1
|
Gezginer I, Chen Z, Yoshihara HAI, Deán-Ben XL, Zerbi V, Razansky D. Concurrent optoacoustic tomography and magnetic resonance imaging of resting-state functional connectivity in the mouse brain. Nat Commun 2024; 15:10791. [PMID: 39737925 DOI: 10.1038/s41467-024-54947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/20/2024] [Indexed: 01/01/2025] Open
Abstract
Resting-state functional connectivity (rsFC) has been essential to elucidate the intricacy of brain organization, further revealing clinical biomarkers of neurological disorders. Although functional magnetic resonance imaging (fMRI) remains a cornerstone in the field of rsFC recordings, its interpretation is often hindered by the convoluted physiological origin of the blood-oxygen-level-dependent (BOLD) contrast affected by multiple factors. Here, we capitalize on the unique concurrent multiparametric hemodynamic recordings of a hybrid magnetic resonance optoacoustic tomography platform to comprehensively characterize rsFC in female mice. The unique blood oxygenation readings and high spatio-temporal resolution at depths provided by functional optoacoustic (fOA) imaging offer an effective means for elucidating the connection between BOLD and hemoglobin responses. Seed-based and independent component analyses reveal spatially overlapping bilateral correlations between the fMRI-BOLD readings and the multiple hemodynamic components measured with fOA but also subtle discrepancies, particularly in anti-correlations. Notably, total hemoglobin and oxygenated hemoglobin components are found to exhibit stronger correlation with BOLD than deoxygenated hemoglobin, challenging conventional assumptions on the BOLD signal origin.
Collapse
Affiliation(s)
- Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Hikari A I Yoshihara
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Valerio Zerbi
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Leclerc M, Tremblay C, Bourassa P, Schneider JA, Bennett DA, Calon F. Lower GLUT1 and unchanged MCT1 in Alzheimer's disease cerebrovasculature. J Cereb Blood Flow Metab 2024; 44:1417-1432. [PMID: 38441044 PMCID: PMC11342728 DOI: 10.1177/0271678x241237484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
The brain is a highly demanding organ, utilizing mainly glucose but also ketone bodies as sources of energy. Glucose transporter-1 (GLUT1) and monocarboxylates transporter-1 (MCT1) respectively transport glucose and ketone bodies across the blood-brain barrier. While reduced glucose uptake by the brain is one of the earliest signs of Alzheimer's disease (AD), no change in the uptake of ketone bodies has been evidenced yet. To probe for changes in GLUT1 and MCT1, we performed Western immunoblotting in microvessel extracts from the parietal cortex of 60 participants of the Religious Orders Study. Participants clinically diagnosed with AD had lower cerebrovascular levels of GLUT1, whereas MCT1 remained unchanged. GLUT1 reduction was associated with lower cognitive scores. No such association was found for MCT1. GLUT1 was inversely correlated with neuritic plaques and cerebrovascular β-secretase-derived fragment levels. No other significant associations were found between both transporters, markers of Aβ and tau pathologies, sex, age at death or apolipoprotein-ε4 genotype. These results suggest that, while a deficit of GLUT1 may underlie the reduced transport of glucose to the brain in AD, no such impairment occurs for MCT1. This study thus supports the exploration of ketone bodies as an alternative energy source for the aging brain.
Collapse
Affiliation(s)
- Manon Leclerc
- Faculté de pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| | - Philippe Bourassa
- Faculté de pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| |
Collapse
|
3
|
Gallet Q, Bouteloup V, Locatelli M, Habert MO, Chupin M, Campion JY, Michels PE, Delrieu J, Lebouvier T, Balageas AC, Surget A, Belzung C, Arlicot N, Ribeiro MJS, Gissot V, El-Hage W, Camus V, Gohier B, Desmidt T. Cerebral Metabolic Signature of Chronic Benzodiazepine Use in Nondemented Older Adults: An FDG-PET Study in the MEMENTO Cohort. Am J Geriatr Psychiatry 2024; 32:665-677. [PMID: 37973486 DOI: 10.1016/j.jagp.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE We sought to examine the association between chronic Benzodiazepine (BZD) use and brain metabolism obtained from 2-deoxy-2-fluoro-D-glucose (FDG) positron emission tomography (PET) in the MEMENTO clinical cohort of nondemented older adults with an isolated memory complaint or mild cognitive impairment at baseline. METHODS Our analysis focused on 3 levels: (1) the global mean brain standardized uptake value (SUVR), (2) the Alzheimer's disease (AD)-specific regions of interest (ROIs), and (3) the ratio of total SUVR on the brain and different anatomical ROIs. Cerebral metabolism was obtained from 2-deoxy-2-fluoro-D-glucose-FDG-PET and compared between chronic BZD users and nonusers using multiple linear regressions adjusted for age, sex, education, APOE ε 4 copy number, cognitive and neuropsychiatric assessments, history of major depressive episodes and antidepressant use. RESULTS We found that the SUVR was significantly higher in chronic BZD users (n = 192) than in nonusers (n = 1,122) in the whole brain (beta = 0.03; p = 0.038) and in the right amygdala (beta = 0.32; p = 0.012). Trends were observed for the half-lives of BZDs (short- and long-acting BZDs) (p = 0.051) and Z-drug hypnotic treatments (p = 0.060) on the SUVR of the right amygdala. We found no significant association in the other ROIs. CONCLUSION Our study is the first to find a greater global metabolism in chronic BZD users and a specific greater metabolism in the right amygdala. Because the acute administration of BZDs tends to reduce brain metabolism, these findings may correspond to a compensatory mechanism while the brain adapts with global metabolism upregulation, with a specific focus on the right amygdala.
Collapse
Affiliation(s)
- Quentin Gallet
- Department of Psychiatry, University Hospital, Angers, France
| | - Vincent Bouteloup
- Centre Inserm U1219 Bordeaux Population Health, CIC1401-EC, Institut de Santé Publique, d'Epidémiologie et de Développement, Université de Bordeaux, CHU de Bordeaux, Pôle Santé Publique, Bordeaux, France
| | - Maxime Locatelli
- CATI, US52-UAR2031, CEA, ICM, Sorbonne Université, CNRS, INSERM, APHP, Ile de France, France; Paris Brain Institute - Institut du Cerveau (ICM), CNRS UMR 7225, INSERM, U 1127, Sorbonne Université F-75013, Paris, France; Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006, Paris, France
| | - Marie-Odile Habert
- CATI, US52-UAR2031, CEA, ICM, Sorbonne Université, CNRS, INSERM, APHP, Ile de France, France; Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006, Paris, France; Service de médecine nucléaire, Hôpital Pitié-Salpêtrière, APHP, Paris 75013, France
| | - Marie Chupin
- CATI, US52-UAR2031, CEA, ICM, Sorbonne Université, CNRS, INSERM, APHP, Ile de France, France; Paris Brain Institute - Institut du Cerveau (ICM), CNRS UMR 7225, INSERM, U 1127, Sorbonne Université F-75013, Paris, France
| | | | | | - Julien Delrieu
- Gérontopôle, Department of Geriatrics, CHU Toulouse, Purpan University Hospital, Toulouse, France; UMR1027, Université de Toulouse, UPS, INSERM, Toulouse, France
| | | | | | | | | | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; CIC 1415, Université de Tours, INSERM, Tours, France
| | - Maria-Joao Santiago Ribeiro
- CHU de Tours, Tours, France; UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; CIC 1415, Université de Tours, INSERM, Tours, France
| | - Valérie Gissot
- CHU de Tours, Tours, France; UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Wissam El-Hage
- CHU de Tours, Tours, France; UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; CIC 1415, Université de Tours, INSERM, Tours, France
| | - Vincent Camus
- CHU de Tours, Tours, France; UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Bénédicte Gohier
- Department of Psychiatry, University Hospital, Angers, France; Université d'Angers, Université de Nantes, LPPL, SFR CONFLUENCES, F-49000 Angers, France
| | - Thomas Desmidt
- CHU de Tours, Tours, France; UMR 1253, iBrain, Université de Tours, INSERM, Tours, France.
| |
Collapse
|
4
|
Borchert RJ, Azevedo T, Badhwar A, Bernal J, Betts M, Bruffaerts R, Burkhart MC, Dewachter I, Gellersen HM, Low A, Lourida I, Machado L, Madan CR, Malpetti M, Mejia J, Michopoulou S, Muñoz-Neira C, Pepys J, Peres M, Phillips V, Ramanan S, Tamburin S, Tantiangco HM, Thakur L, Tomassini A, Vipin A, Tang E, Newby D, Ranson JM, Llewellyn DJ, Veldsman M, Rittman T. Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: A systematic review. Alzheimers Dement 2023; 19:5885-5904. [PMID: 37563912 DOI: 10.1002/alz.13412] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Artificial intelligence (AI) and neuroimaging offer new opportunities for diagnosis and prognosis of dementia. METHODS We systematically reviewed studies reporting AI for neuroimaging in diagnosis and/or prognosis of cognitive neurodegenerative diseases. RESULTS A total of 255 studies were identified. Most studies relied on the Alzheimer's Disease Neuroimaging Initiative dataset. Algorithmic classifiers were the most commonly used AI method (48%) and discriminative models performed best for differentiating Alzheimer's disease from controls. The accuracy of algorithms varied with the patient cohort, imaging modalities, and stratifiers used. Few studies performed validation in an independent cohort. DISCUSSION The literature has several methodological limitations including lack of sufficient algorithm development descriptions and standard definitions. We make recommendations to improve model validation including addressing key clinical questions, providing sufficient description of AI methods and validating findings in independent datasets. Collaborative approaches between experts in AI and medicine will help achieve the promising potential of AI tools in practice. HIGHLIGHTS There has been a rapid expansion in the use of machine learning for diagnosis and prognosis in neurodegenerative disease Most studies (71%) relied on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with no other individual dataset used more than five times There has been a recent rise in the use of more complex discriminative models (e.g., neural networks) that performed better than other classifiers for classification of AD vs healthy controls We make recommendations to address methodological considerations, addressing key clinical questions, and validation We also make recommendations for the field more broadly to standardize outcome measures, address gaps in the literature, and monitor sources of bias.
Collapse
Affiliation(s)
- Robin J Borchert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Tiago Azevedo
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - AmanPreet Badhwar
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada
- Centre de recherche de l'Institut Universitaire de Gériatrie (CRIUGM), Montreal, Canada
| | - Jose Bernal
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Matthew Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Rose Bruffaerts
- Computational Neurology, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | - Ilse Dewachter
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Helena M Gellersen
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Audrey Low
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Luiza Machado
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jhony Mejia
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Sofia Michopoulou
- Imaging Physics, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Carlos Muñoz-Neira
- Research into Memory, Brain sciences and dementia Group (ReMemBr Group), Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Artificial Intelligence & Computational Neuroscience Group (AICN Group), Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Jack Pepys
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Marion Peres
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Siddharth Ramanan
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Lokendra Thakur
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, UK
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandro Tomassini
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Eugene Tang
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Danielle Newby
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK
- Alan Turing Institute, London, UK
| | - Michele Veldsman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Cao E, Ma D, Nayak S, Duong TQ. Deep learning combining FDG-PET and neurocognitive data accurately predicts MCI conversion to Alzheimer's dementia 3-year post MCI diagnosis. Neurobiol Dis 2023; 187:106310. [PMID: 37769746 DOI: 10.1016/j.nbd.2023.106310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION This study reports a novel deep learning approach to predict mild cognitive impairment (MCI) conversion to Alzheimer's dementia (AD) within three years using whole-brain fluorodeoxyglucose (FDG) positron emission tomography (PET) and cognitive scores (CS). METHODS This analysis consisted of 150 normal controls (CN), 257 MCI, and 205 AD subjects from ADNI. FDG-PET and CS were obtained at MCI diagnosis to predict AD conversion within three years of MCI diagnosis using convolutional neural networks. RESULTS Neurocognitive scores predicted better than FDG-PET per se, but the best model was a combination of FDG-PET, age, and neurocognitive data, yielding an AUC of 0.785 ± 0.096 and a balanced accuracy of 0.733 ± 0.098. Saliency maps highlighted putamen, thalamus, inferior frontal gyrus, parietal operculum, precuneus cortices, calcarine cortices, temporal gyrus, and planum temporale to be important for prediction. DISCUSSION Deep learning accurately predicts MCI conversion to AD and provides neural correlates of brain regions associated with AD conversion.
Collapse
Affiliation(s)
- Eric Cao
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10467, United States
| | - Da Ma
- Department of Internal Medicine Section of Gerontology and Geriatric Medicine, Wake Forest, University School of Medicine, Winston-Salam, NC 27109, United States
| | - Siddharth Nayak
- Department of Radiology, Weill Cornell Medicine, New York, 10065, United States
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10467, United States.
| |
Collapse
|
6
|
da Silveira RV, Li LM, Castellano G. Texture-based brain networks for characterization of healthy subjects from MRI. Sci Rep 2023; 13:16421. [PMID: 37775531 PMCID: PMC10541866 DOI: 10.1038/s41598-023-43544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Brain networks have been widely used to study the relationships between brain regions based on their dynamics using, e.g. fMRI or EEG, and to characterize their real physical connections using DTI. However, few studies have investigated brain networks derived from structural properties; and those have been based on cortical thickness or gray matter volume. The main objective of this work was to investigate the feasibility of obtaining useful information from brain networks derived from structural MRI, using texture features. We also wanted to verify if texture brain networks had any relation with established functional networks. T1-MR images were segmented using AAL and texture parameters from the gray-level co-occurrence matrix were computed for each region, for 760 subjects. Individual texture networks were used to evaluate the structural connections between regions of well-established functional networks; assess possible gender differences; investigate the dependence of texture network measures with age; and single out brain regions with different texture-network characteristics. Although around 70% of texture connections between regions belonging to the default mode, attention, and visual network were greater than the mean connection value, this effect was small (only between 7 and 15% of these connections were larger than one standard deviation), implying that texture-based morphology does not seem to subside function. This differs from cortical thickness-based morphology, which has been shown to relate to functional networks. Seventy-five out of 86 evaluated regions showed significant (ANCOVA, p < 0.05) differences between genders. Forty-four out of 86 regions showed significant (ANCOVA, p < 0.05) dependence with age; however, the R2 indicates that this is not a linear relation. Thalamus and putamen showed a very unique texture-wise structure compared to other analyzed regions. Texture networks were able to provide useful information regarding gender and age-related differences, as well as for singling out specific brain regions. We did not find a morphological texture-based subsidy for the evaluated functional brain networks. In the future, this approach will be extended to neurological patients to investigate the possibility of extracting biomarkers to help monitor disease evolution or treatment effectiveness.
Collapse
Affiliation(s)
- Rafael Vinícius da Silveira
- Department of Cosmic Rays and Chronology, Gleb Wataghin Physics Institute, University of Campinas - UNICAMP, R. Sérgio Buarque de Holanda, 777, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-859, Brazil.
