmented subdivision with predominant projections to cortical motor areas (hyperdirect pathway) achieve superior motor improvement and whether microelectrode recording can accurately distinguish the motor subdivision. In 25 patients with Parkinson's disease, deep brain stimulation electrodes were evaluated for being inside or outside the predominantly motor-connected subthalamic nucleus (motor-connected subthalamic nucleus or non-motor-connected subthalamic nucleus, respectively) based on 7-Tesla MRI connectivity segmentation. Hemi-body motor improvement (Movement Disorder Society Unified Parkinson's Disease Rating Scale, Part III) and microelectrode recording characteristics of multi- and single-unit activities were compared between groups. Deep brain stimulation electrodes placed in the motor-connected subthalamic nucleus resulted in higher hemi-body motor improvement, compared with electrodes placed in the non-motor-connected subthalamic nucleus (80% versus 52%, P < 0.0001). Multi-unit activity was found slightly higher in the motor-connected subthalamic nucleus versus the non-motor-connected subthalamic nucleus (P < 0.001, receiver operating characteristic 0.63); single-unit activity did not differ between groups. Deep brain stimulation in the connectivity-derived 7-Tesla MRI subthalamic nucleus motor segment produced a superior clinical outcome; however, microelectrode recording did not accurately distinguish this subdivision within the subthalamic nucleus.
Collapse
Affiliation(s)
- Naomi I Kremer
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Mark J Roberts
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6211 LK, The Netherlands
| | - Wouter V Potters
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - José Dilai
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Varvara Mathiopoulou
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Niels Rijks
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Gea Drost
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Martijn Beudel
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Rob M A de Bie
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Marcus L F Janssen
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht 6229 HX, The Netherlands
| | - P Richard Schuurman
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Maarten Bot
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
16
|
Wang L, Li J, Pan Y, Huang P, Li D, Voon V. Subacute alpha frequency (10Hz) subthalamic stimulation for emotional processing in Parkinson's disease. Brain Stimul 2023; 16:1223-1231. [PMID: 37567462 DOI: 10.1016/j.brs.2023.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/21/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Psychiatric comorbidities are common in Parkinson's disease (PD) and may change with high-frequency stimulation targeting the subthalamic nucleus. Numerous accounts indicate subthalamic alpha-frequency oscillation is implicated in emotional processing. While intermittent alpha-frequency (10Hz) stimulation induces positive emotional effects, with more ventromedial contacts inducing larger effects, little is known about the subacute effect of ventral 10Hz subthalamic stimulation on emotional processing. OBJECTIVE/HYPOTHESIS To evaluate the subacute effect of 10Hz stimulation at bilateral ventral subthalamic nucleus on emotional processing in PD patients using an affective task, compared to that of clinical-frequency stimulation and off-stimulation. METHODS Twenty PD patients with bilateral subthalamic deep brain stimulation for more than six months were tested with the affective task under three stimulation conditions (10Hz, 130Hz, and off-stimulation) in a double-blinded randomized design. RESULTS While 130Hz stimulation reduced arousal ratings in all patients, 10Hz stimulation increased arousal selectively in patients with higher depression scores. Furthermore, 10Hz stimulation induced a positive shift in valence rating to negative emotional stimuli in patients with lower apathy scores, and 130Hz stimulation led to more positive valence to emotional stimuli in the patients with higher apathy scores. Notably, we found correlational relationships between stimulation site and affective rating: arousal ratings increase with stimulation from anterior to posterior site, and positive valence ratings increase with stimulation from dorsal to ventral site of the ventral subthalamic nucleus. CONCLUSIONS Our findings highlight the distinctive role of 10Hz stimulation on subjective emotional experience and unveil the spatial organization of the stimulation effect.
Collapse
Affiliation(s)
- Linbin Wang
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China; Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Valerie Voon
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
17
|
Mederer T, Deuter D, Bründl E, Forras P, Schmidt NO, Kohl Z, Schlaier J. Factors influencing the reliability of intraoperative testing in deep brain stimulation for Parkinson's disease. Acta Neurochir (Wien) 2023; 165:2179-2187. [PMID: 37266718 PMCID: PMC10409887 DOI: 10.1007/s00701-023-05624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Several meta-analyses comparing the outcome of awake versus asleep deep brain stimulation procedures could not reveal significant differences concerning the postoperative improvement of motor symptoms. Only rarely information on the procedural details is provided for awake operations and how often somnolence and disorientation occurred, which might hamper the reliability of intraoperative clinical testing. The aim of our study was to investigate possible influencing factors on the occurrence of somnolence and disorientation in awake DBS procedures. METHODS We retrospectively analyzed 122 patients with Parkinson's disease having received implantation of a DBS system at our centre. Correlation analyses were performed for the duration of disease prior to surgery, number of microelectrode trajectories, AC-PC-coordinates of the planned target, UPDRS-scores, intraoperative application of sedative drugs, duration of the surgical procedure, perioperative application of apomorphine, and the preoperative L-DOPA equivalence dosage with the occurrence of intraoperative somnolence and disorientation. RESULTS Patients with intraoperative somnolence were significantly older (p=0.039). Increased duration of the DBS procedure (p=0.020), delayed start of the surgery (p=0.049), higher number of MER trajectories (p=0.041), and the patients' % UPDRS improvement (p=0.046) also correlated with the incidence of intraoperative somnolence. We identified the main contributing factor to intraoperative somnolence as the use of sedative drugs applied during skin incision and burr hole trepanation (p=0.019). Perioperatively applied apomorphine could reduce the occurrence of somnolent phases during the operation (p=0.026). CONCLUSION Several influencing factors were found to seemingly increase the risk of intraoperative somnolence and disorientation, while the use of sedative drugs seems to be the main contributing factor. We argue that awake DBS procedures should omit the use of sedatives for best clinical outcome. When reporting on awake DBS surgery these factors should be considered and adjusted for, to permit reliable interpretation and comparison of DBS study results.
Collapse
Affiliation(s)
- Tobias Mederer
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Daniel Deuter
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Elisabeth Bründl
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Patricia Forras
- Regensburg Regional Hospital for Forensic Health Psychiatry and Neurology, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Zacharias Kohl
- Regensburg Regional Hospital for Forensic Health Psychiatry and Neurology, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Jürgen Schlaier
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
18
|
Muhammad N, Sonkusare S, Ding Q, Wang L, Mandali A, Zhao YJ, Sun B, Li D, Voon V. Time-locked acute alpha-frequency stimulation of subthalamic nuclei during the evaluation of emotional stimuli and its effect on power modulation. Front Hum Neurosci 2023; 17:1181635. [PMID: 37576474 PMCID: PMC10415014 DOI: 10.3389/fnhum.2023.1181635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Deep brain stimulation (DBS) studies in Parkinson's Disease (PD) targeting the subthalamic nucleus (STN) have characterized its spectral properties across cognitive processes. In emotional evaluation tasks, specific alpha frequency (8-12 Hz) event-related de-synchronization (ERD) (reduced power) has been demonstrated. The time-locked stimulation of STN relative to stimuli onset has shown subjective positive valence shifts with 10 Hz but not with 130 Hz. However, neurophysiological effects of stimulation on power modulation have not been investigated. We aim to investigate effects of acute stimulation of the right STN on concurrent power modulation in the contralateral STN and frontal scalp EEG. From our previous study, we had a strong a priori hypothesis that negative imagery without stimulation would be associated with alpha ERD; negative imagery with 130 Hz stimulation would be also associated with alpha ERD given the lack of its effect on subjective valence ratings; negative imagery with 10 Hz stimulation was to be associated with enhanced alpha power given the shift in behavioral valence ratings. Methods Twenty-four subjects with STN DBS underwent emotional picture-viewing tasks comprising neutral and negative pictures. In a subset of these subjects, the negative images were associated with time-locked acute stimulation at either 10 or 130 Hz. Power of signals was estimated relative to the baseline and subjected to non-parametric statistical testing. Results As hypothesized, in 130 Hz stimulation condition, we show a decrease in alpha power to negative vs. neutral images irrespective of stimulation. In contrast, this alpha power decrease was no longer evident in the negative 10 Hz stimulation condition consistent with a predicted increase in alpha power. Greater beta power in the 10 Hz stimulation condition along with correlations between beta power across the 10 Hz stimulation and unstimulated conditions suggest physiological and cognitive generalization effects. Conclusion Acute alpha-specific frequency stimulation presumably was associated with a loss of this expected decrease or desynchronization in alpha power to negative images suggesting the capacity to facilitate the synchronization of alpha and enhance power. Acute time-locked stimulation has the potential to provide causal insights into the spectral frequencies and temporal dynamics of emotional processing.
