1
|
Zaidi M, Ma J, Thomas BP, Peña S, Harrison CE, Chen J, Lin SH, Derner KA, Baxter JD, Liticker J, Malloy CR, Bartnik-Olson B, Park JM. Functional activation of pyruvate dehydrogenase in human brain using hyperpolarized [1- 13 C]pyruvate. Magn Reson Med 2024; 91:1822-1833. [PMID: 38265104 PMCID: PMC10950523 DOI: 10.1002/mrm.30015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Pyruvate, produced from either glucose, glycogen, or lactate, is the dominant precursor of cerebral oxidative metabolism. Pyruvate dehydrogenase (PDH) flux is a direct measure of cerebral mitochondrial function and metabolism. Detection of [13 C]bicarbonate in the brain from hyperpolarized [1-13 C]pyruvate using carbon-13 (13 C) MRI provides a unique opportunity for assessing PDH flux in vivo. This study is to assess changes in cerebral PDH flux in response to visual stimuli using in vivo 13 C MRS with hyperpolarized [1-13 C]pyruvate. METHODS From seven sedentary adults in good general health, time-resolved [13 C]bicarbonate production was measured in the brain using 90° flip angles with minimal perturbation of its precursors, [1-13 C]pyruvate and [1-13 C]lactate, to test the hypothesis that the appearance of [13 C]bicarbonate signals in the brain reflects the metabolic changes associated with neuronal activation. With a separate group of healthy participants (n = 3), the likelihood of the bolus-injected [1-13 C]pyruvate being converted to [1-13 C]lactate prior to decarboxylation was investigated by measuring [13 C]bicarbonate production with and without [1-13 C]lactate saturation. RESULTS In the course of visual stimulation, the measured [13 C]bicarbonate signal normalized to the total 13 C signal in the visual cortex increased by 17.1% ± 15.9% (p = 0.017), whereas no significant change was detected in [1-13 C]lactate. Proton BOLD fMRI confirmed the regional activation in the visual cortex with the stimuli. Lactate saturation decreased bicarbonate-to-pyruvate ratio by 44.4% ± 9.3% (p < 0.01). CONCLUSION We demonstrated the utility of 13 C MRS with hyperpolarized [1-13 C]pyruvate for assessing the activation of cerebral PDH flux via the detection of [13 C]bicarbonate production.
Collapse
Affiliation(s)
- Maheen Zaidi
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Junjie Ma
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- GE Precision Healthcare, Jersey City, New Jersey, USA 07302
| | - Binu P. Thomas
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Salvador Peña
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Crystal E. Harrison
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Jun Chen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Sung-Han Lin
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Kelley A. Derner
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Jeannie D. Baxter
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Jeff Liticker
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Craig R. Malloy
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University, Loma Linda, California, USA 92354
| | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| |
Collapse
|
2
|
Guilbert J, Légaré A, De Koninck P, Desrosiers P, Desjardins M. Toward an integrative neurovascular framework for studying brain networks. NEUROPHOTONICS 2022; 9:032211. [PMID: 35434179 PMCID: PMC8989057 DOI: 10.1117/1.nph.9.3.032211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/11/2022] [Indexed: 05/28/2023]
Abstract
Brain functional connectivity based on the measure of blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals has become one of the most widely used measurements in human neuroimaging. However, the nature of the functional networks revealed by BOLD fMRI can be ambiguous, as highlighted by a recent series of experiments that have suggested that typical resting-state networks can be replicated from purely vascular or physiologically driven BOLD signals. After going through a brief review of the key concepts of brain network analysis, we explore how the vascular and neuronal systems interact to give rise to the brain functional networks measured with BOLD fMRI. This leads us to emphasize a view of the vascular network not only as a confounding element in fMRI but also as a functionally relevant system that is entangled with the neuronal network. To study the vascular and neuronal underpinnings of BOLD functional connectivity, we consider a combination of methodological avenues based on multiscale and multimodal optical imaging in mice, used in combination with computational models that allow the integration of vascular information to explain functional connectivity.
Collapse
Affiliation(s)
- Jérémie Guilbert
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Université Laval, Centre de recherche du CHU de Québec, Québec, Canada
| | - Antoine Légaré
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
- Université Laval, Department of Biochemistry, Microbiology, and Bioinformatics, Québec, Canada
| | - Paul De Koninck
- Centre de recherche CERVO, Québec, Canada
- Université Laval, Department of Biochemistry, Microbiology, and Bioinformatics, Québec, Canada
| | - Patrick Desrosiers
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| | - Michèle Desjardins
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Université Laval, Centre de recherche du CHU de Québec, Québec, Canada
| |
Collapse
|
3
|
Turner MP, Zhao Y, Abdelkarim D, Liu P, Spence JS, Hutchison JL, Sivakolundu DK, Thomas BP, Hubbard NA, Xu C, Taneja K, Lu H, Rypma B. Altered linear coupling between stimulus-evoked blood flow and oxygen metabolism in the aging human brain. Cereb Cortex 2022; 33:135-151. [PMID: 35388407 PMCID: PMC9758587 DOI: 10.1093/cercor/bhac057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Neural-vascular coupling (NVC) is the process by which oxygen and nutrients are delivered to metabolically active neurons by blood vessels. Murine models of NVC disruption have revealed its critical role in healthy neural function. We hypothesized that, in humans, aging exerts detrimental effects upon the integrity of the neural-glial-vascular system that underlies NVC. To test this hypothesis, calibrated functional magnetic resonance imaging (cfMRI) was used to characterize age-related changes in cerebral blood flow (CBF) and oxygen metabolism during visual cortex stimulation. Thirty-three younger and 27 older participants underwent cfMRI scanning during both an attention-controlled visual stimulation task and a hypercapnia paradigm used to calibrate the blood-oxygen-level-dependent signal. Measurement of stimulus-evoked blood flow and oxygen metabolism permitted calculation of the NVC ratio to assess the integrity of neural-vascular communication. Consistent with our hypothesis, we observed monotonic NVC ratio increases with increasing visual stimulation frequency in younger adults but not in older adults. Age-related changes in stimulus-evoked cerebrovascular and neurometabolic signal could not fully explain this disruption; increases in stimulus-evoked neurometabolic activity elicited corresponding increases in stimulus-evoked CBF in younger but not in older adults. These results implicate age-related, demand-dependent failures of the neural-glial-vascular structures that comprise the NVC system.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Peiying Liu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jeffrey S Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Binu P Thomas
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Nicholas A Hubbard
- Department of Psychology, Center for Brain, Biology, and Behavior, University of Nebraska, Lincoln, NE 68588, USA
| | - Cuimei Xu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kamil Taneja
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Hanzhang Lu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Bart Rypma
- Corresponding author: School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
| |
Collapse
|
4
|
Herculano-Houzel S, Rothman DL. From a Demand-Based to a Supply-Limited Framework of Brain Metabolism. Front Integr Neurosci 2022; 16:818685. [PMID: 35431822 PMCID: PMC9012138 DOI: 10.3389/fnint.2022.818685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
What defines the rate of energy use by the brain, as well as per neurons of different sizes in different structures and animals, is one fundamental aspect of neuroscience for which much has been theorized, but very little data are available. The prevalent theories and models consider that energy supply from the vascular system to different brain regions is adjusted both dynamically and in the course of development and evolution to meet the demands of neuronal activity. In this perspective, we offer an alternative view: that regional rates of energy use might be mostly constrained by supply, given the properties of the brain capillary network, the highly stable rate of oxygen delivery to the whole brain under physiological conditions, and homeostatic constraints. We present evidence that these constraints, based on capillary density and tissue oxygen homeostasis, are similar between brain regions and mammalian species, suggesting they derive from fundamental biophysical limitations. The same constraints also determine the relationship between regional rates of brain oxygen supply and usage over the full physiological range of brain activity, from deep sleep to intense sensory stimulation, during which the apparent uncoupling of blood flow and oxygen use is still a predicted consequence of supply limitation. By carefully separating "energy cost" into energy supply and energy use, and doing away with the problematic concept of energetic "demands," our new framework should help shine a new light on the neurovascular bases of metabolic support of brain function and brain functional imaging. We speculate that the trade-offs between functional systems and even the limitation to a single attentional spot at a time might be consequences of a strongly supply-limited brain economy. We propose that a deeper understanding of brain energy supply constraints will provide a new evolutionary understanding of constraints on brain function due to energetics; offer new diagnostic insight to disturbances of brain metabolism; lead to clear, testable predictions on the scaling of brain metabolic cost and the evolution of brains of different sizes; and open new lines of investigation into the microvascular bases of progressive cognitive loss in normal aging as well as metabolic diseases.
