1
|
Corsaut J, Soto E, Biernaski H, Kovacs MS, St. Lawrence K, Hicks JW. Frugal and Translatable [ 15O]O 2 Production for Human Inhalation with Direct Delivery from the Cyclotron to a Hybrid PET/MR. Diagnostics (Basel) 2024; 14:902. [PMID: 38732316 PMCID: PMC11083888 DOI: 10.3390/diagnostics14090902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Oxygen-15 (β+, t1/2 = 122 s) radiolabeled diatomic oxygen, in conjunction with positron emission tomography, is the gold standard to quantitatively measure the metabolic rate of oxygen consumption in the living human brain. We present herein a protocol for safe and effective delivery of [15O]O2 over 200 m to a human subject for inhalation. A frugal quality control testing procedure was devised and validated. This protocol can act as a blueprint for other sites seeking to implement similar imaging programs.
Collapse
Affiliation(s)
- Jeffrey Corsaut
- Lawson Health Research Institute, London, ON N6A 5W9, Canada (M.S.K.)
- Saint Joseph’s Health Canada London, London, ON N6A 4V2, Canada
| | - Elmer Soto
- Lawson Health Research Institute, London, ON N6A 5W9, Canada (M.S.K.)
- Saint Joseph’s Health Canada London, London, ON N6A 4V2, Canada
| | - Heather Biernaski
- Lawson Health Research Institute, London, ON N6A 5W9, Canada (M.S.K.)
- Saint Joseph’s Health Canada London, London, ON N6A 4V2, Canada
| | - Michael S. Kovacs
- Lawson Health Research Institute, London, ON N6A 5W9, Canada (M.S.K.)
- Saint Joseph’s Health Canada London, London, ON N6A 4V2, Canada
- Department of Medical Imaging, Western University, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| | - Keith St. Lawrence
- Lawson Health Research Institute, London, ON N6A 5W9, Canada (M.S.K.)
- Saint Joseph’s Health Canada London, London, ON N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| | - Justin W. Hicks
- Lawson Health Research Institute, London, ON N6A 5W9, Canada (M.S.K.)
- Saint Joseph’s Health Canada London, London, ON N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
2
|
Adamson PM, Datta K, Watkins R, Recht LD, Hurd RE, Spielman DM. Deuterium metabolic imaging for 3D mapping of glucose metabolism in humans with central nervous system lesions at 3T. Magn Reson Med 2024; 91:39-50. [PMID: 37796151 PMCID: PMC10841984 DOI: 10.1002/mrm.29830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE To explore the potential of 3T deuterium metabolic imaging (DMI) using a birdcage 2 H radiofrequency (RF) coil in both healthy volunteers and patients with central nervous system (CNS) lesions. METHODS A modified gradient filter, home-built 2 H volume RF coil, and spherical k-space sampling were employed in a three-dimensional chemical shift imaging acquisition to obtain high-quality whole-brain metabolic images of 2 H-labeled water and glucose metabolic products. These images were acquired in a healthy volunteer and three subjects with CNS lesions of varying pathologies. Hardware and pulse sequence experiments were also conducted to improve the signal-to-noise ratio of DMI at 3T. RESULTS The ability to quantify local glucose metabolism in correspondence to anatomical landmarks across patients with varying CNS lesions is demonstrated, and increased lactate is observed in one patient with the most active disease. CONCLUSION DMI offers the potential to examine metabolic activity in human subjects with CNS lesions with DMI at 3T, promising for the potential of the future clinical translation of this metabolic imaging technique.
Collapse
Affiliation(s)
- Philip M. Adamson
- Department of Electrical Engineering, Stanford University, Stanford, California USA
| | - Keshav Datta
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Ron Watkins
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Lawrence D. Recht
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Ralph E. Hurd
- Department of Radiology, Stanford University, Stanford, California, USA
| | | |
Collapse
|
3
|
Eldirdiri A, Zhuo J, Lin Z, Lu H, Gullapalli RP, Jiang D. Toward vendor-independent measurement of cerebral venous oxygenation: Comparison of TRUST MRI across three major MRI manufacturers and association with end-tidal CO 2. NMR IN BIOMEDICINE 2023; 36:e4990. [PMID: 37315951 PMCID: PMC10801912 DOI: 10.1002/nbm.4990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Cerebral venous oxygenation (Yv ) is a valuable biomarker for a variety of brain diseases. T2 relaxation under spin tagging (TRUST) MRI is a widely used method for Yv quantification. In this work, there were two main objectives. The first was to evaluate the reproducibility of TRUST Yv measurements across MRI scanners from different vendors. The second was to examine the correlation between Yv and end-tidal CO2 (EtCO2 ) in a multisite, multivendor setting and determine the usefulness of this correlation to account for variations in Yv caused by normal variations and physiological fluctuations. Standardized TRUST pulse sequences were implemented on three scanners from major MRI vendors (GE, Siemens, Philips). These scanners were located at two research institutions. Ten healthy subjects were scanned. On each scanner, the subject underwent two scan sessions, each of which included three TRUST scans, to evaluate the intrasession and intersession reproducibility of Yv . Each scanner was also equipped with a capnograph device to record the EtCO2 of the subject during the MRI scan. We found no significant bias in Yv measurements across the three scanners (P = 0.18). The measured Yv values on the three scanners were also strongly correlated with each other (intraclass correlation coefficients > 0.85, P < 0.001). The intrasession and intersession coefficients of variation of Yv were less than 4% and showed no significant difference among the scanners. In addition, our results revealed that (1) within the same subject, Yv increased with EtCO2 at a rate of 1.24 ± 0.17%/mmHg (P < 0.0001), and (2) across different subjects, individuals with a higher EtCO2 had a higher Yv , at a rate of 0.94 ± 0.36%/mmHg (P = 0.01). These results suggest that (1) the standardized TRUST sequences had similar accuracies and reproducibilities for the quantification of Yv across the scanners, and (2) recording of EtCO2 may be a useful complement to Yv measurement to account for CO2 -related physiological fluctuations in Yv in multisite, multivendor studies.
Collapse
Affiliation(s)
- Abubakr Eldirdiri
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Pizarro-Galleguillos BM, Kunert L, Brüggemann N, Prasuhn J. Iron- and Neuromelanin-Weighted Neuroimaging to Study Mitochondrial Dysfunction in Patients with Parkinson's Disease. Int J Mol Sci 2022; 23:ijms232213678. [PMID: 36430157 PMCID: PMC9696602 DOI: 10.3390/ijms232213678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
The underlying causes of Parkinson's disease are complex, and besides recent advances in elucidating relevant disease mechanisms, no disease-modifying treatments are currently available. One proposed pathophysiological hallmark is mitochondrial dysfunction, and a plethora of evidence points toward the interconnected nature of mitochondria in neuronal homeostasis. This also extends to iron and neuromelanin metabolism, two biochemical processes highly relevant to individual disease manifestation and progression. Modern neuroimaging methods help to gain in vivo insights into these intertwined pathways and may pave the road to individualized medicine in this debilitating disorder. In this narrative review, we will highlight the biological rationale for studying these pathways, how distinct neuroimaging methods can be applied in patients, their respective limitations, and which challenges need to be overcome for successful implementation in clinical studies.
Collapse
Affiliation(s)
- Benjamin Matis Pizarro-Galleguillos
- Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-500-43420; Fax: +49-451-500-43424
| | - Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
5
|
Cao F, Wang M, Han S, Fan S, Guo Y, Yang Y, Luo Y, Guo J, Kang Y. Quantitative Distribution of Cerebral Venous Oxygen Saturation and Its Prognostic Value in Patients with Acute Ischemic Stroke. Brain Sci 2022; 12:brainsci12081109. [PMID: 36009171 PMCID: PMC9406002 DOI: 10.3390/brainsci12081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the quantitative distribution of cerebral venous oxygen saturation (SvO2) based on quantitative sensitivity mapping (QSM) and determined its prognostic value in patients with acute ischemic stroke (AIS). A retrospective study was conducted on 39 hospitalized patients. Reconstructed QSM was used to calculate the cerebral SvO2 of each region of interest (ROI) in the ischemic hemisphere. The intraclass correlation coefficient (ICC) and Bland−Altman analysis were conducted to define the best resolution of the distribution map. The correlation between the cerebral SvO2 in hypoxic regions (SvO2ROI < 0.7) and clinical scores was obtained by Spearman and power analysis. The associations between cerebral SvO2 and unfavorable prognosis were analyzed using multivariate logistic regression. Excellent agreement was found between the cerebral SvO2 in hypoxic regions with a resolution of 7.18 × 7.18 × 1.6 mm3 and asymmetrically prominent cortical veins regions (ICC: 0.879 (admission), ICC: 0.906 (discharge)). The cerebral SvO2 was significantly negative with clinical scores (all |r| > 0.3). The cerebral SvO2 and its changes at discharge were significantly associated with an unfavorable prognosis (OR: 0.812 and 0.866). Therefore, the cerebral SvO2 in hypoxic regions measured by the quantitative distribution map can be used as an indicator for evaluating the early prognosis of AIS.
Collapse
Affiliation(s)
- Fengqiu Cao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Mingming Wang
- Department of Radiology, School of Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai 200434, China
| | - Shanhua Han
- Department of Radiology, School of Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai 200434, China
| | - Shengyu Fan
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yingwei Guo
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yingjian Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yu Luo
- Department of Radiology, School of Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai 200434, China
- Correspondence: (Y.L.); (J.G.); (Y.K.); Tel.: +86-13-9404-72926 (Y.K.)
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY 10027, USA
- Correspondence: (Y.L.); (J.G.); (Y.K.); Tel.: +86-13-9404-72926 (Y.K.)
| | - Yan Kang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- Engineering Research Centre of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang 110169, China
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
- Correspondence: (Y.L.); (J.G.); (Y.K.); Tel.: +86-13-9404-72926 (Y.K.)
| |
Collapse
|
6
|
Prasuhn J, Kunert L, Brüggemann N. Neuroimaging Methods to Map In Vivo Changes of OXPHOS and Oxidative Stress in Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms23137263. [PMID: 35806267 PMCID: PMC9266616 DOI: 10.3390/ijms23137263] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is a pathophysiological hallmark of most neurodegenerative diseases. Several clinical trials targeting mitochondrial dysfunction have been performed with conflicting results. Reliable biomarkers of mitochondrial dysfunction in vivo are thus needed to optimize future clinical trial designs. This narrative review highlights various neuroimaging methods to probe mitochondrial dysfunction. We provide a general overview of the current biological understanding of mitochondrial dysfunction in degenerative brain disorders and how distinct neuroimaging methods can be employed to map disease-related changes. The reviewed methodological spectrum includes positron emission tomography, magnetic resonance, magnetic resonance spectroscopy, and near-infrared spectroscopy imaging, and how these methods can be applied to study alterations in oxidative phosphorylation and oxidative stress. We highlight the advantages and shortcomings of the different neuroimaging methods and discuss the necessary steps to use these for future research. This review stresses the importance of neuroimaging methods to gain deepened insights into mitochondrial dysfunction in vivo, its role as a critical disease mechanism in neurodegenerative diseases, the applicability for patient stratification in interventional trials, and the quantification of individual treatment responses. The in vivo assessment of mitochondrial dysfunction is a crucial prerequisite for providing individualized treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (L.K.)
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, 23538 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (L.K.)
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, 23538 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (L.K.)
