1
|
Schilling KG, Combes AJE, Ramadass K, Rheault F, Sweeney G, Prock L, Sriram S, Cohen-Adad J, Gore JC, Landman BA, Smith SA, O'Grady KP. Influence of preprocessing, distortion correction and cardiac triggering on the quality of diffusion MR images of spinal cord. Magn Reson Imaging 2024; 108:11-21. [PMID: 38309376 PMCID: PMC11218893 DOI: 10.1016/j.mri.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 02/05/2024]
Abstract
Diffusion MRI of the spinal cord (SC) is susceptible to geometric distortion caused by field inhomogeneities, and prone to misalignment across time series and signal dropout caused by biological motion. Several modifications of image acquisition and image processing techniques have been introduced to overcome these artifacts, but their specific benefits are largely unproven and warrant further investigations. We aim to evaluate two specific aspects of image acquisition and processing that address image quality in diffusion studies of the spinal cord: susceptibility corrections to reduce geometric distortions, and cardiac triggering to minimize motion artifacts. First, we evaluate 4 distortion preprocessing strategies on 7 datasets of the cervical and lumbar SC and find that while distortion correction techniques increase geometric similarity to structural images, they are largely driven by the high-contrast cerebrospinal fluid, and do not consistently improve the geometry within the cord nor improve white-to-gray matter contrast. We recommend at a minimum to perform bulk-motion correction in preprocessing and posit that improvements/adaptations are needed for spinal cord distortion preprocessing algorithms, which are currently optimized and designed for brain imaging. Second, we design experiments to evaluate the impact of removing cardiac triggering. We show that when triggering is foregone, images are qualitatively similar to triggered sequences, do not have increased prevalence of artifacts, and result in similar diffusion tensor indices with similar reproducibility to triggered acquisitions. When triggering is removed, much shorter acquisitions are possible, which are also qualitatively and quantitatively similar to triggered sequences. We suggest that removing cardiac triggering for cervical SC diffusion can be a reasonable option to save time with minimal sacrifice to image quality.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Anna J E Combes
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karthik Ramadass
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Francois Rheault
- Medical Imaging and Neuroinformatic (MINi) Lab, Department of Computer Science, University of Sherbrooke, Canada
| | - Grace Sweeney
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Logan Prock
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Subramaniam Sriram
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, QC, Canada; Mila - Quebec AI Institute, Montreal, QC, Canada; Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - John C Gore
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kristin P O'Grady
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Snoussi H, Cohen‐Adad J, Combès B, Bannier É, Tounekti S, Kerbrat A, Barillot C, Caruyer E. Effectiveness of regional diffusion MRI measures in distinguishing multiple sclerosis abnormalities within the cervical spinal cord. Brain Behav 2023; 13:e3159. [PMID: 37775975 PMCID: PMC10636413 DOI: 10.1002/brb3.3159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 10/01/2023] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system. Although conventional magnetic resonance imaging (MRI) is widely used for MS diagnosis and clinical follow-up, quantitative MRI has the potential to provide valuable intrinsic values of tissue properties that can enhance accuracy. In this study, we investigate the efficacy of diffusion MRI in distinguishing MS lesions within the cervical spinal cord, using a combination of metrics extracted from diffusion tensor imaging and Ball-and-Stick models. METHODS We analyzed spinal cord data acquired from multiple hospitals and extracted average diffusion MRI metrics per vertebral level using a collection of image processing methods and an atlas-based approach. We then performed a statistical analysis to evaluate the feasibility of these metrics for detecting lesions, exploring the usefulness of combining different metrics to improve accuracy. RESULTS Our study demonstrates the sensitivity of each metric to underlying microstructure changes in MS patients. We show that selecting a specific subset of metrics, which provide complementary information, significantly improves the prediction score of lesion presence in the cervical spinal cord. Furthermore, the Ball-and-Stick model has the potential to provide novel information about the microstructure of damaged tissue. CONCLUSION Our results suggest that diffusion measures, particularly combined measures, are sensitive in discriminating abnormal from healthy cervical vertebral levels in patients. This information could aid in improving MS diagnosis and clinical follow-up. Our study highlights the potential of the Ball-and-Stick model in providing additional insights into the microstructure of the damaged tissue.