Collapse
Affiliation(s)
- Naeem Muhammad
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Saurabh Sonkusare
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Qiong Ding
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linbin Wang
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Alekhya Mandali
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Yi Jie Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Valerie Voon
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Kong Q, Sacca V, Zhu M, Ursitti AK, Kong J. Anatomical and Functional Connectivity of Critical Deep Brain Structures and Their Potential Clinical Application in Brain Stimulation. J Clin Med 2023; 12:4426. [PMID: 37445460 DOI: 10.3390/jcm12134426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Subcortical structures, such as the hippocampus, amygdala, and nucleus accumbens (NAcc), play crucial roles in human cognitive, memory, and emotional processing, chronic pain pathophysiology, and are implicated in various psychiatric and neurological diseases. Interventions modulating the activities of these deep brain structures hold promise for improving clinical outcomes. Recently, non-invasive brain stimulation (NIBS) has been applied to modulate brain activity and has demonstrated its potential for treating psychiatric and neurological disorders. However, modulating the above deep brain structures using NIBS may be challenging due to the nature of these stimulations. This study attempts to identify brain surface regions as source targets for NIBS to reach these deep brain structures by integrating functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). We used resting-state functional connectivity (rsFC) and probabilistic tractography (PTG) analysis to identify brain surface stimulation targets that are functionally and structurally connected to the hippocampus, amygdala, and NAcc in 119 healthy participants. Our results showed that the medial prefrontal cortex (mPFC) is functionally and anatomically connected to all three subcortical regions, while the precuneus is connected to the hippocampus and amygdala. The mPFC and precuneus, two key hubs of the default mode network (DMN), as well as other cortical areas distributed at the prefrontal cortex and the parietal, temporal, and occipital lobes, were identified as potential locations for NIBS to modulate the function of these deep structures. The findings may provide new insights into the NIBS target selections for treating psychiatric and neurological disorders and chronic pain.
Collapse
Affiliation(s)
- Qiao Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Valeria Sacca
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Meixuan Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Amy Katherine Ursitti
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| |
Collapse
|
20
|
Ma R, Yin Z, Chen Y, Yuan T, An Q, Gan Y, Xu Y, Jiang Y, Du T, Yang A, Meng F, Zhu G, Zhang J. Sleep outcomes and related factors in Parkinson's disease after subthalamic deep brain electrode implantation: a retrospective cohort study. Ther Adv Neurol Disord 2023; 16:17562864231161163. [PMID: 37200769 PMCID: PMC10185976 DOI: 10.1177/17562864231161163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/15/2023] [Indexed: 05/20/2023] Open
Abstract
Background Subthalamic nucleus deep brain stimulation (STN-DBS) improves sleep qualities in Parkinson's disease (PD) patients; however, it remains elusive whether STN-DBS improves sleep by directly influencing the sleep circuit or alleviates other cardinal symptoms such as motor functions, other confounding factors including stimulation intensity may also involve. Studying the effect of microlesion effect (MLE) on sleep after STN-DBS electrode implantation may address this issue. Objective To examine the influence of MLE on sleep quality and related factors in PD, as well as the effects of regional and lateral specific correlations with sleep outcomes after STN-DBS electrode implantation. Study Design Case-control study; Level of evidence, 3. Data Sources and Methods In 78 PD patients who underwent bilateral STN-DBS surgery in our center, we compared the sleep qualities, motor performances, anti-Parkinsonian drug dosage, and emotional conditions at preoperative baseline and postoperative 1-month follow-up. We determined the related factors of sleep outcomes and visualized the electrodes position, simulated the MLE-engendered volume of tissue lesioned (VTL), and investigated sleep-related sweet/sour spots and laterality in STN. Results MLE improves sleep quality with Pittsburgh Sleep Quality Index (PSQI) by 13.36% and Parkinson's Disease Sleep Scale-2 (PDSS-2) by 17.95%. Motor (P = 0.014) and emotional (P = 0.001) improvements were both positively correlated with sleep improvements. However, MLE in STN associative subregions, as an independent factor, may cause sleep deterioration (r = 0.348, P = 0.002), and only the left STN showed significance (r = 0.327, P = 0.004). Sweet spot analysis also indicated part of the left STN associative subregion is the sour spot indicative of sleep deterioration. Conclusion The MLE of STN-DBS can overall improve sleep quality in PD patients, with a positive correlation between motor and emotional improvements. However, independent of all other factors, the MLE in the STN associative subregion, particularly the left side, may cause sleep deterioration.
Collapse
Affiliation(s)
- Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
| | - Yingchuan Chen
- Department of Neurosurgery, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
| | - Tianshuo Yuan
- Department of Neurosurgery, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
| | - Yifei Gan
- Department of Neurosurgery, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing
Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tingting Du
- Department of Functional Neurosurgery, Beijing
Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing
Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation,
Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan
Hospital, Capital Medical University, No. 119 South 4th Ring West Road,
Fengtai District, Beijing 100070, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan
Hospital, Capital Medical University, No. 119 South 4th Ring West Road,
Fengtai District, Beijing 100070, China
- Department of Functional Neurosurgery, Beijing
Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation,
Beijing, China
| |
Collapse
|
21
|
Coenen VA, Watakabe A, Skibbe H, Yamamori T, Döbrössy MD, Sajonz BEA, Reinacher PC, Reisert M. Tomographic tract tracing and data driven approaches to unravel complex 3D fiber anatomy of DBS relevant prefrontal projections to the diencephalic-mesencephalic junction in the marmoset. Brain Stimul 2023; 16:670-681. [PMID: 37028755 DOI: 10.1016/j.brs.2023.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Understanding prefrontal cortex projections to diencephalic-mesencephalic junction (DMJ), especially to subthalamic nucleus (STN) and ventral mesencephalic tegmentum (VMT) helps our comprehension of Deep Brain Stimulation (DBS) in major depression (MD) and obsessive-compulsive disorder (OCD). Fiber routes are complex and tract tracing studies in non-human primate species (NHP) have yielded conflicting results. The superolateral medial forebrain bundle (slMFB) is a promising target for DBS in MD and OCD. It has become a focus of criticism owing to its name and its diffusion weighted-imaging based primary description. OBJECTIVE To investigate DMJ connectivity in NHP with a special focus on slMFB and the limbic hyperdirect pathway utilizing three-dimensional and data driven techniques. METHODS We performed left prefrontal adeno-associated virus - tracer based injections in the common marmoset monkey (n = 52). Histology and two-photon microscopy were integrated into a common space. Manual and data driven cluster analyses of DMJ, subthalamic nucleus and VMT together, followed by anterior tract tracing streamline (ATTS) tractography were deployed. RESULTS Typical pre- and supplementary motor hyperdirect connectivity was confirmed. The advanced tract tracing unraveled the complex connectivity to the DMJ. Limbic prefrontal territories directly projected to the VMT but not STN. DISCUSSION Intricate results of tract tracing studies warrant the application of advanced three-dimensional analyses to understand complex fiber-anatomical routes. The applied three-dimensional techniques can enhance anatomical understanding also in other regions with complex fiber anatomy. CONCLUSION Our work confirms slMFB anatomy and enfeebles previous misconceptions. The rigorous NHP approach strengthens the role of the slMFB as a target structure for DBS predominantly in psychiatric indications like MD and OCD.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany, Breisacher Straße 64, 79106, Freiburg Im Breisgau, Germany; Medical Faculty of the University of Freiburg, Breisacher Str. 153, 79110, Freiburg Im Breisgau, Germany; Center for Deep Brain Stimulation, Medical Center of the University of Freiburg, Germany; AG Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany, Breisacher Straße 64, 79106, Freiburg Im Breisgau, Germany
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Japan
| | - Henrik Skibbe
- Brain Image Analysis Unit, RIKEN Center for Brain Science, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Japan
| | - Máté D Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany, Breisacher Straße 64, 79106, Freiburg Im Breisgau, Germany; AG Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany, Breisacher Straße 64, 79106, Freiburg Im Breisgau, Germany
| | - Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany, Breisacher Straße 64, 79106, Freiburg Im Breisgau, Germany; Medical Faculty of the University of Freiburg, Breisacher Str. 153, 79110, Freiburg Im Breisgau, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany, Breisacher Straße 64, 79106, Freiburg Im Breisgau, Germany; Medical Faculty of the University of Freiburg, Breisacher Str. 153, 79110, Freiburg Im Breisgau, Germany; Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany, Breisacher Straße 64, 79106, Freiburg Im Breisgau, Germany; Medical Faculty of the University of Freiburg, Breisacher Str. 153, 79110, Freiburg Im Breisgau, Germany; Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center - University of Freiburg, Killianstrasse 5a, 79106, Freiburg, Germany.
| |
Collapse
|
22
|
McKavanagh A, Ridzuan-Allen A, Kreilkamp BAK, Chen Y, Manjón JV, Coupé P, Bracewell M, Das K, Taylor PN, Marson AG, Keller SS. Midbrain structure volume, estimated myelin and functional connectivity in idiopathic generalised epilepsy. Epilepsy Behav 2023; 140:109084. [PMID: 36702054 DOI: 10.1016/j.yebeh.2023.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/01/2023] [Accepted: 01/01/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Structural and functional neuroimaging studies often overlook lower basal ganglia structures located in and adjacent to the midbrain due to poor contrast on clinically acquired T1-weighted scans. Here, we acquired T1-weighted, T2-weighted, and resting-state fMRI scans to investigate differences in volume, estimated myelin content and functional connectivity of the substantia nigra (SN), subthalamic nuclei (SubTN) and red nuclei (RN) of the midbrain in IGE. METHODS Thirty-three patients with IGE (23 refractory, 10 non-refractory) and 39 age and sex-matched healthy controls underwent MR imaging. Midbrain structures were automatically segmented from T2-weighted images and structural volumes were calculated. The estimated myelin content for each structure was determined using a T1-weighted/T2-weighted ratio method. Resting-state functional connectivity analysis of midbrain structures (seed-based) was performed using the CONN toolbox. RESULTS An increased volume of the right RN was found in IGE and structural volumes of the right SubTN differed between patients with non-refractory and refractory IGE. However, no volume findings survived corrections for multiple comparisons. No myelin alterations of midbrain structures were found for any subject groups. We found functional connectivity alterations including significantly decreased connectivity between the left SN and the thalamus and significantly increased connectivity between the right SubTN and the superior frontal gyrus in IGE. CONCLUSIONS We report volumetric and functional connectivity alterations of the midbrain in patients with IGE. We postulate that potential increases in structural volumes are due to increased iron deposition that impacts T2-weighted contrast. These findings are consistent with previous studies demonstrating pathophysiological abnormalities of the lower basal ganglia in animal models of generalised epilepsy.