Collapse
Affiliation(s)
- Suzana Herculano-Houzel
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Douglas L. Rothman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| |
Collapse
|
5
|
Vinke LN, Bloem IM, Ling S. Saturating Nonlinearities of Contrast Response in Human Visual Cortex. J Neurosci 2022; 42:1292-1302. [PMID: 34921048 PMCID: PMC8883860 DOI: 10.1523/jneurosci.0106-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
Response nonlinearities are ubiquitous throughout the brain, especially within sensory cortices where changes in stimulus intensity typically produce compressed responses. Although this relationship is well established in electrophysiological measurements, it remains controversial whether the same nonlinearities hold for population-based measurements obtained with human fMRI. We propose that these purported disparities are not contingent on measurement type and are instead largely dependent on the visual system state at the time of interrogation. We show that deploying a contrast adaptation paradigm permits reliable measurements of saturating sigmoidal contrast response functions (10 participants, 7 female). When not controlling the adaptation state, our results coincide with previous fMRI studies, yielding nonsaturating, largely linear contrast responses. These findings highlight the important role of adaptation in manifesting measurable nonlinear responses within human visual cortex, reconciling discrepancies reported in vision neuroscience, re-establishing the qualitative relationship between stimulus intensity and response across different neural measures and the concerted study of cortical gain control.SIGNIFICANCE STATEMENT Nonlinear stimulus-response relationships govern many essential brain functions, ranging from the sensory to cognitive level. Certain core response properties previously shown to be nonlinear with nonhuman electrophysiology recordings have yet to be reliably measured with human neuroimaging, prompting uncertainty and reconsideration. The results of this study stand to reconcile these incongruencies in the vision neurosciences, demonstrating the profound impact adaptation can have on brain activation throughout the early visual cortex. Moving forward, these findings facilitate the study of modulatory influences on sensory processing (i.e., arousal and attention) and help establish a closer link between neural recordings in animals and hemodynamic measurements from human fMRI, resuming a concerted effort to understand operations in the mammalian cortex.
Collapse
Affiliation(s)
- Louis N Vinke
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02215
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114
- Harvard Medical School, Boston, Massachusetts 02115
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129
| | - Ilona M Bloem
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
- Department of Psychology, New York University, New York City, New York 10012
| | - Sam Ling
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
6
|
Polimeni JR, Lewis LD. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Prog Neurobiol 2021; 207:102174. [PMID: 34525404 PMCID: PMC8688322 DOI: 10.1016/j.pneurobio.2021.102174] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Fast fMRI enables the detection of neural dynamics over timescales of hundreds of milliseconds, suggesting it may provide a new avenue for studying subsecond neural processes in the human brain. The magnitudes of these fast fMRI dynamics are far greater than predicted by canonical models of the hemodynamic response. Several studies have established nonlinear properties of the hemodynamic response that have significant implications for fast fMRI. We first review nonlinear properties of the hemodynamic response function that may underlie fast fMRI signals. We then illustrate the breakdown of canonical hemodynamic response models in the context of fast neural dynamics. We will then argue that the canonical hemodynamic response function is not likely to reflect the BOLD response to neuronal activity driven by sparse or naturalistic stimuli or perhaps to spontaneous neuronal fluctuations in the resting state. These properties suggest that fast fMRI is capable of tracking surprisingly fast neuronal dynamics, and we discuss the neuroscientific questions that could be addressed using this approach.
Collapse
Affiliation(s)
- Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Laura D Lewis
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
7
|
Investigating mechanisms of fast BOLD responses: The effects of stimulus intensity and of spatial heterogeneity of hemodynamics. Neuroimage 2021; 245:118658. [PMID: 34656783 DOI: 10.1016/j.neuroimage.2021.118658] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 09/18/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Recent studies have demonstrated that fast fMRI can track neural activity well above the temporal limit predicted by the canonical hemodynamic response model. While these findings are promising, the biophysical mechanisms underlying these fast fMRI phenomena remain underexplored. In this study, we discuss two aspects of the hemodynamic response, complementary to several existing hypotheses, that can accommodate faster fMRI dynamics beyond those predicted by the canonical model. First, we demonstrate, using both visual and somatosensory paradigms, that the timing and shape of hemodynamic response functions (HRFs) vary across graded levels of stimulus intensity-with lower-intensity stimulation eliciting faster and narrower HRFs. Second, we show that as the spatial resolution of fMRI increases, voxel-wise HRFs begin to deviate from the canonical model, with a considerable portion of voxels exhibiting faster temporal dynamics than predicted by the canonical HRF. Collectively, both stimulus/task intensity and image resolution can affect the sensitivity of fMRI to fast brain activity, which may partly explain recent observations of fast fMRI signals. It is further noteworthy that, while the present investigations focus on fast neural responses, our findings suggest that a revised hemodynamic model may benefit the many fMRI studies using paradigms with wide ranges of contrast levels (e.g., resting or naturalistic conditions) or with modern, high-resolution MR acquisitions.