- Brazilian Institute of Neuroscience and Neurotechnology - BRAINN, Campinas, SP, 13083-887, Brazil.
| | - Li Min Li
- Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, R. Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology - BRAINN, Campinas, SP, 13083-887, Brazil
| | - Gabriela Castellano
- Department of Cosmic Rays and Chronology, Gleb Wataghin Physics Institute, University of Campinas - UNICAMP, R. Sérgio Buarque de Holanda, 777, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-859, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology - BRAINN, Campinas, SP, 13083-887, Brazil
| |
Collapse
|
7
|
Drake DF, Derado G, Zhang L, Bowman FD. Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL STATISTICS 2023; 15:e1606. [PMID: 39655245 PMCID: PMC11626230 DOI: 10.1002/wics.1606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/05/2023] [Indexed: 12/12/2024]
Abstract
Alzheimer's disease (AD) is a degenerative disorder involving significant memory loss and other cognitive deficits, manifesting as a progression from normal cognitive functioning to mild cognitive impairment to AD. The sooner an accurate diagnosis of probable AD is made, the easier it is to manage symptoms and plan for future therapy. Functional neuroimaging stands to be a useful tool in achieving early diagnosis. Among the many neuroimaging modalities, positron emission tomography (PET) provides direct regional assessment of, among others, brain metabolism, cerebral blood flow, amyloid deposition-all quantities of interest in the characterization of AD. However, there are analytic challenges in identifying early indicators of AD from these high-dimensional imaging data sets, and it is unclear whether early indicators of AD are more likely to emerge in localized patterns of brain activity or in patterns of correlation between distinct brain regions. Early PET-based analyses of AD focused on alterations in metabolic activity at the voxel-level or in anatomically defined regions of interest. Other approaches, including seed-voxel and multivariate techniques, seek to characterize metabolic connectivity by identifying other regions in the brain with similar patterns of activity across subjects. We briefly review various neuroimaging statistical approaches applied to determine changes in metabolic activity or metabolic connectivity associated with AD. We then present an approach that provides a unified statistical framework for addressing both metabolic activity and connectivity. Specifically, we apply a Bayesian spatial hierarchical framework to longitudinal metabolic PET scans from the Alzheimer's Disease Neuroimaging Initiative.
Collapse
Affiliation(s)
- Daniel F. Drake
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Gordana Derado
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Lijun Zhang
- Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - F. DuBois Bowman
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
8
|
Gnörich J, Reifschneider A, Wind K, Zatcepin A, Kunte ST, Beumers P, Bartos LM, Wiedemann T, Grosch M, Xiang X, Fard MK, Ruch F, Werner G, Koehler M, Slemann L, Hummel S, Briel N, Blume T, Shi Y, Biechele G, Beyer L, Eckenweber F, Scheifele M, Bartenstein P, Albert NL, Herms J, Tahirovic S, Haass C, Capell A, Ziegler S, Brendel M. Depletion and activation of microglia impact metabolic connectivity of the mouse brain. J Neuroinflammation 2023; 20:47. [PMID: 36829182 PMCID: PMC9951492 DOI: 10.1186/s12974-023-02735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
AIM We aimed to investigate the impact of microglial activity and microglial FDG uptake on metabolic connectivity, since microglial activation states determine FDG-PET alterations. Metabolic connectivity refers to a concept of interacting metabolic brain regions and receives growing interest in approaching complex cerebral metabolic networks in neurodegenerative diseases. However, underlying sources of metabolic connectivity remain to be elucidated. MATERIALS AND METHODS We analyzed metabolic networks measured by interregional correlation coefficients (ICCs) of FDG-PET scans in WT mice and in mice with mutations in progranulin (Grn) or triggering receptor expressed on myeloid cells 2 (Trem2) knockouts (-/-) as well as in double mutant Grn-/-/Trem2-/- mice. We selected those rodent models as they represent opposite microglial signatures with disease associated microglia in Grn-/- mice and microglia locked in a homeostatic state in Trem2-/- mice; however, both resulting in lower glucose uptake of the brain. The direct influence of microglia on metabolic networks was further determined by microglia depletion using a CSF1R inhibitor in WT mice at two different ages. Within maps of global mean scaled regional FDG uptake, 24 pre-established volumes of interest were applied and assigned to either cortical or subcortical networks. ICCs of all region pairs were calculated and z-transformed prior to group comparisons. FDG uptake of neurons, microglia, and astrocytes was determined in Grn-/- and WT mice via assessment of single cell tracer uptake (scRadiotracing). RESULTS Microglia depletion by CSF1R inhibition resulted in a strong decrease of metabolic connectivity defined by decrease of mean cortical ICCs in WT mice at both ages studied (6-7 m; p = 0.0148, 9-10 m; p = 0.0191), when compared to vehicle-treated age-matched WT mice. Grn-/-, Trem2-/- and Grn-/-/Trem2-/- mice all displayed reduced FDG-PET signals when compared to WT mice. However, when analyzing metabolic networks, a distinct increase of ICCs was observed in Grn-/- mice when compared to WT mice in cortical (p < 0.0001) and hippocampal (p < 0.0001) networks. In contrast, Trem2-/- mice did not show significant alterations in metabolic connectivity when compared to WT. Furthermore, the increased metabolic connectivity in Grn-/- mice was completely suppressed in Grn-/-/Trem2-/- mice. Grn-/- mice exhibited a severe loss of neuronal FDG uptake (- 61%, p < 0.0001) which shifted allocation of cellular brain FDG uptake to microglia (42% in Grn-/- vs. 22% in WT). CONCLUSIONS Presence, absence, and activation of microglia have a strong impact on metabolic connectivity of the mouse brain. Enhanced metabolic connectivity is associated with increased microglial FDG allocation.
Collapse
Affiliation(s)
- Johannes Gnörich
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Anika Reifschneider
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karin Wind
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Artem Zatcepin
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sebastian T. Kunte
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Philipp Beumers
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Laura M. Bartos
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Thomas Wiedemann
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian Grosch
- grid.5252.00000 0004 1936 973XGerman Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xianyuan Xiang
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany ,grid.9227.e0000000119573309CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
| | - Maryam K. Fard
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Francois Ruch
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Georg Werner
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mara Koehler
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Luna Slemann
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Selina Hummel
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Nils Briel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tanja Blume
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yuan Shi
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gloria Biechele
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Leonie Beyer
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Florian Eckenweber
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Maximilian Scheifele
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Peter Bartenstein
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nathalie L. Albert
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Jochen Herms
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabina Tahirovic
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Christian Haass
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anja Capell
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sibylle Ziegler
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
9
|
Subramanyam Rallabandi V, Seetharaman K. Deep learning-based classification of healthy aging controls, mild cognitive impairment and Alzheimer’s disease using fusion of MRI-PET imaging. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Lespinasse J, Chêne G, Mangin J, Dubois B, Blanc F, Paquet C, Hanon O, Planche V, Gabelle A, Ceccaldi M, Annweiler C, Krolak‐Salmon P, Godefroy O, Wallon D, Sauvée M, Bergeret S, Chupin M, Proust‐Lima C, Dufouil C. Associations among hypertension, dementia biomarkers, and cognition: The MEMENTO cohort. Alzheimers Dement 2022. [PMID: 36464896 DOI: 10.1002/alz.12866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Approximately 40% of dementia cases could be delayed or prevented acting on modifiable risk factors including hypertension. However, the mechanisms underlying the hypertension-dementia association are still poorly understood. METHODS We conducted a cross-sectional analysis in 2048 patients from the MEMENTO cohort, a French multicenter clinic-based study of outpatients with either isolated cognitive complaints or mild cognitive impairment. Exposure to hypertension was defined as a combination of high blood pressure (BP) status and antihypertensive treatment intake. Pathway associations were examined through structural equation modeling integrating extensive collection of neuroimaging biomarkers and clinical data. RESULTS Participants treated with high BP had significantly lower cognition compared to the others. This association was mediated by higher neurodegeneration and higher white matter hyperintensities load but not by Alzheimer's disease (AD) biomarkers. DISCUSSION These results highlight the importance of controlling hypertension for prevention of cognitive decline and offer new insights on mechanisms underlying the hypertension-dementia association. HIGHLIGHTS Paths of hypertension-cognition association were assessed by structural equation models. The hypertension-cognition association is not mediated by Alzheimer's disease biomarkers. The hypertension-cognition association is mediated by neurodegeneration and leukoaraiosis. Lower cognition was limited to participants treated with uncontrolled blood pressure. Blood pressure control could contribute to promote healthier brain aging.
Collapse
Affiliation(s)
- Jérémie Lespinasse
- Inserm Research Center « Bordeaux Population Health », Bordeaux School of Public Health, CIC 1401‐EC Bordeaux University Bordeaux France
- Pôle de santé publique Centre Hospitalier Universitaire (CHU) de Bordeaux Bordeaux France
| | - Geneviève Chêne
- Inserm Research Center « Bordeaux Population Health », Bordeaux School of Public Health, CIC 1401‐EC Bordeaux University Bordeaux France
- Pôle de santé publique Centre Hospitalier Universitaire (CHU) de Bordeaux Bordeaux France
| | - Jean‐Francois Mangin
- CATI, US52‐UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP Paris France
- Université Paris‐Saclay, CEA, CNRS, Neurospin, UMR9027 Baobab Gif‐sur‐Yvette France
| | - Bruno Dubois
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale Paris France
- Sorbonne‐Université, Service des maladies cognitives et comportementales et Institut de la mémoire et de la maladie d'Alzheimer (IM2A) Hôpital de la Salpêtrière Paris AP‐PH France
| | - Frederic Blanc
- Univ. Strasbourg, CNRS, ICube laboratory, UMR 7357, Fédération de Médecine Translationnelle de Strasbourg, Centre Mémoire de Ressources et de Recherches Departement de Gériatrie Strasbourg France
| | - Claire Paquet
- Univ. Paris, Inserm U1144, GHU APHP Nord Lariboisière Fernand‐Widal Paris France
| | - Olivier Hanon
- Univ. de Paris, EA 4468, Service de Gériatrie, AP‐HP Hôpital Broca Paris France
| | - Vincent Planche
- Univ. Bordeaux, CNRS UMR 5293, Institut des Maladies Neurodégénératives, Centre Mémoire de Ressources et de Recherches Pôle de Neurosciences Cliniques, CHU de Bordeaux Bordeaux France
| | - Audrey Gabelle
- Univ. Montpellier, i‐site MUSE, Inserm U1061, Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Département de Neurologie, CHU de Montpellier Montpellier France
| | - Mathieu Ceccaldi
- Univ. Aix Marseille, Inserm UMR 1106, Institut de Neurosciences des Systèmes, Centre Mémoire de Ressources et de Recherches Département de Neurologie et de Neuropsychologie, AP‐HM Marseille France
| | - Cedric Annweiler
- Univ. Angers, UPRES EA 4638, Centre Mémoire de Ressources et de Recherches, Département de Gériatrie, CHU d'Angers Angers France
| | - Pierre Krolak‐Salmon
- Univ. Lyon, Inserm U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Centre Mémoire Ressource et Recherche de Lyon (CMRR), Hôpital des Charpennes Hospices Civils de Lyon Lyon France
| | - Olivier Godefroy
- Neurology Departement and Functional Neurosciences Lab. (UR UPJV 4559) Amiens University Hospital Amiens France
| | - David Wallon
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Neurology and CNR‐MAJ, Normandy Center for Genomic and Personalized Medicine CIC‐CRB1404 Rouen France
| | - Mathilde Sauvée
- CMRR Grenoble Arc Alpin CHU Grenoble Grenoble France
- Laboratoire de Psychologie et NeuroCognition: LPNC CNRS 5105 Université Grenoble Alpes Grenoble France
| | - Sébastien Bergeret
- Département de Médecine NucléaireAP‐HP, Hôpital Pitié‐Salpêtrière ParisFrance
| | - Marie Chupin
- CATI, US52‐UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP Paris France
| | - Cécile Proust‐Lima
- Inserm Research Center « Bordeaux Population Health », Bordeaux School of Public Health, CIC 1401‐EC Bordeaux University Bordeaux France
| | - Carole Dufouil
- Inserm Research Center « Bordeaux Population Health », Bordeaux School of Public Health, CIC 1401‐EC Bordeaux University Bordeaux France
- Pôle de santé publique Centre Hospitalier Universitaire (CHU) de Bordeaux Bordeaux France
| | | |
Collapse
|
11
|
Wang M, Schutte M, Grimmer T, Lizarraga A, Schultz T, Hedderich DM, Diehl-Schmid J, Rominger A, Ziegler S, Navab N, Yan Z, Jiang J, Yakushev I, Shi K. Reducing instability of inter-subject covariance of FDG uptake networks using structure-weighted sparse estimation approach. Eur J Nucl Med Mol Imaging 2022; 50:80-89. [PMID: 36018359 DOI: 10.1007/s00259-022-05949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Sparse inverse covariance estimation (SICE) is increasingly utilized to estimate inter-subject covariance of FDG uptake (FDGcov) as proxy of metabolic brain connectivity. However, this statistical method suffers from the lack of robustness in the connectivity estimation. Patterns of FDGcov were observed to be spatially similar with patterns of structural connectivity as obtained from DTI imaging. Based on this similarity, we propose to regularize the sparse estimation of FDGcov using the structural connectivity. METHODS We retrospectively analyzed the FDG-PET and DTI data of 26 healthy controls, 41 patients with Alzheimer's disease (AD), and 30 patients with frontotemporal lobar degeneration (FTLD). Structural connectivity matrix derived from DTI data was introduced as a regularization parameter to assign individual penalties to each potential metabolic connectivity. Leave-one-out cross validation experiments were performed to assess the differential diagnosis ability of structure weighted SICE approach. A few approaches of structure weighted were compared with the standard SICE. RESULTS Compared to the standard SICE, structural weighting has shown more stable performance in the supervised classification, especially in the differentiation AD vs. FTLD (accuracy of 89-90%, while unweighted SICE only 85%). There was a significant positive relationship between the minimum number of metabolic connection and the robustness of the classification accuracy (r = 0.57, P < 0.001). Shuffling experiments showed significant differences between classification score derived with true structural weighting and those obtained by randomized structure (P < 0.05). CONCLUSION The structure-weighted sparse estimation can enhance the robustness of metabolic connectivity, which may consequently improve the differentiation of pathological phenotypes.
Collapse
Affiliation(s)
- Min Wang
- Institute of Biomedical Engineering, School of Life Science, Shanghai University, Shanghai, China
- Computer-Aided Medical Procedures and Augmented Reality, Technical University of Munich, Munich, Germany
| | - Michael Schutte
- The Bonn-Aachen International Center for Information Technology (b-it) and Institute of Computer Science II, University of Bonn, Bonn, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Aldana Lizarraga
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Thomas Schultz
- Department for Visual Computing, University of Bonn, Bonn, Germany
| | - Dennis M Hedderich
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
| | - Sybille Ziegler
- Department of Nuclear Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nassir Navab
- Computer-Aided Medical Procedures and Augmented Reality, Technical University of Munich, Munich, Germany
| | - Zhuangzhi Yan
- Institute of Biomedical Engineering, School of Life Science, Shanghai University, Shanghai, China
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Science, Shanghai University, Shanghai, China.
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Kuangyu Shi
- Computer-Aided Medical Procedures and Augmented Reality, Technical University of Munich, Munich, Germany
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Grasset L, Proust-Lima C, Mangin JF, Habert MO, Dubois B, Paquet C, Hanon O, Gabelle A, Ceccaldi M, Annweiler C, David R, Jonveaux T, Belin C, Julian A, Rouch-Leroyer I, Pariente J, Locatelli M, Chupin M, Chêne G, Dufouil C. Explaining the association between social and lifestyle factors and cognitive functions: a pathway analysis in the Memento cohort. Alzheimers Res Ther 2022; 14:68. [PMID: 35585559 PMCID: PMC9115948 DOI: 10.1186/s13195-022-01013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
This work aimed to investigate the potential pathways involved in the association between social and lifestyle factors, biomarkers of Alzheimer’s disease and related dementia (ADRD), and cognition.