Collapse
Affiliation(s)
- Andrea McKavanagh
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK.
| | - Adam Ridzuan-Allen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Barbara A K Kreilkamp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK; Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Yachin Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital', United States
| | - José V Manjón
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, Spain
| | - Pierrick Coupé
- Pictura Research Group, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR 5800), Laboratoire Bordelais de Recherche en Informatique, Bordeaux, France
| | - Martyn Bracewell
- The Walton Centre NHS Foundation Trust, Liverpool, UK; Schools of Medical Sciences and Psychology, Bangor University, Bangor, UK
| | - Kumar Das
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Peter N Taylor
- Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University, UK
| | - Anthony G Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
23
|
Bingham CS, Petersen MV, Parent M, McIntyre CC. Evolving characterization of the human hyperdirect pathway. Brain Struct Funct 2023; 228:353-365. [PMID: 36708394 PMCID: PMC10716731 DOI: 10.1007/s00429-023-02610-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023]
Abstract
The hyperdirect pathway (HDP) represents the main glutamatergic input to the subthalamic nucleus (STN), through which the motor and prefrontal cerebral cortex can modulate basal ganglia activity. Further, direct activation of the motor HDP is thought to be an important component of therapeutic deep brain stimulation (DBS), mediating the disruption of pathological oscillations. Alternatively, unintended recruitment of the prefrontal HDP may partly explain some cognitive side effects of DBS therapy. Previous work describing the HDP has focused on non-human primate (NHP) histological pathway tracings, diffusion-weighted MRI analysis of human white matter, and electrophysiology studies involving paired cortical recordings with DBS. However, none of these approaches alone yields a complete understanding of the complexities of the HDP. As such, we propose that generative modeling methods hold promise to bridge anatomy and physiology results, from both NHPs and humans, into a more detailed representation of the human HDP. Nonetheless, numerous features of the HDP remain to be experimentally described before model-based methods can simulate corticosubthalamic activity with a high degree of scientific detail. Therefore, the goals of this review are to examine the experimental evidence for HDP projections from across the primate neocortex and discuss new data which are required to improve the utility of anatomical and biophysical models of the human corticosubthalamic system.
Collapse
Affiliation(s)
- Clayton S Bingham
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Martin Parent
- Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
24
|
Hell F, Eißner A, Mehrkens JH, Bötzel K. Subthalamic oscillatory activity during normal and impaired speech. Clin Neurophysiol 2023; 149:42-50. [PMID: 36893498 DOI: 10.1016/j.clinph.2023.02.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVE We studied the relationship between oscillatory activity in the subthalamic nucleus (STN) and speech production in order to better understand the functional role of the STN. METHODS We simultaneously recorded subthalamic local field potentials and audio recordings from 5 patients with Parkinson's disease while they performed verbal fluency tasks. We then analyzed the oscillatory signals present in the subthalamic nucleus during these tasks. RESULTS We report that normal speech leads to a suppression of subthalamic alpha and beta power. Contrarily, a patient with motor blocks during speech initiation showed a low beta power increase. We also report an increase in error rates in the phonemic non-alternating verbal fluency task during deep brain stimulation (DBS). CONCLUSIONS We confirm previous findings that intact speech leads to desynchronization in the beta range in the STN. The speech related narrowband beta power increase in a patient with speech problems suggests that exaggerated synchronization in this frequency band is associated with motor blocks during speech initiation. The increased number of errors in verbal fluency tasks during DBS might be caused by an impairment of the response inhibition network caused by stimulation of the STN. SIGNIFICANCE We suggest that the inability to attenuate beta activity during motor processes is associated with motor freezing across motor behaviours such as speech and gait, as previously shown for freezing of gait.
Collapse
Affiliation(s)
- Franz Hell
- Department of Neurology, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2, 82152 Martinsried, Germany.
| | - Annika Eißner
- Department of Neurology, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 Munich, Germany
| | - Jan H Mehrkens
- Department of Neurosurgery, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2, 82152 Martinsried, Germany
| |
Collapse
|
25
|
Mathiopoulou V, Rijks N, Caan MWA, Liebrand LC, Ferreira F, de Bie RMA, van den Munckhof P, Schuurman PR, Bot M. Utilizing 7-Tesla Subthalamic Nucleus Connectivity in Deep Brain Stimulation for Parkinson Disease. Neuromodulation 2023; 26:333-339. [PMID: 35216874 DOI: 10.1016/j.neurom.2022.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a highly effective surgical treatment for patients with advanced Parkinson disease (PD). Combining 7.0-Tesla (7T) T2- and diffusion-weighted imaging (DWI) sequences allows for selective segmenting of the motor part of the STN and, thus, for possible optimization of DBS. MATERIALS AND METHODS 7T T2 and DWI sequences were obtained, and probabilistic segmentation of motor, associative, and limbic STN segments was performed. Left- and right-sided motor outcome (Movement Disorders Society Unified Parkinson's Disease Rating Scale) scores were used for evaluating the correspondence between the active electrode contacts in selectively segmented STN and the clinical DBS effect. The Bejjani line was reviewed for crossing of segments. RESULTS A total of 50 STNs were segmented in 25 patients and proved highly feasible. Although the highest density of motor connections was situated in the dorsolateral STN for all patients, the exact partitioning of segments differed considerably. For all the active electrode contacts situated within the predominantly motor-connected segment of the STN, the average hemi-body Unified Parkinson's Disease Rating Scale motor improvement was 80%; outside this segment, it was 52% (p < 0.01). The Bejjani line was situated in the motor segment for 32 STNs. CONCLUSION The implementation of 7T T2 and DWI segmentation of the STN in DBS for PD is feasible and offers insight into the location of the motor segment. Segmentation-guided electrode placement is likely to further improve motor response in DBS for PD. However, commercially available DBS software for postprocessing imaging would greatly facilitate widespread implementation.
Collapse
Affiliation(s)
| | - Niels Rijks
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands
| | - Matthan W A Caan
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Luka C Liebrand
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Francisca Ferreira
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, UK
| | - Rob M A de Bie
- Department of Neurology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | - Maarten Bot
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Weiss AR, Korzeniewska A, Chrabaszcz A, Bush A, Fiez JA, Crone NE, Richardson RM. Lexicality-Modulated Influence of Auditory Cortex on Subthalamic Nucleus During Motor Planning for Speech. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:53-80. [PMID: 37229140 PMCID: PMC10205077 DOI: 10.1162/nol_a_00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
Speech requires successful information transfer within cortical-basal ganglia loop circuits to produce the desired acoustic output. For this reason, up to 90% of Parkinson's disease patients experience impairments of speech articulation. Deep brain stimulation (DBS) is highly effective in controlling the symptoms of Parkinson's disease, sometimes alongside speech improvement, but subthalamic nucleus (STN) DBS can also lead to decreases in semantic and phonological fluency. This paradox demands better understanding of the interactions between the cortical speech network and the STN, which can be investigated with intracranial EEG recordings collected during DBS implantation surgery. We analyzed the propagation of high-gamma activity between STN, superior temporal gyrus (STG), and ventral sensorimotor cortices during reading aloud via event-related causality, a method that estimates strengths and directionalities of neural activity propagation. We employed a newly developed bivariate smoothing model based on a two-dimensional moving average, which is optimal for reducing random noise while retaining a sharp step response, to ensure precise embedding of statistical significance in the time-frequency space. Sustained and reciprocal neural interactions between STN and ventral sensorimotor cortex were observed. Moreover, high-gamma activity propagated from the STG to the STN prior to speech onset. The strength of this influence was affected by the lexical status of the utterance, with increased activity propagation during word versus pseudoword reading. These unique data suggest a potential role for the STN in the feedforward control of speech.