Collapse
|
8
|
Buxton RB. The thermodynamics of thinking: connections between neural activity, energy metabolism and blood flow. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190624. [PMID: 33190604 DOI: 10.1098/rstb.2019.0624] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several current functional neuroimaging methods are sensitive to cerebral metabolism and cerebral blood flow (CBF) rather than the underlying neural activity itself. Empirically, the connections between metabolism, flow and neural activity are complex and somewhat counterintuitive: CBF and glycolysis increase more than seems to be needed to provide oxygen and pyruvate for oxidative metabolism, and the oxygen extraction fraction is relatively low in the brain and decreases when oxygen metabolism increases. This work lays a foundation for the idea that this unexpected pattern of physiological changes is consistent with basic thermodynamic considerations related to metabolism. In the context of this thermodynamic framework, the apparent mismatches in metabolic rates and CBF are related to preserving the entropy change of oxidative metabolism, specifically the O2/CO2 ratio in the mitochondria. However, the mechanism supporting this CBF response is likely not owing to feedback from a hypothetical O2 sensor in tissue, but rather is consistent with feed-forward control by signals from both excitatory and inhibitory neural activity. Quantitative predictions of the thermodynamic framework, based on models of O2 and CO2 transport and possible neural drivers of CBF control, are in good agreement with a wide range of experimental data, including responses to neural activation, hypercapnia, hypoxia and high-altitude acclimatization. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Richard B Buxton
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, MC 0677, La Jolla, CA 92093-0677, USA
| |
Collapse
|
9
|
van Dijk JA, Fracasso A, Petridou N, Dumoulin SO. Linear systems analysis for laminar fMRI: Evaluating BOLD amplitude scaling for luminance contrast manipulations. Sci Rep 2020; 10:5462. [PMID: 32214136 PMCID: PMC7096513 DOI: 10.1038/s41598-020-62165-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/09/2020] [Indexed: 01/18/2023] Open
Abstract
A fundamental assumption of nearly all functional magnetic resonance imaging (fMRI) analyses is that the relationship between local neuronal activity and the blood oxygenation level dependent (BOLD) signal can be described as following linear systems theory. With the advent of ultra-high field (7T and higher) MRI scanners, it has become possible to perform sub-millimeter resolution fMRI in humans. A novel and promising application of sub-millimeter fMRI is measuring responses across cortical depth, i.e. laminar imaging. However, the cortical vasculature and associated directional blood pooling towards the pial surface strongly influence the cortical depth-dependent BOLD signal, particularly for gradient-echo BOLD. This directional pooling may potentially affect BOLD linearity across cortical depth. Here we assess whether the amplitude scaling assumption for linear systems theory holds across cortical depth. For this, we use stimuli with different luminance contrasts to elicit different BOLD response amplitudes. We find that BOLD amplitude across cortical depth scales with luminance contrast, and that this scaling is identical across cortical depth. Although nonlinearities may be present for different stimulus configurations and acquisition protocols, our results suggest that the amplitude scaling assumption for linear systems theory across cortical depth holds for luminance contrast manipulations in sub-millimeter laminar BOLD fMRI.
Collapse
Affiliation(s)
- Jelle A van Dijk
- Experimental Psychology, Utrecht University, Utrecht, NL, Netherlands.
- Spinoza Centre for Neuroimaging, Amsterdam, NL, Netherlands.
| | - Alessio Fracasso
- Spinoza Centre for Neuroimaging, Amsterdam, NL, Netherlands
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
- Radiology Department, Imaging Division, Center for Image Sciences, University Medical Center Utrecht, Utrecht, NL, Netherlands
| | - Natalia Petridou
- Radiology Department, Imaging Division, Center for Image Sciences, University Medical Center Utrecht, Utrecht, NL, Netherlands
| | - Serge O Dumoulin
- Experimental Psychology, Utrecht University, Utrecht, NL, Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam, NL, Netherlands
- Experimental and Applied Psychology, VU University, Amsterdam, NL, Netherlands
| |
Collapse
|
10
|
Neurophysiological basis of contrast dependent BOLD orientation tuning. Neuroimage 2020; 206:116323. [PMID: 31678228 DOI: 10.1016/j.neuroimage.2019.116323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/03/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022] Open
Abstract
Recent work in early visual cortex of humans has shown that the BOLD signal exhibits contrast dependent orientation tuning, with an inverse oblique effect (oblique > cardinal) at high contrast and a horizontal effect (vertical > horizontal) at low contrast. This finding is at odds with decades of neurophysiological research demonstrating contrast invariant orientation tuning in primate visual cortex, yet the source of this discrepancy is unclear. We hypothesized that contrast dependent BOLD orientation tuning may arise due to contrast dependent influences of feedforward (FF) and feedback (FB) synaptic activity, indexed through gamma and alpha rhythms, respectively. To quantify this, we acquired EEG and BOLD in healthy humans to generate and compare orientation tuning curves across all neural frequency bands with BOLD. As expected, BOLD orientation selectivity in V1 was contrast dependent, preferring oblique orientations at high contrast and vertical at low contrast. On the other hand, EEG orientation tuning was contrast invariant, though frequency-specific, with an inverse-oblique effect in the gamma band (FF) and a horizontal effect in the alpha band (FB). Therefore, high-contrast BOLD orientation tuning closely matched FF activity, while at low contrast, BOLD best resembled FB orientation tuning. These results suggest that contrast dependent BOLD orientation tuning arises due to the reduced contribution of FF input to overall neurophysiological activity at low contrast, shifting BOLD orientation tuning towards the orientation preferences of FB at low contrast.