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, 23538 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-500-43420; Fax: +49-451-500-43424
| |
Collapse
|
7
|
Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magn Reson Med 2022; 88:575-600. [PMID: 35510696 PMCID: PMC9233013 DOI: 10.1002/mrm.29272] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
The human brain constitutes 2% of the body's total mass but uses 20% of the oxygen. The rate of the brain's oxygen utilization can be derived from a knowledge of cerebral blood flow and the oxygen extraction fraction (OEF). Therefore, OEF is a key physiological parameter of the brain's function and metabolism. OEF has been suggested to be a useful biomarker in a number of brain diseases. With recent advances in MRI techniques, several MRI-based methods have been developed to measure OEF in the human brain. These MRI OEF techniques are based on the T2 of blood, the blood signal phase, the magnetic susceptibility of blood-containing voxels, the effect of deoxyhemoglobin on signal behavior in extravascular tissue, and the calibration of the BOLD signal using gas inhalation. Compared to 15 O PET, which is considered the "gold standard" for OEF measurement, MRI-based techniques are non-invasive, radiation-free, and are more widely available. This article provides a review of these emerging MRI-based OEF techniques. We first briefly introduce the role of OEF in brain oxygen homeostasis. We then review the methodological aspects of different categories of MRI OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. The strengths and limitations of the techniques are discussed. Finally, we review key applications of these techniques in physiological and pathological conditions.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Rascle L, Bani Sadr A, Amaz C, Mewton N, Buisson M, Hermier M, Ong E, Fontaine J, Derex L, Berthezène Y, Eker OF, Cho TH, Nighoghossian N, Mechtouff L. Does the Brush-Sign Reflect Collateral Status and DWI-ASPECTS in Large Vessel Occlusion? Front Neurol 2022; 13:828256. [PMID: 35309551 PMCID: PMC8924293 DOI: 10.3389/fneur.2022.828256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction The relevance of the brush-sign remained poorly documented in large vessel occlusion (LVO). We aimed to assess the relationship between the brush-sign and collateral status and its potential impact on baseline diffusion-weighted imaging–Alberta Stroke Program Early Computed Tomography Score (DWI-ASPECTS) in acute ischemic stroke (AIS) patients eligible to mechanical thrombectomy (MT). Methods Consecutive patients admitted in the Lyon Stroke Center with anterior circulation AIS due to intracranial internal carotid artery (ICA) and/or M1 or M2 segment of the middle cerebral artery (MCA) occlusion eligible for MT were included. The brush-sign was assessed on T2-gradient-echo MRI. Collateral status was assessed on digital subtraction angiography according to the American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology (ASITN/SIR) score. Results In this study, 504 patients were included, among which 171 (33.9%) patients had a brush-sign. Patients with a brush-sign more frequently had a poor collateral status [72 (42.1%) vs. 103 (30.9%); p = 0.017]. In univariable analysis, a DWI-ASPECTS < 7 was associated with a brush sign. Following multivariable analysis, the brush-sign no longer affected DWI-ASPECTS < 7 while the latter remained associated with younger age [odds ratio (OR) 0.97, 95% CI.96–0.99], male sex (OR 1.79, 95% CI 1.08–2.99), a higher National Institutes of Health Stroke Scale (NIHSS) score (OR 1.16, 95% CI 1.1–1.21), a poor collateral status (OR 9.35, 95% CI 5.59-16.02), MCA segment (OR 2.54, 95% CI 1.25–5.38), and intracranial ICA (OR 3.01, 95% CI 1.16–8) occlusion. Conclusions and Relevance The brush-sign may be a marker of poor collateral status but did not independently predict a lower DWI-ASPECTS. Clinical Trial Registration ClinicalTrials.gov, identifier: NCT04620642.
Collapse
Affiliation(s)
- Lucie Rascle
- Department of Stroke, Hospices Civils de Lyon, Lyon, France
| | | | - Camille Amaz
- Clinical Investigation Center, Hospices Civils de Lyon, INSERM, Lyon, France
| | - Nathan Mewton
- Clinical Investigation Center, Hospices Civils de Lyon, INSERM, Lyon, France
| | - Marielle Buisson
- Clinical Investigation Center, Hospices Civils de Lyon, INSERM, Lyon, France
| | - Marc Hermier
- Department of Neuroradiology, Hospices Civils de Lyon, Lyon, France
| | - Elodie Ong
- Department of Stroke, Hospices Civils de Lyon, Lyon, France
- CarMeN Laboratory, INSERM, University Lyon 1, Lyon, France
| | - Julia Fontaine
- Department of Stroke, Hospices Civils de Lyon, Lyon, France
| | - Laurent Derex
- Department of Stroke, Hospices Civils de Lyon, Lyon, France
| | - Yves Berthezène
- Department of Neuroradiology, Hospices Civils de Lyon, Lyon, France
| | - Omer Faruk Eker
- Department of Neuroradiology, Hospices Civils de Lyon, Lyon, France
| | - Tae-Hee Cho
- Department of Stroke, Hospices Civils de Lyon, Lyon, France
- CarMeN Laboratory, INSERM, University Lyon 1, Lyon, France
| | - Norbert Nighoghossian
- Department of Stroke, Hospices Civils de Lyon, Lyon, France
- CarMeN Laboratory, INSERM, University Lyon 1, Lyon, France
| | - Laura Mechtouff
- Department of Stroke, Hospices Civils de Lyon, Lyon, France
- CarMeN Laboratory, INSERM, University Lyon 1, Lyon, France
- *Correspondence: Laura Mechtouff
| |
Collapse
|
9
|
Fan JL, Nogueira RC, Brassard P, Rickards CA, Page M, Nasr N, Tzeng YC. Integrative physiological assessment of cerebral hemodynamics and metabolism in acute ischemic stroke. J Cereb Blood Flow Metab 2022; 42:454-470. [PMID: 34304623 PMCID: PMC8985442 DOI: 10.1177/0271678x211033732] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Restoring perfusion to ischemic tissue is the primary goal of acute ischemic stroke care, yet only a small portion of patients receive reperfusion treatment. Since blood pressure (BP) is an important determinant of cerebral perfusion, effective BP management could facilitate reperfusion. But how BP should be managed in very early phase of ischemic stroke remains a contentious issue, due to the lack of clear evidence. Given the complex relationship between BP and cerebral blood flow (CBF)-termed cerebral autoregulation (CA)-bedside monitoring of cerebral perfusion and oxygenation could help guide BP management, thereby improve stroke patient outcome. The aim of INFOMATAS is to 'identify novel therapeutic targets for treatment and management in acute ischemic stroke'. In this review, we identify novel physiological parameters which could be used to guide BP management in acute stroke, and explore methodologies for monitoring them at the bedside. We outline the challenges in translating these potential prognostic markers into clinical use.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Matthew Page
- Department of Radiology, Wellington Regional Hospital, Wellington, New Zealand
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
10
|
Uchida Y, Kan H, Inoue H, Oomura M, Shibata H, Kano Y, Kuno T, Usami T, Takada K, Yamada K, Kudo K, Matsukawa N. Penumbra Detection With Oxygen Extraction Fraction Using Magnetic Susceptibility in Patients With Acute Ischemic Stroke. Front Neurol 2022; 13:752450. [PMID: 35222239 PMCID: PMC8873150 DOI: 10.3389/fneur.2022.752450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Background The oxygen extraction fraction (OEF) has been applied to identify ischemic penumbral tissue, but is difficult to use in an urgent care setting. This study aimed to investigate whether an OEF map generated via magnetic resonance quantitative susceptibility mapping (QSM) could help identify the ischemic penumbra in patients with acute ischemic stroke. Materials and Methods This prospective imaging study included 21 patients with large anterior circulation vessel occlusion who were admitted <24 h after stroke onset and 21 age-matched healthy controls. We identified the ischemic penumbra as the region with a Tmax of >6 s during dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) and calculated the perfusion-core mismatch ratio between the ischemic penumbra and infarct core volumes. The OEF values were measured based on magnetic susceptibility differences between the venous structures and brain tissues using rapid QSM acquisition. Volumes with increased OEF values were compared to the ischemic penumbra volumes using an anatomical template. Results Eleven patients had a perfusion-core mismatch ratio of ≥1.8, and reperfusion therapy was recommended. In these patients, the volumes with increased OEF values of >51.5%, which was defined using the anterior circulation territory OEF values from the 21 healthy controls, were positively correlated with the ischemic penumbra volumes (r = 0.636, 95% CI: 0.059 to 0.895, P = 0.035) and inversely correlated with the 30-day change in the National Institutes of Health Stroke Scale scores (r = −0.624, 95% CI: −0.891 to −0.039, P = 0.041). Conclusion Tissue volumes with increased OEF values could predict ischemic penumbra volumes based on DSC-MRI, highlighting the potential of the QSM-derived OEF map as a penumbra biomarker to guide treatment selection in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Yuto Uchida
- Department of Neurology, Nagoya City University, Nagoya, Japan
- Department of Neurology, Toyokawa City Hospital, Aichi, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University, Nagoya, Japan
| | - Hiroyasu Inoue
- Department of Neurology, Nagoya City University, Nagoya, Japan
| | - Masahiro Oomura
- Department of Neurology, Nagoya City University, Nagoya, Japan
| | - Haruto Shibata
- Department of Neurology, Nagoya City East Medical Center, Nagoya, Japan
| | - Yuya Kano
- Department of Neurology, Nagoya City East Medical Center, Nagoya, Japan
| | - Tomoyuki Kuno
- Department of Neurology, Toyokawa City Hospital, Aichi, Japan
| | - Toshihiko Usami
- Department of Neurology, Toyokawa City Hospital, Aichi, Japan
| | - Koji Takada
- Department of Neurology, Toyokawa City Hospital, Aichi, Japan
| | - Kentaro Yamada
- Department of Neurology, Nagoya City East Medical Center, Nagoya, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Hokkaido University, Hokkaido, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Hokkaido, Japan
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University, Nagoya, Japan
- *Correspondence: Noriyuki Matsukawa
| |
Collapse
|
11
|
Lundberg A, Lind E, Olsson H, Helms G, Knutsson L, Wirestam R. Comparison of MRI methods for measuring whole‐brain oxygen extraction fraction under different geometric conditions at 7T. J Neuroimaging 2022; 32:442-458. [PMID: 35128747 PMCID: PMC9305937 DOI: 10.1111/jon.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Anna Lundberg
- Department of Medical Radiation Physics Lund University Lund Sweden
| | - Emelie Lind
- Department of Medical Radiation Physics Lund University Lund Sweden
| | - Hampus Olsson
- Department of Medical Radiation Physics Lund University Lund Sweden
| | - Gunther Helms
- Department of Medical Radiation Physics Lund University Lund Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics Lund University Lund Sweden
- Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland United States
| | - Ronnie Wirestam
- Department of Medical Radiation Physics Lund University Lund Sweden
| |
Collapse
|
12
|
Lu J, Mei Q, Hou X, Manaenko A, Zhou L, Liebeskind DS, Zhang JH, Li Y, Hu Q. Imaging Acute Stroke: From One-Size-Fit-All to Biomarkers. Front Neurol 2021; 12:697779. [PMID: 34630278 PMCID: PMC8497192 DOI: 10.3389/fneur.2021.697779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/30/2021] [Indexed: 12/27/2022] Open
Abstract
In acute stroke management, time window has been rigidly used as a guide for decades and the reperfusion treatment is only available in the first few limited hours. Recently, imaging-based selection of patients has successfully expanded the treatment window out to 16 and even 24 h in the DEFUSE 3 and DAWN trials, respectively. Recent guidelines recommend the use of imaging techniques to guide therapeutic decision-making and expanded eligibility in acute ischemic stroke. A tissue window is proposed to replace the time window and serve as the surrogate marker for potentially salvageable tissue. This article reviews the evolution of time window, addresses the advantage of a tissue window in precision medicine for ischemic stroke, and discusses both the established and emerging techniques of neuroimaging and their roles in defining a tissue window. We also emphasize the metabolic imaging and molecular imaging of brain pathophysiology, and highlight its potential in patient selection and treatment response prediction in ischemic stroke.