Methods
The authors studied 2323 participants from the Memento study, a French nationwide clinical cohort. Social and lifestyle factors were education level, current household incomes, physical activity, leisure activities, and social network from which two continuous latent variables were computed: an early to midlife (EML) and a latelife (LL) indicator. Brain magnetic resonance imaging (MRI), lumbar puncture, and amyloid-positron emission tomography (PET) were used to define three latent variables: neurodegeneration, small vessel disease (SVD), and AD pathology. Cognitive function was defined as the underlying factor of a latent variable with four cognitive tests. Structural equation models were used to evaluate cross-sectional pathways between social and lifestyle factors and cognition.
Results
Participants’ mean age was 70.9 years old, 62% were women, 28% were apolipoprotein-ε4 carriers, and 59% had a Clinical Dementia Rating (CDR) score of 0.5. Higher early to midlife social indicator was only directly associated with better cognitive function (direct β = 0.364 (0.322; 0.405), with no indirect pathway through ADRD biomarkers (total β = 0.392 (0.351; 0.429)). In addition to a direct effect on cognition (direct β = 0.076 (0.033; 0.118)), the association between latelife lifestyle indicator and cognition was also mostly mediated by an indirect effect through lower neurodegeneration (indirect β = 0.066 (0.042; 0.090) and direct β = − 0.116 (− 0.153; − 0.079)), but not through AD pathology nor SVD.
Conclusions
Early to midlife social factors are directly associated with higher cognitive functions. Latelife lifestyle factors may help preserve cognitive functions through lower neurodegeneration.
Collapse
|
13
|
Rye I, Vik A, Kocinski M, Lundervold AS, Lundervold AJ. Predicting conversion to Alzheimer's disease in individuals with Mild Cognitive Impairment using clinically transferable features. Sci Rep 2022; 12:15566. [PMID: 36114257 PMCID: PMC9481567 DOI: 10.1038/s41598-022-18805-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Patients with Mild Cognitive Impairment (MCI) have an increased risk of Alzheimer's disease (AD). Early identification of underlying neurodegenerative processes is essential to provide treatment before the disease is well established in the brain. Here we used longitudinal data from the ADNI database to investigate prediction of a trajectory towards AD in a group of patients defined as MCI at a baseline examination. One group remained stable over time (sMCI, n = 357) and one converted to AD (cAD, n = 321). By running two independent classification methods within a machine learning framework, with cognitive function, hippocampal volume and genetic APOE status as features, we obtained a cross-validation classification accuracy of about 70%. This level of accuracy was confirmed across different classification methods and validation procedures. Moreover, the sets of misclassified subjects had a large overlap between the two models. Impaired memory function was consistently found to be one of the core symptoms of MCI patients on a trajectory towards AD. The prediction above chance level shown in the present study should inspire further work to develop tools that can aid clinicians in making prognostic decisions.
Collapse
Affiliation(s)
- Ingrid Rye
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Alexandra Vik
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Marek Kocinski
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Institute of Electronics, Lodz University of Technology, Lodz, Poland
| | - Alexander S Lundervold
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Computer Science, Electrical Engineering, and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
| |
Collapse
|
14
|
Sadiq MU, Kwak K, Dayan E. Model-based stratification of progression along the Alzheimer disease continuum highlights the centrality of biomarker synergies. Alzheimers Res Ther 2022; 14:16. [PMID: 35073974 PMCID: PMC8787915 DOI: 10.1186/s13195-021-00941-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The progression rates of Alzheimer's disease (AD) are variable and dynamic, yet the mechanisms that contribute to heterogeneity in progression rates remain ill-understood. Particularly, the role of synergies in pathological processes reflected by biomarkers for amyloid-beta ('A'), tau ('T'), and neurodegeneration ('N') in progression along the AD continuum is not fully understood. METHODS Here, we used a combination of model and data-driven approaches to address this question. Working with a large dataset (N = 321 across the training and testing cohorts), we first applied unsupervised clustering on longitudinal cognitive assessments to divide individuals on the AD continuum into those showing fast vs. moderate decline. Next, we developed a deep learning model that differentiated fast vs. moderate decline using baseline AT(N) biomarkers. RESULTS Training the model with AT(N) biomarker combination revealed more prognostic utility than any individual biomarkers alone. We additionally found little overlap between the model-driven progression phenotypes and established atrophy-based AD subtypes. Our model showed that the combination of all AT(N) biomarkers had the most prognostic utility in predicting progression along the AD continuum. A comprehensive AT(N) model showed better predictive performance than biomarker pairs (A(N) and T(N)) and individual biomarkers (A, T, or N). CONCLUSIONS This study combined data and model-driven methods to uncover the role of AT(N) biomarker synergies in the progression of cognitive decline along the AD continuum. The results suggest a synergistic relationship between AT(N) biomarkers in determining this progression, extending previous evidence of A-T synergistic mechanisms.
Collapse
Affiliation(s)
- Muhammad Usman Sadiq
- Biomedical Research Imaging Center (BRIC), UNC-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kichang Kwak
- Biomedical Research Imaging Center (BRIC), UNC-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Eran Dayan
- Biomedical Research Imaging Center (BRIC), UNC-Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Radiology, UNC-Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
15
|
Evaluating the efficacy of hearing aids for tinnitus therapy - A Positron emission tomography study. Brain Res 2022; 1775:147728. [PMID: 34793755 DOI: 10.1016/j.brainres.2021.147728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/26/2022]
Abstract
Brain imaging studies have revealed neural changes in chronic tinnitus patients that are not restricted to auditory brain areas; rather, the engagement of limbic system structures, attention and memory networks are has been noted. Hearing aids (HA) provide compensation for comorbid hearing loss and may decrease tinnitus-related perception and annoyance. Using resting state positron emission tomography our goal was to analyze metabolic and functional brain changes after six months of effective HA use by patients with chronic tinnitus and associated sensorineural hearing loss. 33 age and hearing loss matched participants with mild/moderate hearing loss were enrolled in this study: 19 with tinnitus, and 14 without tinnitus. Participants with tinnitus of more than 6 months with moderate/severe Tinnitus Handicap Inventory (THI) and Visual Analogue Scale (VAS) scores composed the tinnitus group. A full factorial 2X2 ANOVA was conducted for imaging analysis, with group (tinnitus and controls) and time point (pre-intervention and post-intervention) as factors. Six months after HA fitting, tinnitus scores reduced statistically and clinically. Analysis revealed increased glycolytic metabolism in the left orbitofrontal cortex, right temporal lobe and right hippocampus, and reduced glycolytic metabolism in the left cerebellum and inferior parietal lobe within the tinnitus group. The hearing loss control group showed no significant metabolic changes in the analysis. Parsing out the contribution of tinnitus independent of hearing loss, allowed us to identify areas implicated in declines in tinnitus handicap as a result of the intervention. Brain regions implicated in the present study may be part of chronic tinnitus-specific network.
Collapse
|
16
|
Grueso S, Viejo-Sobera R. Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer's disease dementia: a systematic review. Alzheimers Res Ther 2021; 13:162. [PMID: 34583745 PMCID: PMC8480074 DOI: 10.1186/s13195-021-00900-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/12/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND An increase in lifespan in our society is a double-edged sword that entails a growing number of patients with neurocognitive disorders, Alzheimer's disease being the most prevalent. Advances in medical imaging and computational power enable new methods for the early detection of neurocognitive disorders with the goal of preventing or reducing cognitive decline. Computer-aided image analysis and early detection of changes in cognition is a promising approach for patients with mild cognitive impairment, sometimes a prodromal stage of Alzheimer's disease dementia. METHODS We conducted a systematic review following PRISMA guidelines of studies where machine learning was applied to neuroimaging data in order to predict whether patients with mild cognitive impairment might develop Alzheimer's disease dementia or remain stable. After removing duplicates, we screened 452 studies and selected 116 for qualitative analysis. RESULTS Most studies used magnetic resonance image (MRI) and positron emission tomography (PET) data but also magnetoencephalography. The datasets were mainly extracted from the Alzheimer's disease neuroimaging initiative (ADNI) database with some exceptions. Regarding the algorithms used, the most common was support vector machine with a mean accuracy of 75.4%, but convolutional neural networks achieved a higher mean accuracy of 78.5%. Studies combining MRI and PET achieved overall better classification accuracy than studies that only used one neuroimaging technique. In general, the more complex models such as those based on deep learning, combined with multimodal and multidimensional data (neuroimaging, clinical, cognitive, genetic, and behavioral) achieved the best performance. CONCLUSIONS Although the performance of the different methods still has room for improvement, the results are promising and this methodology has a great potential as a support tool for clinicians and healthcare professionals.
Collapse
Affiliation(s)
- Sergio Grueso
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Rambla del Poblenou 156, 08018, Barcelona, Spain.
| | - Raquel Viejo-Sobera
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Rambla del Poblenou 156, 08018, Barcelona, Spain
| |
Collapse
|
17
|
Frison E, Proust-Lima C, Mangin JF, Habert MO, Bombois S, Ousset PJ, Pasquier F, Hanon O, Paquet C, Gabelle A, Ceccaldi M, Annweiler C, Krolak-Salmon P, Béjot Y, Belin C, Wallon D, Sauvee M, Beaufils E, Bourdel-Marchasson I, Jalenques I, Chupin M, Chêne G, Dufouil C. Diabetes Mellitus and Cognition: Pathway Analysis in the MEMENTO Cohort. Neurology 2021; 97:e836-e848. [PMID: 34210821 PMCID: PMC8397583 DOI: 10.1212/wnl.0000000000012440] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/25/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the role of biomarkers of Alzheimer disease (AD), neurodegeneration, and small vessel disease (SVD) as mediators in the association between diabetes mellitus and cognition. METHODS The study sample was derived from MEMENTO, a cohort of French adults recruited in memory clinics and screened for either isolated subjective cognitive complaints or mild cognitive impairment. Diabetes was defined based on blood glucose assessment, use of antidiabetic agent, or self-report. We used structural equation modeling to assess whether latent variables of AD pathology (PET mean amyloid uptake, Aβ42/Aβ40 ratio, and CSF phosphorylated tau), SVD (white matter hyperintensities volume and visual grading), and neurodegeneration (mean cortical thickness, brain parenchymal fraction, hippocampal volume, and mean fluorodeoxyglucose uptake) mediate the association between diabetes and a latent variable of cognition (5 neuropsychological tests), adjusting for potential confounders. RESULTS There were 254 (11.1%) participants with diabetes among 2,288 participants (median age 71.6 years; 61.8% women). The association between diabetes and lower cognition was significantly mediated by higher neurodegeneration (standardized indirect effect: -0.061, 95% confidence interval: -0.089, -0.032), but not mediated by SVD and AD markers. Results were similar when considering latent variables of memory or executive functioning. CONCLUSION In a large clinical cohort in the elderly, diabetes is associated with lower cognition through neurodegeneration, independently of SVD and AD biomarkers.
Collapse
Affiliation(s)
- Eric Frison
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Cecile Proust-Lima
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Jean-Francois Mangin
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Marie-Odile Habert
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Stephanie Bombois
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Pierre-Jean Ousset
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Florence Pasquier
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Olivier Hanon
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Claire Paquet
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Audrey Gabelle
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Mathieu Ceccaldi
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Cédric Annweiler
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Pierre Krolak-Salmon
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Yannick Béjot
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Catherine Belin
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - David Wallon
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Mathilde Sauvee
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Emilie Beaufils
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Isabelle Bourdel-Marchasson
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Isabelle Jalenques
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Marie Chupin
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Geneviève Chêne
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France
| | - Carole Dufouil
- From INSERM, UMR 1219 (E.F., C.P.-L., G.C., C.D.), and INSERM, CIC1401-EC (E.F., G.C., C.D.), Université de Bordeaux; Pole de Sante Publique Centre (E.F., G.C., C.D.) and Pole de Gérontologie Clinique (I.B.-M.), Hospitalier Universitaire (CHU) de Bordeaux; CATI Multicenter Neuroimaging Platform (J.-F.M., M.-O.H., M. Ceccaldi), Paris; Neurospin CEA Paris Saclay University (J.-F.M.), Gif-sur-Yvette; Laboratoire d'Imagerie Biomédicale (M.-O.H.), INSERM, CNRS, Sorbonne Université; Médecine Nucléaire (M.-O.H.), AP-HP, Hôpital Pitié-Salpêtrière; IM2A, AP-HP, INSERM, UMR-S975, Groupe Hospitalier, Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer (S.B.), and INSERM, U-1127, 3 CNRS, UMR 7225, CATI (M. Chupin), Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, Paris; INSERM UMR1027 (P.-J.O.), Université de Toulouse III Paul Sabatier; Centre Mémoire (CMRR) Distalz (F.P.), CHU, INSERM 1171, Université de Lille; Service de Gériatrie (O.H.), Hôpital Broca, Université Paris Descartes; Centre de Neurologie (C.P.), INSERM U1144, Cognitive Hôpital Lariboisière, Université de Paris; Department of Neurology, INSERM U1061, Clinical and Research Memory Center of Montpellier (A.G.), Gui de Chauliac Hospital, University of Montpellier; Institut de Neurosciences des Systèmes, CMMR, PACA Ouest (M. Ceccaldi), INSERM, CHU Timone APHM and Aix Marseille Université; Department of Geriatric Medicine (C.A.), Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, Angers University Hospital, University of Angers, France; Department of Medical Biophysics (C.A.), Robarts Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada; Centre Mémoire Ressource et Recherche de Lyon (CMRR) (P.K.-S.), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Hôpital des Charpennes, Hospices Civils de Lyon, Université de Lyon; Centre Mémoire de Ressources et de Recherches (Y.B.), CHU Dijon Bourgogne, EA7460, Université de Bourgogne, Dijon; Service de Neurologie Hôpital Saint-Louis AP-HP (C.B.), Paris; Departement de Neurologie (D.W.), UNIROUEN, INSERM U1245, CNR-MAJ, CHU de Rouen, Université de Normandie; CMRR Grenoble Arc Alpin (M.S.), CHU Grenoble; CMRR (E.B.), University Hospital Tours; Centre de Résonance Magnétique des Systèmes Biologiques (I.B.-M.), UMR 5536 Université de Bordeaux/CNRS; and Memory Resource and Research Centre of Clermont-Ferrand (I.J.), CHU de Clermont-Ferrand, Clermont Auvergne University, Clermont-Ferrand, France.
| |
Collapse
|
18
|
Sala A, Lizarraga A, Ripp I, Cumming P, Yakushev I. Static versus Functional PET: Making Sense of Metabolic Connectivity. Cereb Cortex 2021; 32:1125-1129. [PMID: 34411237 DOI: 10.1093/cercor/bhab271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Recently, Jamadar et al. (2021, Metabolic and hemodynamic resting-state connectivity of the human brain: a high-temporal resolution simultaneous BOLD-fMRI and FDG-fPET multimodality study. Cereb Cortex. 31(6), 2855-2867) compared the patterns of brain connectivity or covariance as obtained from 3 neuroimaging measures: 1) functional connectivity estimated from temporal correlations in the functional magnetic resonance imaging blood oxygen level-dependent signal, metabolic connectivity estimated, 2) from temporal correlations in 16-s frames of dynamic [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET), which they designate as functional FDG-PET (fPET), and 3) from intersubject correlations in static FDG-PET images (sPET). Here, we discuss a number of fundamental issues raised by the Jamadar study. These include the choice of terminology, the interpretation of cross-modal findings, the issue of group- to single-subject level inferences, and the meaning of metabolic connectivity as a biomarker. We applaud the methodological approach taken by the authors, but wish to present an alternative perspective on their findings. In particular, we argue that sPET and fPET can both provide valuable information about brain connectivity. Certainly, resolving this conundrum calls for further experimental and theoretical efforts to advance the developing framework of PET-based brain connectivity indices.