Collapse
Affiliation(s)
- Haykel Snoussi
- Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Empenn ERL U 1228, Rennes, FranceUniversité de Rennes, CNRS, Inria, Inserm, IRISA UMR 6074RennesFrance
- Department of RadiologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Julien Cohen‐Adad
- NeuroPoly LabInstitute of Biomedical Engineering, Polytechnique MontrealMontrealQuebecCanada
- Functional Neuroimaging UnitCRIUGM, Université de MontréalMontréalQuebecCanada
- Mila – Quebec AI InstituteMontréalQuebecCanada
| | - Benoît Combès
- Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Empenn ERL U 1228, Rennes, FranceUniversité de Rennes, CNRS, Inria, Inserm, IRISA UMR 6074RennesFrance
| | - Élise Bannier
- Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Empenn ERL U 1228, Rennes, FranceUniversité de Rennes, CNRS, Inria, Inserm, IRISA UMR 6074RennesFrance
- Department of RadiologyRennes University HospitalRennesFrance
| | - Slimane Tounekti
- Department of RadiologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Anne Kerbrat
- Departement of NeurologyRennes University HospitalRennesFrance
| | - Christian Barillot
- Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Empenn ERL U 1228, Rennes, FranceUniversité de Rennes, CNRS, Inria, Inserm, IRISA UMR 6074RennesFrance
| | - Emmanuel Caruyer
- Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Empenn ERL U 1228, Rennes, FranceUniversité de Rennes, CNRS, Inria, Inserm, IRISA UMR 6074RennesFrance
| |
Collapse
|
3
|
Ahmed RU, Medina‐Aguinaga D, Adams S, Knibbe CA, Morgan M, Gibson D, Kim J, Sharma M, Chopra M, Davison S, Sherwood LC, Negahdar M, Bert R, Ugiliweneza B, Hubscher C, Budde MD, Xu J, Boakye M. Predictive values of spinal cord diffusion magnetic resonance imaging to characterize outcomes after contusion injury. Ann Clin Transl Neurol 2023; 10:1647-1661. [PMID: 37501362 PMCID: PMC10502634 DOI: 10.1002/acn3.51855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVES To explore filtered diffusion-weighted imaging (fDWI), in comparison with conventional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI), as a predictor for long-term locomotor and urodynamic (UD) outcomes in Yucatan minipig model of spinal cord injury (SCI). Additionally, electrical conductivity of neural tissue using D-waves above and below the injury was measured to assess correlations between fDWI and D-waves data. METHODS Eleven minipigs with contusion SCI at T8-T10 level underwent MRI at 3T 4 h. post-SCI. Parameters extracted from region of interest analysis included Daxial from fDWI at injury site, fractional anisotropy and radial diffusivity from DTI above the injury site along with measures of edema length and cord width at injury site from T2 -weighted images. Locomotor recovery was assessed pre- and weekly post-SCI through porcine thoracic injury behavior scale (PTIBS) and UD were performed pre- and at 12 weeks of SCI. D-waves latency and amplitude differences were recorded before and immediately after SCI. RESULTS Two groups of pigs were found based on the PTIBS at week 12 (p < 0.0001) post-SCI and were labeled "poor" and "good" recovery. D-waves amplitude decreased below injury and increased above injury. UD outcomes pre/post SCI changed significantly. Conventional MRI metrics from T2 -weighted images were significantly correlated with diffusion MRI metrics. Daxial at injury epicenter was diminished by over 50% shortly after SCI, and it differentiated between good and poor locomotor recovery and UD outcomes. INTERPRETATION Similar to small animal studies, fDWI from acute imaging after SCI is a promising predictor for functional outcomes in large animals.