Collapse
Affiliation(s)
- Jianfei Lu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Xianhua Hou
- Department of Neurology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Anatol Manaenko
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Zhou
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - David S. Liebeskind
- Neurovascular Imaging Research Core and University of California Los Angeles Stroke Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - John H. Zhang
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Hu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Mechtouff L, Rascle L, Crespy V, Canet-Soulas E, Nighoghossian N, Millon A. A narrative review of the pathophysiology of ischemic stroke in carotid plaques: a distinction versus a compromise between hemodynamic and embolic mechanism. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1208. [PMID: 34430649 PMCID: PMC8350662 DOI: 10.21037/atm-20-7490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
Atherosclerotic carotid artery stenosis causes about 10–20% of all ischemic strokes through two main mechanisms: hemodynamic impairment in case of significant stenosis and thromboembolism from an atherosclerotic plaque regardless of the degree of stenosis. The latter is the most frequent mechanism and appear to result from embolization from a vulnerable atherosclerotic plaque or acute occlusion of the carotid artery and propagation of thrombus distally. Downstream infarcts may occur in a territory of major cerebral artery or at the most distal areas between two territories of major cerebral arteries, the so-called watershed (WS), or border zone area. Although WS infarcts, especially deep WS infarct, were historically thought to be due to hemodynamic compromise, the role of microembolism has also been documented, both mechanisms may act synergistically to promote WS infarcts. Routine and more advanced imaging techniques may provide information on the underlying mechanism involved in ipsilateral ischemic stroke. A better understanding of ischemic stroke pathogenesis in carotid stenosis may limit the use of routine non-selective shunt, whose benefit-risk balance is debated, to patients with hemodynamic impairment. After reviewing existing evidence underpinning the contribution of the two mechanisms in downstream ischemic stroke and the various imaging techniques available to investigate them, we will focus on the pathogenesis of WS infarcts that remains debated.
Collapse
Affiliation(s)
- Laura Mechtouff
- Stroke Center, Hospices Civils de Lyon, Lyon, France.,INSERM U1060, CarMeN Laboratory, University Claude Bernard Lyon 1, Lyon, France
| | - Lucie Rascle
- Stroke Center, Hospices Civils de Lyon, Lyon, France
| | - Valentin Crespy
- Vascular Surgery Department, Hospices Civils de Lyon, Lyon, France
| | | | - Norbert Nighoghossian
- Stroke Center, Hospices Civils de Lyon, Lyon, France.,INSERM U1060, CarMeN Laboratory, University Claude Bernard Lyon 1, Lyon, France
| | - Antoine Millon
- Vascular Surgery Department, Hospices Civils de Lyon, Lyon, France.,LIBM EA7424, Team Atherosclerosis, Thrombosis and Physical Activity, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
14
|
Probst J, Rohner M, Zahn M, Piccirelli M, Pangalu A, Luft A, Deistung A, Klohs J, Wegener S. Quantitative susceptibility mapping in ischemic stroke patients after successful recanalization. Sci Rep 2021; 11:16038. [PMID: 34362957 PMCID: PMC8346586 DOI: 10.1038/s41598-021-95265-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/22/2021] [Indexed: 11/09/2022] Open
Abstract
Quantitative susceptibility mapping (QSM) is a novel processing method for gradient-echo magnetic resonance imaging (MRI). Higher magnetic susceptibility in cortical veins have been observed on susceptibility maps in the ischemic hemisphere of stroke patients, indicating an increased oxygen extraction fraction (OEF). Our goal was to investigate susceptibility in veins of stroke patients after successful recanalization in order to analyze the value of QSM in predicting tissue prognosis and clinical outcome. We analyzed MR images of 23 patients with stroke due to unilateral middle cerebral artery (MCA)-M1/M2 occlusion acquired 24–72 h after successful thrombectomy. The susceptibilities of veins were obtained from QSM and compared between the stroke territory, the ipsilateral non-ischemic MCA territory and the contralateral MCA territory. As outcome variables, early infarct size and functional disability (modified Rankin Scale, mRS) after 3–5 months was used. The median susceptibility value of cortical veins in the ischemic core was 41% lower compared to the ipsilateral non-ischemic MCA territory and 38% lower than on the contralateral MCA territory. Strikingly, in none of the patients prominent vessels with high susceptibility signal were found after recanalization. Venous susceptibility values within the infarct did not correlate with infarct volume or functional disability after 3–5 months. Low venous susceptibility within the infarct core after successful recanalization of the occluded vessel likely indicates poor oxygen extraction arising from tissue damage. We did not identify peri-infarct tissue with increased susceptibility values as potential surrogate of former penumbral areas. We found no correlation of QSM parameters with infarct size or outcome.
Collapse
Affiliation(s)
- Jasmin Probst
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Marco Rohner
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Malin Zahn
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Athina Pangalu
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Luft
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.,Cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle (Saale), Halle, Germany
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Susanne Wegener
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
| |
Collapse
|
15
|
Baron JC. The core/penumbra model: implications for acute stroke treatment and patient selection in 2021. Eur J Neurol 2021; 28:2794-2803. [PMID: 33991152 DOI: 10.1111/ene.14916] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022]
Abstract
Despite major advances in prevention, ischaemic stroke remains one of the leading causes of death and disability worldwide. After centuries of nihilism and decades of failed neuroprotection trials, the discovery, initially in non-human primates and subsequently in man, that ischaemic brain tissue termed the ischaemic penumbra can be salvaged from infarction up to and perhaps beyond 24 h after stroke onset has underpinned the development of highly efficient reperfusion therapies, namely intravenous thrombolysis and endovascular thrombectomy, which have revolutionized the management of the acute stroke patient. Animal experiments have documented that how long the penumbra can survive depends not only on time elapsed since arterial occlusion ('time is brain'), but also on how severely perfusion is reduced. Novel imaging techniques allowing the penumbra and the already irreversibly damaged core in the individual subject to be mapped have documented that the time course of core growth at the expense of the penumbra widely differs from patient to patient, and hence that individual physiology should be considered in addition to time since stroke onset for decision-making. This concept has been implemented to optimize patient selection in pivotal trials of reperfusion therapies beyond 3 h after stroke onset and is now routinely applied in clinical practice, using computed tomography or magnetic resonance imaging. The notion that, in order to be both efficient and harmless, treatment should be tailored to each patient's physiological characteristics represents a radical move towards precision medicine.
Collapse
Affiliation(s)
- Jean-Claude Baron
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, INSERM U1266, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
16
|
Narciso L, Ssali T, Liu L, Biernaski H, Butler J, Morrison L, Hadway J, Corsaut J, Hicks JW, Langham MC, Wehrli FW, Iida H, St Lawrence K. A Noninvasive Method for Quantifying Cerebral Metabolic Rate of Oxygen by Hybrid PET/MRI: Validation in a Porcine Model. J Nucl Med 2021; 62:jnumed.120.260521. [PMID: 33741647 PMCID: PMC8612192 DOI: 10.2967/jnumed.120.260521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
The gold standard for imaging the cerebral metabolic rate of oxygen (CMRO2) is positron emission tomography (PET); however, it is an invasive and complex procedure that also requires correction for recirculating 15O-H2O and the blood-borne activity. We propose a noninvasive reference-based hybrid PET/magnetic resonance imaging (MRI) method that uses functional MRI techniques to calibrate 15O-O2-PET data. Here, PET/MR imaging of oxidative metabolism (PMROx) was validated in an animal model by comparison to PET-alone measurements. Additionally, we investigated if the MRI-perfusion technique arterial spin labelling (ASL) could be used to further simplify PMROx by replacing 15O-H2O-PET, and if the PMROx was sensitive to anesthetics-induced changes in metabolism. Methods: 15O-H2O and 15O-O2 PET data were acquired in a hybrid PET/MR scanner (3 T Siemens Biograph mMR), together with simultaneous functional MRI (OxFlow and ASL), from juvenile pigs (n = 9). Animals were anesthetized with 3% isoflurane and 6 mL/kg/h propofol for the validation experiments and arterial sampling was performed for PET-alone measurements. PMROx estimates were obtained using whole-brain (WB) CMRO2 from OxFlow and local cerebral blood flow (CBF) from either noninvasive 15O-H2O-PET or ASL (PMROxASL). Changes in metabolism were investigated by increasing the propofol infusion to 20 mL/kg/h. Results: Good agreement and correlation were observed between regional CMRO2 measurements from PMROx and PET-alone. No significant differences were found between OxFlow and PET-only measurements of WB oxygen extraction fraction (0.30 ± 0.09 and 0.31 ± 0.09) and CBF (54.1 ± 16.7 and 56.6 ± 21.0 mL/100 g/min), or between PMROx and PET-only CMRO2 estimates (1.89 ± 0.16 and 1.81 ± 0.10 mLO2/100 g/min). Moreover, PMROx and PMROxASL were sensitive to propofol-induced reduction in CMRO2 Conclusion: This study provides initial validation of a noninvasive PET/MRI technique that circumvents many of the complexities of PET CMRO2 imaging. PMROx does not require arterial sampling and has the potential to reduce PET imaging to 15O-O2 only; however, future validation involving human participants are required.
Collapse
Affiliation(s)
- Lucas Narciso
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Tracy Ssali
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Linshan Liu
- Lawson Health Research Institute, London, Ontario, Canada
| | | | - John Butler
- Lawson Health Research Institute, London, Ontario, Canada
| | - Laura Morrison
- Lawson Health Research Institute, London, Ontario, Canada
| | | | | | - Justin W. Hicks
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Michael C. Langham
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Felix W. Wehrli
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hidehiro Iida
- University of Turku and Turku PET Centre, Turku, Finland; and
- National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Keith St Lawrence
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
17
|
Narciso L, Ssali T, Iida H, St Lawrence K. A non-invasive reference-based method for imaging the cerebral metabolic rate of oxygen by PET/MR: theory and error analysis. Phys Med Biol 2021; 66:065009. [PMID: 33596555 DOI: 10.1088/1361-6560/abe737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Positron emission tomography (PET) remains the gold standard for quantitative imaging of the cerebral metabolic rate of oxygen (CMRO2); however, it is an invasive and complex procedure that requires accounting for recirculating [15O]H2O (RW) and the cerebral blood volume (CBV). This study presents a non-invasive reference-based technique for imaging CMRO2 that was developed for PET/magnetic resonance imaging (MRI) with the goal of simplifying the PET procedure while maintaining its ability to quantify metabolism. The approach is to use whole-brain (WB) measurements of oxygen extraction fraction (OEF) and cerebral blood flow (CBF) to calibrate [15O]O2-PET data, thereby avoiding the need for invasive arterial sampling. Here we present the theoretical framework, along with error analyses, sensitivity to PET noise and inaccuracies in input parameters, and initial assessment on PET data acquired from healthy participants. Simulations showed that neglecting RW and CBV corrections caused errors in CMRO2 of less than ±10% for changes in regional OEF of ±25%. These predictions were supported by applying the reference-based approach to PET data, which resulted in remarkably similar CMRO2 images to those generated by analyzing the same data using a modeling approach that incorporated the arterial input functions and corrected for CBV contributions. Significant correlations were observed between regional CMRO2 values from the two techniques (slope = 1.00 ± 0.04, R 2 > 0.98) with no significant differences found for integration times of 3 and 5 min. In summary, results demonstrate the feasibility of producing quantitative CMRO2 images by PET/MRI without the need for invasive blood sampling.
Collapse
Affiliation(s)
- Lucas Narciso
- Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Tracy Ssali
- Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Hidehiro Iida
- University of Turku and Turku PET Centre, Turku, Finland.,National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Keith St Lawrence
- Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
18
|
Little PV, Arnberg F, Jussing E, Lu L, Ingemann Jensen A, Mitsios N, Mulder J, Tran TA, Holmin S. The cellular basis of increased PET hypoxia tracer uptake in focal cerebral ischemia with comparison between [ 18F]FMISO and [ 64Cu]CuATSM. J Cereb Blood Flow Metab 2021; 41:617-629. [PMID: 32423333 PMCID: PMC7922752 DOI: 10.1177/0271678x20923857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/12/2020] [Indexed: 11/16/2022]
Abstract
PET hypoxia imaging can assess tissue viability in acute ischemic stroke (AIS). [18F]FMISO is an established tracer but requires substantial accumulation time, limiting its use in hyperacute AIS. [64Cu]CuATSM requires less accumulation time and has shown promise as a hypoxia tracer. We compared these tracers in a M2-occlusion model (M2CAO) with preserved collateral blood flow. Rats underwent M2CAO and [18F]FMISO (n = 12) or [64Cu]CuATSM (n = 6) examinations. [64Cu]CuATSM animals were also examined with MRI. Pimonidazole was used as a surrogate for [18F]FMISO in an immunofluorescence analysis employed to profile levels of hypoxia in neurons (NeuN) and astrocytes (GFAP). There was increased [18F]FMISO uptake in the M2CAO cortex. No increase in [64Cu]CuATSM activity was found. The pimonidazole intensity of neurons and astrocytes was increased in hypoxic regions. The pimonidazole intensity ratio was higher in neurons than in astrocytes. In the majority of animals, immunofluorescence revealed a loss of astrocytes within the core of regions with increased pimonidazole uptake. We conclude that [18F]FMISO is superior to [64Cu]CuATSM in detecting hypoxia in AIS, consistent with an earlier study. [18F]FMISO may provide efficient diagnostic imaging beyond the hyperacute phase. Results do not provide encouragement for the use of [64Cu]CuATSM in experimental AIS.