Collapse
Affiliation(s)
- Alexander R. Weiss
- JHU Cognitive Neurophysiology and BMI Lab, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Korzeniewska
- JHU Cognitive Neurophysiology and BMI Lab, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Chrabaszcz
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan Bush
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Julie A. Fiez
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Nathan E. Crone
- JHU Cognitive Neurophysiology and BMI Lab, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert M. Richardson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Kähkölä J, Lahtinen M, Keinänen T, Katisko J. Stimulation of the Presupplementary Motor Area Cluster of the Subthalamic Nucleus Predicts More Consistent Clinical Outcomes. Neurosurgery 2022; 92:1058-1065. [PMID: 36700693 DOI: 10.1227/neu.0000000000002292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The development of diffusion tensor imaging and tractography has raised increasing interest in the functional targeting of deep brain stimulation of the subthalamic nucleus (STN) in Parkinson disease. OBJECTIVE To study, using deterministic tractography, the functional subdivisions of the STN and hyperdirect white matter connections located between the STN and the medial frontal cortex, especially the presupplementary motor area (preSMA), SMA, primary motor area (M1), and dorsolateral premotor cortex, and to study retrospectively whether this information correlates with clinical outcome. METHODS Twenty-two patients with Parkinson disease who underwent STN deep brain stimulation were analyzed. Using 3 T MR images, the medial frontal cortex was manually segmented into preSMA, SMA, M1, and dorsolateral premotor cortex, which were then used to determine the functional subdivisions of the lateral border of the STN. The intersectional quantities of the volume of activated tissue (VAT) and the hyperdirect white matter connections were calculated. The results were combined with clinical data including unilateral 12-month postoperative motor outcome and levodopa equivalent daily dose. RESULTS Stimulated clusters of the STN were connected mostly to the cortical SMA and preSMA regions. Patients with primarily preSMA cluster stimulation (presmaVAT% ≥ 50%) had good responses to the treatment with unilateral motor improvement over 40% and levodopa equivalent daily dose reduction over 60%. Larger VAT was not found to correlate with better patient outcomes. CONCLUSION Our study is the first to suggest that stimulating, predominantly, the STN cluster where preSMA hyperdirect pathways are located, could be predictive of more consistent treatment results.
Collapse
Affiliation(s)
- Johannes Kähkölä
- Oulu Research Group of Advanced Surgical Technologies and Physics - ORGASTP, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Maija Lahtinen
- Oulu Research Group of Advanced Surgical Technologies and Physics - ORGASTP, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Tuija Keinänen
- Oulu Research Group of Advanced Surgical Technologies and Physics - ORGASTP, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Jani Katisko
- Oulu Research Group of Advanced Surgical Technologies and Physics - ORGASTP, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,Neurocenter, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
28
|
Krahulik D, Blazek F, Nevrly M, Otruba P, Hrabalek L, Kanovsky P, Valosek J. Imaging Modalities Used for Frameless and Fiducial-Less Deep Brain Stimulation: A Single Centre Exploratory Study among Parkinson's Disease Cases. Diagnostics (Basel) 2022; 12:diagnostics12123132. [PMID: 36553139 PMCID: PMC9777451 DOI: 10.3390/diagnostics12123132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Deep brain stimulation (DBS) is a beneficial procedure for treating idiopathic Parkinson's disease (PD), essential tremor, and dystonia. The authors describe their set of imaging modalities used for a frameless and fiducial-less method of DBS. CT and MRI scans are obtained preoperatively, and STN parcellation is done based on diffusion tractography. During the surgery, an intraoperative cone-beam computed tomography scan is obtained and merged with the preoperatively-acquired images to place electrodes using a frameless and fiducial-less system. Accuracy is evaluated prospectively. The described sequence of imaging methods shows excellent accuracy compared to the frame-based techniques.
Collapse
Affiliation(s)
- David Krahulik
- Department of Neurosurgery, University Hospital Olomouc, 77900 Olomouc, Czech Republic
- Correspondence:
| | - Filip Blazek
- Department of Neurosurgery, University Hospital Olomouc, 77900 Olomouc, Czech Republic
| | - Martin Nevrly
- Department of Neurology, University Hospital Olomouc, 77900 Olomouc, Czech Republic
| | - Pavel Otruba
- Department of Neurology, University Hospital Olomouc, 77900 Olomouc, Czech Republic
| | - Lumir Hrabalek
- Department of Neurosurgery, University Hospital Olomouc, 77900 Olomouc, Czech Republic
| | - Petr Kanovsky
- Department of Neurology, University Hospital Olomouc, 77900 Olomouc, Czech Republic
| | - Jan Valosek
- Department of Neurosurgery, University Hospital Olomouc, 77900 Olomouc, Czech Republic
- Department of Neurology, University Hospital Olomouc, 77900 Olomouc, Czech Republic
| |
Collapse
|
29
|
Transcriptional Profile of the Developing Subthalamic Nucleus. eNeuro 2022; 9:9/5/ENEURO.0193-22.2022. [PMID: 36257692 PMCID: PMC9581575 DOI: 10.1523/eneuro.0193-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
The subthalamic nucleus (STN) is a small, excitatory nucleus that regulates the output of basal ganglia motor circuits. The functions of the STN and its role in the pathophysiology of Parkinson's disease are now well established. However, some basic characteristics like the developmental origin and molecular phenotype of neuronal subpopulations are still being debated. The classical model of forebrain development attributed the origin of STN within the diencephalon. Recent studies of gene expression patterns exposed shortcomings of the classical model. To accommodate these findings, the prosomeric model was developed. In this concept, STN develops within the hypothalamic primordium, which is no longer a part of the diencephalic primordium. This concept is further supported by the expression patterns of many transcription factors. It is interesting to note that many transcription factors involved in the development of the STN are also involved in the pathogenesis of neurodevelopmental disorders. Thus, the study of neurodevelopmental disorders could provide us with valuable information on the roles of these transcription factors in the development and maintenance of STN phenotype. In this review, we summarize historical theories about the developmental origin of the STN and interpret the gene expression data within the prosomeric conceptual framework. Finally, we discuss the importance of neurodevelopmental disorders for the development of the STN and its potential role in the pathophysiology of neurodevelopmental disorders.
Collapse
|
30
|
Dale J, Schmidt SL, Mitchell K, Turner DA, Grill WM. Evoked potentials generated by deep brain stimulation for Parkinson's disease. Brain Stimul 2022; 15:1040-1047. [PMID: 35921959 PMCID: PMC9588756 DOI: 10.1016/j.brs.2022.07.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/18/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The goal of this review is to describe the general features, mechanisms, technical recording factors, and clinical applications of brain evoked potentials (EPs) generated by deep brain stimulation (DBS) for Parkinson's disease (PD). RESULTS Evoked potentials in response to DBS pulses occur on the timescale of milliseconds and are found both locally at the site of stimulation and remotely in the cortex. DBS evoked potentials arise from a complex integration of antidromic and orthodromic conduction pathway responses, and provide information valuable for understanding the mechanisms and circuits involved in symptom treatment. Furthermore, these signals may provide biomarkers for improving DBS outcomes and function. For example, evoked potentials may have utility as control signals for DBS programming or adaptive DBS. Despite their promise there are still critical gaps in our understanding of the mechanisms by which evoked potentials arise and how these signals may be measured and applied in the clinical setting. Technical challenges of recording a highly transient signal at sufficient resolution without the interference of stimulation artifact present a barrier to understanding better DBS-induced EPs. CONCLUSIONS We describe the current scientific landscape of evoked potentials to facilitate and stimulate further investigation.
Collapse
Affiliation(s)
- Jahrane Dale
- Departments of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Stephen L Schmidt
- Departments of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kyle Mitchell
- Departments of Neurology, Duke University, Durham, NC, USA
| | - Dennis A Turner
- Departments of Neurobiology, Duke University, Durham, NC, USA; Departments of Neurosurgery, Duke University, Durham, NC, USA
| | - Warren M Grill
- Departments of Biomedical Engineering, Duke University, Durham, NC, USA; Departments of Neurobiology, Duke University, Durham, NC, USA; Departments of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
31
|
Nakajima K, Osada T, Ogawa A, Tanaka M, Oka S, Kamagata K, Aoki S, Oshima Y, Tanaka S, Konishi S. A causal role of anterior prefrontal-putamen circuit for response inhibition revealed by transcranial ultrasound stimulation in humans. Cell Rep 2022; 40:111197. [PMID: 35977493 DOI: 10.1016/j.celrep.2022.111197] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Stopping an inappropriate response requires the involvement of the prefrontal-subthalamic hyperdirect pathway. However, how the prefrontal-striatal indirect pathway contributes to stopping is poorly understood. In this study, transcranial ultrasound stimulation is used to perform interventions in a task-related region in the striatum. Functional magnetic resonance imaging (MRI) reveals activation in the right anterior part of the putamen during response inhibition, and ultrasound stimulation to the anterior putamen, as well as the subthalamic nucleus, results in significant impairments in stopping performance. Diffusion imaging further reveals prominent structural connections between the anterior putamen and the right anterior part of the inferior frontal cortex (IFC), and ultrasound stimulation to the anterior IFC also shows significant impaired stopping performance. These results demonstrate that the right anterior putamen and right anterior IFC causally contribute to stopping and suggest that the anterior IFC-anterior putamen circuit in the indirect pathway serves as an essential route for stopping.