Collapse
|
11
|
Wilson R, Mullinger KJ, Francis ST, Mayhew SD. The relationship between negative BOLD responses and ERS and ERD of alpha/beta oscillations in visual and motor cortex. Neuroimage 2019; 199:635-650. [PMID: 31189075 DOI: 10.1016/j.neuroimage.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/10/2019] [Accepted: 06/03/2019] [Indexed: 01/06/2023] Open
Abstract
Previous work has investigated the electrophysiological origins of the intra-modal (within the stimulated sensory cortex) negative BOLD fMRI response (NBR, decrease from baseline) but little attention has been paid to the origin of cross-modal NBRs, those in a different sensory cortex. In the current study we use simultaneous EEG-fMRI recordings to assess the neural correlates of both intra- and cross-modal responses to left-hemifield visual stimuli and right-hand motor tasks, and evaluate the balance of activation and deactivation between the visual and motor systems. Within- and between-subject covariations of EEG and fMRI responses to both tasks are assessed to determine how patterns of event-related desynchronization/synchronisation (ERD/ERS) of alpha/beta frequency oscillations relate to the NBR in the two sensory cortices. We show that both visual and motor tasks induce intra-modal NBR and cross-modal NBR (e.g. visual stimuli evoked NBRs in both visual and motor cortices). In the EEG data, bilateral intra-modal alpha/beta ERD were consistently observed to both tasks, whilst the cross-modal EEG response varied across subjects between alpha/beta ERD and ERS. Both the mean cross-modal EEG and fMRI response amplitudes showed a small increase in magnitude with increasing task intensity. In response to the visual stimuli, subjects displaying cross-modal ERS of motor beta power displayed a significantly larger magnitude of cross-modal NBR in motor cortex. However, in contrast to the motor stimuli, larger cross-modal ERD of visual alpha power was associated with larger cross-modal visual NBR. Single-trial correlation analysis provided further evidence of relationship between EEG signals and the NBR, motor cortex beta responses to motor tasks were significantly negatively correlated with cross-modal visual cortex NBR amplitude, and positively correlated with intra-modal motor cortex PBR. This study provides a new body of evidence that the coupling between BOLD and low-frequency (alpha/beta) sensory cortex EEG responses extends to cross-modal NBR.
Collapse
Affiliation(s)
- Ross Wilson
- Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK
| | - Karen J Mullinger
- Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK; SPMIC, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Susan T Francis
- SPMIC, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Stephen D Mayhew
- Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK.
| |
Collapse
|
12
|
Ko Y, Yun SD, Hong SM, Ha Y, Choi CH, Shah NJ, Felder J. MR-compatible, 3.8 inch dual organic light-emitting diode (OLED) in-bore display for functional MRI. PLoS One 2018; 13:e0205325. [PMID: 30308026 PMCID: PMC6181352 DOI: 10.1371/journal.pone.0205325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Functional MRI (fMRI) is a well-established method used to investigate localised brain activation by virtue of the blood oxygen level dependent (BOLD) effect. It often relies on visual presentations using beam projectors, liquid crystal display (LCD) screens, and goggle systems. In this study, we designed an MR compatible, low-cost display unit based on organic light-emitting diodes (OLED) and demonstrated its performance. METHODS A 3.8" dual OLED module and an MIPI-to-HDMI converter board were used. The OLED module was enclosed using a shielded box to prevent noise emission from the display module and the potentially destructive absorption of high power RF from the MRI transmit pulses. The front of the OLED module was covered by a conductive, transparent mesh. Power was supplied from a non-magnetic battery. The shielding of the display was evaluated by directly measuring the electromagnetic emission with the aid of a pickup loop and a low noise amplifier, as well as by examining the signal-to-noise ratio (SNR) of phantom MRI data. The visual angle of the display was calculated and compared to standard solutions. As a proof of concept of the OLED display for fMRI, a healthy volunteer was presented with a visual block paradigm. RESULTS The OLED unit was successfully installed inside a 3 T MRI scanner bore. Operation of the OLED unit did not degrade the SNR of the phantom images. The fMRI data suggest that visual stimulation can be effectively delivered to subjects with the proposed OLED unit without any significant interference between the MRI acquisitions and the display module itself. DISCUSSION We have constructed and evaluated the MR compatible, dual OLED display for fMRI studies. The proposed OLED display provides the benefits of high resolution, wide visual angle, and high contrast video images during fMRI exams.
Collapse
Affiliation(s)
- YunKyoung Ko
- Institute of Neuroscience and Medicine—4, Forschungszentrum Juelich, Juelich, Germany
| | - Seong Dae Yun
- Institute of Neuroscience and Medicine—4, Forschungszentrum Juelich, Juelich, Germany
| | - Suk-Min Hong
- Institute of Neuroscience and Medicine—4, Forschungszentrum Juelich, Juelich, Germany
| | - Yonghyun Ha
- Institute of Neuroscience and Medicine—4, Forschungszentrum Juelich, Juelich, Germany
| | - Chang-Hoon Choi
- Institute of Neuroscience and Medicine—4, Forschungszentrum Juelich, Juelich, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine—4, Forschungszentrum Juelich, Juelich, Germany
- Faculty of Medicine, Department of Neurology, RWTH Aachen University, JARA, Aachen, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine—4, Forschungszentrum Juelich, Juelich, Germany
| |
Collapse
|
13
|
Sonnay S, Poirot J, Just N, Clerc AC, Gruetter R, Rainer G, Duarte JMN. Astrocytic and neuronal oxidative metabolism are coupled to the rate of glutamate-glutamine cycle in the tree shrew visual cortex. Glia 2017; 66:477-491. [DOI: 10.1002/glia.23259] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Sarah Sonnay
- Laboratory for Functional and Metabolic Imaging (LIFMET); Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Jordan Poirot
- Department of Medicine, Visual Cognition Laboratory; University of Fribourg; Fribourg Switzerland
| | | | - Anne-Catherine Clerc
- Laboratory for Functional and Metabolic Imaging (LIFMET); Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET); Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Department of Radiology; University de Lausanne; Lausanne Switzerland
- Department of Radiology; University de Geneva; Geneva Switzerland
| | - Gregor Rainer
- Department of Medicine, Visual Cognition Laboratory; University of Fribourg; Fribourg Switzerland
| | - João M. N. Duarte
- Laboratory for Functional and Metabolic Imaging (LIFMET); Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Department of Experimental Medical Science, Faculty of Medicine; Lund University; Lund Sweden
- Wallenberg Centre for Molecular Medicine, Lund University; Lund Sweden
| |
Collapse
|
14
|
Scarapicchia V, Brown C, Mayo C, Gawryluk JR. Functional Magnetic Resonance Imaging and Functional Near-Infrared Spectroscopy: Insights from Combined Recording Studies. Front Hum Neurosci 2017; 11:419. [PMID: 28867998 PMCID: PMC5563305 DOI: 10.3389/fnhum.2017.00419] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 08/04/2017] [Indexed: 11/26/2022] Open
Abstract
Although blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a widely available, non-invasive technique that offers excellent spatial resolution, it remains limited by practical constraints imposed by the scanner environment. More recently, functional near infrared spectroscopy (fNIRS) has emerged as an alternative hemodynamic-based approach that possesses a number of strengths where fMRI is limited, most notably in portability and higher tolerance for motion. To date, fNIRS has shown promise in its ability to shed light on the functioning of the human brain in populations and contexts previously inaccessible to fMRI. Notable contributions include infant neuroimaging studies and studies examining full-body behaviors, such as exercise. However, much like fMRI, fNIRS has technical constraints that have limited its application to clinical settings, including a lower spatial resolution and limited depth of recording. Thus, by combining fMRI and fNIRS in such a way that the two methods complement each other, a multimodal imaging approach may allow for more complex research paradigms than is feasible with either technique alone. In light of these issues, the purpose of the current review is to: (1) provide an overview of fMRI and fNIRS and their associated strengths and limitations; (2) review existing combined fMRI-fNIRS recording studies; and (3) discuss how their combined use in future research practices may aid in advancing modern investigations of human brain function.