Collapse
Affiliation(s)
- Philip V Little
- The Department of Clinical Neuroscience, Karolinska Institutet,
Stockholm Sweden
- The Department of Neuroradiology, BioClinicum, Karolinska
University Hospital, Stockholm, Sweden
| | - Fabian Arnberg
- The Department of Clinical Neuroscience, Karolinska Institutet,
Stockholm Sweden
- The Department of Neuroradiology, BioClinicum, Karolinska
University Hospital, Stockholm, Sweden
| | - Emma Jussing
- The Department of Clinical Neuroscience, Karolinska Institutet,
Stockholm Sweden
- The Department of Radiopharmacy, Karolinska University Hospital,
Stockholm, Sweden
- The Department of Oncology and Pathology, Karolinska Institutet,
Stockholm Sweden
| | - Li Lu
- The Department of Clinical Neuroscience, Karolinska Institutet,
Stockholm Sweden
- The Department of Radiopharmacy, Karolinska University Hospital,
Stockholm, Sweden
- The Department of Oncology and Pathology, Karolinska Institutet,
Stockholm Sweden
| | | | - Nicholas Mitsios
- The Department of Neuroscience, Karolinska Institutet,
Stockholm, Sweden
| | - Jan Mulder
- The Department of Neuroscience, Karolinska Institutet,
Stockholm, Sweden
| | - Thuy A Tran
- The Department of Clinical Neuroscience, Karolinska Institutet,
Stockholm Sweden
- The Department of Radiopharmacy, Karolinska University Hospital,
Stockholm, Sweden
- The Department of Oncology and Pathology, Karolinska Institutet,
Stockholm Sweden
| | - Staffan Holmin
- The Department of Clinical Neuroscience, Karolinska Institutet,
Stockholm Sweden
- The Department of Neuroradiology, BioClinicum, Karolinska
University Hospital, Stockholm, Sweden
| |
Collapse
|
19
|
Little PV, Kraft SE, Chireh A, Damberg P, Holmin S. Oxygen metabolism MRI - A comparison with perfusion imaging in a rat model of MCA branch occlusion and reperfusion. J Cereb Blood Flow Metab 2020; 40:2315-2327. [PMID: 31842668 PMCID: PMC7585917 DOI: 10.1177/0271678x19892271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 11/17/2022]
Abstract
The penumbra is sustained by an increased extraction of oxygen (OEF) from blood to brain tissue. Metabolic imaging may improve penumbra specificity when examining stroke patients with wake-up stroke and a long time between admission and symptom onset. We used MRI to examine OEF, and compared the volume of regions with elevated OEF to the volume of regions with perfusion deficit in a M2 occlusion model (M2CAO) with preserved collateral blood flow. OEF was calculated from BOLD MRI examining tissue R2', with ASL perfusion imaging employed to determine cerebral blood flows (CBF) and volumes. Diffusion imaging was used to identify the ischemic core (IC). Examinations were performed during and after transient M2CAO in rats. The IC-OEF mismatch was significantly smaller than the IC-CBF mismatch during M2CAO. The penumbra OEF was significantly increased during M2CAO, and decreased significantly after reperfusion. The IC-OEF mismatch may provide increased penumbra specificity compared to IC-CBF mismatch regimens. Results strongly indicate the potential of metabolic MRI for thrombectomy patient selection in cases with a long time from symptom onset to admission. Results demonstrate the effectiveness of reperfusion in alleviating metabolic disturbances in ischemic regions, emphasizing fast treatment to achieve significant neurological recovery in stroke patients.
Collapse
Affiliation(s)
- Philip V Little
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra E Kraft
- Karolinska Experimental Research and Imaging Center (KERIC), Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Arvin Chireh
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Damberg
- Karolinska Experimental Research and Imaging Center (KERIC), Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Cockburn N, Corsaut J, Kovacs MS, St Lawrence K, Hicks JW. Validation protocol for current good manufacturing practices production of [15O]water for hybrid PET/MR studies. Nucl Med Commun 2020; 41:1100-1105. [PMID: 32694283 DOI: 10.1097/mnm.0000000000001249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Oxygen-15 (O; t½ = 122.4 s) has been used for nuclear imaging experiments since the beginning of the field. With the advent of simultaneous hybrid PET/MR technology, [O]water has seen a resurgence and remains the gold standard method for quantitative blood flow studies. The short half-life presents a nontrivial challenge to applying current good manufacturing practices production methods to maintain patient safety. METHODS A two-vial production method was devised to ensure adequate mixing of [O]water vapour into buffered isotonic saline. For production validation, six batches of [O]water were prepared: sterility, quality control testing and four patient doses. The final dose also underwent quality tested. Routine quality control testing included the following: radiochemical identity and purity, radionuclidic identity and purity, appearance, pH, pyrogenicity, and filter integrity. Sterility was retrospectively confirmed. For validation, breakthrough Pt concentration was also measured. RESULTS Consistent yields of 10-12 GBq (270-325 mCi) were obtained 3 min after bombardment. Overall, 26 [O]water batches underwent quality control testing under this protocol and all met or exceeded release specifications for clinical use. CONCLUSION The multiple batch protocol proved to be a safe and effective means for producing [O]water. Furthermore, this protocol could be readily adapted by any facility attempting to produce [O]water for clinical studies. Compared with previous attempts at our site, the protocol outlined here was more consistent and reliable, improved production workflow and led to more available radioactivity for participant injection and QC testing.
Collapse
Affiliation(s)
| | | | - Michael S Kovacs
- Lawson Health Research Institute.,Department of Medical Biophysics.,Department of Medical Imaging, Western University, London, Ontario, Canada
| | | | - Justin W Hicks
- Lawson Health Research Institute.,Department of Medical Biophysics
| |
Collapse
|
21
|
Fan AP, An H, Moradi F, Rosenberg J, Ishii Y, Nariai T, Okazawa H, Zaharchuk G. Quantification of brain oxygen extraction and metabolism with [ 15O]-gas PET: A technical review in the era of PET/MRI. Neuroimage 2020; 220:117136. [PMID: 32634594 PMCID: PMC7592419 DOI: 10.1016/j.neuroimage.2020.117136] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022] Open
Abstract
Oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2) are key cerebral physiological parameters to identify at-risk cerebrovascular patients and understand brain health and function. PET imaging with [15O]-oxygen tracers, either through continuous or bolus inhalation, provides non-invasive assessment of OEF and CMRO2. Numerous tracer delivery, PET acquisition, and kinetic modeling approaches have been adopted to map brain oxygenation. The purpose of this technical review is to critically evaluate different methods for [15O]-gas PET and its impact on the accuracy and reproducibility of OEF and CMRO2 measurements. We perform a meta-analysis of brain oxygenation PET studies in healthy volunteers and compare between continuous and bolus inhalation techniques. We also describe OEF metrics that have been used to detect hemodynamic impairment in cerebrovascular disease. For these patients, advanced techniques to accelerate the PET scans and potential synthesis with MRI to avoid arterial blood sampling would facilitate broader use of [15O]-oxygen PET for brain physiological assessment.
Collapse
Affiliation(s)
- Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Biomedical Engineering and Department of Neurology, University of California Davis, Davis, CA, USA.
| | - Hongyu An
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Farshad Moradi
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | - Yosuke Ishii
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
22
|
Fan AP, Khalil AA, Fiebach JB, Zaharchuk G, Villringer A, Villringer K, Gauthier CJ. Elevated brain oxygen extraction fraction measured by MRI susceptibility relates to perfusion status in acute ischemic stroke. J Cereb Blood Flow Metab 2020; 40:539-551. [PMID: 30732551 PMCID: PMC7026852 DOI: 10.1177/0271678x19827944] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent clinical trials of new revascularization therapies in acute ischemic stroke have highlighted the importance of physiological imaging to identify optimal treatments for patients. Oxygen extraction fraction (OEF) is a hallmark of at-risk tissue in stroke, and can be quantified from the susceptibility effect of deoxyhemoglobin molecules in venous blood on MRI phase scans. We measured OEF within cerebral veins using advanced quantitative susceptibility mapping (QSM) MRI reconstructions in 20 acute stroke patients. Absolute OEF was elevated in the affected (29.3 ± 3.4%) versus the contralateral hemisphere (25.5 ± 3.1%) of patients with large diffusion-perfusion lesion mismatch (P = 0.032). In these patients, OEF negatively correlated with relative CBF measured by dynamic susceptibility contrast MRI (P = 0.004), suggesting compensation for reduced flow. Patients with perfusion-diffusion match or no hypo-perfusion showed less OEF difference between hemispheres. Nine patients received longitudinal assessment and showed OEF ratio (affected to contralateral) of 1.2 ± 0.1 at baseline that normalized (decreased) to 1.0 ± 0.1 at follow-up three days later (P = 0.03). Our feasibility study demonstrates that QSM MRI can non-invasively quantify OEF in stroke patients, relates to perfusion status, and is sensitive to OEF changes over time. Clinical trial registration: Longitudinal MRI examinations of patients with brain ischemia and blood brain barrier permeability; clinicaltrials.org :NCT02077582.
Collapse
Affiliation(s)
- Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Ahmed A Khalil
- Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Berlin School of Mind and Brain, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Jochen B Fiebach
- Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Berlin School of Mind and Brain, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Kersten Villringer
- Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, Canada.,Montreal Heart Institute, Montreal, Canada
| |
Collapse
|
23
|
Darwish EAF, Abdelhameed-El-Nouby M, Geneidy E. Mapping the ischemic penumbra and predicting stroke progression in acute ischemic stroke: the overlooked role of susceptibility weighted imaging. Insights Imaging 2020; 11:6. [PMID: 31930428 PMCID: PMC6955386 DOI: 10.1186/s13244-019-0810-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives Asymmetrically prominent veins (APVs) detected on susceptibility weighted imaging (SWI) in acute stroke patients are assumed to signify compromised cerebral perfusion. We aimed to explore the role of APVs in identifying the ischemic penumbra and predicting stroke progression in acute stroke patients Methods Twenty patients with a middle cerebral artery ischemic infarction presenting within 24 h of symptoms onset underwent SWI following our standard MR stroke protocol imaging sequences which included diffusion-weighted imaging (DWI). Follow-up (FUP) FLAIR images were obtained at least 5 days after the initial MRI study. The Alberta Stroke Program Early CT Score (ASPECTS) was used to determine the initial infarct size, extent of APVs and final infarct size on initial DWI, SWI, and FUP images respectively. For each patient, SWI was compared with DWI images to determine match/mismatch of their respective ASPECTS values and calculate mismatch scores, whereas acute DWI findings were compared with follow-up images to identify infarct growth (IG) and calculate infarction growth scores (IGS). Results IG occurred in 6/10 patients with a positive DWI-SWI mismatch and in none of the patients without a positive DWI-SWI mismatch. A positive DWI/SWI mismatch was significantly associated with IG (χ2 = 8.57, p = 0.0138, Cramer’s V = 0.65). A significant inverse correlation was found between SWI ASPECTS and IGS (rs = − 0.702, p = 0.001). DWI-SWI mismatch scores were strongly correlated with IGS. (rs = 0.788, p = 0.000) Conclusion A positive DWI-SWI mismatch is an indicator of the ischemic penumbra and a predictor of infarct expansion if left untreated.