Collapse
Affiliation(s)
- Arianna Sala
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich 81675, Germany.,Coma Science Group, GIGA Consciousness, University of Liege, Liege 4000, Belgium.,Centre du Cerveau2, University Hospital of Liege, Liege 4000, Belgium
| | - Aldana Lizarraga
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich 81675, Germany.,Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich 81675, Germany
| | - Isabelle Ripp
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich 81675, Germany.,Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich 81675, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Planegg 82152, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern 3010, Switzerland.,School of Psychology and Counselling, Queensland University of Technology, Brisbane 4059, Australia
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich 81675, Germany.,Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich 81675, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Planegg 82152, Germany
| |
Collapse
|
19
|
Yang W, Pilozzi A, Huang X. An Overview of ICA/BSS-Based Application to Alzheimer's Brain Signal Processing. Biomedicines 2021; 9:386. [PMID: 33917280 PMCID: PMC8067382 DOI: 10.3390/biomedicines9040386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is by far the most common cause of dementia associated with aging. Early and accurate diagnosis of AD and ability to track progression of the disease is increasingly important as potential disease-modifying therapies move through clinical trials. With the advent of biomedical techniques, such as computerized tomography (CT), electroencephalography (EEG), magnetoencephalography (MEG), positron emission tomography (PET), magnetic resonance imaging (MRI), and functional magnetic resonance imaging (fMRI), large amounts of data from Alzheimer's patients have been acquired and processed from which AD-related information or "signals" can be assessed for AD diagnosis. It remains unknown how best to mine complex information from these brain signals to aid in early diagnosis of AD. An increasingly popular technique for processing brain signals is independent component analysis or blind source separation (ICA/BSS) that separates blindly observed signals into original signals that are as independent as possible. This overview focuses on ICA/BSS-based applications to AD brain signal processing.
Collapse
Affiliation(s)
- Wenlu Yang
- Department of Electrical Engineering, Information Engineering College, Shanghai Maritime University, Shanghai 200135, China;
| | - Alexander Pilozzi
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA;
| | - Xudong Huang
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA;
| |
Collapse
|
20
|
Peretti DE, Renken RJ, Reesink FE, de Jong BM, De Deyn PP, Dierckx RAJO, Doorduin J, Boellaard R, Vállez García D. Feasibility of pharmacokinetic parametric PET images in scaled subprofile modelling using principal component analysis. NEUROIMAGE-CLINICAL 2021; 30:102625. [PMID: 33756179 PMCID: PMC8020472 DOI: 10.1016/j.nicl.2021.102625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/05/2021] [Indexed: 11/30/2022]
Abstract
Scaled subprofile model using principal component analysis (SSM/PCA) is a multivariate analysis technique used, mainly in [18F]-2-fluoro-2-deoxy-d-glucose (FDG) PET studies, for the generation of disease-specific metabolic patterns (DP) that may aid with the classification of subjects with neurological disorders, like Alzheimer’s disease (AD). The aim of this study was to explore the feasibility of using quantitative parametric images for this type of analysis, with dynamic [11C]-labelled Pittsburgh Compound B (PIB) PET data as an example. Therefore, 15 AD patients and 15 healthy control subjects were included in an SSM/PCA analysis to generate four AD-DPs using relative cerebral blood flow (R1), binding potential (BPND) and SUVR images derived from dynamic PIB and static FDG-PET studies. Furthermore, 49 new subjects with a variety of neurodegenerative cognitive disorders were tested against these DPs. The AD-DP was characterized by a reduction in the frontal, parietal, and temporal lobes voxel values for R1 and SUVR-FDG DPs; and by a general increase of values in cortical areas for BPND and SUVR-PIB DPs. In conclusion, the results suggest that the combination of parametric images derived from a single dynamic scan might be a good alternative for subject classification instead of using 2 independent PET studies.
Collapse
Affiliation(s)
- Débora E Peretti
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, The Netherlands.
| | - Remco J Renken
- University of Groningen, University Medical Center Groningen, Cognitive Neuroscience Centre, Department of Biomedical Sciences of Cell & Systems, The Netherlands
| | - Fransje E Reesink
- University of Groningen, University Medical Center Groningen, Department of Neurology, Alzheimer Research Centre, The Netherlands
| | - Bauke M de Jong
- University of Groningen, University Medical Center Groningen, Department of Neurology, Alzheimer Research Centre, The Netherlands
| | - Peter P De Deyn
- University of Groningen, University Medical Center Groningen, Department of Neurology, Alzheimer Research Centre, The Netherlands; University of Antwerp, Institute Born-Bunge, Laboratory of Neurochemistry and Behaviour, Belgium
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, The Netherlands
| | - Janine Doorduin
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, The Netherlands
| | - Ronald Boellaard
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, The Netherlands
| | - David Vállez García
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, The Netherlands
| |
Collapse
|
21
|
Ruppert MC, Greuel A, Freigang J, Tahmasian M, Maier F, Hammes J, van Eimeren T, Timmermann L, Tittgemeyer M, Drzezga A, Eggers C. The default mode network and cognition in Parkinson's disease: A multimodal resting-state network approach. Hum Brain Mapp 2021; 42:2623-2641. [PMID: 33638213 PMCID: PMC8090788 DOI: 10.1002/hbm.25393] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Involvement of the default mode network (DMN) in cognitive symptoms of Parkinson's disease (PD) has been reported by resting-state functional MRI (rsfMRI) studies. However, the relation to metabolic measures obtained by [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) is largely unknown. We applied multimodal resting-state network analysis to clarify the association between intrinsic metabolic and functional connectivity abnormalities within the DMN and their significance for cognitive symptoms in PD. PD patients were classified into normal cognition (n = 36) and mild cognitive impairment (MCI; n = 12). The DMN was identified by applying an independent component analysis to FDG-PET and rsfMRI data of a matched subset (16 controls and 16 PD patients) of the total cohort. Besides metabolic activity, metabolic and functional connectivity within the DMN were compared between the patients' groups and healthy controls (n = 16). Glucose metabolism was significantly reduced in all DMN nodes in both patient groups compared to controls, with the lowest uptake in PD-MCI (p < .05). Increased metabolic and functional connectivity along fronto-parietal connections was identified in PD-MCI patients compared to controls and unimpaired patients. Functional connectivity negatively correlated with cognitive composite z-scores in patients (r = -.43, p = .005). The current study clarifies the commonalities of metabolic and hemodynamic measures of brain network activity and their individual significance for cognitive symptoms in PD, highlighting the added value of multimodal resting-state network approaches for identifying prospective biomarkers.
Collapse
Affiliation(s)
- Marina C Ruppert
- Department of Neurology, University Hospital of Marburg, Marburg, Germany.,Center for Mind, Brain, and Behavior-CMBB, Universities of Marburg and Gießen, Marburg, Germany
| | - Andrea Greuel
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - Julia Freigang
- Department of Neurology, University Hospital of Marburg, Marburg, Germany.,Center for Mind, Brain, and Behavior-CMBB, Universities of Marburg and Gießen, Marburg, Germany
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Franziska Maier
- Medical Faculty, Department of Psychiatry, University Hospital Cologne, Cologne, Germany
| | - Jochen Hammes
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Cologne, Germany.,Department of Neurology, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany.,Center for Mind, Brain, and Behavior-CMBB, Universities of Marburg and Gießen, Marburg, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany.,Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Alexander Drzezga
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-2), Jülich, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital of Marburg, Marburg, Germany.,Center for Mind, Brain, and Behavior-CMBB, Universities of Marburg and Gießen, Marburg, Germany
| |
Collapse
|
22
|
Smailovic U, Koenig T, Savitcheva I, Chiotis K, Nordberg A, Blennow K, Winblad B, Jelic V. Regional Disconnection in Alzheimer Dementia and Amyloid-Positive Mild Cognitive Impairment: Association Between EEG Functional Connectivity and Brain Glucose Metabolism. Brain Connect 2020; 10:555-565. [PMID: 33073602 PMCID: PMC7757561 DOI: 10.1089/brain.2020.0785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction: The disconnection hypothesis of Alzheimer's disease (AD) is supported by growing neuroimaging and neurophysiological evidence of altered brain functional connectivity in cognitively impaired individuals. Brain functional modalities such as [18F]fluorodeoxyglucose positron-emission tomography ([18F]FDG-PET) and electroencephalography (EEG) measure different aspects of synaptic functioning, and can contribute to understanding brain connectivity disruptions in AD. Aim: This study investigated the relationship between cortical glucose metabolism and topographical EEG measures of brain functional connectivity in subjects along AD continuum. Methods: Patients diagnosed with mild cognitive impairment (MCI) and AD (n = 67), and stratified into amyloid-positive (n = 32) and negative (n = 10) groups according to cerebrospinal fluid Aβ42/40 ratio, were assessed with [18F]FDG-PET and resting-state EEG recordings. EEG-based neuroimaging analysis involved standardized low-resolution electromagnetic tomography (sLORETA), which estimates functional connectivity from cortical sources of electrical activity in a 3D head model. Results: Glucose hypometabolism in temporoparietal lobes was significantly associated with altered EEG functional connectivity of the same regions of interest in clinically diagnosed MCI and AD patients and in patients with biomarker-verified AD pathology. The correlative pattern of disrupted connectivity in temporoparietal lobes, as detected by EEG sLORETA analysis, included decreased instantaneous linear connectivity in fast frequencies and increased lagged linear connectivity in slow frequencies in relation to the activity of remaining cortex. Conclusions: Topographical EEG measures of functional connectivity detect regional dysfunction of AD-vulnerable brain areas as evidenced by association and spatial overlap with the cortical glucose hypometabolism in MCI and AD patients.
Collapse
Affiliation(s)
- Una Smailovic
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Irina Savitcheva
- Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Konstantinos Chiotis
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Clinic for Cognitive Disorders, Karolinska University Hospital-Huddinge, Huddinge, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry and Sahlgrenska University Hospital, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Geriatrics, Karolinska University Hospital, Huddinge, Sweden
| | - Vesna Jelic
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Clinic for Cognitive Disorders, Karolinska University Hospital-Huddinge, Huddinge, Sweden
| |
Collapse
|
23
|
Vonk JMJ, Bouteloup V, Mangin J, Dubois B, Blanc F, Gabelle A, Ceccaldi M, Annweiler C, Krolak‐Salmon P, Belin C, Rivasseau‐Jonveaux T, Julian A, Sellal F, Magnin E, Chupin M, Habert M, Chêne G, Dufouil C. Semantic loss marks early Alzheimer's disease-related neurodegeneration in older adults without dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12066. [PMID: 32775598 PMCID: PMC7403823 DOI: 10.1002/dad2.12066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To assess progression of semantic loss in early stages of cognitive decline using semantic and letter fluency performance, and its relation with Alzheimer's disease (AD)-specific neurodegeneration using longitudinal multimodal neuroimaging measures. METHODS Change in verbal fluency was analyzed among 2261 non-demented individuals with a follow-up diagnosis of no mild cognitive impairment (MCI), amnestic MCI (aMCI), non-amnestic MCI (naMCI), or incident dementia, using linear mixed models across 4 years of follow-up, and relations with magnetic resonance imaging (MRI; n = 1536) and 18F-fluorodeoxyglucose brain positron emission tomography (18F-FDG-PET) imaging (n = 756) using linear regression models across 2 years of follow-up. RESULTS Semantic fluency declined-fastest in those at higher risk for AD (apolipoprotein E [APOE] e4 carriers, Clinical Dementia Rating score of .5, aMCI, or incident dementia)-while letter fluency did not except for those with incident dementia. Lower baseline semantic fluency was associated with an increase in white matter hyperintensities and total mean cortical thinning over time, and regionally with less hippocampal volume as well as more cortical thinning and reduced 18F-FDG-PET uptake in the inferior parietal lobule, entorhinal cortex, isthmus cingulate, and precuneus-posterior cingulate area. In contrast, baseline letter fluency was not associated with change in total nor regional neurodegeneration. Whole-brain neurodegeneration over time was associated with faster decline in both fluencies, while AD-specific regions were associated with a faster rate of decline in semantic but not letter fluency. INTERPRETATION This study provides strong evidence of distinctive degeneration of semantic abilities early on in relation to both cognitive decline and AD-specific neurodegeneration.