Collapse
Affiliation(s)
- Koji Nakajima
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoshi Oka
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasushi Oshima
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Research Institute for Diseases of Old Age, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Sportology Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Science, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
32
|
Miletić S, Keuken MC, Mulder M, Trampel R, de Hollander G, Forstmann BU. 7T functional MRI finds no evidence for distinct functional subregions in the subthalamic nucleus during a speeded decision-making task. Cortex 2022; 155:162-188. [DOI: 10.1016/j.cortex.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/18/2022] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
|
33
|
Fronto—Parietal Regions Predict Transient Emotional States in Emotion Modulated Response Inhibition via Low Frequency and Beta Oscillations. Symmetry (Basel) 2022. [DOI: 10.3390/sym14061244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The current study evaluated the impact of task-relevant emotion on inhibitory control while focusing on midline cortical regions rather than brain asymmetry. Single-trial time-frequency analysis of electroencephalography recordings linked with response execution and response inhibition was done while thirty-four participants performed the emotion modulated stop-signal task. To evaluate individual differences across decision-making processes involved in inhibitory control, a hierarchical drift-diffusion model was used to fit data from Go-trials for each of the 34 participants. Response threshold in the early processing stage for happy and disgust emotions could be distinguished from the later processing stage at the mid-parietal and mid-frontal regions, respectively, by the single-trial power increments in low frequency (delta and theta) bands. Beta desynchronization in the mid-frontal region was specific for differentiating disgust from neutral emotion in the early as well as later processing stages. The findings are interpreted based on the influence of emotional stimuli on early perceptual processing originating as a bottom-up process in the mid-parietal region and later proceeding to the mid-frontal region responsible for cognitive control processing, which resulted in enhanced inhibitory performance. The results show the importance of mid-frontal and mid-parietal regions in single-trial dynamics of inhibitory control processing.
Collapse
|
34
|
Molnar-Szakacs I, Uddin LQ. Anterior insula as a gatekeeper of executive control. Neurosci Biobehav Rev 2022; 139:104736. [PMID: 35700753 DOI: 10.1016/j.neubiorev.2022.104736] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022]
Abstract
Executive control is a complex high-level cognitive function that relies on distributed brain circuitry. We propose that the anterior insular cortex plays an under-appreciated role in executive processes, acting as a gatekeeper to other brain regions and networks by virtue of primacy of action and effective connectivity. The flexible functional profile of the anterior insular subdivision renders it a key hub within the broader midcingulo-insular 'salience network', allowing it to orchestrate and drive activity of other major functional brain networks including the medial frontoparietal 'default mode network' and lateral frontoparietal 'central executive network'. The microanatomy and large-scale connectivity of the insular cortex positions it to play a critical role in triaging and integrating internal and external multisensory stimuli in the service of initiating higher-order control functions. Multiple lines of evidence scaffold the novel hypothesis that, as a key hub for integration and a lever of network switching, the anterior insula serves as a critical gatekeeper to executive control.
Collapse
Affiliation(s)
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Denisova NP, Rzaev JA. Psychiatric mimics of neurosurgical disorders. PROGRESS IN BRAIN RESEARCH 2022; 272:153-171. [PMID: 35667800 DOI: 10.1016/bs.pbr.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Every year there are about 22.6 million people in need of neurosurgical care around the world, and one or several interventions are required to save lives and restore functional losses in more than half of these cases (13.8 million). Most neurosurgical interventions are performed in patients with traumatic brain and spinal cord injuries, strokes, central nervous system (CNS) tumors, hydrocephalus, and epilepsy. In addition to neurological symptoms, many CNS disorders are often accompanied by cognitive and/or behavioral changes. Physical and psychological symptoms can be intertwined as follows: 1) neurological symptoms may be manifested as a result of complex psychological processes; 2) psychological disorders may be manifested as neurological symptoms; 3) neurological disorders commonly cause secondary psychological responses; 4) psychological disorder may be induced more or less directly by an organic brain disease. In the present paper, we focus on the psychiatric conditions occurring in the patients with neurosurgical disorders who either get prepared for surgery or have already received it.
Collapse
Affiliation(s)
| | - Jamil A Rzaev
- Federal Neurosurgical Center, Novosibirsk, Russian Federation.
| |
Collapse
|
36
|
van Wijk BCM, Neumann WJ, Kroneberg D, Horn A, Irmen F, Sander TH, Wang Q, Litvak V, Kühn AA. Functional connectivity maps of theta/alpha and beta coherence within the subthalamic nucleus region. Neuroimage 2022; 257:119320. [PMID: 35580809 DOI: 10.1016/j.neuroimage.2022.119320] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
The subthalamic nucleus (STN) is a primary target for deep brain stimulation in Parkinson's disease (PD). Although small in size, the STN is commonly partitioned into sensorimotor, cognitive/associative, and limbic subregions based on its structural connectivity profile to cortical areas. We investigated whether such a regional specialization is also supported by functional connectivity between local field potential recordings and simultaneous magnetoencephalography. Using a novel data set of 21 PD patients, we replicated previously reported cortico-STN coherence networks in the theta/alpha and beta frequency ranges, and looked for the spatial distribution of these networks within the STN region. Although theta/alpha and beta coherence peaks were both observed in on-medication recordings from electrode contacts at several locations within and around the STN, sites with theta/alpha coherence peaks were situated at significantly more inferior MNI coordinates than beta coherence peaks. Sites with only theta/alpha coherence peaks, i.e. without distinct beta coherence, were mostly located near the border of sensorimotor and cognitive/associative subregions as defined by a tractography-based atlas of the STN. Peak coherence values were largely unaltered by the medication state of the subject, however, theta/alpha peaks were more often identified in recordings obtained after administration of dopaminergic medication. Our findings suggest the existence of a frequency-specific topography of cortico-STN coherence within the STN, albeit with considerable spatial overlap between functional networks. Consequently, optimization of deep brain stimulation targeting might remain a trade-off between alleviating motor symptoms and avoiding adverse neuropsychiatric side effects.
Collapse
Affiliation(s)
- Bernadette C M van Wijk
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands; Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, the Netherlands; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Wellcome Centre for Human Neuroimaging, University College London, UK.
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Daniel Kroneberg
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, USA; MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR), MGH Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Friederike Irmen
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Qiang Wang
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, University College London, UK
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Centre, Charité - Universitätsmedizin Berlin, Germany; DZNE, German Center for Degenerative Diseases, Berlin, Germany
| |
Collapse
|
37
|
Pujol S, Cabeen RP, Yelnik J, François C, Fernandez Vidal S, Karachi C, Bardinet E, Cosgrove GR, Kikinis R. Somatotopic Organization of Hyperdirect Pathway Projections From the Primary Motor Cortex in the Human Brain. Front Neurol 2022; 13:791092. [PMID: 35547388 PMCID: PMC9081715 DOI: 10.3389/fneur.2022.791092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background The subthalamic nucleus (STN) is an effective neurosurgical target to improve motor symptoms in Parkinson's Disease (PD) patients. MR-guided Focused Ultrasound (MRgFUS) subthalamotomy is being explored as a therapeutic alternative to Deep Brain Stimulation (DBS) of the STN. The hyperdirect pathway provides a direct connection between the cortex and the STN and is likely to play a key role in the therapeutic effects of MRgFUS intervention in PD patients. Objective This study aims to investigate the topography and somatotopy of hyperdirect pathway projections from the primary motor cortex (M1). Methods We used advanced multi-fiber tractography and high-resolution diffusion MRI data acquired on five subjects of the Human Connectome Project (HCP) to reconstruct hyperdirect pathway projections from M1. Two neuroanatomy experts reviewed the anatomical accuracy of the tracts. We extracted the fascicles arising from the trunk, arm, hand, face and tongue area from the reconstructed pathways. We assessed the variability among subjects based on the fractional anisotropy (FA) and mean diffusivity (MD) of the fibers. We evaluated the spatial arrangement of the different fascicles using the Dice Similarity Coefficient (DSC) of spatial overlap and the centroids of the bundles. Results We successfully reconstructed hyperdirect pathway projections from M1 in all five subjects. The tracts were in agreement with the expected anatomy. We identified hyperdirect pathway fascicles projecting from the trunk, arm, hand, face and tongue area in all subjects. Tract-derived measurements showed low variability among subjects, and similar distributions of FA and MD values among the fascicles projecting from different M1 areas. We found an anterolateral somatotopic arrangement of the fascicles in the corona radiata, and an average overlap of 0.63 in the internal capsule and 0.65 in the zona incerta. Conclusion Multi-fiber tractography combined with high-resolution diffusion MRI data enables the identification of the somatotopic organization of the hyperdirect pathway. Our preliminary results suggest that the subdivisions of the hyperdirect pathway projecting from the trunk, arm, hand, face, and tongue motor area are intermixed at the level of the zona incerta and posterior limb of the internal capsule, with a predominantly overlapping topographical organization in both regions. Subject-specific knowledge of the hyperdirect pathway somatotopy could help optimize target definition in MRgFUS intervention.