Collapse
Affiliation(s)
- Eman A F Darwish
- Department of Radiology, Faculty of Medicine, Ain Shams University, Abbassiya, Cairo, 11566, Egypt.
| | | | - Eman Geneidy
- Department of Radiology, Faculty of Medicine, Ain Shams University, Abbassiya, Cairo, 11566, Egypt
| |
Collapse
|
24
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Increased volumes of mildly elevated capillary transit time heterogeneity positively predict favorable outcome and negatively predict intracranial hemorrhage in acute ischemic stroke with large vessel occlusion. Eur Radiol 2019; 29:3523-3532. [DOI: 10.1007/s00330-019-06064-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/05/2019] [Accepted: 02/04/2019] [Indexed: 01/11/2023]
|
26
|
Kim P, Langheinrich K, Cristiano B, Grigsby P, Oyoyo U, Kido D, Paul Jacobson J. Low thalamostriate venous quantitative susceptibility measurements correlate with higher presenting NIH stroke scale score in emergent large vessel occlusion stroke. J Int Med Res 2019; 48:300060519832462. [PMID: 30859887 PMCID: PMC7140206 DOI: 10.1177/0300060519832462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Objective Hyperacute stroke affects various patient subgroups who may benefit from
different management strategies. Magnetic resonance imaging (MRI)
quantitative susceptibility mapping (QSM) is a recent MRI technique for
measuring deoxyhemoglobin levels. The results of QSM thus have the potential
to act as a quantitative biomarker for predicting the success of
endovascular interventions. Methods Twenty-five patients with M1 occlusions were evaluated retrospectively. QSM
measurements were obtained based on susceptibility-weighted imaging
sequences from the most prominent veins in each of the four standard regions
of interest: the cortical and thalamostriate veins ipsilateral and
contralateral to the side of the stroke. The results were analyzed using
Wilcoxon’s signed rank test and compared with presenting National Institutes
of Health stroke scale (NIHSS) score. Results Cortical veins ipsilateral to the stroke showed the greatest elevation in
susceptibility compared with all other vein groups. Both ipsilateral and
contralateral thalamostriate vein susceptibilities showed strong inverse
correlation with presenting NIHSS score. Conclusion Thalamostriate vein susceptibility shows a strong inverse correlation with
presenting NIHSS in adult patients with hyperacute stroke who are selected
for endovascular intervention by advanced imaging.
Collapse
Affiliation(s)
- Paggie Kim
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | | | - Brian Cristiano
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Phillip Grigsby
- Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Udo Oyoyo
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Daniel Kido
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - J Paul Jacobson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| |
Collapse
|
27
|
Iguchi S, Moriguchi T, Yamazaki M, Hori Y, Koshino K, Toyoda K, Teuho J, Shimochi S, Terakawa Y, Fukuda T, Takahashi JC, Nakagawara J, Kanaya S, Iida H. System evaluation of automated production and inhalation of 15O-labeled gaseous radiopharmaceuticals for the rapid 15O-oxygen PET examinations. EJNMMI Phys 2018; 5:37. [PMID: 30569426 PMCID: PMC6300454 DOI: 10.1186/s40658-018-0236-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/28/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND 15O-oxygen inhalation PET is unique in its ability to provide fundamental information regarding cerebral hemodynamics and energy metabolism in man. However, the use of 15O-oxygen has been limited in a clinical environment largely attributed to logistical complexity, in relation to a long study period, and the need to produce and inhale three sets of radiopharmaceuticals. Despite the recent works that enabled shortening of the PET examination period, radiopharmaceutical production has still been a limiting factor. This study was aimed to evaluate a recently developed radiosynthesis/inhalation system that automatically supplies a series of 15O-labeled gaseous radiopharmaceuticals of C15O, 15O2, and C15O2 at short intervals. METHODS The system consists of a radiosynthesizer which produces C15O, 15O2, and C15O2; an inhalation controller; and an inhalation/scavenging unit. All three parts are controlled by a common sequencer, enabling automated production and inhalation at intervals less than 4.5 min. The gas inhalation/scavenging unit controls to sequentially supply of qualified radiopharmaceuticals at given radioactivity for given periods at given intervals. The unit also scavenges effectively the non-inhaled radioactive gases. Performance and reproducibility are evaluated. RESULTS Using an 15O-dedicated cyclotron with deuteron of 3.5 MeV at 40 μA, C15O, 15O2, and C15O2 were sequentially produced at a constant rate of 1400, 2400, and 2000 MBq/min, respectively. Each of radiopharmaceuticals were stably inhaled at < 4.5 min intervals with negligible contamination from the previous supply. The two-hole two-layered face mask with scavenging device minimized the gaseous radioactivity surrounding subject's face, while maintaining the normocapnia during examination periods. Quantitative assessment of net administration doses could be assessed using a pair of radio-detectors at inlet and scavenging tubes, as 541 ± 149, 320 ± 103, 523 ± 137 MBq corresponding to 2-min supply of 2574 ± 255 MBq for C15O, and 1-min supply of 2220 ± 766 and 1763 ± 174 for 15O2 and C15O2, respectively. CONCLUSIONS The present system allowed for automated production and inhalation of series of 15O-labeled radiopharmaceuticals as required in the rapid 15O-Oxygen PET protocol. The production and inhalation were reproducible and improved logistical complexity, and thus the use of 15O-oxygen might have become practically applicable in clinical environments.
Collapse
Affiliation(s)
- Satoshi Iguchi
- Department of Radiology, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan.,Graduated School of Information Science and Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Nara, 630-7192, Japan.,Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Tetsuaki Moriguchi
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Makoto Yamazaki
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Yuki Hori
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Kazuhiro Koshino
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Kazunori Toyoda
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Jarmo Teuho
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan.,Turku PET Center, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Saeka Shimochi
- Graduated School of Information Science and Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Nara, 630-7192, Japan.,Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan.,Turku PET Center, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Yusuke Terakawa
- Department of Radiology, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Tetsuya Fukuda
- Department of Radiology, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Jun C Takahashi
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Jyoji Nakagawara
- Integrative Cerebral and Cardiovascular Imaging Center, Department of Neurosurgery, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Shigehiko Kanaya
- Graduated School of Information Science and Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Nara, 630-7192, Japan
| | - Hidehiro Iida
- Department of Radiology, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan. .,Graduated School of Information Science and Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Nara, 630-7192, Japan. .,Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan. .,Turku PET Center, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
| |
Collapse
|
28
|
MacDonald ME, Berman AJ, Mazerolle EL, Williams RJ, Pike GB. Modeling hyperoxia-induced BOLD signal dynamics to estimate cerebral blood flow, volume and mean transit time. Neuroimage 2018; 178:461-474. [DOI: 10.1016/j.neuroimage.2018.05.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 11/30/2022] Open
|
29
|
Labelling with positron emitters of pnicogens and chalcogens. J Labelled Comp Radiopharm 2017; 61:179-195. [DOI: 10.1002/jlcr.3574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/07/2017] [Accepted: 09/29/2017] [Indexed: 11/07/2022]
|
30
|
Neveu MA, Joudiou N, De Preter G, Dehoux JP, Jordan BF, Gallez B. 17 O MRS assesses the effect of mild hypothermia on oxygen consumption rate in tumors. NMR IN BIOMEDICINE 2017; 30:e3726. [PMID: 28430379 DOI: 10.1002/nbm.3726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/17/2017] [Accepted: 02/27/2017] [Indexed: 06/07/2023]
Abstract
Although oxygen consumption is a key factor in metabolic phenotyping, its assessment in tumors remains critical, as current technologies generally display poor specificity. The objectives of this study were to explore the feasibility of direct 17 O nuclear magnetic resonance (NMR) spectroscopy to assess oxygen metabolism in tumors and its modulations. To investigate the impact of hypometabolism induction in the murine fibrosarcoma FSAII tumor model, we monitored the oxygen consumption of normothermic (37°C) and hypothermic (32°C) tumor-bearing mice. Hypothermic animals showed an increase in tumor pO2 (measured by electron paramagnetic resonance oximetry) contrary to normothermic animals. This was related to a decrease in oxygen consumption rate (assessed using 17 O magnetic resonance spectroscopy (MRS) after the inhalation of 17 O2 -enriched gas). This study highlights the ability of direct 17 O MRS to measure oxygen metabolism in tumors and modulations of tumor oxygen consumption rate.
Collapse
Affiliation(s)
- Marie-Aline Neveu
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Belgium
| | - Nicolas Joudiou
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Belgium
| | - Géraldine De Preter
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Belgium
| | - Jean-Paul Dehoux
- Experimental Surgery Unit, Medical School, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCL), Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Belgium
| |
Collapse
|
31
|
Uwano I, Kudo K, Sato R, Ogasawara K, Kameda H, Nomura JI, Mori F, Yamashita F, Ito K, Yoshioka K, Sasaki M. Noninvasive Assessment of Oxygen Extraction Fraction in Chronic Ischemia Using Quantitative Susceptibility Mapping at 7 Tesla. Stroke 2017; 48:2136-2141. [DOI: 10.1161/strokeaha.117.017166] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/18/2017] [Accepted: 05/30/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Ikuko Uwano
- From the Division of Ultrahigh Field MRI, Institute for Biomedical Sciences (I.U., K.K., H.K., F.M., F.Y., K.I., M.S.), Department of Neurosurgery (K.O., J.N.), and Department of Radiology (K.Y.), Iwate Medical University, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (K.K., H.K.); and Research and Development Group, Hitachi Ltd, Tokyo, Japan (R.S.)
| | - Kohsuke Kudo
- From the Division of Ultrahigh Field MRI, Institute for Biomedical Sciences (I.U., K.K., H.K., F.M., F.Y., K.I., M.S.), Department of Neurosurgery (K.O., J.N.), and Department of Radiology (K.Y.), Iwate Medical University, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (K.K., H.K.); and Research and Development Group, Hitachi Ltd, Tokyo, Japan (R.S.)
| | - Ryota Sato
- From the Division of Ultrahigh Field MRI, Institute for Biomedical Sciences (I.U., K.K., H.K., F.M., F.Y., K.I., M.S.), Department of Neurosurgery (K.O., J.N.), and Department of Radiology (K.Y.), Iwate Medical University, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (K.K., H.K.); and Research and Development Group, Hitachi Ltd, Tokyo, Japan (R.S.)
| | - Kuniaki Ogasawara
- From the Division of Ultrahigh Field MRI, Institute for Biomedical Sciences (I.U., K.K., H.K., F.M., F.Y., K.I., M.S.), Department of Neurosurgery (K.O., J.N.), and Department of Radiology (K.Y.), Iwate Medical University, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (K.K., H.K.); and Research and Development Group, Hitachi Ltd, Tokyo, Japan (R.S.)
| | - Hiroyuki Kameda
- From the Division of Ultrahigh Field MRI, Institute for Biomedical Sciences (I.U., K.K., H.K., F.M., F.Y., K.I., M.S.), Department of Neurosurgery (K.O., J.N.), and Department of Radiology (K.Y.), Iwate Medical University, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (K.K., H.K.); and Research and Development Group, Hitachi Ltd, Tokyo, Japan (R.S.)
| | - Jun-ichi Nomura
- From the Division of Ultrahigh Field MRI, Institute for Biomedical Sciences (I.U., K.K., H.K., F.M., F.Y., K.I., M.S.), Department of Neurosurgery (K.O., J.N.), and Department of Radiology (K.Y.), Iwate Medical University, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (K.K., H.K.); and Research and Development Group, Hitachi Ltd, Tokyo, Japan (R.S.)
| | - Futoshi Mori
- From the Division of Ultrahigh Field MRI, Institute for Biomedical Sciences (I.U., K.K., H.K., F.M., F.Y., K.I., M.S.), Department of Neurosurgery (K.O., J.N.), and Department of Radiology (K.Y.), Iwate Medical University, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (K.K., H.K.); and Research and Development Group, Hitachi Ltd, Tokyo, Japan (R.S.)