Collapse
Affiliation(s)
- Jet M. J. Vonk
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainDepartment of NeurologyCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Julius Center for Health Sciences and Primary Care, Department of EpidemiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Vincent Bouteloup
- Centre Inserm U1219d'Epidémiologie et de Développement (ISPED)Bordeaux School of Public HealthInstitut de Santé PubliqueUniversité de BordeauxBordeauxFrance
- Pole de sante publiqueCentre Hospitalier Universitaire (CHU) de BordeauxBordeauxFrance
| | - Jean‐François Mangin
- CATI Multicenter Neuroimaging PlatformParisFrance
- NeurospinCEAParis Saclay UniversityGif‐sur‐YvetteFrance
| | - Bruno Dubois
- IM2AAP‐HPINSERMUMR‐S975Groupe Hospitalier Pitié‐SalpêtrièreInstitut de la Mémoire et de la Maladie d'AlzheimerInstitut du Cerveau et de la Moelle épinièreSorbonne UniversitéParisFrance
| | - Frédéric Blanc
- Hôpitaux Universitaire de StrasbourgCM2R (Centre Mémoire de Ressource et de Recherche)Hôpital de jourpôle de Gériatrieet CNRSlaboratoire ICube UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMISStrasbourgFrance
| | - Audrey Gabelle
- Centre Mémoire Ressources RechercheDépartement de NeurologieCHU Gui de ChauliacMontpellierFrance
- Inserm U1061La ColombièreUniversité de MontpellierMontpellierFrance
| | - Mathieu Ceccaldi
- CMMR PACA OuestCHU TimoneAPHM & Aix Marseille UnivINSERMINSInst Neurosci SystMarseilleFrance
| | - Cédric Annweiler
- Department of Geriatric MedicineAngers University HospitalAngersFrance
- Angers University Memory ClinicAngersFrance
- Research Center on Autonomy and LongevityAngersFrance
- UPRES EA 4638University of AngersAngersFrance
- Robarts Research InstituteDepartment of Medical BiophysicsSchulich School of Medicine and Dentistrythe University of Western Ontario, OntarioLondonCanada
| | - Pierre Krolak‐Salmon
- Institut du VieillissementCentre Mémoire Ressources Recherche de LyonHospices civils de LyonUniversité Lyon 1, Inserm U1048LyonFrance
| | | | - Thérèse Rivasseau‐Jonveaux
- Centre Mémoire de Ressources et de Recherche de Lorraine Unité Cognitivo Comportementale CHRU NancyLaboratoire Lorrain de Psychologie et de Neurosciences de la dynamique des comportements 2LPN EA 7489 Université de LorraineNancyFrance
| | - Adrien Julian
- Service de NeurologieCHU La MilétrieCentre Mémoire de Ressources et de RecherchePoitiersFrance
| | - François Sellal
- CMRR Département de NeurologieHôpitaux CivilsColmarFrance
- INSERM U‐1118Université de Strasbourg. Faculté de MédecineStrasbourgFrance
| | - Eloi Magnin
- Centre Mémoire Ressources et Recherche (CMRR)service de NeurologieCHRU BesançonBesançonFrance
- Neurosciences intégratives et cliniques EA481Univ. Bourgogne Franche‐ComtéBesançonFrance
| | - Marie Chupin
- CATI Multicenter Neuroimaging PlatformParisFrance
| | - Marie‐Odile Habert
- CATI Multicenter Neuroimaging PlatformParisFrance
- CNRSINSERMLaboratoire d'Imagerie BiomédicaleLIBSorbonne UniversitéParisFrance
- AP‐HPHôpital Pitié‐SalpêtrièreMédecine NucléaireParisFrance
| | - Geneviève Chêne
- Centre Inserm U1219d'Epidémiologie et de Développement (ISPED)Bordeaux School of Public HealthInstitut de Santé PubliqueUniversité de BordeauxBordeauxFrance
- Pole de sante publiqueCentre Hospitalier Universitaire (CHU) de BordeauxBordeauxFrance
| | - Carole Dufouil
- Centre Inserm U1219d'Epidémiologie et de Développement (ISPED)Bordeaux School of Public HealthInstitut de Santé PubliqueUniversité de BordeauxBordeauxFrance
- Pole de sante publiqueCentre Hospitalier Universitaire (CHU) de BordeauxBordeauxFrance
| | | |
Collapse
|
24
|
Perini G, Rodriguez-Vieitez E, Kadir A, Sala A, Savitcheva I, Nordberg A. Clinical impact of 18F-FDG-PET among memory clinic patients with uncertain diagnosis. Eur J Nucl Med Mol Imaging 2020; 48:612-622. [PMID: 32734458 PMCID: PMC7835147 DOI: 10.1007/s00259-020-04969-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Purpose To assess the clinical impact and incremental diagnostic value of 18F-fluorodeoxyglucose (FDG-PET) among memory clinic patients with uncertain diagnosis. Methods The study population consisted of 277 patients who, despite extensive baseline cognitive assessment, MRI, and CSF analyses, had an uncertain diagnosis of mild cognitive impairment (MCI) (n = 177) or dementia (n = 100). After baseline diagnosis, each patient underwent an FDG-PET, followed by a post-FDG-PET diagnosis formulation. We evaluated (i) the change in diagnosis (baseline vs. post-FDG-PET), (ii) the change in diagnostic accuracy when comparing each baseline and post-FDG-PET diagnosis to a long-term follow-up (3.6 ± 1.8 years) diagnosis used as reference, and (iii) comparative FDG-PET performance testing in MCI and dementia conditions. Results FDG-PET led to a change in diagnosis in 86 of 277 (31%) patients, in particular in 57 of 177 (32%) MCI and in 29 of 100 (29%) dementia patients. Diagnostic change was greater than two-fold in the sub-sample of cases with dementia “of unclear etiology” (change in diagnosis in 20 of 32 (63%) patients). In the dementia group, after results of FDG-PET, diagnostic accuracy improved from 77 to 90% in Alzheimer’s disease (AD) and from 85 to 94% in frontotemporal lobar degeneration (FTLD) patients (p < 0.01). FDG-PET performed better in dementia than in MCI (positive likelihood ratios >5 and < 5, respectively). Conclusion Within a selected clinical population, FDG-PET has a significant clinical impact, both in early and differential diagnosis of uncertain dementia. FDG-PET provides significant incremental value to detect AD and FTLD over a clinical diagnosis of uncertain dementia. Electronic supplementary material The online version of this article (10.1007/s00259-020-04969-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giulia Perini
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, 141 52, Stockholm, Sweden.,Center for Cognitive and Behavioral Disorders, IRCCS Mondino Foundation and Dept of Brain and Behavior, University of Pavia, 27100, Pavia, Italy
| | - Elena Rodriguez-Vieitez
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Ahmadul Kadir
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, 141 52, Stockholm, Sweden.,Theme Aging, The Aging Brain Unit, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - Arianna Sala
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Irina Savitcheva
- Medical Radiation Physics and Nuclear Medicine Imaging, Section for Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, 141 52, Stockholm, Sweden. .,Theme Aging, The Aging Brain Unit, Karolinska University Hospital, 141 86, Stockholm, Sweden.
| |
Collapse
|
25
|
Rahmani F, Sanjari Moghaddam H, Rahmani M, Aarabi MH. Metabolic connectivity in Alzheimer’s diseases. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00371-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Battista P, Salvatore C, Berlingeri M, Cerasa A, Castiglioni I. Artificial intelligence and neuropsychological measures: The case of Alzheimer's disease. Neurosci Biobehav Rev 2020; 114:211-228. [PMID: 32437744 DOI: 10.1016/j.neubiorev.2020.04.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022]
Abstract
One of the current challenges in the field of Alzheimer's disease (AD) is to identify patients with mild cognitive impairment (MCI) that will convert to AD. Artificial intelligence, in particular machine learning (ML), has established as one of more powerful approach to extract reliable predictors and to automatically classify different AD phenotypes. It is time to accelerate the translation of this knowledge in clinical practice, mainly by using low-cost features originating from the neuropsychological assessment. We performed a meta-analysis to assess the contribution of ML and neuropsychological measures for the automated classification of MCI patients and the prediction of their conversion to AD. The pooled sensitivity and specificity of patients' classifications was obtained by means of a quantitative bivariate random-effect meta-analytic approach. Although a high heterogeneity was observed, the results of meta-analysis show that ML applied to neuropsychological measures can lead to a successful automatic classification, being more specific as screening rather than prognosis tool. Relevant categories of neuropsychological tests can be extracted by ML that maximize the classification accuracy.
Collapse
Affiliation(s)
- Petronilla Battista
- Scientific Clinical Institutes Maugeri IRCCS, Institute of Bari, Pavia, Italy.
| | - Christian Salvatore
- Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy; DeepTrace Technologies S.r.l., Via Conservatorio 17, 20122 Milan, Italy.
| | - Manuela Berlingeri
- Department of Humanistic Studies, University of Urbino Carlo Bo, Urbino, Italy; Institute for Biomedical Research and Innovation, National Research Council, 87050 Mangone (CS), Italy; NeuroMi, Milan Centre for Neuroscience, Milan, Italy.
| | - Antonio Cerasa
- Department of Physics "Giuseppe Occhialini", University of Milano Bicocca, Milan, Italy; S. Anna Institute and Research in Advanced Neurorehabilitation (RAN), Crotone, Italy.
| | - Isabella Castiglioni
- Center of Developmental Neuropsychology, Area Vasta 1, ASUR Marche, Pesaro, Italy; Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Milan, Italy.
| |
Collapse
|
27
|
Cai L, Wei X, Liu J, Zhu L, Wang J, Deng B, Yu H, Wang R. Functional Integration and Segregation in Multiplex Brain Networks for Alzheimer's Disease. Front Neurosci 2020; 14:51. [PMID: 32132892 PMCID: PMC7040198 DOI: 10.3389/fnins.2020.00051] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/14/2020] [Indexed: 01/14/2023] Open
Abstract
Growing evidence links impairment of brain functions in Alzheimer's disease (AD) with disruptions of brain functional connectivity. However, whether the AD brain shows similar changes from a dynamic or cross-frequency view remains poorly explored. This paper provides an effective framework to investigate the properties of multiplex brain networks in AD considering inter-frequency and temporal dynamics. Using resting-state EEG signals, two types of multiplex networks were reconstructed separately considering the network interactions between different frequency bands or time points. We further applied multiplex network features to characterize functional integration and segregation of the cross-frequency or time-varying networks. Finally, machine learning methods were employed to evaluate the performance of multiplex-network-based indexes for detection of AD. Results revealed that the brain networks of AD patients are disrupted with reduced segregation particularly in the left occipital area for both cross-frequency and time-varying networks. However, the alteration of integration differs among brain regions and may show an increasing trend in the frontal area of AD brain. By combining the features of integration and segregation in time-varying networks, the best classification performance was achieved with an accuracy of 92.5%. These findings suggest that our multiplex framework can be applied to explore functional integration and segregation of brain networks and characterize the abnormalities of brain function. This may shed new light on the brain network analysis and extend our understanding of brain function in patients with neurological diseases.
Collapse
Affiliation(s)
- Lihui Cai
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jing Liu
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Lin Zhu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Bin Deng
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Haitao Yu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Ruofan Wang
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, China
| |
Collapse
|
28
|
Coutinho AM, Busatto GF, de Gobbi Porto FH, de Paula Faria D, Ono CR, Garcez AT, Squarzoni P, de Souza Duran FL, de Oliveira MO, Tres ES, Brucki SMD, Forlenza OV, Nitrini R, Buchpiguel CA. Brain PET amyloid and neurodegeneration biomarkers in the context of the 2018 NIA-AA research framework: an individual approach exploring clinical-biomarker mismatches and sociodemographic parameters. Eur J Nucl Med Mol Imaging 2020; 47:2666-2680. [PMID: 32055966 DOI: 10.1007/s00259-020-04714-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE [18F]FDG-PET and [11C]PIB-PET are validated as neurodegeneration and amyloid biomarkers of Alzheimer's disease (AD). We used a PET staging system based on the 2018 NIA-AA research framework to compare the proportion of amyloid positivity (A+) and hypometabolism ((N)+) in cases of mild probable AD, amnestic mild cognitive impairment (aMCI), and healthy controls, incorporating an additional classification of abnormal [18F]FDG-PET patterns and investigating the co-occurrence of such with A+, exploring [18F]FDG-PET to generate hypotheses in cases presenting with clinical-biomarker "mismatches." METHODS Elderly individuals (N = 108) clinically classified as controls (N = 27), aMCI (N = 43) or mild probable AD (N = 38) were included. Authors assessed their A(N) profiles and classified [18F]FDG-PET neurodegenerative patterns as typical or non-typical of AD, performing re-assessments of images whenever clinical classification was in disagreement with the PET staging (clinical-biomarker "mismatches"). We also investigated associations between "mismatches" and sociodemographic and educational characteristics. RESULTS AD presented with higher rates of A+ and (N)+. There was also a higher proportion of A+ and (N)+ individuals in the aMCI group in comparison to controls, however without statistical significance regarding the A staging. There was a significant association between amyloid positivity and AD (N)+ hypometabolic patterns typical of AD. Non-AD (N)+ hypometabolism was seen in all A- (N)+ cases in the mild probable AD and control groups and [18F]FDG-PET patterns classified such individuals as "SNAP" and one as probable frontotemporal lobar degeneration. All A- (N)- cases in the probable AD group had less than 4 years of formal education and lower socioeconomic status (SES). CONCLUSION The PET-based staging system unveiled significant A(N) differences between AD and the other groups, whereas aMCI and controls had different (N) staging, explaining the cognitive impairment in aMCI. [18F]FDG-PET could be used beyond simple (N) staging, since it provided alternative hypotheses to cases with clinical-biomarker "mismatches." An AD hypometabolic pattern correlated with amyloid positivity. Low education and SES were related to dementia in the absence of biomarker changes.
Collapse
Affiliation(s)
- Artur Martins Coutinho
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil. .,Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil. .,Centro de Medicina Nuclear do Instituto de Radiologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 2° andar, Rua Doutor Ovídio Pires de Campos, 872, Cerqueira Cesar, São Paulo, SP, Brazil.
| | - Geraldo F Busatto
- Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Fábio Henrique de Gobbi Porto
- Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carla Rachel Ono
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Centro de Medicina Nuclear do Instituto de Radiologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 2° andar, Rua Doutor Ovídio Pires de Campos, 872, Cerqueira Cesar, São Paulo, SP, Brazil
| | - Alexandre Teles Garcez
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Paula Squarzoni
- Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Fábio Luiz de Souza Duran
- Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Maira Okada de Oliveira
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Eduardo Sturzeneker Tres
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sonia Maria Dozzi Brucki
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience (LIM 27), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Nucleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Centro de Medicina Nuclear do Instituto de Radiologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 2° andar, Rua Doutor Ovídio Pires de Campos, 872, Cerqueira Cesar, São Paulo, SP, Brazil
| |
Collapse
|
29
|
Yee E, Popuri K, Beg MF. Quantifying brain metabolism from FDG-PET images into a probability of Alzheimer's dementia score. Hum Brain Mapp 2020; 41:5-16. [PMID: 31507022 PMCID: PMC7268066 DOI: 10.1002/hbm.24783] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 07/27/2019] [Accepted: 08/18/2019] [Indexed: 01/31/2023] Open
Abstract
18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) enables in-vivo capture of the topographic metabolism patterns in the brain. These images have shown great promise in revealing the altered metabolism patterns in Alzheimer's disease (AD). The AD pathology is progressive, and leads to structural and functional alterations that lie on a continuum. There is a need to quantify the altered metabolism patterns that exist on a continuum into a simple measure. This work proposes a 3D convolutional neural network with residual connections that generates a probability score useful for interpreting the FDG-PET images along the continuum of AD. This network is trained and tested on images of stable normal control and stable Dementia of the Alzheimer's type (sDAT) subjects, achieving an AUC of 0.976 via repeated fivefold cross-validation. An independent test set consisting of images in between the two extreme ends of the DAT spectrum is used to further test the generalization performance of the network. Classification performance of 0.811 AUC is achieved in the task of predicting conversion of mild cognitive impairment to DAT for conversion time of 0-3 years. The saliency and class activation maps, which highlight the regions of the brain that are most important to the classification task, implicate many known regions affected by DAT including the posterior cingulate cortex, precuneus, and hippocampus.
Collapse
Affiliation(s)
- Evangeline Yee
- School of Engineering ScienceSimon Fraser UniversityBurnabyBCCanada
| | - Karteek Popuri
- School of Engineering ScienceSimon Fraser UniversityBurnabyBCCanada
| | - Mirza Faisal Beg
- School of Engineering ScienceSimon Fraser UniversityBurnabyBCCanada
| | | |
Collapse
|
30
|
Ozsahin I, Sekeroglu B, Mok GSP. The use of back propagation neural networks and 18F-Florbetapir PET for early detection of Alzheimer's disease using Alzheimer's Disease Neuroimaging Initiative database. PLoS One 2019; 14:e0226577. [PMID: 31877173 PMCID: PMC6932766 DOI: 10.1371/journal.pone.0226577] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/28/2019] [Indexed: 01/19/2023] Open
Abstract
Amyloid beta (Aβ) plaques aggregation is considered as the “start” of the degenerative process that manifests years before the clinical symptoms appear in Alzheimer’s Disease (AD). The aim of this study is to use back propagation neural networks (BPNNs) in 18F-florbetapir PET data for automated classification of four patient groups including AD, late mild cognitive impairment (LMCI), early mild cognitive impairment (EMCI), and significant memory concern (SMC), versus normal control (NC) for early AD detection. Five hundred images for AD, LMCI, EMCI, SMC, and NC, i.e., 100 images for each group, were used from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The results showed that the automated classification of NC/AD produced a high accuracy of 87.9%, while the results for the prodromal stages of the disease were 66.4%, 60.0%, and 52.9% for NC/LCMI, NC/EMCI and NC/SMC, respectively. The proposed method together with the image preparation steps can be used for early AD detection and classification with high accuracy using Aβ PET dataset.