Collapse
Affiliation(s)
| | - Cassandra Brown
- Department of Psychology, University of VictoriaVictoria, BC, Canada
| | - Chantel Mayo
- Department of Psychology, University of VictoriaVictoria, BC, Canada
| | - Jodie R Gawryluk
- Department of Psychology, University of VictoriaVictoria, BC, Canada
| |
Collapse
|
15
|
Mullinger KJ, Cherukara MT, Buxton RB, Francis ST, Mayhew SD. Post-stimulus fMRI and EEG responses: Evidence for a neuronal origin hypothesised to be inhibitory. Neuroimage 2017; 157:388-399. [PMID: 28610902 DOI: 10.1016/j.neuroimage.2017.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 12/26/2022] Open
Abstract
Post-stimulus undershoots, negative responses following cessation of stimulation, are widely observed in functional magnetic resonance (fMRI) blood oxygenation level dependent (BOLD) data. However, the debate surrounding whether the origin of this response phase is neuronal or vascular, and whether it provides functionally relevant information, that is additional to what is contained in the primary response, means that undershoots are widely overlooked. We simultaneously recorded electroencephalography (EEG), BOLD and cerebral blood-flow (CBF) [obtained from arterial spin labelled (ASL) fMRI] fMRI responses to hemifield checkerboard stimulation to test the potential neural origin of the fMRI post-stimulus undershoot. The post-stimulus BOLD and CBF signal amplitudes in both contralateral and ipsilateral visual cortex depended on the post-stimulus power of the occipital 8-13Hz (alpha) EEG neuronal activity, such that trials with highest EEG power showed largest fMRI undershoots in contralateral visual cortex. This correlation in post-stimulus EEG-fMRI responses was not predicted by the primary response amplitude. In the contralateral visual cortex we observed a decrease in both cerebral rate of oxygen metabolism (CMRO2) and CBF during the post-stimulus phase. In addition, the coupling ratio (n) between CMRO2 and CBF was significantly lower during the positive contralateral primary response phase compared with the post-stimulus phase and we propose that this reflects an altered balance of excitatory and inhibitory neuronal activity. Together our data provide strong evidence that the post-stimulus phase of the BOLD response has a neural origin which reflects, at least partially, an uncoupling of the neuronal responses driving the primary and post-stimulus responses, explaining the uncoupling of the signals measured in the two response phases. We suggest our results are consistent with inhibitory processes driving the post-stimulus EEG and fMRI responses. We therefore propose that new methods are required to model the post-stimulus and primary responses independently, enabling separate investigation of response phases in cognitive function and neurological disease.
Collapse
Affiliation(s)
- K J Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK.
| | - M T Cherukara
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - R B Buxton
- Department of Radiology, Center for Functional MRI, University of California, San Diego, La Jolla, CA, USA
| | - S T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - S D Mayhew
- Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
16
|
Gonzalez-Castillo J, Chen G, Nichols TE, Bandettini PA. Variance decomposition for single-subject task-based fMRI activity estimates across many sessions. Neuroimage 2016; 154:206-218. [PMID: 27773827 DOI: 10.1016/j.neuroimage.2016.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/07/2016] [Accepted: 10/14/2016] [Indexed: 12/29/2022] Open
Abstract
Here we report an exploratory within-subject variance decomposition analysis conducted on a task-based fMRI dataset with an unusually large number of repeated measures (i.e., 500 trials in each of three different subjects) distributed across 100 functional scans and 9 to 10 different sessions. Within-subject variance was segregated into four primary components: variance across-sessions, variance across-runs within a session, variance across-blocks within a run, and residual measurement/modeling error. Our results reveal inhomogeneous and distinct spatial distributions of these variance components across significantly active voxels in grey matter. Measurement error is dominant across the whole brain. Detailed evaluation of the remaining three components shows that across-session variance is the second largest contributor to total variance in occipital cortex, while across-runs variance is the second dominant source for the rest of the brain. Network-specific analysis revealed that across-block variance contributes more to total variance in higher-order cognitive networks than in somatosensory cortex. Moreover, in some higher-order cognitive networks across-block variance can exceed across-session variance. These results help us better understand the temporal (i.e., across blocks, runs and sessions) and spatial distributions (i.e., across different networks) of within-subject natural variability in estimates of task responses in fMRI. They also suggest that different brain regions will show different natural levels of test-retest reliability even in the absence of residual artifacts and sufficiently high contrast-to-noise measurements. Further confirmation with a larger sample of subjects and other tasks is necessary to ensure generality of these results.
Collapse
Affiliation(s)
- Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, United States
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, National Institutes of Health, Bethesda, MD, United States
| | - Thomas E Nichols
- Department of Statistics & WMG, University of Warwick, Coventry, UK
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, United States; Functional MRI Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Si J, Zhang X, Li Y, Zhang Y, Zuo N, Jiang T. Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:091315. [PMID: 27494269 DOI: 10.1117/1.jbo.21.9.091315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Brain functional activity involves complex cellular, metabolic, and vascular chain reactions, making it difficult to comprehend. Electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) have been combined into a multimodal neuroimaging method that captures both electrophysiological and hemodynamic information to explore the spatiotemporal characteristics of brain activity. Because of the significance of visually evoked functional activity in clinical applications, numerous studies have explored the amplitude of the visual evoked potential (VEP) to clarify its relationship with the hemodynamic response. However, relatively few studies have investigated the influence of latency, which has been frequently used to diagnose visual diseases, on the hemodynamic response. Moreover, because the latency and the amplitude of VEPs have different roles in coding visual information, investigating the relationship between latency and the hemodynamic response should be helpful. In this study, checkerboard reversal tasks with graded contrasts were used to evoke visual functional activity. Both EEG and fNIRS were employed to investigate the relationship between neuronal electrophysiological activities and the hemodynamic responses. The VEP amplitudes were linearly correlated with the hemodynamic response, but the VEP latency showed a negative linear correlation with the hemodynamic response.