| | - Fumio Yamashita
- From the Division of Ultrahigh Field MRI, Institute for Biomedical Sciences (I.U., K.K., H.K., F.M., F.Y., K.I., M.S.), Department of Neurosurgery (K.O., J.N.), and Department of Radiology (K.Y.), Iwate Medical University, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (K.K., H.K.); and Research and Development Group, Hitachi Ltd, Tokyo, Japan (R.S.)
| | - Kenji Ito
- From the Division of Ultrahigh Field MRI, Institute for Biomedical Sciences (I.U., K.K., H.K., F.M., F.Y., K.I., M.S.), Department of Neurosurgery (K.O., J.N.), and Department of Radiology (K.Y.), Iwate Medical University, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (K.K., H.K.); and Research and Development Group, Hitachi Ltd, Tokyo, Japan (R.S.)
| | - Kunihiro Yoshioka
- From the Division of Ultrahigh Field MRI, Institute for Biomedical Sciences (I.U., K.K., H.K., F.M., F.Y., K.I., M.S.), Department of Neurosurgery (K.O., J.N.), and Department of Radiology (K.Y.), Iwate Medical University, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (K.K., H.K.); and Research and Development Group, Hitachi Ltd, Tokyo, Japan (R.S.)
| | - Makoto Sasaki
- From the Division of Ultrahigh Field MRI, Institute for Biomedical Sciences (I.U., K.K., H.K., F.M., F.Y., K.I., M.S.), Department of Neurosurgery (K.O., J.N.), and Department of Radiology (K.Y.), Iwate Medical University, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (K.K., H.K.); and Research and Development Group, Hitachi Ltd, Tokyo, Japan (R.S.)
| |
Collapse
|
32
|
Lammertsma AA. Forward to the Past: The Case for Quantitative PET Imaging. J Nucl Med 2017; 58:1019-1024. [PMID: 28522743 DOI: 10.2967/jnumed.116.188029] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022] Open
Abstract
PET was developed in the 1970s as an in vivo method to measure regional pathophysiologic processes. In the 1990s the focus moved to the detection of local increases in uptake, first in the brain (activation studies) and later in oncology (finding metastases), with 18F-FDG emerging as a highly sensitive staging technique. This focus on sensitivity has overshadowed the other main characteristic of PET, its quantitative nature. In recent years there has been a shift. PET is now seen as a promising tool for drug development and precision medicine-that is, a method to monitor or even predict response to therapy. Quantification is essential for precision medicine, but many studies today use simplified semiquantitative methods without properly validating them. This review provides several examples illustrating that simplified methods may lead to less accurate or even misleading results. Simplification is important for routine clinical practice, but finding the optimal balance between accuracy and simplicity requires careful studies. It is argued that the use of simplified approaches without proper validation not only may waste time and resources but also may raise ethical questions, especially in drug development studies.
Collapse
Affiliation(s)
- Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Abstract
Molecular oxygen (O2) is essential to brain function and mechanisms necessary to regulate variations in delivery or utilization of O2 are crucial to support normal brain homeostasis, physiology and energy metabolism. Any imbalance in cerebral tissue partial pressure of O2 (pO2) levels may lead to pathophysiological complications including increased reactive O2 species generation leading to oxidative stress when tissue O2 level is too high or too low. Accordingly, the need for oximetry methods, which assess cerebral pO2in vivo and in real time, is imperative to understand the role of O2 in various metabolic and disease states, including the effects of treatment and therapy options. In this review, we provide a brief overview of the common in vivo oximetry methodologies for measuring cerebral pO2. We discuss the advantages and limitations of oximetry methodologies to measure cerebral pO2in vivo followed by a more in-depth review of electron paramagnetic resonance oximetry spectroscopy and imaging using several examples of current electron paramagnetic resonance oximetry applications in the brain.
Collapse
Affiliation(s)
- John M Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
34
|
Nael K, Knitter JR, Jahan R, Gornbein J, Ajani Z, Feng L, Meyer BC, Schwamm LH, Yoo AJ, Marshall RS, Meyers PM, Yavagal DR, Wintermark M, Liebeskind DS, Guzy J, Starkman S, Saver JL, Kidwell CS. Multiparametric Magnetic Resonance Imaging for Prediction of Parenchymal Hemorrhage in Acute Ischemic Stroke After Reperfusion Therapy. Stroke 2017; 48:664-670. [PMID: 28138001 PMCID: PMC5325250 DOI: 10.1161/strokeaha.116.014343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022]
Abstract
Background and Purpose— Patients with acute ischemic stroke are at increased risk of developing parenchymal hemorrhage (PH), particularly in the setting of reperfusion therapies. We have developed a predictive model to examine the risk of PH using combined magnetic resonance perfusion and diffusion parameters, including cerebral blood volume (CBV), apparent diffusion coefficient, and microvascular permeability (K2). Methods— Voxel-based values of CBV, K2, and apparent diffusion coefficient from the ischemic core were obtained using pretreatment magnetic resonance imaging data from patients enrolled in the MR RESCUE clinical trial (Mechanical Retrieval and Recanalization of Stroke Clots Using Embolectomy). The associations between PH and extreme values of imaging parameters were assessed in univariate and multivariate analyses. Receiver-operating characteristic curve analysis was performed to determine the optimal parameter(s) and threshold for predicting PH. Results— In 83 patients included in this analysis, 20 developed PH. Univariate analysis showed significantly lower 10th percentile CBV and 10th percentile apparent diffusion coefficient values and significantly higher 90th percentile K2 values within the infarction core of patients with PH. Using classification tree analysis, the 10th percentile CBV at threshold of 0.47 and 90th percentile K2 at threshold of 0.28 resulted in overall predictive accuracy of 88.7%, sensitivity of 90.0%, and specificity of 87.3%, which was superior to any individual or combination of other classifiers. Conclusions— Our results suggest that combined 10th percentile CBV and 90th percentile K2 is an independent predictor of PH in patients with acute ischemic stroke with diagnostic accuracy superior to individual classifiers alone. This approach may allow risk stratification for patients undergoing reperfusion therapies. Clinical Trial Registration— URL: https://www.clinicaltrials.gov. Unique identifier: NCT00389467.
Collapse
Affiliation(s)
- Kambiz Nael
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.).
| | - James R Knitter
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - Reza Jahan
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - Jeffery Gornbein
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - Zahra Ajani
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - Lei Feng
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - Brett C Meyer
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - Lee H Schwamm
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - Albert J Yoo
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - Randolph S Marshall
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - Philip M Meyers
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - Dileep R Yavagal
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - Max Wintermark
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - David S Liebeskind
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - Judy Guzy
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - Sidney Starkman
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - Jeffrey L Saver
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| | - Chelsea S Kidwell
- From the Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (K.N.); the Departments of Neurology and Radiology, University of Arizona, Tucson (J.R.K., C.S.K.); the Departments of Radiology and Neurosurgery (R.J.), Biomathematics (J. Gornbein), Neurology (D.S.L., J.L.S.), and Emergency Medicine and Neurology (J. Guzy, S.S.), University of California, Los Angeles; the Departments of Neurology (Z.A.) and Radiology (L.F.), Kaiser Permanente, Los Angeles, CA; the Departments of Neurosciences and the Stroke Center University of California, San Diego (B.C.M.); the Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston (L.H.S.); Texas Stroke Institute, Dallas (A.J.Y.); the Departments of Neurology (R.S.M.) and Neurological Surgery and Radiology (P.M.M.), Columbia University College of Physicians and Surgeons, New York, NY; the Departments of Neurology and Neurosurgery, University of Miami, Jackson Memorial Hospital, FL (D.R.Y.); and the Departments of Radiology and Neurology Stanford University, CA (M.W.)
| |
Collapse
|
35
|
Jones T, Townsend D. History and future technical innovation in positron emission tomography. J Med Imaging (Bellingham) 2017; 4:011013. [PMID: 28401173 PMCID: PMC5374360 DOI: 10.1117/1.jmi.4.1.011013] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/14/2017] [Indexed: 02/01/2023] Open
Abstract
Instrumentation for positron emission tomography (PET) imaging has experienced tremendous improvements in performance over the past 60 years since it was first conceived as a medical imaging modality. Spatial resolution has improved by a factor of 10 and sensitivity by a factor of 40 from the early designs in the 1970s to the high-performance scanners of today. Multimodality configurations have emerged that combine PET with computed tomography (CT) and, more recently, with MR. Whole-body scans for clinical purposes can now be acquired in under 10 min on a state-of-the-art PET/CT. This paper will review the history of these technical developments over 40 years and summarize the important clinical research and healthcare applications that have been made possible by these technical advances. Some perspectives for the future of this technology will also be presented that promise to bring about new applications of this imaging modality in clinical research and healthcare.
Collapse
Affiliation(s)
- Terry Jones
- University of California, Department of Radiology, Davis, California, United States
| | - David Townsend
- National University of Singapore, Department of Diagnostic Imaging, Singapore
| |
Collapse
|
36
|
Brunner C, Isabel C, Martin A, Dussaux C, Savoye A, Emmrich J, Montaldo G, Mas JL, Baron JC, Urban A. Mapping the dynamics of brain perfusion using functional ultrasound in a rat model of transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 2017; 37:263-276. [PMID: 26721392 PMCID: PMC5363744 DOI: 10.1177/0271678x15622466] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/07/2023]
Abstract
Following middle cerebral artery occlusion, tissue outcome ranges from normal to infarcted depending on depth and duration of hypoperfusion as well as occurrence and efficiency of reperfusion. However, the precise time course of these changes in relation to tissue and behavioral outcome remains unsettled. To address these issues, a three-dimensional wide field-of-view and real-time quantitative functional imaging technique able to map perfusion in the rodent brain would be desirable. Here, we applied functional ultrasound imaging, a novel approach to map relative cerebral blood volume without contrast agent, in a rat model of brief proximal transient middle cerebral artery occlusion to assess perfusion in penetrating arterioles and venules acutely and over six days thanks to a thinned-skull preparation. Functional ultrasound imaging efficiently mapped the acute changes in relative cerebral blood volume during occlusion and following reperfusion with high spatial resolution (100 µm), notably documenting marked focal decreases during occlusion, and was able to chart the fine dynamics of tissue reperfusion (rate: one frame/5 s) in the individual rat. No behavioral and only mild post-mortem immunofluorescence changes were observed. Our study suggests functional ultrasound is a particularly well-adapted imaging technique to study cerebral perfusion in acute experimental stroke longitudinally from the hyper-acute up to the chronic stage in the same subject.