Collapse
Affiliation(s)
- Ilker Ozsahin
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Nicosia, Turkey
- * E-mail:
| | - Boran Sekeroglu
- Department of Information Systems Engineering, Near East University, Nicosia, Turkey
| | - Greta S. P. Mok
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
31
|
Smailagic N, Lafortune L, Kelly S, Hyde C, Brayne C. 18F-FDG PET for Prediction of Conversion to Alzheimer's Disease Dementia in People with Mild Cognitive Impairment: An Updated Systematic Review of Test Accuracy. J Alzheimers Dis 2019; 64:1175-1194. [PMID: 30010119 PMCID: PMC6218118 DOI: 10.3233/jad-171125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background: A previous Cochrane systematic review concluded there is insufficient evidence to support the routine use of 18F-FDG PET in clinical practice in people with mild cognitive impairment (MCI). Objectives: To update the evidence and reassess the accuracy of 18F-FDG-PET for detecting people with MCI at baseline who would clinically convert to Alzheimer’s disease (AD) dementia at follow-up. Methods: A systematic review including comprehensive search of electronic databases from January 2013 to July 2017, to update original searches (1999 to 2013). All key review steps, including quality assessment using QUADAS 2, were performed independently and blindly by two review authors. Meta-analysis could not be conducted due to heterogeneity across studies. Results: When all included studies were examined across all semi-quantitative and quantitative metrics, exploratory analysis for conversion of MCI to AD dementia (n = 24) showed highly variable accuracy; half the studies failed to meet four or more of the seven sets of QUADAS 2 criteria. Variable accuracy for all metrics was also found across eleven newly included studies published in the last 5 years (range: sensitivity 56–100%, specificity 24–100%). The most consistently high sensitivity and specificity values (approximately ≥80%) were reported for the sc-SPM (single case statistical parametric mapping) metric in 6 out of 8 studies. Conclusion: Systematic and comprehensive assessment of studies of 18FDG-PET for prediction of conversion from MCI to AD dementia reveals many studies have methodological limitations according to Cochrane diagnostic test accuracy gold standards, and shows accuracy remains highly variable, including in the most recent studies. There is some evidence, however, of higher and more consistent accuracy in studies using computer aided metrics, such as sc-SPM, in specialized clinical settings. Robust, methodologically sound prospective longitudinal cohort studies with long (≥5 years) follow-up, larger consecutive samples, and defined baseline threshold(s) are needed to test these promising results. Further evidence of the clinical validity and utility of 18F-FDG PET in people with MCI is needed.
Collapse
Affiliation(s)
- Nadja Smailagic
- Cambridge Institute of Public Health, Forvie Site, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Louise Lafortune
- Cambridge Institute of Public Health, Forvie Site, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Sarah Kelly
- Cambridge Institute of Public Health, Forvie Site, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Chris Hyde
- Exeter Test Group and South West CLAHRC, University of Exeter Medical School, St Luke's Campus, Exeter, UK
| | - Carol Brayne
- Cambridge Institute of Public Health, Forvie Site, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
32
|
The negative correlation between energy consumption and communication efficiency in motor network. Nucl Med Commun 2019; 40:499-507. [PMID: 30807532 DOI: 10.1097/mnm.0000000000001001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Motor network plays an important role in people's daily lives. However, until now, the energy consumption mechanism of motor network remains unclear. In this study, we aimed to investigate the energy consumption of motor network. MATERIALS AND METHODS Fluorine-18-fluorodeoxyglucose PET ([F]FDG PET) data of 81 healthy male Sprague-Dawley rats were included in this study. Metabolic motor network was constructed on the basis of group independent component analysis. Properties of motor network such as degree and nodal efficiency were investigated using graph theory-based analysis. Furthermore, the relationships between [F]FDG standardized uptake value ratio and these properties of each node were investigated. RESULTS A motor network comprising of the following 11 regions were found: left primary motor cortex, right primary motor cortex, left secondary motor cortex, right secondary motor cortex, left primary somatosensory cortex, right primary somatosensory cortex, left secondary somatosensory cortex, right secondary somatosensory cortex, left insular cortex, right insular cortex, and left orbital cortex. Graph theory-based analysis indicated that right primary somatosensory cortex and left secondary somatosensory cortex were the hubs of motor network, and the nodal efficiency and nodal degree share the same order. Further investigation found a significantly negative correlation between nodal efficiency and [F]FDG standardized uptake value ratios. CONCLUSION This study investigated the energy consumption of motor network and found a relationship between energy consumption and communication efficiency. These results may provide insights into the understanding of energy consumption mechanism underlying motor network.Video abstract: http://links.lww.com/NMC/A142.
Collapse
|
33
|
Volume entropy for modeling information flow in a brain graph. Sci Rep 2019; 9:256. [PMID: 30670725 PMCID: PMC6342973 DOI: 10.1038/s41598-018-36339-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Brain regions send and receive information through neuronal connections in an efficient way. In this paper, we modelled the information propagation in brain networks by a generalized Markov system associated with a new edge-transition matrix, based on the assumption that information flows through brain networks forever. From this model, we derived new global and local network measures, called a volume entropy and the capacity of nodes and edges on FDG PET and resting-state functional MRI. Volume entropy of a metric graph, a global measure of information, measures the exponential growth rate of the number of network paths. Capacity of nodes and edges, a local measure of information, represents the stationary distribution of information propagation in brain networks. On the resting-state functional MRI of healthy normal subjects, these measures revealed that volume entropy was significantly negatively correlated to the aging and capacities of specific brain nodes and edges underpinned which brain nodes or edges contributed these aging-related changes.
Collapse
|
34
|
Faria DDP, Duran FL, Squarzoni P, Coutinho AM, Garcez AT, Santos PP, Brucki SM, de Oliveira MO, Trés ES, Forlenza OV, Nitrini R, Buchpiguel CA, Busatto Filho G. Topography of 11C-Pittsburgh compound B uptake in Alzheimer's disease: a voxel-based investigation of cortical and white matter regions. ACTA ACUST UNITED AC 2018; 41:101-111. [PMID: 30540022 PMCID: PMC6781685 DOI: 10.1590/1516-4446-2017-0002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/06/2018] [Indexed: 01/09/2023]
Abstract
Objective: To compare results of positron emission tomography (PET) with carbon-11-labeled Pittsburgh compound B (11C-PIB) obtained with cerebellar or global brain uptake for voxel intensity normalization, describe the cortical sites with highest tracer uptake in subjects with mild Alzheimer’s disease (AD), and explore possible group differences in 11C-PIB binding to white matter. Methods: 11C-PIB PET scans were acquired from subjects with AD (n=17) and healthy elderly controls (n=19). Voxel-based analysis was performed with statistical parametric mapping (SPM). Results: Cerebellar normalization showed higher 11C-PIB uptake in the AD group relative to controls throughout the cerebral cortex, involving the lateral temporal, orbitofrontal, and superior parietal cortices. With global uptake normalization, greatest cortical binding was detected in the orbitofrontal cortex; decreased 11C-PIB uptake in white matter was found in the posterior hippocampal region, corpus callosum, pons, and internal capsule. Conclusion: The present case-control voxelwise 11C-PIB PET comparison highlighted the regional distribution of amyloid deposition in the cerebral cortex of mildly demented AD patients. Tracer uptake was highest in the orbitofrontal cortex. Decreased 11C-PIB uptake in white-matter regions in this patient population may be a marker of white-matter damage in AD.
Collapse
Affiliation(s)
- Daniele de P Faria
- Laboratório de Medicina Nuclear (LIM 43), Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), USP, São Paulo, SP, Brazil
| | - Fabio L Duran
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), USP, São Paulo, SP, Brazil.,Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento de Psiquiatria, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Paula Squarzoni
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), USP, São Paulo, SP, Brazil.,Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento de Psiquiatria, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Artur M Coutinho
- Laboratório de Medicina Nuclear (LIM 43), Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), USP, São Paulo, SP, Brazil
| | - Alexandre T Garcez
- Laboratório de Medicina Nuclear (LIM 43), Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), USP, São Paulo, SP, Brazil
| | - Pedro P Santos
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), USP, São Paulo, SP, Brazil.,Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento de Psiquiatria, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Sonia M Brucki
- Departamento de Neurologia, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Maira O de Oliveira
- Departamento de Neurologia, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Eduardo S Trés
- Departamento de Neurologia, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Orestes V Forlenza
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), USP, São Paulo, SP, Brazil.,Laboratório de Neurociências (LIM 27), Departamento de Psiquiatria, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Ricardo Nitrini
- Departamento de Neurologia, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Carlos A Buchpiguel
- Laboratório de Medicina Nuclear (LIM 43), Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), USP, São Paulo, SP, Brazil
| | - Geraldo Busatto Filho
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), USP, São Paulo, SP, Brazil.,Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento de Psiquiatria, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| |
Collapse
|
35
|
Liang S, Jiang X, Zhang Q, Duan S, Zhang T, Huang Q, Sun X, Liu H, Dong J, Liu W, Tao J, Zhao S, Nie B, Chen L, Shan B. Abnormal Metabolic Connectivity in Rats at the Acute Stage of Ischemic Stroke. Neurosci Bull 2018; 34:715-724. [PMID: 30083891 PMCID: PMC6129253 DOI: 10.1007/s12264-018-0266-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/18/2018] [Indexed: 01/29/2023] Open
Abstract
Stroke at the acute stage is a major cause of disability in adults, and is associated with dysfunction of brain networks. However, the mechanisms underlying changes in brain connectivity in stroke are far from fully elucidated. In the present study, we investigated brain metabolism and metabolic connectivity in a rat ischemic stroke model of middle cerebral artery occlusion (MCAO) at the acute stage using 18F-fluorodeoxyglucose positron emission tomography. Voxel-wise analysis showed decreased metabolism mainly in the ipsilesional hemisphere, and increased metabolism mainly in the contralesional cerebellum. We used further metabolic connectivity analysis to explore the brain metabolic network in MCAO. Compared to sham controls, rats with MCAO showed most significantly reduced nodal and local efficiency in the ipsilesional striatum. In addition, the MCAO group showed decreased metabolic central connection of the ipsilesional striatum with the ipsilesional cerebellum, ipsilesional hippocampus, and bilateral hypothalamus. Taken together, the present study demonstrated abnormal metabolic connectivity in rats at the acute stage of ischemic stroke, which might provide insight into clinical research.
Collapse
Affiliation(s)
- Shengxiang Liang
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou, 450001, China
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xiaofeng Jiang
- School of Public Health and Family Medicine, Capital Medical University, Beijing, 100068, China
| | - Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Shaofeng Duan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianhao Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Huang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Sun
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou, 450001, China
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Dong
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Shujun Zhao
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou, 450001, China.
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Baoci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
36
|
Herholz K, Haense C, Gerhard A, Jones M, Anton-Rodriguez J, Segobin S, Snowden JS, Thompson JC, Kobylecki C. Metabolic regional and network changes in Alzheimer's disease subtypes. J Cereb Blood Flow Metab 2018; 38:1796-1806. [PMID: 28675110 PMCID: PMC6168902 DOI: 10.1177/0271678x17718436] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/10/2017] [Accepted: 05/19/2017] [Indexed: 11/16/2022]
Abstract
Clinical variants of Alzheimer's disease (AD) include the common amnestic subtype as well as subtypes characterised by leading visual processing impairments or by multimodal neurocognitive deficits. We investigated regional metabolic patterns and networks between AD subtypes. The study comprised 9 age-matched controls and 25 patients with mild to moderate AD. Methods included clinical and neuropsychological assessment, high-resolution FDG PET and T1-weighted 3D MR imaging with PET-MR coregistration, grey matter segmentation, atlas-based regions-of-interest, linear mixed effects and regional correlation analysis. Regional metabolic patterns differed significantly between groups, but significant hypometabolism in the posterior cingulate cortex (PCC) was common to all subtypes. The most distinctive regional abnormality was occipital hypometabolism in the visual subtype. In controls, two large clusters of positive regional metabolic correlations were observed. The most pronounced breakdown of the normal correlation pattern was found in amnestic patients who, in contrast, showed the least regional focal metabolic deficits. The normal positive correlation between PCC and hippocampus was lost in all subtypes. In conclusion, PCC hypometabolism and metabolic correlation breakdown between PCC and hippocampus are the common functional core of all AD subtypes. Network alterations exceed focal regional impairment and are most prominent in the amnestic subtype.
Collapse
Affiliation(s)
- Karl Herholz
- Division of Informatics, Imaging and
Data Sciences, University of Manchester, Wolfson Molecular Imaging Centre,
Manchester, UK
- Division of Neuroscience and
Experimental Psychology, University of Manchester, Manchester, UK
| | - Cathleen Haense
- Division of Informatics, Imaging and
Data Sciences, University of Manchester, Wolfson Molecular Imaging Centre,
Manchester, UK
| | - Alex Gerhard
- Division of Informatics, Imaging and
Data Sciences, University of Manchester, Wolfson Molecular Imaging Centre,
Manchester, UK
- Division of Neuroscience and
Experimental Psychology, University of Manchester, Manchester, UK
- Salford Royal NHS Foundation Trust,
Salford, UK
- Department of Nuclear Medicine and
Lehrstuhl für Geriatrie, Universitätsklinikum Essen, Essen, Germany
| | - Matthew Jones
- Division of Neuroscience and
Experimental Psychology, University of Manchester, Manchester, UK
- Salford Royal NHS Foundation Trust,
Salford, UK
| | - José Anton-Rodriguez
- Division of Informatics, Imaging and
Data Sciences, University of Manchester, Wolfson Molecular Imaging Centre,
Manchester, UK
| | - Shailendra Segobin
- Division of Informatics, Imaging and
Data Sciences, University of Manchester, Wolfson Molecular Imaging Centre,
Manchester, UK
| | - Julie S Snowden
- Division of Neuroscience and
Experimental Psychology, University of Manchester, Manchester, UK
- Salford Royal NHS Foundation Trust,
Salford, UK
| | - Jennifer C Thompson
- Division of Neuroscience and
Experimental Psychology, University of Manchester, Manchester, UK
- Salford Royal NHS Foundation Trust,
Salford, UK
| | - Christopher Kobylecki
- Division of Neuroscience and
Experimental Psychology, University of Manchester, Manchester, UK
- Salford Royal NHS Foundation Trust,
Salford, UK
| |
Collapse
|
37
|
Characteristic patterns of inter- and intra-hemispheric metabolic connectivity in patients with stable and progressive mild cognitive impairment and Alzheimer's disease. Sci Rep 2018; 8:13807. [PMID: 30218083 PMCID: PMC6138637 DOI: 10.1038/s41598-018-31794-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/23/2018] [Indexed: 12/15/2022] Open
Abstract
The change in hypometabolism affects the regional links in the brain network. Here, to understand the underlying brain metabolic network deficits during the early stage and disease evolution of AD (Alzheimer disease), we applied correlation analysis to identify the metabolic connectivity patterns using 18F-FDG PET data for NC (normal control), sMCI (stable MCI), pMCI (progressive MCI) and AD, and explore the inter- and intra-hemispheric connectivity between anatomically-defined brain regions. Regions extracted from 90 anatomical structures were used to construct the matrix for measuring the inter- and intra-hemispheric connectivity. The brain connectivity patterns from the metabolic network show a decreasing trend of inter- and intra-hemispheric connections for NC, sMCI, pMCI and AD. Connection of temporal to the frontal or occipital regions is a characteristic pattern for conversion of NC to MCI, and the density of links in the parietal-occipital network is a differential pattern between sMCI and pMCI. The reduction pattern of inter and intra-hemispheric brain connectivity in the metabolic network depends on the disease stages, and is with a decreasing trend with respect to disease severity. Both frontal-occipital and parietal-occipital connectivity patterns in the metabolic network using 18F-FDG PET are the key feature for differentiating disease groups in AD.