Collapse
Affiliation(s)
- Juanning Si
- Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing 100190, ChinabChinese Academy of Sciences, National Laboratory of Pattern Recognition, Institute of Automation, Beijing 100190, China
| | - Xin Zhang
- Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing 100190, ChinabChinese Academy of Sciences, National Laboratory of Pattern Recognition, Institute of Automation, Beijing 100190, China
| | - Yuejun Li
- University of Electronic Science and Technology of China, Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, Chengdu 625014, China
| | - Yujin Zhang
- Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing 100190, ChinabChinese Academy of Sciences, National Laboratory of Pattern Recognition, Institute of Automation, Beijing 100190, China
| | - Nianming Zuo
- Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing 100190, ChinabChinese Academy of Sciences, National Laboratory of Pattern Recognition, Institute of Automation, Beijing 100190, China
| | - Tianzi Jiang
- Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing 100190, ChinabChinese Academy of Sciences, National Laboratory of Pattern Recognition, Institute of Automation, Beijing 100190, ChinacUniversity of Electronic Science and Te
| |
Collapse
|
18
|
Taheri S, Xun Z, See RE, Joseph JE, Reichel CM. Cocaine and methamphetamine induce opposing changes in BOLD signal response in rats. Brain Res 2016; 1642:497-504. [PMID: 27103569 PMCID: PMC4899179 DOI: 10.1016/j.brainres.2016.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/07/2016] [Accepted: 04/16/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neuroimaging studies in psychostimulant addicts have reported functional neural activity changes in brain regions involved in relapse. However, the difference between the effects of the psychostimulants methamphetamine and cocaine on neuronal activity in a similar setting not been clarified. Since studies in humans are limited by the inability to study the initial impact of psychostimulant drugs, we addressed this issue in a rat model. OBJECTIVE Here, we report methamphetamine and cocaine-induced blood-oxygen-level dependent (BOLD) signal change using functional magnetic resonance imaging (fMRI) in rats receiving drug for the first time during the imaging session. METHODS Twenty-three male Long Evans rats underwent fMRI imaging and received an intravenous infusion of methamphetamine, cocaine, or saline. Anatomical and pharmacological fMRI (pfMRI) were performed on a 7T BioSpec dedicated research MR scanner under isoflurane gas (1.5-2%). After collecting baseline data for 10min, rats received drug over the next 10min for a total 40min scan time. Data were then preprocessed and statistically analyzed in anatomically defined regions of interest (ROIs) that have been implicated in persistent drug seeking and relapse. RESULTS Methamphetamine during the imaging session resulted in a sustained negative BOLD signal change in key regions of the relapse circuit, except for the prefrontal cortex. In contrast, cocaine evoked a positive or unchanged BOLD signal in these same regions. In all of the investigated ROIs, there were no changes in BOLD signal following saline. CONCLUSION Acute methamphetamine and cocaine have distinct patterns of functional activity as measured by pfMRI.
Collapse
Affiliation(s)
- Saeid Taheri
- Department of Pharmaceutical Sciences, University of South Florida, Tampa FL 33612
| | - Zhu Xun
- Department of Neurosciences, Medical University of South Carolina, Charleston SC 29425
| | - Ronald E See
- Department of Neurosciences, Medical University of South Carolina, Charleston SC 29425
| | - Jane E Joseph
- Department of Neurosciences, Medical University of South Carolina, Charleston SC 29425
| | - Carmela M Reichel
- Department of Neurosciences, Medical University of South Carolina, Charleston SC 29425
| |
Collapse
|
19
|
Whittaker JR, Driver ID, Bright MG, Murphy K. The absolute CBF response to activation is preserved during elevated perfusion: Implications for neurovascular coupling measures. Neuroimage 2016; 125:198-207. [PMID: 26477657 PMCID: PMC4692513 DOI: 10.1016/j.neuroimage.2015.10.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) techniques in which the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) response to a neural stimulus are measured, can be used to estimate the fractional increase in the cerebral metabolic rate of oxygen consumption (CMRO2) that accompanies evoked neural activity. A measure of neurovascular coupling is obtained from the ratio of fractional CBF and CMRO2 responses, defined as n, with the implicit assumption that relative rather than absolute changes in CBF and CMRO2 adequately characterise the flow-metabolism response to neural activity. The coupling parameter n is important in terms of its effect on the BOLD response, and as potential insight into the flow-metabolism relationship in both normal and pathological brain function. In 10 healthy human subjects, BOLD and CBF responses were measured to test the effect of baseline perfusion (modulated by a hypercapnia challenge) on the coupling parameter n during graded visual stimulation. A dual-echo pulsed arterial spin labelling (PASL) sequence provided absolute quantification of CBF in baseline and active states as well as relative BOLD signal changes, which were used to estimate CMRO2 responses to the graded visual stimulus. The absolute CBF response to the visual stimuli were constant across different baseline CBF levels, meaning the fractional CBF responses were reduced at the hyperperfused baseline state. For the graded visual stimuli, values of n were significantly reduced during hypercapnia induced hyperperfusion. Assuming the evoked neural responses to the visual stimuli are the same for both baseline CBF states, this result has implications for fMRI studies that aim to measure neurovascular coupling using relative changes in CBF. The coupling parameter n is sensitive to baseline CBF, which would confound its interpretation in fMRI studies where there may be significant differences in baseline perfusion between groups. The absolute change in CBF, as opposed to the change relative to baseline, may more closely match the underlying increase in neural activity in response to a stimulus.
Collapse
Affiliation(s)
- Joseph R Whittaker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF10 3AT Cardiff, UK
| | - Ian D Driver
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF10 3AT Cardiff, UK
| | - Molly G Bright
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF10 3AT Cardiff, UK; Sir Peter Mansfield Imaging Centre, Clinical Neurology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF10 3AT Cardiff, UK.
| |
Collapse
|
20
|
Simon AB, Buxton RB. Understanding the dynamic relationship between cerebral blood flow and the BOLD signal: Implications for quantitative functional MRI. Neuroimage 2015; 116:158-67. [PMID: 25862267 DOI: 10.1016/j.neuroimage.2015.03.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 10/23/2022] Open
Abstract
Calibrated BOLD imaging, in which traditional measurements of the BOLD signal are combined with measurements of cerebral blood flow (CBF) within a BOLD biophysical model to estimate changes in oxygen metabolism (CMRO2), has been a valuable tool for untangling the physiological processes associated with neural stimulus-induced BOLD activation. However, to date this technique has largely been applied to the study of essentially steady-state physiological changes (baseline to activation) associated with block-design stimuli, and it is unclear whether this approach may be directly extended to the study of more dynamic, naturalistic experimental designs. In this study we tested an assumption underlying this technique whose validity is critical to the application of calibrated BOLD to the study of more dynamic stimuli, that information about fluctuations in venous cerebral blood volume (CBVv) can be captured indirectly by measuring fluctuations in CBF, making the independent measurement of CBVv unnecessary. To accomplish this, simultaneous arterial spin labeling and BOLD imaging were used to measure the CBF and BOLD responses to flickering checkerboards with contrasts that oscillated continuously with frequencies of ~0.02-0.16Hz. The measurements were then fit to a dynamic physiological model of the BOLD response in order to explore the range of consistent CMRO2 and CBVv responses. We found that the BOLD and CBF responses were most consistent with relatively tight dynamic coupling between CBF and CMRO2 and a CBVv response that was an order of magnitude slower than either CBF or CMRO2. This finding suggests that the assumption of tight flow-volume coupling may not be strictly valid, complicating the extension of calibrated BOLD to more naturalistic experimental designs.