Collapse
Affiliation(s)
- Clément Brunner
- Stroke Research Group, Centre de Psychiatrie et Neuroscience, INSERM U894, Hôpital Sainte-Anne, Paris, France.,SANOFI Research and Development, Lead Generation to Candidate Realization, Chilly-Mazarin, France
| | - Clothilde Isabel
- Stroke Research Group, Centre de Psychiatrie et Neuroscience, INSERM U894, Hôpital Sainte-Anne, Paris, France
| | - Abraham Martin
- Molecular Imaging Unit, CIC biomaGUNE, San Sebastián, Spain
| | - Clara Dussaux
- Stroke Research Group, Centre de Psychiatrie et Neuroscience, INSERM U894, Hôpital Sainte-Anne, Paris, France
| | - Anne Savoye
- Stroke Research Group, Centre de Psychiatrie et Neuroscience, INSERM U894, Hôpital Sainte-Anne, Paris, France
| | | | - Gabriel Montaldo
- Stroke Research Group, Centre de Psychiatrie et Neuroscience, INSERM U894, Hôpital Sainte-Anne, Paris, France
| | - Jean-Louis Mas
- Stroke Research Group, Centre de Psychiatrie et Neuroscience, INSERM U894, Hôpital Sainte-Anne, Paris, France
| | - Jean-Claude Baron
- Stroke Research Group, Centre de Psychiatrie et Neuroscience, INSERM U894, Hôpital Sainte-Anne, Paris, France
| | - Alan Urban
- Stroke Research Group, Centre de Psychiatrie et Neuroscience, INSERM U894, Hôpital Sainte-Anne, Paris, France
| |
Collapse
|
37
|
Cheng B, Schröder N, Forkert ND, Ludewig P, Kemmling A, Magnus T, Fiehler J, Gerloff C, Thomalla G. Hypointense Vessels Detected by Susceptibility-Weighted Imaging Identifies Tissue at Risk of Infarction in Anterior Circulation Stroke. J Neuroimaging 2016; 27:414-420. [PMID: 28000975 DOI: 10.1111/jon.12417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The diagnostic value of susceptibility-weighted magnetic resonance imaging of acute stroke patients has shown potential as a surrogate marker of impaired hemodynamics. We investigate the value of asymmetrical hypointense cerebral vessels (HV) for the identification of vessel status and tissue at risk of infarction (TaR). METHODS Symmetry of HV was visually rated on SWI data from a well-defined population of acute anterior circulation stroke with onset <24 hours. MRI perfusion data was analyzed and volumes of tissue at risk segmented using a delay threshold of Tmax> 6 seconds. Status of the extra- and intracranial arteries was assessed by ultrasound and MR angiography. RESULTS 35 patients were included (12 women; median age 69 years, IQR 61-77; median NIHSS at admission 10, IQR 6-20). Asymmetrically distributed HV were detected at the stroke hemisphere in 25 patients (71%). Of those, 12 patients displayed occlusion of the middle cerebral artery, whereas occlusion of the extracranial ICA was detected in 6 patients. TaR was larger, yet not significantly different in patients with asymmetrically HV (mean volume 38.9 ml, SD 52.9 ml) compared to patients showing symmetrical HV (4.2 ml; SD 10.7 ml, p-value 0.081). Significant differences where, however, found after excluding patients with extracranial ICA occlusions (42.9 ml; SD 50.4 ml vs. 4.2 ml, SD 10.8 ml, p-value 0.025). CONCLUSION Visual analysis of HV in SWI identifies tissue at risk in patients with anterior circulation stroke. Potentially pre-existing extracranial ICA occlusions leading to prominent HV have to be considered as a confounding factor.
Collapse
Affiliation(s)
- Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolaus Schröder
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils Daniel Forkert
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - André Kemmling
- Department of Neuroradiology, University Clinic Schleswig-Holstein, Lübeck, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This article provides an overview of the recent literature regarding the application of in-vivo brain imaging techniques to animal models of ischemic stroke. RECENT FINDINGS Major breakthroughs concerned the effects of sensory stimulation on neuronal function, local hemodynamics, and tissue outcome in the hyperacute phase of stroke; the novel application to stroke of hybrid scanners allowing simultaneous PET and magnetic resonance; the refinements of magnetic resonance-based oxygen imaging, allowing to map the ischemic penumbra in a completely noninvasive way; the implementation of new PET ligands to selectively map poststroke neuronal death and neuroinflammation; and the use of novel mesoscale imaging techniques to demonstrate the major role of interhemispheric connectivity in poststroke plasticity and functional recovery. SUMMARY The array of techniques to map in vivo the key pathophysiological brain processes involved in stroke is currently enlarging at an amazing pace. This is paralleled by ever-increasing sophistication in postprocessing tools. The combination of techniques allowing simultaneous access to several variables is particularly powerful as it affords unprecedented insights into the intimate processes underlying the tissue and neuronal changes that follow a stroke. These major leaps forward will hopefully lead to therapeutic breakthroughs aiming at improving functional outcome after stroke.
Collapse
|
39
|
Rooijackers HMM, Wiegers EC, Tack CJ, van der Graaf M, de Galan BE. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies. Cell Mol Life Sci 2016; 73:705-22. [PMID: 26521082 PMCID: PMC4735263 DOI: 10.1007/s00018-015-2079-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/30/2022]
Abstract
Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.
Collapse
Affiliation(s)
- Hanne M M Rooijackers
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Evita C Wiegers
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marinette van der Graaf
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
40
|
Balzan R, Mishkovsky M, Simonenko Y, van Heeswijk RB, Gruetter R, Eliav U, Navon G, Comment A. Hyperpolarized (6)Li as a probe for hemoglobin oxygenation level. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 11:41-6. [PMID: 26265292 DOI: 10.1002/cmmi.1656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/08/2015] [Indexed: 11/10/2022]
Abstract
Hyperpolarization by dissolution dynamic nuclear polarization (DNP) is a versatile technique to dramatically enhance the nuclear magnetic resonance (NMR) signal intensity of insensitive long-T1 nuclear spins such as (6)Li. The (6)Li longitudinal relaxation of lithium ions in aqueous solutions strongly depends on the concentration of paramagnetic species, even if they are present in minute amounts. We herein demonstrate that blood oxygenation can be readily detected by taking advantage of the (6)Li signal enhancement provided by dissolution DNP, together with the more than 10% decrease in (6)Li longitudinal relaxation as a consequence of the presence of paramagnetic deoxyhemoglobin.
Collapse
Affiliation(s)
- Riccardo Balzan
- Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Mor Mishkovsky
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.,Department of Radiology, Université de Lausanne, CH-1015, Lausanne, Switzerland
| | - Yana Simonenko
- School of Chemistry, Tel-Aviv University, Ramat-Aviv, Tel Aviv, Israel
| | - Ruud B van Heeswijk
- Department of Radiology, Université de Lausanne, CH-1015, Lausanne, Switzerland.,Center of Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.,Department of Radiology, Université de Lausanne, CH-1015, Lausanne, Switzerland.,Department of Radiology, Geneva University Hospital and Faculty of Medicine, University of Geneva, CH-1211, Genève 4, Switzerland
| | - Uzi Eliav
- School of Chemistry, Tel-Aviv University, Ramat-Aviv, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Tel-Aviv University, Ramat-Aviv, Tel Aviv, Israel
| | - Arnaud Comment
- Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
41
|
Evidence for an enduring ischaemic penumbra following central retinal artery occlusion, with implications for fibrinolytic therapy. Prog Retin Eye Res 2015; 49:82-119. [PMID: 26113210 DOI: 10.1016/j.preteyeres.2015.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/13/2015] [Accepted: 06/18/2015] [Indexed: 12/15/2022]
Abstract
The rationale behind hyperacute fibrinolytic therapy for cerebral and retinal arterial occlusion is to rescue ischaemic cells from irreversible damage through timely restitution of tissue perfusion. In cerebral stroke, an anoxic tissue compartment (the "infarct core") is surrounded by a hypoxic compartment (the "ischaemic penumbra"). The latter comprises electrically-silent neurons that undergo delayed apoptotic cell death within 1-6 h unless salvaged by arterial recanalisation. Establishment of an equivalent hypoxic compartment within the inner retina following central retinal artery occlusion (CRAO) isn't widely acknowledged. During experimental CRAO, electroretinography reveals 3 oxygenation-based tissue compartments (anoxic, hypoxic and normoxic) that contribute 32%, 27% and 41% respectively to the pre-occlusion b-wave amplitude. Thus, once the anoxia survival time (≈2 h) expires, the contribution from the infarcted posterior retina is irreversibly extinguished, but electrical activity continues in the normoxic periphery. Inbetween these compartments, an annular hypoxic zone (the "penumbra obscura") endures in a structurally-intact but functionally-impaired state until retinal reperfusion allows rapid recovery from electrical silence. Clinically, residual circulation of sufficient volume flow rate generates the heterogeneous fundus picture of "partial" CRAO. Persistent retinal venous hypoxaemia signifies maximal extraction of oxygen by an enduring "polar penumbra" that permeates or largely replaces the infarct core. On retinal reperfusion some days later, the retinal venous oxygen saturation reverts to normal and vision improves. Thus, penumbral inner retina, marginally oxygenated by the choroid or by residual circulation, isn't at risk of delayed apoptotic infarction (unlike hypoxic cerebral cortex). Emergency fibrinolytic intervention is inappropriate, therefore, once the duration of CRAO exceeds 2 h.
Collapse
|
42
|
Lu H, Li Y, Li H, Yuan L, Liu Q, Sun Y, Tong S. Single-trial estimation of the cerebral metabolic rate of oxygen with imaging photoplethysmography and laser speckle contrast imaging. OPTICS LETTERS 2015; 40:1193-6. [PMID: 25831290 DOI: 10.1364/ol.40.001193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cortical cerebral metabolic rate of oxygen (CMRO(2)) could conventionally be measured by combining laser Doppler flowmetry and multispectral reflectance imaging across multiple trials of stimulation, which compromises the real-time capacity. Monitoring transient change of CMRO(2) has been challenging. In this Letter, imaging photoplethysmography (iPPG) and laser speckle contrast imaging were combined into a multi-modal optical imaging system for single-trial estimation of CMRO(2). In a physiologically stable experiment, the iPPG-based method showed a less than 4% variance in comparison with the conventional method over 20 trials, and its temporal stability could be comparable to that by conventional method over 6 trials. While the oxygen supply was decreased deliberately, the new method was able to detect the transient changes of CMRO(2) in real time, which could not be revealed by the conventional method.
Collapse
|
43
|
Park MG, Yang TI, Oh SJ, Baik SK, Kang YH, Park KP. Multiple hypointense vessels on susceptibility-weighted imaging in acute ischemic stroke: surrogate marker of oxygen extraction fraction in penumbra? Cerebrovasc Dis 2014; 38:254-61. [PMID: 25401484 DOI: 10.1159/000367709] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Multiple hypointense vessels (MHV) on susceptibility-weighted imaging (SWI) are frequently observed in patients with acute cerebral ischemia, but their implication has not been clearly established. To elucidate the clinical significance of MHV on SWI, we investigated the association of MHV on SWI with clinical data and other MR markers in patients with acute ischemic stroke. METHODS We enrolled acute stroke patients with internal carotid or proximal middle cerebral artery occlusion who underwent MRI including SWI within 3 days from stroke onset. Baseline clinical data were reviewed. Stroke severity was measured by the National Institutes of Health Stroke Scale (NIHSS). We graded the degree of MHV on SWI as four groups of none, subtle, relative, or extensive by the modified Alberta Stroke Program Early CT Scan (ASPECTS) system. To evaluate the degree of collateral flow, distal hyperintense vessels (DHV) on FLAIR and vessels on post-contrast time-of-flight MR angiography (TOF MRA) source images were graded respectively as 3 groups: none/subtle/prominent and poor/moderate/good. Diffusion and perfusion lesion volume and diffusion-perfusion mismatch (DPM) ratio were measured in all patients. We analyzed the association of the degree of MHV on SWI with clinical data and MR markers. RESULTS Eighty patients were included in the study. The mean MR time from stroke onset was 12.4 h (range 0.5-63.0). There is no difference in MR time from stroke onset between groups of MHV on SWI. MHV were observed in 68 (85%) of 80 patients: none in 12, subtle in 11, relative in 13, and extensive in 44. There were no statistically significant associations between MHV on SWI and vascular risk factors. Patients with more extensive MHV on SWI had a smaller diffusion volume (p < 0.001), larger DPM (p < 0.001), and lower initial NIHSS scores (p = 0.022). Prominent DHV was presented in 29 of 44 patients with extensive MHV (p < 0.001). Good collateral flow on TOF MRA source images was presented in 37 of 44 patients with extensive MHV (p < 0.001). CONCLUSIONS More extensive MHV on SWI in acute ischemic stroke is associated with lower initial NIHSS scores, smaller diffusion lesion volume, better collateral flow, and larger DPM. Our results show the possibility that MHV on SWI may be a useful surrogate marker for predicting increased oxygen extraction fraction and diffusion-perfusion mismatch in acute ischemic hemisphere.