Collapse
|
38
|
Bahri S, Horowitz M, Malbert CH. Inward Glucose Transfer Accounts for Insulin-Dependent Increase in Brain Glucose Metabolism Associated with Diet-Induced Obesity. Obesity (Silver Spring) 2018; 26:1322-1331. [PMID: 29956494 DOI: 10.1002/oby.22243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/21/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE There is a general agreement that there are changes in brain metabolism in insulin-resistant individuals during conditions of hyperinsulinemia. However, the impact on obesity is unclear, and the metabolic constants underlying these modifications are unknown. The aim of this study was to evaluate these changes in a large animal model of diet-induced obesity. METHODS Twenty adult miniature pigs were fed with either an obesogenic diet or a regular diet for 5 months. At that time, fat deposition was evaluated using computed tomography scanning, and 18 fluorodeoxyglucose positron emission tomography images were acquired dynamically both in the fasted state and during a euglycemic-hyperinsulinemic clamp. Glucose uptake rates and pixel-wise modeled brain volumes were calculated together with brain connectivity. RESULTS Whole-body insulin sensitivity was reduced by more than 50% in the obesity group. During insulin stimulation, whole-brain insulin-induced increased glucose uptake was unaltered in lean animals but increased markedly in the animals with obesity. The increased glucose uptake reflected an increase in the inward transfer without changes in phosphorylation or outward brain transport. Connectivity was increased in the animals with obesity CONCLUSIONS: Diet-induced obesity is associated with an increase in insulin-stimulated brain glucose uptake as a consequence of a larger inward transfer. These changes occurred together with an increased connectivity in reference to regions associated with memory recollection.
Collapse
Affiliation(s)
- Senda Bahri
- Aniscan Unit, Department of Human Nutrition, Institut National de la Recherche Agronomique, Saint-Gilles, France
- Research Unit UR/11ES09, University of Tunis El Manar, Tunis, Tunisia
| | - Michael Horowitz
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Charles-Henri Malbert
- Aniscan Unit, Department of Human Nutrition, Institut National de la Recherche Agronomique, Saint-Gilles, France
| |
Collapse
|
39
|
Nobili F, Arbizu J, Bouwman F, Drzezga A, Agosta F, Nestor P, Walker Z, Boccardi M. European Association of Nuclear Medicine and European Academy of Neurology recommendations for the use of brain 18 F-fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: Delphi consensus. Eur J Neurol 2018; 25:1201-1217. [PMID: 29932266 DOI: 10.1111/ene.13728] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Recommendations for using fluorodeoxyglucose positron emission tomography (FDG-PET) to support the diagnosis of dementing neurodegenerative disorders are sparse and poorly structured. METHODS Twenty-one questions on diagnostic issues and on semi-automated analysis to assist visual reading were defined. Literature was reviewed to assess study design, risk of bias, inconsistency, imprecision, indirectness and effect size. Critical outcomes were sensitivity, specificity, accuracy, positive/negative predictive value, area under the receiver operating characteristic curve, and positive/negative likelihood ratio of FDG-PET in detecting the target conditions. Using the Delphi method, an expert panel voted for/against the use of FDG-PET based on published evidence and expert opinion. RESULTS Of the 1435 papers, 58 papers provided proper quantitative assessment of test performance. The panel agreed on recommending FDG-PET for 14 questions: diagnosing mild cognitive impairment due to Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) or dementia with Lewy bodies (DLB); diagnosing atypical AD and pseudo-dementia; differentiating between AD and DLB, FTLD or vascular dementia, between DLB and FTLD, and between Parkinson's disease and progressive supranuclear palsy; suggesting underlying pathophysiology in corticobasal degeneration and progressive primary aphasia, and cortical dysfunction in Parkinson's disease; using semi-automated assessment to assist visual reading. Panellists did not support FDG-PET use for pre-clinical stages of neurodegenerative disorders, for amyotrophic lateral sclerosis and Huntington disease diagnoses, and for amyotrophic lateral sclerosis or Huntington-disease-related cognitive decline. CONCLUSIONS Despite limited formal evidence, panellists deemed FDG-PET useful in the early and differential diagnosis of the main neurodegenerative disorders, and semi-automated assessment helpful to assist visual reading. These decisions are proposed as interim recommendations.
Collapse
Affiliation(s)
- F Nobili
- Department of Neuroscience (DINOGMI), University of Genoa and Polyclinic San Martino Hospital, Genoa, Italy
| | - J Arbizu
- Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - F Bouwman
- Department of Neurology and Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - A Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne and German Center for Neurodegenerative Diseases (DZNE), Cologne, Germany
| | - F Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - P Nestor
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Z Walker
- Division of Psychiatry, Essex Partnership University NHS Foundation Trust, University College London, London, UK
| | - M Boccardi
- Department of Psychiatry, Laboratoire du Neuroimagerie du Vieillissement (LANVIE), University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
40
|
Riederer I, Bohn KP, Preibisch C, Wiedemann E, Zimmer C, Alexopoulos P, Förster S. Alzheimer Disease and Mild Cognitive Impairment: Integrated Pulsed Arterial Spin-Labeling MRI and 18F-FDG PET. Radiology 2018; 288:198-206. [DOI: 10.1148/radiol.2018170575] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Isabelle Riederer
- From the Department of Diagnostic and Interventional Neuroradiology (I.R., C.P., C.Z.), Department of Diagnostic and Interventional Radiology (I.R.), Department of Nuclear Medicine (K.P.B., E.W., S.F.), TUM Neuroimaging Center (TUM-NIC) (C.P., S.F.), and Departments of Psychiatry and Psychotherapy (P.A.), Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str 22, 81675 Munich, Germany
| | - Karl Peter Bohn
- From the Department of Diagnostic and Interventional Neuroradiology (I.R., C.P., C.Z.), Department of Diagnostic and Interventional Radiology (I.R.), Department of Nuclear Medicine (K.P.B., E.W., S.F.), TUM Neuroimaging Center (TUM-NIC) (C.P., S.F.), and Departments of Psychiatry and Psychotherapy (P.A.), Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str 22, 81675 Munich, Germany
| | - Christine Preibisch
- From the Department of Diagnostic and Interventional Neuroradiology (I.R., C.P., C.Z.), Department of Diagnostic and Interventional Radiology (I.R.), Department of Nuclear Medicine (K.P.B., E.W., S.F.), TUM Neuroimaging Center (TUM-NIC) (C.P., S.F.), and Departments of Psychiatry and Psychotherapy (P.A.), Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str 22, 81675 Munich, Germany
| | - Eva Wiedemann
- From the Department of Diagnostic and Interventional Neuroradiology (I.R., C.P., C.Z.), Department of Diagnostic and Interventional Radiology (I.R.), Department of Nuclear Medicine (K.P.B., E.W., S.F.), TUM Neuroimaging Center (TUM-NIC) (C.P., S.F.), and Departments of Psychiatry and Psychotherapy (P.A.), Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str 22, 81675 Munich, Germany
| | - Claus Zimmer
- From the Department of Diagnostic and Interventional Neuroradiology (I.R., C.P., C.Z.), Department of Diagnostic and Interventional Radiology (I.R.), Department of Nuclear Medicine (K.P.B., E.W., S.F.), TUM Neuroimaging Center (TUM-NIC) (C.P., S.F.), and Departments of Psychiatry and Psychotherapy (P.A.), Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str 22, 81675 Munich, Germany
| | - Panagiotis Alexopoulos
- From the Department of Diagnostic and Interventional Neuroradiology (I.R., C.P., C.Z.), Department of Diagnostic and Interventional Radiology (I.R.), Department of Nuclear Medicine (K.P.B., E.W., S.F.), TUM Neuroimaging Center (TUM-NIC) (C.P., S.F.), and Departments of Psychiatry and Psychotherapy (P.A.), Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str 22, 81675 Munich, Germany
| | - Stefan Förster
- From the Department of Diagnostic and Interventional Neuroradiology (I.R., C.P., C.Z.), Department of Diagnostic and Interventional Radiology (I.R.), Department of Nuclear Medicine (K.P.B., E.W., S.F.), TUM Neuroimaging Center (TUM-NIC) (C.P., S.F.), and Departments of Psychiatry and Psychotherapy (P.A.), Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str 22, 81675 Munich, Germany
| |
Collapse
|
41
|
Chang YT, Huang CW, Huang SH, Hsu SW, Chang WN, Lee JJ, Chang CC. Genetic interaction is associated with lower metabolic connectivity and memory impairment in clinically mild Alzheimer's disease. GENES BRAIN AND BEHAVIOR 2018; 18:e12490. [PMID: 29883038 DOI: 10.1111/gbb.12490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 11/29/2022]
Abstract
Metabolic connectivity as showed by [18F] fluorodeoxyglucose (FDG) positron emission tomography (FDG-PET) reflects neuronal connectivity. The aim of this study was to investigate the genetic impact on metabolic connectivity in default mode subnetworks and its clinical-pathological relationships in patients with Alzheimer's disease (AD). We separately investigated the modulation of 2 default mode subnetworks, as identified with independent component analysis, by comparing APOE-ε4 carriers to noncarriers with AD. We further analyzed the interaction effects of APOE (APOE-ε4 carriers vs noncarriers) with PICALM (rs3851179-GG vs rs3851179-A-allele carriers) on episodic memory (EM) deficits, reduction in cerebral metabolic rate for glucose (CMRgl) and decreased metabolic connectivity in default mode subnetworks. The metabolic connectivity in the ventral default mode network (vDMN) was positively correlated with EM scores (β =0.441, P < .001). The APOE-ε4 carriers had significantly lower metabolic connectivity in the vDMN than the APOE-ε4 carriers (t(96) = -2.233, P = .028). There was an effect of the APOE-PICALM (rs3851179) interactions on reduced CMRgl in regions of vDMN (P < .001), and on memory deficits (F3,93 =5.568, P = .020). This study identified that PICALM may modulates memory deficits, reduced CMRgl and decreased metabolic connectivity in the vDMN in APOE-ε4 carriers. [18F] FDG-PET-based metabolic connectivity may serve a useful tool to elucidate the neural networks underlying clinical-pathological relationships in AD.
Collapse
Affiliation(s)
- Y-T Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - C-W Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - S-H Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - S-W Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - W-N Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - J-J Lee
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - C-C Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
42
|
Mohammadi-Nejad AR, Mahmoudzadeh M, Hassanpour MS, Wallois F, Muzik O, Papadelis C, Hansen A, Soltanian-Zadeh H, Gelovani J, Nasiriavanaki M. Neonatal brain resting-state functional connectivity imaging modalities. PHOTOACOUSTICS 2018; 10:1-19. [PMID: 29511627 PMCID: PMC5832677 DOI: 10.1016/j.pacs.2018.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/12/2018] [Accepted: 01/27/2018] [Indexed: 05/12/2023]
Abstract
Infancy is the most critical period in human brain development. Studies demonstrate that subtle brain abnormalities during this state of life may greatly affect the developmental processes of the newborn infants. One of the rapidly developing methods for early characterization of abnormal brain development is functional connectivity of the brain at rest. While the majority of resting-state studies have been conducted using magnetic resonance imaging (MRI), there is clear evidence that resting-state functional connectivity (rs-FC) can also be evaluated using other imaging modalities. The aim of this review is to compare the advantages and limitations of different modalities used for the mapping of infants' brain functional connectivity at rest. In addition, we introduce photoacoustic tomography, a novel functional neuroimaging modality, as a complementary modality for functional mapping of infants' brain.
Collapse
Affiliation(s)
- Ali-Reza Mohammadi-Nejad
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, USA
| | - Mahdi Mahmoudzadeh
- INSERM, U1105, Université de Picardie, CURS, F80036, Amiens, France
- INSERM U1105, Exploration Fonctionnelles du Système Nerveux Pédiatrique, South University Hospital, F80054, Amiens Cedex, France
| | | | - Fabrice Wallois
- INSERM, U1105, Université de Picardie, CURS, F80036, Amiens, France
- INSERM U1105, Exploration Fonctionnelles du Système Nerveux Pédiatrique, South University Hospital, F80054, Amiens Cedex, France
| | - Otto Muzik
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christos Papadelis
- Boston Children’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anne Hansen
- Boston Children’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hamid Soltanian-Zadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, USA
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juri Gelovani
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Mohammadreza Nasiriavanaki
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
43
|
Clinical utility of FDG-PET for the clinical diagnosis in MCI. Eur J Nucl Med Mol Imaging 2018; 45:1497-1508. [DOI: 10.1007/s00259-018-4039-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 10/17/2022]
|
44
|
Lu D, Popuri K, Ding GW, Balachandar R, Beg MF. Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer's Disease using structural MR and FDG-PET images. Sci Rep 2018; 8:5697. [PMID: 29632364 PMCID: PMC5890270 DOI: 10.1038/s41598-018-22871-z] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/02/2018] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease where biomarkers for disease based on pathophysiology may be able to provide objective measures for disease diagnosis and staging. Neuroimaging scans acquired from MRI and metabolism images obtained by FDG-PET provide in-vivo measurements of structure and function (glucose metabolism) in a living brain. It is hypothesized that combining multiple different image modalities providing complementary information could help improve early diagnosis of AD. In this paper, we propose a novel deep-learning-based framework to discriminate individuals with AD utilizing a multimodal and multiscale deep neural network. Our method delivers 82.4% accuracy in identifying the individuals with mild cognitive impairment (MCI) who will convert to AD at 3 years prior to conversion (86.4% combined accuracy for conversion within 1-3 years), a 94.23% sensitivity in classifying individuals with clinical diagnosis of probable AD, and a 86.3% specificity in classifying non-demented controls improving upon results in published literature.
Collapse
Affiliation(s)
- Donghuan Lu
- School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Karteek Popuri
- School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Gavin Weiguang Ding
- School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Rakesh Balachandar
- School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6, Canada.
| |
Collapse
|
45
|
Choi H, Jin KH. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res 2018; 344:103-109. [PMID: 29454006 DOI: 10.1016/j.bbr.2018.02.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/02/2018] [Accepted: 02/13/2018] [Indexed: 01/26/2023]
Abstract
For effective treatment of Alzheimer's disease (AD), it is important to identify subjects who are most likely to exhibit rapid cognitive decline. We aimed to develop an automatic image interpretation system based on a deep convolutional neural network (CNN) which can accurately predict future cognitive decline in mild cognitive impairment (MCI) patients using flurodeoxyglucose and florbetapir positron emission tomography (PET). PET images of 139 patients with AD, 171 patients with MCI and 182 normal subjects obtained from Alzheimer's Disease Neuroimaging Initiative database were used. Deep CNN was trained using 3-dimensional PET volumes of AD and normal controls as inputs. Manually defined image feature extraction such as quantification using predefined region-of-interests was unnecessary for our approach. Furthermore, it used minimally processed images without spatial normalization which has been commonly used in conventional quantitative analyses. Cognitive outcome of MCI subjects was predicted using this network. The prediction accuracy of the conversion of mild cognitive impairment to AD was compared with the conventional feature-based quantification approach. Accuracy of prediction (84.2%) for conversion to AD in MCI patients outperformed conventional feature-based quantification approaches. ROC analyses revealed that performance of CNN-based approach was significantly higher than that of the conventional quantification methods (p < 0.05). Output scores of the network were strongly correlated with the longitudinal change in cognitive measurements (p < 0.05). These results show the feasibility of deep learning as a practical tool for developing predictive neuroimaging biomarker.