Collapse
Affiliation(s)
- Aaron B Simon
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard B Buxton
- Department of Radiology and Center for Functional Magnetic Resonance Imaging, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Mark CI, Mazerolle EL, Chen JJ. Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function. J Magn Reson Imaging 2015; 42:231-46. [DOI: 10.1002/jmri.24786] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/02/2014] [Indexed: 01/08/2023] Open
Affiliation(s)
- Clarisse I. Mark
- Centre for Neuroscience Studies; Queen's University; Kingston ON Canada
| | | | - J. Jean Chen
- Rotman Research Institute, Baycrest, University of Toronto; Toronto ON Canada
| |
Collapse
|
22
|
Functional mapping of the human visual cortex with intravoxel incoherent motion MRI. PLoS One 2015; 10:e0117706. [PMID: 25647423 PMCID: PMC4315413 DOI: 10.1371/journal.pone.0117706] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 12/30/2014] [Indexed: 01/01/2023] Open
Abstract
Functional imaging with intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) is demonstrated. Images were acquired at 3 Tesla using a standard Stejskal-Tanner diffusion-weighted echo-planar imaging sequence with multiple b-values. Cerebro-spinal fluid signal, which is highly incoherent, was suppressed with an inversion recovery preparation pulse. IVIM microvascular perfusion parameters were calculated according to a two-compartment (vascular and non-vascular) diffusion model. The results obtained in 8 healthy human volunteers during visual stimulation are presented. The IVIM blood flow related parameter fD* increased 170% during stimulation in the visual cortex, and 70% in the underlying white matter.
Collapse
|
23
|
Barrett MJ, Suresh V. Improving estimates of the cerebral metabolic rate of oxygen from optical imaging data. Neuroimage 2015; 106:101-10. [DOI: 10.1016/j.neuroimage.2014.11.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/27/2014] [Accepted: 11/18/2014] [Indexed: 01/26/2023] Open
|
24
|
The coupling of cerebral blood flow and oxygen metabolism with brain activation is similar for simple and complex stimuli in human primary visual cortex. Neuroimage 2014; 104:156-62. [PMID: 25312771 DOI: 10.1016/j.neuroimage.2014.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/18/2014] [Accepted: 10/01/2014] [Indexed: 11/22/2022] Open
Abstract
Quantitative functional MRI (fMRI) experiments to measure blood flow and oxygen metabolism coupling in the brain typically rely on simple repetitive stimuli. Here we compared such stimuli with a more naturalistic stimulus. Previous work on the primary visual cortex showed that direct attentional modulation evokes a blood flow (CBF) response with a relatively large oxygen metabolism (CMRO2) response in comparison to an unattended stimulus, which evokes a much smaller metabolic response relative to the flow response. We hypothesized that a similar effect would be associated with a more engaging stimulus, and tested this by measuring the primary human visual cortex response to two contrast levels of a radial flickering checkerboard in comparison to the response to free viewing of brief movie clips. We did not find a significant difference in the blood flow-metabolism coupling (n=%ΔCBF/%ΔCMRO2) between the movie stimulus and the flickering checkerboards employing two different analysis methods: a standard analysis using the Davis model and a new analysis using a heuristic model dependent only on measured quantities. This finding suggests that in the primary visual cortex a naturalistic stimulus (in comparison to a simple repetitive stimulus) is either not sufficient to provoke a change in flow-metabolism coupling by attentional modulation as hypothesized, that the experimental design disrupted the cognitive processes underlying the response to a more natural stimulus, or that the technique used is not sensitive enough to detect a small difference.
Collapse
|
25
|
Hara Y, Gardner JL. Encoding of graded changes in spatial specificity of prior cues in human visual cortex. J Neurophysiol 2014; 112:2834-49. [PMID: 25185808 DOI: 10.1152/jn.00729.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prior information about the relevance of spatial locations can vary in specificity; a single location, a subset of locations, or all locations may be of potential importance. Using a contrast-discrimination task with four possible targets, we asked whether performance benefits are graded with the spatial specificity of a prior cue and whether we could quantitatively account for behavioral performance with cortical activity changes measured by blood oxygenation level-dependent (BOLD) imaging. Thus we changed the prior probability that each location contained the target from 100 to 50 to 25% by cueing in advance 1, 2, or 4 of the possible locations. We found that behavioral performance (discrimination thresholds) improved in a graded fashion with spatial specificity. However, concurrently measured cortical responses from retinotopically defined visual areas were not strictly graded; response magnitude decreased when all 4 locations were cued (25% prior probability) relative to the 100 and 50% prior probability conditions, but no significant difference in response magnitude was found between the 100 and 50% prior probability conditions for either cued or uncued locations. Also, although cueing locations increased responses relative to noncueing, this cue sensitivity was not graded with prior probability. Furthermore, contrast sensitivity of cortical responses, which could improve contrast discrimination performance, was not graded. Instead, an efficient-selection model showed that even if sensory responses do not strictly scale with prior probability, selection of sensory responses by weighting larger responses more can result in graded behavioral performance benefits with increasing spatial specificity of prior information.
Collapse
Affiliation(s)
- Yuko Hara
- Laboratory for Human Systems Neuroscience, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Justin L Gardner
- Laboratory for Human Systems Neuroscience, RIKEN Brain Science Institute, Wako, Saitama, Japan
| |
Collapse
|
26
|
Buxton RB, Griffeth VEM, Simon AB, Moradi F, Shmuel A. Variability of the coupling of blood flow and oxygen metabolism responses in the brain: a problem for interpreting BOLD studies but potentially a new window on the underlying neural activity. Front Neurosci 2014; 8:139. [PMID: 24966808 PMCID: PMC4052822 DOI: 10.3389/fnins.2014.00139] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/19/2014] [Indexed: 12/31/2022] Open
Abstract
Recent studies from our group and others using quantitative fMRI methods have found that variations of the coupling ratio of blood flow (CBF) and oxygen metabolism (CMRO2) responses to a stimulus have a strong effect on the BOLD response. Across a number of studies an empirical pattern is emerging in the way CBF and CMRO2 changes are coupled to neural activation: if the stimulus is modulated to create a stronger response (e.g., increasing stimulus contrast), CBF is modulated more than CMRO2; on the other hand, if the brain state is altered such that the response to the same stimulus is increased (e.g., modulating attention, adaptation, or excitability), CMRO2 is modulated more than CBF. Because CBF and CMRO2 changes conflict in producing BOLD signal changes, this finding has an important implication for conventional BOLD-fMRI studies: the BOLD response exaggerates the effects of stimulus variation but is only weakly sensitive to modulations of the brain state that alter the response to a standard stimulus. A speculative hypothesis is that variability of the coupling ratio of the CBF and CMRO2 responses reflects different proportions of inhibitory and excitatory evoked activity, potentially providing a new window on neural activity in the human brain.