Collapse
Affiliation(s)
- Min-Gyu Park
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | | | | | | | | | | |
Collapse
|
44
|
Bouvier J, Detante O, Tahon F, Attye A, Perret T, Chechin D, Barbieux M, Boubagra K, Garambois K, Tropres I, Grand S, Barbier EL, Krainik A. Reduced CMRO₂ and cerebrovascular reserve in patients with severe intracranial arterial stenosis: a combined multiparametric qBOLD oxygenation and BOLD fMRI study. Hum Brain Mapp 2014; 36:695-706. [PMID: 25307948 DOI: 10.1002/hbm.22657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 11/08/2022] Open
Abstract
Multiparametric quantitative blood oxygenation level dependent (mqBOLD) magnetic resonance Imaging (MRI) approach allows mapping tissular oxygen saturation (StO2 ) and cerebral metabolic rate of oxygen (CMRO2 ). To identify hemodynamic alteration related to severe intracranial arterial stenosis (SIAS), functional MRI of cerebrovascular reserve (CVR BOLD fMRI) to hypercapnia has been proposed. Diffusion imaging suggests chronic low grade ischemia in patients with impaired CVR. The aim of the present study was to evaluate how oxygen parameters (StO2 and CMRO2 ), assessed with mqBOLD approach, correlate with CVR in patients (n = 12) with SIAS and without arterial occlusion. The perfusion (dynamic susceptibility contrast), oxygenation, and CVR were compared. The MRI protocol conducted at 3T lasted approximately 1 h. Regions of interest measures on maps were delineated on segmented gray matter (GM) of middle cerebral artery territories. We have shown that decreased CVR is spatially associated with decreased CMRO2 in GM of patients with SIAS. Further, the degree of ipsilateral CVR reduction was well-correlated with the amplitude of the CMRO2 deficit. The altered CMRO2 suggests the presence of a moderate ischemia explained by both a decrease in perfusion and in CVR. CVR and mqBOLD method may be helpful in the selection of patients with SIAS to advocate for medical therapy or percutaneous transluminal angioplasty-stenting.
Collapse
Affiliation(s)
- Julien Bouvier
- Inserm, U836, Grenoble, France; Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble, France; Philips France (Healthcare Activity), Suresnes, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hori Y, Hirano Y, Koshino K, Moriguchi T, Iguchi S, Yamamoto A, Enmi J, Kawashima H, Zeniya T, Morita N, Nakagawara J, Casey ME, Iida H. Validity of using a 3-dimensional PET scanner during inhalation of 15O-labeled oxygen for quantitative assessment of regional metabolic rate of oxygen in man. Phys Med Biol 2014; 59:5593-609. [PMID: 25179552 DOI: 10.1088/0031-9155/59/18/5593] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Use of 15O labeled oxygen (15O2) and positron emission tomography (PET) allows quantitative assessment of the regional metabolic rate of oxygen (CMRO2) in vivo, which is essential to understanding the pathological status of patients with cerebral vascular and neurological disorders. The method has, however, been challenging, when a 3D PET scanner is employed, largely attributed to the presence of gaseous radioactivity in the trachea and the inhalation system, which results in a large amount of scatter and random events in the PET assessment. The present study was intended to evaluate the adequacy of using a recently available commercial 3D PET scanner in the assessment of regional cerebral radioactivity distribution during an inhalation of 15O2. Systematic experiments were carried out on a brain phantom. Experiments were also performed on a healthy volunteer following a recently developed protocol for simultaneous assessment of CMRO2 and cerebral blood flow, which involves sequential administration of 15O2 and C15O2. A particular intention was to evaluate the adequacy of the scatter-correction procedures. The phantom experiment demonstrated that errors were within 3% at the practically maximum radioactivity in the face mask, with the greatest radioactivity in the lung. The volunteer experiment demonstrated that the counting rate was at peak during the 15O gas inhalation period, within a verified range. Tomographic images represented good quality over the entire FOV, including the lower part of the cerebral structures and the carotid artery regions. The scatter-correction procedures appeared to be important, particularly in the process to compensate for the scatter originating outside the FOV. Reconstructed images dramatically changed if the correction was carried out using inappropriate procedures. This study demonstrated that accurate reconstruction could be obtained when the scatter compensation was appropriately carried out. This study also suggested the feasibility of using a state-of-the-art 3D PET scanner in the quantitative PET imaging during inhalation of 15O labeled oxygen.
Collapse
Affiliation(s)
- Yuki Hori
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Suita City, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
PET quantification of cerebral oxygen metabolism in small animals. ScientificWorldJournal 2014; 2014:159103. [PMID: 25202714 PMCID: PMC4151541 DOI: 10.1155/2014/159103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/24/2014] [Indexed: 11/18/2022] Open
Abstract
Understanding cerebral oxygen metabolism is of great importance in both clinical diagnosis and animal experiments because oxygen is a fundamental source of brain energy and supports brain functional activities. Since small animals such as rats are widely used to study various diseases including cerebral ischemia, cerebrovascular diseases, and neurodegenerative diseases, the development of a noninvasive in vivo measurement method of cerebral oxygen metabolic parameters such as oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) as well as cerebral blood flow (CBF) and cerebral blood volume (CBV) has been a priority. Although positron emission tomography (PET) with (15)O labeled gas tracers has been recognized as a powerful way to evaluate cerebral oxygen metabolism in humans, this method could not be applied to rats due to technical problems and there were no reports of PET measurement of cerebral oxygen metabolism in rats until an (15)O-O2 injection method was developed a decade ago. Herein, we introduce an intravenous administration method using two types of injectable (15)O-O2 and an (15)O-O2 gas inhalation method through an airway placed in the trachea, which enables oxygen metabolism measurements in rats.
Collapse
|
47
|
Chan LWC, Ngo CHC, Wang F, Zhao MY, Zhao M, Law HKW, Wong SCC, Yung BYM. Disease-specific target gene expression profiling of molecular imaging probes: database development and clinical validation. Mol Imaging 2014; 13. [PMID: 25022454 DOI: 10.2310/7290.2014.00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular imaging probes can target abnormal gene expression patterns in patients and allow early diagnosis of disease. For selecting a suitable imaging probe, the current Molecular Imaging and Contrast Agent Database (MICAD) provides descriptive and qualitative information on imaging probe characteristics and properties. However, MICAD does not support linkage with the expression profiles of target genes. The proposed Disease-specific Imaging Probe Profiling (DIPP) database quantitatively archives and presents the gene expression profiles of targets across different diseases, anatomic regions, and subcellular locations, providing an objective reference for selecting imaging probes. The DIPP database was validated with a clinical positron emission tomography (PET) study on lung cancer and an in vitro study on neuroendocrine cancer. The retrieved records show that choline kinase beta and glucose transporters were positively and significantly associated with lung cancer among the targets of 11C-choline and [18F]fluoro-2-deoxy-2-d-glucose (FDG), respectively. Their significant overexpressions corresponded to the findings that the uptake rate of FDG increased with tumor size but that of 11C-choline remained constant. Validated with the in vitro study, the expression profiles of disease-associated targets can indicate the eligibility of patients for clinical trials of the treatment probe. A Web search tool of the DIPP database is available at http://www.polyu.edu.hk/bmi/dipp/.
Collapse
|
48
|
Kauppinen RA. Multiparametric magnetic resonance imaging of acute experimental brain ischaemia. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 80:12-25. [PMID: 24924265 DOI: 10.1016/j.pnmrs.2014.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Ischaemia is a condition in which blood flow either drops to zero or proceeds at severely decreased levels that cannot supply sufficient oxidizable substrates to maintain energy metabolism in vivo. Brain, a highly oxidative organ, is particularly susceptible to ischaemia. Ischaemia leads to loss of consciousness in seconds and, if prolonged, permanent tissue damage is inevitable. Ischaemia primarily results in a collapse of cerebral energy state, followed by a series of subtle changes in anaerobic metabolism, ion and water homeostasis that eventually initiate destructive internal and external processes in brain tissue. (31)P and (1)H NMR spectroscopy were initially used to evaluate anaerobic metabolism in brain. However, since the early 1990s (1)H Magnetic Resonance Imaging (MRI), exploiting the nuclear magnetism of tissue water, has become the key method for assessment of ischaemic brain tissue. This article summarises multi-parametric (1)H MRI work that has exploited diffusion, relaxation and magnetisation transfer as 'contrasts' to image ischaemic brain in preclinical models for the first few hours, with a view to assessing evolution of ischaemia and tissue viability in a non-invasive manner.
Collapse
Affiliation(s)
- Risto A Kauppinen
- School of Experimental Psychology and Clinical Research and Imaging Centre, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK.
| |
Collapse
|
49
|
Gramer M, Feuerstein D, Steimers A, Takagaki M, Kumagai T, Sué M, Vollmar S, Kohl-Bareis M, Backes H, Graf R. Device for simultaneous positron emission tomography, laser speckle imaging and RGB reflectometry: validation and application to cortical spreading depression and brain ischemia in rats. Neuroimage 2014; 94:250-262. [PMID: 24657778 DOI: 10.1016/j.neuroimage.2014.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/06/2014] [Accepted: 03/10/2014] [Indexed: 11/16/2022] Open
Abstract
Brain function critically relies on the supply with energy substrates (oxygen and glucose) via blood flow. Alterations in energy demand as during neuronal activation induce dynamic changes in substrate fluxes and blood flow. To study the complex system that regulates cerebral metabolism requires the combination of methods for the simultaneous assessment of multiple parameters. We developed a multimodal imaging device to combine positron emission tomography (PET) with laser speckle imaging (LSI) and RGB reflectometry (RGBR). Depending on the radiotracer, PET provides 3-dimensional quantitative information of specific molecular processes, while LSI and RGBR measure cerebral blood flow (CBF) and hemoglobin oxygenation at high temporal and spatial resolution. We first tested the functional capability of each modality within our system and showed that interference between the modalities is negligible. We then cross-calibrated the system by simultaneously measuring absolute CBF using (15)O-H2O PET (CBF(PET)) and the inverse correlation time (ICT), the LSI surrogate for CBF. ICT and CBF(PET) correlated in multiple measurements in individuals as well as across different animals (R(2)=0.87, n=44 measurements) indicating that ICT can be used for absolute quantitative assessment of CBF. To demonstrate the potential of the combined system, we applied it to cortical spreading depression (CSD), a wave of transient cellular depolarization that served here as a model system for neurovascular and neurometabolic coupling. We analyzed time courses of hemoglobin oxygenation and CBF alterations coupled to CSD, and simultaneously measured regional uptake of (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) used as a radiotracer for regional glucose metabolism, in response to a single CSD and to a cluster of CSD waves. With this unique combination, we characterized the changes in cerebral metabolic rate of oxygen (CMRO2) in real-time and showed a correlation between (18)F-FDG uptake and the number of CSD waves that passed the local tissue. Finally, we examined CSD spontaneously occurring during focal ischemia also referred to as peri-infarct depolarization (PID). In the vicinity of the ischemic territory, we observed PIDs that were characterized by reduced CMRO2 and increased oxygen extraction fraction (OEF), indicating a limitation of oxygen supply. Simultaneously measured PET showed an increased (18)F-FDG uptake in these regions. Our combined system proved to be a novel tool for the simultaneous study of dynamic spatiotemporal alterations of cortical blood flow, oxygen metabolism and glucose consumption under normal and pathologic conditions.
Collapse
Affiliation(s)
- M Gramer
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany.
| | - D Feuerstein
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany
| | - A Steimers
- RheinAhrCampus Remagen, University of Applied Sciences Koblenz, Joseph-Rovan Allee 2, 53424 Remagen, Germany
| | - M Takagaki
- Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - T Kumagai
- Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - M Sué
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany
| | - S Vollmar
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany
| | - M Kohl-Bareis
- RheinAhrCampus Remagen, University of Applied Sciences Koblenz, Joseph-Rovan Allee 2, 53424 Remagen, Germany
| | - H Backes
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany
| | - R Graf
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany
| |
Collapse
|
50
|
PET Neuroimaging: The White Elephant Packs His Trunk? Neuroimage 2014; 84:1094-100. [DOI: 10.1016/j.neuroimage.2013.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/07/2013] [Accepted: 08/11/2013] [Indexed: 01/30/2023] Open
|