Collapse
Affiliation(s)
- Hongyoon Choi
- Cheonan Public Health Center, Chungnam, Republic of Korea.
| | - Kyong Hwan Jin
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | | |
Collapse
|
46
|
Yao Z, Hu B, Chen X, Xie Y, Gutknecht J, Majoe D. Learning Metabolic Brain Networks in MCI and AD by Robustness and Leave-One-Out Analysis: An FDG-PET Study. Am J Alzheimers Dis Other Demen 2018; 33:42-54. [PMID: 28931302 PMCID: PMC10852436 DOI: 10.1177/1533317517731535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
This study attempted to better understand the properties associated with the metabolic brain network in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Graph theory was employed to investigate the topological organization of metabolic brain network among 86 patients with MCI, 89 patients with AD, and 97 normal controls (NCs) using 18F fluoro-deoxy-glucose positron emission tomography (FDG-PET) data. The whole brain was divided into 82 areas by Brodmann atlas to construct networks. We found that MCI and AD showed a loss of small-world properties and topological aberrations, and MCI showed an intermediate measurement between NC and AD. The networks of MCI and AD were vulnerable to attacks resulting from the altered topological pattern. Furthermore, individual contributions were correlated with Mini-Mental State Examination and Clinical Dementia Rating. The present study indicated that the topological patterns of the metabolic networks were aberrant in patients with MCI and AD, which may be particularly helpful in uncovering the pathophysiology underlying the cognitive dysfunction in MCI and AD.
Collapse
Affiliation(s)
- Zhijun Yao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Xuejiao Chen
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Yuanwei Xie
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Jürg Gutknecht
- Computer Systems Institute, ETH Zürich, Zürich, Switzerland
| | - Dennis Majoe
- Computer Systems Institute, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
47
|
Hoenig MC, Bischof GN, Seemiller J, Hammes J, Kukolja J, Onur ÖA, Jessen F, Fliessbach K, Neumaier B, Fink GR, van Eimeren T, Drzezga A. Networks of tau distribution in Alzheimer’s disease. Brain 2018; 141:568-581. [DOI: 10.1093/brain/awx353] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
|
48
|
|
49
|
Garibotto V, Herholz K, Boccardi M, Picco A, Varrone A, Nordberg A, Nobili F, Ratib O. Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer's disease in the context of a structured 5-phase development framework. Neurobiol Aging 2017; 52:183-195. [PMID: 28317648 DOI: 10.1016/j.neurobiolaging.2016.03.033] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/09/2016] [Accepted: 03/22/2016] [Indexed: 10/19/2022]
Abstract
The use of Alzheimer's disease (AD) biomarkers is supported in diagnostic criteria, but their maturity for clinical routine is still debated. Here, we evaluate brain fluorodeoxyglucose positron emission tomography (FDG PET), a measure of cerebral glucose metabolism, as a biomarker to identify clinical and prodromal AD according to the framework suggested for biomarkers in oncology, using homogenous criteria with other biomarkers addressed in parallel reviews. FDG PET has fully achieved phase 1 (rational for use) and most of phase 2 (ability to discriminate AD subjects from healthy controls or other forms of dementia) aims. Phase 3 aims (early detection ability) are partly achieved. Phase 4 studies (routine use in prodromal patients) are ongoing, and only preliminary results can be extrapolated from retrospective observations. Phase 5 studies (quantify impact and costs) have not been performed. The results of this study show that specific efforts are needed to complete phase 3 evidence, in particular comparing and combining FDG PET with other biomarkers, and to properly design phase 4 prospective studies as a basis for phase 5 evaluations.
Collapse
Affiliation(s)
- Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, University Hospitals of Geneva, Geneva University, Geneva, Switzerland.
| | - Karl Herholz
- Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Marina Boccardi
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; LANVIE (Laboratory of Neuroimaging of Aging), Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Agnese Picco
- LANVIE (Laboratory of Neuroimaging of Aging), Department of Psychiatry, University of Geneva, Geneva, Switzerland; Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Department of Geriatric Medicine, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Osman Ratib
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, University Hospitals of Geneva, Geneva University, Geneva, Switzerland
| | | |
Collapse
|
50
|
Dufouil C, Dubois B, Vellas B, Pasquier F, Blanc F, Hugon J, Hanon O, Dartigues JF, Harston S, Gabelle A, Ceccaldi M, Beauchet O, Krolak-Salmon P, David R, Rouaud O, Godefroy O, Belin C, Rouch I, Auguste N, Wallon D, Benetos A, Pariente J, Paccalin M, Moreaud O, Hommet C, Sellal F, Boutoleau-Bretonniére C, Jalenques I, Gentric A, Vandel P, Azouani C, Fillon L, Fischer C, Savarieau H, Operto G, Bertin H, Chupin M, Bouteloup V, Habert MO, Mangin JF, Chêne G. Cognitive and imaging markers in non-demented subjects attending a memory clinic: study design and baseline findings of the MEMENTO cohort. ALZHEIMERS RESEARCH & THERAPY 2017; 9:67. [PMID: 28851447 PMCID: PMC5576287 DOI: 10.1186/s13195-017-0288-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 07/17/2017] [Indexed: 12/14/2022]
Abstract
Background The natural history and disease mechanisms of Alzheimer’s disease and related disorders (ADRD) are still poorly understood. Very few resources are available to scrutinise patients as early as needed and to use integrative approaches combining standardised, repeated clinical investigations and cutting-edge biomarker measurements. Methods In the nationwide French MEMENTO cohort study, participants were recruited in memory clinics and screened for either isolated subjective cognitive complaints (SCCs) or mild cognitive impairment (MCI; defined as test performance 1.5 SD below age, sex and education-level norms) while not demented (Clinical Dementia Rating [CDR] <1). Baseline data collection included neurological and physical examinations as well as extensive neuropsychological testing. To be included in the MEMENTO cohort, participants had to agree to undergo both brain magnetic resonance imaging (MRI) and blood sampling. Cerebral 18F-fluorodeoxyglucose positon emission tomography and lumbar puncture were optional. Automated analyses of cerebral MRI included assessments of volumes of whole-brain, hippocampal and white matter lesions. Results The 2323 participants, recruited from April 2011 to June 2014, were aged 71 years, on average (SD 8.7), and 62% were women. CDR was 0 in 40% of participants, and 30% carried at least one apolipoprotein E ε4 allele. We observed that more than half (52%) of participants had amnestic mild cognitive impairment (17% single-domain aMCI), 32% had non-amnestic mild cognitive impairment (16.9% single-domain naMCI) and 16% had isolated SCCs. Multivariable analyses of neuroimaging markers associations with cognitive categories showed that participants with aMCI had worse levels of imaging biomarkers than the others, whereas participants with naMCI had markers at intermediate levels between SCC and aMCI. The burden of white matter lesions tended to be larger in participants with aMCI. Independently of CDR, all neuroimaging and neuropsychological markers worsened with age, whereas differences were not consistent according to sex. Conclusions MEMENTO is a large cohort with extensive clinical, neuropsychological and neuroimaging data and represents a platform for studying the natural history of ADRD in a large group of participants with different subtypes of MCI (amnestic or not amnestic) or isolated SCCs. Trial registration Clinicaltrials.gov, NCT01926249. Registered on 16 August 2013. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0288-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carole Dufouil
- Centre Inserm U1219, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Bordeaux School of Public Health, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux cedex, France. .,CHU de Bordeaux, Pole de sante publique, F-33000, Bordeaux, France.
| | - Bruno Dubois
- Institute of Memory and Alzheimer's Disease (IM2A) and Brain and Spine Institute (ICM) UMR S 1127, Department of Neurology, AP-HP, Pitié-Salpêtrière University Hospital, Sorbonne Universities, Pierre et Marie Curie University, F-75006, Paris, France
| | - Bruno Vellas
- Memory Resource and Research Centre of Toulouse, CHU de Toulouse, Hôpital La Grave-Casselardit, F-31000, Toulouse, France
| | - Florence Pasquier
- Memory Resource and Research Centre of Lille, CHRU de Lille, Hôpital Roger Salengro, F-59000, Lille, France.,University Lille, INSERM U1171, F-59000, Lille, France
| | - Frédéric Blanc
- Memory Resource and Research Centre of Strasbourg/Colmar, Department of Geriatrics, laboratoire ICube UMR 7357, FMTS, Hôpitaux Universitaires de Strasbourg, F-67000, Strasbourg, France
| | - Jacques Hugon
- Memory Resource and Research Centre of Paris Nord, AP-HP, Groupe Hospitalier Saint-Louis Lariboisière Fernand Widal, F-75010, Paris, France
| | - Olivier Hanon
- Memory Resource and Research Centre of Paris Broca, AP-HP, Hôpital Broca, F-75013, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, EA 4468, Paris, France
| | - Jean-François Dartigues
- Centre Inserm U1219, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Bordeaux School of Public Health, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux cedex, France.,Memory Resource and Research Centre of Bordeaux, CHU de Bordeaux, Hôpital Pellegrin, F-33000, Bordeaux, France
| | - Sandrine Harston
- Memory Resource and Research Centre of Bordeaux, CHU de Bordeaux, Hôpital Xavier Arnozan, F-33000, Bordeaux, France
| | - Audrey Gabelle
- Memory Resource and Research Centre of Montpellier, CHU de Montpellier, Hôpital Gui de Chauliac, F-34000, Montpellier, France
| | - Mathieu Ceccaldi
- Memory Resource and Research Centre of Marseille, CHU de Marseille, Hôpital La Timone, F-13000, Marseille, France
| | - Olivier Beauchet
- Memory Resource and Research Centre of Angers, CHU d'Angers, F-49000, Angers, France
| | - Pierre Krolak-Salmon
- Memory Resource and Research Centre of Lyon, Hospices Civils de Lyon, Hôpital des Charpennes, F-69000, Lyon, France
| | - Renaud David
- Memory Resource and Research Centre of Nice, CHU de Nice, Institut Claude Pompidou, EA 7276 CoBTeK "Cognition Behaviour Technology", F-06100, Nice, France
| | - Olivier Rouaud
- Memory Resource and Research Centre of Dijon, CHU Dijon Bourgogne, Hôpital du Bocage, Hôpital de Champmaillot, F-21000, Dijon, France
| | - Olivier Godefroy
- Memory Resource and Research of Amiens, CHU Amiens Picardie, Hôpital Nord, F-80000, Amiens, France
| | - Catherine Belin
- Memory Clinic, Hôpital Avicenne, AP-HP, Hôpitaux Universitaires Paris-Seine-Saint-Denis, F-93009, Bobigny, France
| | - Isabelle Rouch
- Memory Resource and Research Centre of Saint-Etienne, CHU de Saint-Etienne, Hôpital Nord, F-42000, Saint-Etienne, France
| | - Nicolas Auguste
- Memory Resource and Research Centre of Saint-Etienne, CHU de Saint-Etienne, Hôpital de la Charité, F-42000, Saint-Etienne, France
| | - David Wallon
- Memory Resource and Research Centre of Rouen, Neurology Department, Rouen University Hospital, F-76031, Rouen, France
| | - Athanase Benetos
- Memory Resource and Research Centre of Nancy, CHU de Nancy, F-54000, Nancy, France
| | - Jérémie Pariente
- Memory Resource and Research Centre of Toulouse, CHU de Toulouse, Hôpital Purpan, F-31000, Toulouse, France
| | - Marc Paccalin
- Memory Resource and Research Centre of Poitiers, CHU de Poitiers, Hôpital de La Milétrie, F-86000, Poitiers, France
| | - Olivier Moreaud
- Memory Resource and Research Centre of Grenoble, CHU de Grenoble Alpes, Hôpital de la Tronche, F-38000, Grenoble, France
| | - Caroline Hommet
- Memory Resource and Research Centre of Center Region, CHRU de Tours, Hôpital Bretonneau, F-37000, Tours, France
| | - François Sellal
- Memory Resource and Research Centre of Strasbourg/Colmar, Hôpitaux Civils de Colmar, F-68000, Colmar, France.,Inserm U-118, Strasbourg University, F-67000, Strasbourg, France
| | | | - Isabelle Jalenques
- Memory Resource and Research Centre of Clermont-Ferrand, CHU de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Armelle Gentric
- Memory Resource and Research Centre of Brest, CHRU de Brest, F-29000, Brest, France
| | - Pierre Vandel
- Memory Resource and Research Centre of Besançon, CHU de Besançon, Hôpital Jean Minjoz, Hôpital Saint-Jacques, F-25000, Besançon, France
| | - Chabha Azouani
- Centre pour l'Acquisition et le Traitement des Images, NeuroSpin, I2BM, Commissariat à l'Energie Atomique, F-91400, Saclay, France.,Sorbonne Universités, UPMC Université Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
| | - Ludovic Fillon
- Centre pour l'Acquisition et le Traitement des Images, NeuroSpin, I2BM, Commissariat à l'Energie Atomique, F-91400, Saclay, France.,Sorbonne Universités, UPMC Université Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
| | - Clara Fischer
- Centre pour l'Acquisition et le Traitement des Images, NeuroSpin, I2BM, Commissariat à l'Energie Atomique, F-91400, Saclay, France.,Sorbonne Universités, UPMC Université Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
| | - Helen Savarieau
- Centre Inserm U1219, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Bordeaux School of Public Health, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux cedex, France.,CHU de Bordeaux, Pole de sante publique, F-33000, Bordeaux, France
| | - Gregory Operto
- Centre pour l'Acquisition et le Traitement des Images, NeuroSpin, I2BM, Commissariat à l'Energie Atomique, F-91400, Saclay, France.,Sorbonne Universités, UPMC Université Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
| | - Hugo Bertin
- Centre pour l'Acquisition et le Traitement des Images, NeuroSpin, I2BM, Commissariat à l'Energie Atomique, F-91400, Saclay, France.,Nuclear Medicine Department, Pitié-Salpêtrière University Hospital, AP-HP, F-75006, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, F-75006, Paris, France
| | - Marie Chupin
- Centre pour l'Acquisition et le Traitement des Images, NeuroSpin, I2BM, Commissariat à l'Energie Atomique, F-91400, Saclay, France.,Sorbonne Universités, UPMC Université Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
| | - Vincent Bouteloup
- Centre Inserm U1219, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Bordeaux School of Public Health, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux cedex, France.,CHU de Bordeaux, Pole de sante publique, F-33000, Bordeaux, France
| | - Marie-Odile Habert
- Nuclear Medicine Department, Pitié-Salpêtrière University Hospital, AP-HP, F-75006, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, F-75006, Paris, France
| | - Jean-François Mangin
- Centre pour l'Acquisition et le Traitement des Images, NeuroSpin, I2BM, Commissariat à l'Energie Atomique, F-91400, Saclay, France.,NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Université Paris-Saclay, F-91400, Saclay, France
| | - Geneviève Chêne
- Centre Inserm U1219, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Bordeaux School of Public Health, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux cedex, France.,CHU de Bordeaux, Pole de sante publique, F-33000, Bordeaux, France
| | | |
Collapse
|