Collapse
Affiliation(s)
- Richard B Buxton
- Department of Radiology, Center for Functional MRI, University of California San Diego, La Jolla, CA, USA
| | - Valerie E M Griffeth
- Department of Radiology, Center for Functional MRI, University of California San Diego, La Jolla, CA, USA
| | - Aaron B Simon
- Department of Radiology, Center for Functional MRI, University of California San Diego, La Jolla, CA, USA
| | - Farshad Moradi
- Department of Radiology, Center for Functional MRI, University of California San Diego, La Jolla, CA, USA
| | - Amir Shmuel
- Departments of Neurology and Neurosurgery, Physiology and Biomedical Engineering, Montreal Neurological Institute Brain Imaging Centre, McGill University, Montreal QC, Canada
| |
Collapse
|
27
|
A New Functional MRI Approach for Investigating Modulations of Brain Oxygen Metabolism. PLoS One 2013; 8:e68122. [PMID: 23826367 PMCID: PMC3694916 DOI: 10.1371/journal.pone.0068122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 05/29/2013] [Indexed: 11/29/2022] Open
Abstract
Functional MRI (fMRI) using the blood oxygenation level dependent (BOLD) signal is a common technique in the study of brain function. The BOLD signal is sensitive to the complex interaction of physiological changes including cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral oxygen metabolism (CMRO2). A primary goal of quantitative fMRI methods is to combine BOLD imaging with other measurements (such as CBF measured with arterial spin labeling) to derive information about CMRO2. This requires an accurate mathematical model to relate the BOLD signal to the physiological and hemodynamic changes; the most commonly used of these is the Davis model. Here, we propose a new nonlinear model that is straightforward and shows heuristic value in clearly relating the BOLD signal to blood flow, blood volume and the blood flow-oxygen metabolism coupling ratio. The model was tested for accuracy against a more detailed model adapted for magnetic fields of 1.5, 3 and 7T. The mathematical form of the heuristic model suggests a new ratio method for comparing combined BOLD and CBF data from two different stimulus responses to determine whether CBF and CMRO2 coupling differs. The method does not require a calibration experiment or knowledge of parameter values as long as the exponential parameter describing the CBF-CBV relationship remains constant between stimuli. The method was found to work well for 1.5 and 3T but is prone to systematic error at 7T. If more specific information regarding changes in CMRO2 is required, then with accuracy similar to that of the Davis model, the heuristic model can be applied to calibrated BOLD data at 1.5T, 3T and 7T. Both models work well over a reasonable range of blood flow and oxygen metabolism changes but are less accurate when applied to a simulated caffeine experiment in which CBF decreases and CMRO2 increases.
Collapse
|
28
|
Moradi F, Buxton RB. Adaptation of cerebral oxygen metabolism and blood flow and modulation of neurovascular coupling with prolonged stimulation in human visual cortex. Neuroimage 2013; 82:182-9. [PMID: 23732885 DOI: 10.1016/j.neuroimage.2013.05.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/11/2013] [Accepted: 05/27/2013] [Indexed: 11/27/2022] Open
Abstract
Prolonged visual stimulation results in neurophysiologic and hemodynamic adaptation. However, the hemodynamic adaptation appears to be small compared to neural adaptation. It is not clear how the cerebral metabolic rate of oxygen (CMRO2) is affected by adaptation. We measured cerebral blood flow (CBF) and CMRO2 change in responses to peripheral stimulation either continuously, or intermittently (on/off cycles). A linear system's response to the continuous input should be equal to the sum of the original response to the intermittent input and a version of that response shifted by half a cycle. The CMRO2 response showed a large non-linearity consistent with adaptation, the CBF response adapted to a lesser degree, and the blood oxygenation level dependent (BOLD) response was nearly linear. The metabolic response was coupled with a larger flow in the continuous condition than in the intermittent condition. Our results suggest that contrast adaptation improves energy economy of visual processing. However BOLD modulations may not accurately represent the underlying metabolic nonlinearity due to modulation of the coupling of blood flow and oxygen metabolism changes.
Collapse
Affiliation(s)
- Farshad Moradi
- Department of Radiology, University of California, San Diego, CA 92103-8756, USA.
| | | |
Collapse
|
29
|
Leontiev O, Buracas GT, Liang C, Ances BM, Perthen JE, Shmuel A, Buxton RB. Coupling of cerebral blood flow and oxygen metabolism is conserved for chromatic and luminance stimuli in human visual cortex. Neuroimage 2012; 68:221-8. [PMID: 23238435 DOI: 10.1016/j.neuroimage.2012.11.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 11/19/2022] Open
Abstract
The ratio of the changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation is a critical determinant of the magnitude of the blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI). Cytochrome oxidase (CO), a key component of oxidative metabolism in the mitochondria, is non-uniformly distributed in visual area V1 in distinct blob and interblob regions, suggesting significant spatial variation in the capacity for oxygen metabolism. The goal of this study was to test whether CBF/CMRO(2) coupling differed when these subpopulations of neurons were preferentially stimulated, using chromatic and luminance stimuli to preferentially stimulate either the blob or interblob regions. A dual-echo spiral arterial spin labeling (ASL) technique was used to measure CBF and BOLD responses simultaneously in 7 healthy human subjects. When the stimulus contrast levels were adjusted to evoke similar CBF responses (mean 65.4% ± 19.0% and 64.6% ± 19.9%, respectively for chromatic and luminance contrast), the BOLD responses were remarkably similar (1.57% ± 0.39% and 1.59% ± 0.35%) for both types of stimuli. We conclude that CBF-CMRO(2) coupling is conserved for the chromatic and luminance stimuli used, suggesting a consistent coupling for blob and inter-blob neuronal populations despite the difference in CO concentration.
Collapse
Affiliation(s)
- Oleg Leontiev
- Department of Radiology and Center for Functional MRI, University of California, San Diego, CA 92093-0677, USA
| | | | | | | | | | | | | |
Collapse
|