Collapse
Affiliation(s)
- Sonia Pujol
- Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of the USC, University of Southern California, Los Angeles, CA, United States
| | - Jérôme Yelnik
- Sorbonne Université, CNRS, INSERM, APHP GH Pitié-Salpêtriére, Paris Brain Institute - Institut du Cerveau (ICM), Paris, France.,CENIR Platform, Institut du Cerveau (ICM), Paris, France
| | - Chantal François
- Sorbonne Université, CNRS, INSERM, APHP GH Pitié-Salpêtriére, Paris Brain Institute - Institut du Cerveau (ICM), Paris, France.,CENIR Platform, Institut du Cerveau (ICM), Paris, France
| | - Sara Fernandez Vidal
- Sorbonne Université, CNRS, INSERM, APHP GH Pitié-Salpêtriére, Paris Brain Institute - Institut du Cerveau (ICM), Paris, France.,CENIR Platform, Institut du Cerveau (ICM), Paris, France
| | - Carine Karachi
- Sorbonne Université, CNRS, INSERM, APHP GH Pitié-Salpêtriére, Paris Brain Institute - Institut du Cerveau (ICM), Paris, France.,CENIR Platform, Institut du Cerveau (ICM), Paris, France.,Department of Neurosurgery, APHP, Hôpitaux Universitaires Pitié-Salpêtriére/Charles Foix, Paris, France
| | - Eric Bardinet
- Sorbonne Université, CNRS, INSERM, APHP GH Pitié-Salpêtriére, Paris Brain Institute - Institut du Cerveau (ICM), Paris, France.,CENIR Platform, Institut du Cerveau (ICM), Paris, France
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ron Kikinis
- Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
Jeon H, Lee H, Kwon DH, Kim J, Tanaka-Yamamoto K, Yook JS, Feng L, Park HR, Lim YH, Cho ZH, Paek SH, Kim J. Topographic connectivity and cellular profiling reveal detailed input pathways and functionally distinct cell types in the subthalamic nucleus. Cell Rep 2022; 38:110439. [PMID: 35235786 DOI: 10.1016/j.celrep.2022.110439] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 11/27/2022] Open
Abstract
The subthalamic nucleus (STN) controls psychomotor activity and is an efficient therapeutic deep brain stimulation target in individuals with Parkinson's disease. Despite evidence indicating position-dependent therapeutic effects and distinct functions within the STN, the input circuit and cellular profile in the STN remain largely unclear. Using neuroanatomical techniques, we construct a comprehensive connectivity map of the indirect and hyperdirect pathways in the mouse STN. Our circuit- and cellular-level connectivities reveal a topographically graded organization with three types of indirect and hyperdirect pathways (external globus pallidus only, STN only, and collateral). We confirm consistent pathways into the human STN by 7 T MRI-based tractography. We identify two functional types of topographically distinct glutamatergic STN neurons (parvalbumin [PV+/-]) with synaptic connectivity from indirect and hyperdirect pathways. Glutamatergic PV+ STN neurons contribute to burst firing. These data suggest a complex interplay of information integration within the basal ganglia underlying coordinated movement control and therapeutic effects.
Collapse
Affiliation(s)
- Hyungju Jeon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul 02792 Korea
| | - Hojin Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul 02792 Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Dae-Hyuk Kwon
- Neuroscience Convergence Center, Korea University, Seoul 02841, Korea
| | - Jiwon Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul 02792 Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul 02792 Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Jang Soo Yook
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul 02792 Korea
| | - Linqing Feng
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul 02792 Korea
| | - Hye Ran Park
- Soonchunhyang University Seoul Hospital, Seoul 04401, Korea
| | - Yong Hoon Lim
- Neurosurgery, Movement Disorder Center, Seoul National University College of Medicine, Advanced Institute of Convergence Technology (AICT), Seoul National University, Seoul 03080, Korea
| | - Zang-Hee Cho
- Neuroscience Convergence Center, Korea University, Seoul 02841, Korea
| | - Sun Ha Paek
- Neurosurgery, Movement Disorder Center, Seoul National University College of Medicine, Advanced Institute of Convergence Technology (AICT), Seoul National University, Seoul 03080, Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul 02792 Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea.
| |
Collapse
|
39
|
Wang MB, Boring MJ, Ward MJ, Richardson RM, Ghuman AS. Deep brain stimulation for parkinson's disease induces spontaneous cortical hypersynchrony in extended motor and cognitive networks. Cereb Cortex 2022; 32:4480-4491. [PMID: 35136991 PMCID: PMC9574237 DOI: 10.1093/cercor/bhab496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/14/2022] Open
Abstract
The mechanism of action of deep brain stimulation (DBS) to the basal ganglia for Parkinson's disease remains unclear. Studies have shown that DBS decreases pathological beta hypersynchrony between the basal ganglia and motor cortex. However, little is known about DBS's effects on long range corticocortical synchronization. Here, we use machine learning combined with graph theory to compare resting-state cortical connectivity between the off and on-stimulation states and to healthy controls. We found that turning DBS on increased high beta and gamma band synchrony (26 to 50 Hz) in a cortical circuit spanning the motor, occipitoparietal, middle temporal, and prefrontal cortices. The synchrony in this network was greater in DBS on relative to both DBS off and controls, with no significant difference between DBS off and controls. Turning DBS on also increased network efficiency and strength and subnetwork modularity relative to both DBS off and controls in the beta and gamma band. Thus, unlike DBS's subcortical normalization of pathological basal ganglia activity, it introduces greater synchrony relative to healthy controls in cortical circuitry that includes both motor and non-motor systems. This increased high beta/gamma synchronization may reflect compensatory mechanisms related to DBS's clinical benefits, as well as undesirable non-motor side effects.
Collapse
Affiliation(s)
- Maxwell B Wang
- Address correspondence to Maxwell B Wang, BS, Medical Scientist Training Program, University of Pittsburgh School of Medicine, Program of Neural Computation, Carnegie Mellon University, Pittsburgh, PA 15213. Tel: 815-200-9533;
| | - Matthew J Boring
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA 15213, USA,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15213, USA,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael J Ward
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - R Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA,Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA,Harvard Medical School, Boston, MA 02115, USA
| | - Avniel Singh Ghuman
- Program of Neural Computation, Carnegie Mellon University, Pittsburgh, PA 15213, USA,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA 15213, USA,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15213, USA,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
40
|
Milardi D, Antonio Basile G, Faskowitz J, Bertino S, Quartarone A, Anastasi G, Bramanti A, Ciurleo R, Cacciola A. Effects of diffusion signal modeling and segmentation approaches on subthalamic nucleus parcellation. Neuroimage 2022; 250:118959. [PMID: 35122971 DOI: 10.1016/j.neuroimage.2022.118959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
The subthalamic nucleus (STN) is commonly used as a surgical target for deep brain stimulation in movement disorders such as Parkinson's Disease. Tractography-derived connectivity-based parcellation (CBP) has been recently proposed as a suitable tool for non-invasive in vivo identification and pre-operative targeting of specific functional territories within the human STN. However, a well-established, accurate and reproducible protocol for STN parcellation is still lacking. The present work aims at testing the effects of different tractography-based approaches for the reconstruction of STN functional territories. We reconstructed functional territories of the STN on the high-quality dataset of 100 unrelated healthy subjects and on the test-retest dataset of the Human Connectome Project (HCP) repository. Connectivity-based parcellation was performed with a hypothesis-driven approach according to cortico-subthalamic connectivity, after dividing cortical areas into three groups: associative, limbic and sensorimotor. Four parcellation pipelines were compared, combining different signal modeling techniques (single-fiber vs multi-fiber) and different parcellation approaches (winner takes all parcellation vs fiber density thresholding). We tested these procedures on STN regions of interest obtained from three different, commonly employed, subcortical atlases. We evaluated the pipelines both in terms of between-subject similarity, assessed on the cohort of 100 unrelated healthy subjects, and of within-subject similarity, using a second cohort of 44 subjects with available test-retest data. We found that each parcellation provides converging results in terms of location of the identified parcels, but with significative variations in size and shape. All pipelines obtained very high within-subject similarity, with tensor-based approaches outperforming multi-fiber pipelines. On the other hand, higher between-subject similarity was found with multi-fiber signal modeling techniques combined with fiber density thresholding. We suggest that a fine-tuning of tractography-based parcellation may lead to higher reproducibility and aid the development of an optimized surgical targeting protocol.
Collapse
Affiliation(s)
- Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Joshua Faskowitz
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giuseppe Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alessia Bramanti
- Department of Medicine, Surgery and Dentistry "Medical School of Salerno"- University of Salerno, Italy
| | | | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| |
Collapse
|
41
|
You Y, Yoh Kim C, Yan G, Park JS. Surface models and true-color sectioned images of hypothalamic nuclei and its neighboring structures. Technol Health Care 2022; 30:27-36. [PMID: 35124581 PMCID: PMC9028663 DOI: 10.3233/thc-228003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Knowledge regarding the hypothalamic nuclei is essential for understanding neuroanatomy and has substantial clinical relevance. OBJECTIVE: The aim was to contribute to elucidate the complex hypothalamic architecture for research and provide an anatomical basis for clinical brain operation. METHODS: In this research, high-resolution and true-color sectioned images from Visible Korean were employed for hypothalamic nuclei and neighboring structures surface modeling, and a high-resolution three-dimensional atlas of the hypothalamus was created. RESULTS: Surface models of 26 structures including the hypothalamic nuclei and its neighboring structures were produced, which contained 5 anterior hypothalamic areas’ nuclei, 4 intermediate hypothalamic areas’ nuclei, 3 lateral hypothalamic areas’ nuclei, and 2 posterior hypothalamic areas’ nuclei, as well as 12 hypothalamic neighboring structures. CONCLUSIONS: The study evaluated the topographical anatomy of the hypothalamic nuclei and its neighboring structures based on true-color and highresolution sectioned images of Visible Korean.
Collapse
Affiliation(s)
- Yaqian You
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Department of Anatomy, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chung Yoh Kim
- Department of Anatomy, Dongguk University School of Medicine, Gyeongju, Korea
| | - Gen Yan
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Department of Radiology, Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Jin Seo Park
- Department of Anatomy, Dongguk University School of Medicine, Gyeongju, Korea
| |
Collapse
|
42
|
Non-motor effects of subthalamic nucleus stimulation in Parkinson patients. Brain Imaging Behav 2022; 16:161-168. [PMID: 35029801 DOI: 10.1007/s11682-021-00487-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2021] [Indexed: 11/02/2022]
Abstract
The current white matter connectivity analyses of the subthalamic region have focused on the motor effects of deep brain stimulation. We investigate white matter connectivity associated with the stimulation-induced non-motor acute clinical effects in three domains: mood changes, dizziness, and sweating. We performed whole-brain probabilistic tractography seeded from the domain-specific stimulation volumes. The resultant connectivity maps were statistically compared across patients. The cortical voxels associated with each non-motor domain were compared with stimulation-induced motor improvements in a multivariate model. The resulting voxel maps were thresholded for false discovery (FDR q < 0.05) and clustered using a multimodal atlas. We also performed a group-level parcellation of stimulation volumes to identify the local pathways associated with each non-motor domain. The non-motor effects were rarely observed during stimulation titration: from 1100 acute clinical effects, mood change was observed in 14, dizziness in 23, and sweating in 20. Distinct cortical clusters were associated with each domain; notably, mood change was associated with voxels in the salience network and dizziness with voxels in the visual association cortex. The subthalamic parcellation yielded a mediolateral gradient, with the motor parcel being lateral and the non-motor parcels medial. We also observed an anteroposterior organization in the medial non-motor clusters with mood changes being anterior, followed posteriorly by dizziness, and sweating. We interpret these findings based on the literature and foresee these to be useful in guiding DBS programming.
Collapse
|
43
|
Bokulić E, Medenica T, Knezović V, Štajduhar A, Almahariq F, Baković M, Judaš M, Sedmak G. The Stereological Analysis and Spatial Distribution of Neurons in the Human Subthalamic Nucleus. Front Neuroanat 2022; 15:749390. [PMID: 34970124 PMCID: PMC8712451 DOI: 10.3389/fnana.2021.749390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
The subthalamic nucleus (STN) is a small, ovoid structure, and an important site of deep brain stimulation (DBS) for the treatment of Parkinson’s disease. Although the STN is a clinically important structure, there are many unresolved issues with regard to it. These issues are especially related to the anatomical subdivision, neuronal phenotype, neuronal composition, and spatial distribution. In this study, we have examined the expression pattern of 8 neuronal markers [nNOS, NeuN, parvalbumin (PV), calbindin (CB), calretinin (CR), FOXP2, NKX2.1, and PAX6] in the adult human STN. All of the examined markers, except CB, were present in the STN. To determine the neuronal density, we have performed stereological analysis on Nissl-stained and immunohistochemical slides of positive markers. The stereology data were also used to develop a three-dimensional map of the spatial distribution of neurons within the STN. The nNOS population exhibited the largest neuronal density. The estimated total number of nNOS STN neurons is 281,308 ± 38,967 (± 13.85%). The STN neuronal subpopulations can be divided into two groups: one with a neuronal density of approximately 3,300 neurons/mm3 and the other with a neuronal density of approximately 2,200 neurons/mm3. The largest density of STN neurons was observed along the ventromedial border of the STN and the density gradually decreased toward the dorsolateral border. In this study, we have demonstrated the presence of 7 neuronal markers in the STN, three of which were not previously described in the human STN. The human STN is a collection of diverse, intermixed neuronal subpopulations, and our data, as far as the cytoarchitectonics is concerned, did not support the tripartite STN subdivision.
Collapse
Affiliation(s)
- Ema Bokulić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Tila Medenica
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Vinka Knezović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Andrija Štajduhar
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,School of Public Health "Andrija Štampar," University of Zagreb School of Medicine, Zagreb, Croatia
| | - Fadi Almahariq
- Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,Department of Neurosurgery, Clinical Hospital "Dubrava," Zagreb, Croatia
| | - Marija Baković
- Department of Forensic Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
44
|
Mishra A, Ramdhani RA. Directional Deep Brain Stimulation in the Treatment of Parkinson's Disease. Neurology 2022. [DOI: 10.17925/usn.2022.18.1.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Deep brain stimulation (DBS) is a treatment modality that has been shown to improve the clinical outcomes of individuals with movement disorders, including Parkinson's disease. Directional DBS represents an advance in the field that allows clinicians to better modulate the electrical stimulation to increase therapeutic gains while minimizing side effects. In this review, we summarize the principles of directional DBS, including available technologies and stimulation paradigms, and examine the growing clinical study data with respect to its use in Parkinson's disease.
Collapse
|
45
|
Rusche T, Kaufmann J, Voges J. Nucleus accumbens projections: Validity and reliability of fiber reconstructions based on high-resolution diffusion-weighted MRI. Hum Brain Mapp 2021; 42:5888-5910. [PMID: 34528323 PMCID: PMC8596959 DOI: 10.1002/hbm.25657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/02/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Clinical effects of deep brain stimulation are largely mediated by the activation of myelinated axons. Hence, increasing attention has been paid in the past on targeting white matter tracts in addition to gray matter. Aims of the present study were: (i) visualization of discrete afferences and efferences of the nucleus accumbens (NAc), supposed to be a major hub of neural networks relating to mental disorders, using probabilistic fiber tractography and a data driven approach, and (ii) validation of the applied methodology for standardized routine clinical applications. MR‐data from 11 healthy subjects and 7 measurement sessions each were acquired on a 3T MRI‐scanner. For probabilistic fiber tracking the NAc as a seed region and the medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), amygdala (AMY), hippocampus (HPC), dorsomedial thalamus (dmT) and ventral tegmental area (VTA) as target regions were segmented for each subject and both hemispheres. To quantitatively assess the reliability and stability of the reconstructions, we filtered and clustered the individual fiber‐tracts (NAc to target) for each session and subject and performed a point‐by‐point calculation of the maximum cluster distances for intra‐subject comparison. The connectivity patterns formed by the obtained fibers were in good concordance with published data from tracer and/or fiber‐dissection studies. Furthermore, the reliability assessment of the (NAc to target)‐fiber‐tracts yielded to high correlations between the obtained clustered‐tracts. Using DBS with directional lead technology, the workflow elaborated in this study may guide selective electrical stimulation of NAc projections.
Collapse
Affiliation(s)
- Thilo Rusche
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Radiology, Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University Basel, Basel, Switzerland
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
46
|
Sure M, Vesper J, Schnitzler A, Florin E. Dopaminergic Modulation of Spectral and Spatial Characteristics of Parkinsonian Subthalamic Nucleus Beta Bursts. Front Neurosci 2021; 15:724334. [PMID: 34867149 PMCID: PMC8636009 DOI: 10.3389/fnins.2021.724334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
In Parkinson’s disease (PD), subthalamic nucleus (STN) beta burst activity is pathologically elevated. These bursts are reduced by dopamine and deep brain stimulation (DBS). Therefore, these bursts have been tested as a trigger for closed-loop DBS. To provide better targeted parameters for closed-loop stimulation, we investigate the spatial distribution of beta bursts within the STN and if they are specific to a beta sub-band. Local field potentials (LFP) were acquired in the STN of 27 PD patients while resting. Based on the orientation of segmented DBS electrodes, the LFPs were classified as anterior, postero-medial, and postero-lateral. Each recording lasted 30 min with (ON) and without (OFF) dopamine. Bursts were detected in three frequency bands: ±3 Hz around the individual beta peak frequency, low beta band (lBB), and high beta band (hBB). Medication reduced the duration and the number of bursts per minute but not the amplitude of the beta bursts. The burst amplitude was spatially modulated, while the burst duration and rate were frequency dependent. Furthermore, the hBB burst duration was positively correlated with the akinetic-rigid UPDRS III subscore. Overall, these findings on differential dopaminergic modulation of beta burst parameters suggest that hBB burst duration is a promising target for closed-loop stimulation and that burst parameters could guide DBS programming.
Collapse
Affiliation(s)
- Matthias Sure
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.,Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
47
|
Rodriguez-Rojas R, Pineda-Pardo JA, Mañez-Miro J, Sanchez-Turel A, Martinez-Fernandez R, Del Alamo M, DeLong M, Obeso JA. Functional Topography of the Human Subthalamic Nucleus: Relevance for Subthalamotomy in Parkinson's Disease. Mov Disord 2021; 37:279-290. [PMID: 34859498 DOI: 10.1002/mds.28862] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The subthalamic nucleus (STN) is considered a key structure in motor, behavioral, and emotional control. Although identification of the functional topography of the STN has therapeutic implications in the treatment of the motor features of Parkinson's disease (PD), the details of its functional and somatotopic organization in humans are not well understood. OBJECTIVE The aim of this study was to characterize the functional organization of the STN and its correlation with the motor outcomes induced by subthalamotomy. METHODS We used diffusion-weighted imaging to assess STN connectivity patterns in 23 healthy control subjects and 86 patients with PD, of whom 39 received unilateral subthalamotomy. Analytical tractography was used to reconstruct structural cortico-subthalamic connectivity. A diffusion-weighted imaging/functional magnetic resonance imaging-driven somatotopic parcellation of the STN was defined to delineate the representation of the upper and lower limb in the STN. RESULTS We confirmed a connectional gradient to sensorimotor, supplementary-motor, associative, and limbic cortical regions, spanning from posterior-dorsal-lateral to anterior-ventral-medial portions of the STN, with intermediate overlapping zones. Functional magnetic resonance imaging-driven parcellation demonstrated dual segregation of motor cortico-subthalamic projections in humans. Moreover, the relationship between lesion topography and functional anatomy of the STN explains specific improvement in bradykinesia, rigidity, and tremor induced by subthalamotomy. CONCLUSIONS Our results support an interplay between segregation and integration of cortico-subthalamic projections, suggesting the coexistence of parallel and convergent information processing. Identifying the functional topography of the STN will facilitate better definition of the optimal location for functional neurosurgical approaches, that is, electrode placement and lesion location, and improve specific cardinal features in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rafael Rodriguez-Rojas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad CEU-San Pablo University, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Carlos III Institute, Madrid, Spain
| | - Jose A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad CEU-San Pablo University, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Carlos III Institute, Madrid, Spain
| | - Jorge Mañez-Miro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Alicia Sanchez-Turel
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Raul Martinez-Fernandez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad CEU-San Pablo University, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Carlos III Institute, Madrid, Spain
| | - Marta Del Alamo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Mahlon DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jose A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad CEU-San Pablo University, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Carlos III Institute, Madrid, Spain
| |
Collapse
|
48
|
Askari A, Zhu BJ, Lyu X, Chou KL, Patil PG. Characterization and localization of upper and lower extremity motor improvements in STN DBS for Parkinson's disease. Parkinsonism Relat Disord 2021; 94:84-88. [PMID: 34896928 DOI: 10.1016/j.parkreldis.2021.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Subthalamic deep brain stimulation (STN DBS) may have differential effects on cardinal motor signs of Parkinson's disease (PD) in the upper and lower extremities. In addition, sites of maximally effective DBS for each sign and extremity may be distinct. Our study seeks to elucidate these structure-function relationships. METHODS We applied an ordinary least squares linear regression model to measure motor effects of STN DBS on upper (UE) and lower (LE) extremity tremor, rigidity, and bradykinesia. We then applied an atlas-independent electrical-field model to identify sites of maximally effective stimulation for each sign and each extremity. Distances between sites and statistical power to resolve differences were calculated. RESULTS In our study population (n = 78 patients), STN DBS improved all cardinal motor signs (β = 0.64, p < .05). Improvement magnitudes were tremor > rigidity > bradykinesia. Effects of STN DBS on UE versus LE signs were statistically equal for tremor and bradykinesia, but greater for UE rigidity than LE rigidity (β = 0.19, p < .05). UE maximal-effect loci were lateral, anterior, and dorsal to LE loci, but were not statistically resolved, despite sufficient statistical power to resolve differences of ≤0.48 mm (p < .05) between maximally effective loci of stimulation. CONCLUSION STN DBS produces differential effects on UE and LE rigidity, but not for tremor or bradykinesia. This finding is not explained by distinct UE and LE loci of maximally effective stimulation. Instead, we hypothesize that downstream effects of STN DBS on motor networks and limb biomechanics are responsible for observed differences in UE and LE responses.
Collapse
Affiliation(s)
- Asra Askari
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Brandon J Zhu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xiru Lyu
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA
| | - Kelvin L Chou
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Parag G Patil
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Boutet A, Loh A, Chow CT, Taha A, Elias GJB, Neudorfer C, Germann J, Paff M, Zrinzo L, Fasano A, Kalia SK, Steele CJ, Mikulis D, Kucharczyk W, Lozano AM. A literature review of magnetic resonance imaging sequence advancements in visualizing functional neurosurgery targets. J Neurosurg 2021; 135:1445-1458. [PMID: 33770759 DOI: 10.3171/2020.8.jns201125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/13/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Historically, preoperative planning for functional neurosurgery has depended on the indirect localization of target brain structures using visible anatomical landmarks. However, recent technological advances in neuroimaging have permitted marked improvements in MRI-based direct target visualization, allowing for refinement of "first-pass" targeting. The authors reviewed studies relating to direct MRI visualization of the most common functional neurosurgery targets (subthalamic nucleus, globus pallidus, and thalamus) and summarize sequence specifications for the various approaches described in this literature. METHODS The peer-reviewed literature on MRI visualization of the subthalamic nucleus, globus pallidus, and thalamus was obtained by searching MEDLINE. Publications examining direct MRI visualization of these deep brain stimulation targets were included for review. RESULTS A variety of specialized sequences and postprocessing methods for enhanced MRI visualization are in current use. These include susceptibility-based techniques such as quantitative susceptibility mapping, which exploit the amount of tissue iron in target structures, and white matter attenuated inversion recovery, which suppresses the signal from white matter to improve the distinction between gray matter nuclei. However, evidence confirming the superiority of these sequences over indirect targeting with respect to clinical outcome is sparse. Future targeting may utilize information about functional and structural networks, necessitating the use of resting-state functional MRI and diffusion-weighted imaging. CONCLUSIONS Specialized MRI sequences have enabled considerable improvement in the visualization of common deep brain stimulation targets. With further validation of their ability to improve clinical outcomes and advances in imaging techniques, direct visualization of targets may play an increasingly important role in preoperative planning.
Collapse
Affiliation(s)
- Alexandre Boutet
- 1University Health Network, Toronto
- 2Joint Department of Medical Imaging, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | - Ludvic Zrinzo
- 3Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Alfonso Fasano
- 4Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology, University of Toronto
- 5Krembil Brain Institute, Toronto, Ontario
| | | | - Christopher J Steele
- 6Department of Psychology, Concordia University, Montreal, Quebec, Canada; and
- 7Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - David Mikulis
- 1University Health Network, Toronto
- 2Joint Department of Medical Imaging, University of Toronto, Ontario, Canada
| | - Walter Kucharczyk
- 1University Health Network, Toronto
- 2Joint Department of Medical Imaging, University of Toronto, Ontario, Canada
| | | |
Collapse
|
50
|
Eguchi K, Shirai S, Matsushima M, Kano T, Yamazaki K, Hamauchi S, Sasamori T, Seki T, Hirata K, Kitagawa M, Otsuki M, Shiga T, Houkin K, Sasaki H, Yabe I. Correlation of active contact location with weight gain after subthalamic nucleus deep brain stimulation: a case series. BMC Neurol 2021; 21:351. [PMID: 34517835 PMCID: PMC8436541 DOI: 10.1186/s12883-021-02383-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/01/2021] [Indexed: 12/16/2022] Open
Abstract
Background Weight gain (WG) is a frequently reported side effect of subthalamic deep brain stimulation; however, the underlying mechanisms remain unclear. The active contact locations influence the clinical outcomes of subthalamic deep brain stimulation, but it is unclear whether WG is directly associated with the active contact locations. We aimed to determine whether WG is associated with the subthalamic deep brain stimulation active contact locations. Methods We enrolled 14 patients with Parkinson’s disease who underwent bilateral subthalamic deep brain stimulation between 2013 and 2019. Bodyweight and body mass index were measured before and one year following the surgery. The Lead-DBS Matlab toolbox was used to determine the active contact locations based on magnetic resonance imaging and computed tomography. We also created sweet spot maps for WG using voxel-wise statistics, based on volume of tissue activation and the WG of each patient. Fluorodeoxyglucose-positron emission tomography data were also acquired before and one year following surgery, and statistical parametric mapping was used to evaluate changes in brain metabolism. We examined which brain regions’ metabolism fluctuation significantly correlated with increased body mass index scores and positron emission tomography data. Results One year after surgery, the body mass index increase was 2.03 kg/m2. The sweet spots for WG were bilateral, mainly located dorsally outside of the subthalamic nucleus (STN). Furthermore, WG was correlated with increased metabolism in the left limbic and associative regions, including the middle temporal gyrus, inferior frontal gyrus, and orbital gyrus. Conclusions Although the mechanisms underlying WG following subthalamic deep brain stimulation are possibly multifactorial, our findings suggest that dorsal stimulation outside of STN may lead to WG. The metabolic changes in limbic and associative cortical regions after STN-DBS may also be one of the mechanisms underlying WG. Further studies are warranted to confirm whether dorsal stimulation outside of STN changes the activities of these cortical regions.
Collapse
Affiliation(s)
- Katsuki Eguchi
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan.
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Masaaki Matsushima
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Takahiro Kano
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Kazuyoshi Yamazaki
- Department of Neurosurgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Shuji Hamauchi
- Department of Neurosurgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Toru Sasamori
- Department of Neurosurgery, Sapporo Azabu Neurosurgical Hospital, Kita 22, Higashi 1, Higashi-ku, 065-0022, Sapporo, Japan
| | - Toshitaka Seki
- Department of Neurosurgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Mayumi Kitagawa
- Sapporo Teishinkai Hospital, Kita 33, Higashi 1, Higashi-ku, 065-0033, Sapporo, Japan
| | - Mika Otsuki
- Faculty of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Tohru Shiga
- Department of Nuclear Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Hidenao Sasaki
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| |
Collapse
|