Collapse
Affiliation(s)
- Rakib Uddin Ahmed
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Daniel Medina‐Aguinaga
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Shawns Adams
- Department of NeurosurgeryDuke UniversityRaleighNorth CarolinaUSA
| | - Chase A. Knibbe
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Monique Morgan
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Destiny Gibson
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Joo‐won Kim
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of PsychiatryBaylor College of MedicineHoustonTexasUSA
| | - Mayur Sharma
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Manpreet Chopra
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Steven Davison
- Comparative Medicine Research UnitUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Leslie C. Sherwood
- Comparative Medicine Research UnitUniversity of LouisvilleLouisvilleKentuckyUSA
| | - M.J. Negahdar
- Department of RadiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Robert Bert
- Department of RadiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Charles Hubscher
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Matthew D. Budde
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Clement J. Zablocki Veterans Affairs Medical CenterMilwaukeeWisconsinUSA
| | - Junqian Xu
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of PsychiatryBaylor College of MedicineHoustonTexasUSA
| | - Maxwell Boakye
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| |
Collapse
|
4
|
Koch KM, Nencka AS, Klein A, Wang M, Kurpad S, Vedantam A, Budde M. Diffusion-weighted MRI of the spinal cord in cervical spondylotic myelopathy after instrumented fusion. Front Neurol 2023; 14:1172833. [PMID: 37273696 PMCID: PMC10236479 DOI: 10.3389/fneur.2023.1172833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction This study investigated tissue diffusion properties within the spinal cord of individuals treated for cervical spondylotic myelopathy (CSM) using post-decompression stabilization hardware. While previous research has indicated the potential of diffusion-weighted MRI (DW-MRI) markers of CSM, the metallic implants often used to stabilize the decompressed spine hamper conventional DW-MRI. Methods Utilizing recent developments in DW-MRI metal-artifact suppression technologies, imaging data was acquired from 38 CSM study participants who had undergone instrumented fusion, as well as asymptomatic (non-instrumented) control participants. Apparent diffusion coefficients were determined in axial slice sections and split into four categories: a) instrumented levels, b) non-instrumented CSM levels, c) adjacent-segment (to instrumentation) CSM levels, and d) non-instrumented control levels. Multi-linear regression models accounting for age, sex, and body mass index were used to investigate ADC measures within each category. Furthermore, the cord diffusivity within CSM subjects was correlated with symptom scores and the duration since fusion procedures. Results ADC measures of the spinal cord in CSM subjects were globally reduced relative to control subjects (p = 0.005). In addition, instrumented levels within the CSM subjects showed reduced diffusivity relative to controls (p = 0.003), while ADC within non-instrumented CSM levels did not statistically deviate from control levels (p = 0.107). Discussion Multi-spectral DW-MRI technology can be effectively employed to evaluate cord diffusivity near fusion hardware in subjects who have undergone surgery for CSM. Leveraging this advanced technology, this study had identified significant reductions in cord diffusivity, relative to control subjects, in CSM patients treated with conventional metallic fusion instrumentation.
Collapse
Affiliation(s)
- Kevin M. Koch
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Andrew S. Nencka
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Andrew Klein
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marjorie Wang
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Shekar Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aditya Vedantam
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
Zhang JK, Javeed S, Greenberg JK, Dibble CF, Song SK, Ray WZ. Diffusion Basis Spectrum Imaging Identifies Clinically Relevant Disease Phenotypes of Cervical Spondylotic Myelopathy. Clin Spine Surg 2023; 36:134-142. [PMID: 36959182 PMCID: PMC10042585 DOI: 10.1097/bsd.0000000000001451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/29/2023] [Indexed: 03/25/2023]
Abstract
STUDY DESIGN Prospective cohort study. OBJECTIVE Apply a machine learning clustering algorithm to baseline imaging data to identify clinically relevant cervical spondylotic myelopathy (CSM) patient phenotypes. SUMMARY OF BACKGROUND DATA A major shortcoming in improving care for CSM patients is the lack of robust quantitative imaging tools to guide surgical decision-making. Advanced diffusion-weighted magnetic resonance imaging (MRI) techniques, such as diffusion basis spectrum imaging (DBSI), may help address this limitation by providing detailed evaluations of white matter injury in CSM. METHODS Fifty CSM patients underwent comprehensive clinical assessments and diffusion-weighted MRI, followed by DBSI modeling. DBSI metrics included fractional anisotropy, axial and radial diffusivity, fiber fraction, extra-axonal fraction, restricted fraction, and nonrestricted fraction. Neurofunctional status was assessed by the modified Japanese Orthopedic Association, myelopathic disability index, and disabilities of the arm, shoulder, and hand. Quality-of-life was measured by the 36-Item Short Form Survey physical component summary and mental component summary. The neck disability index was used to measure self-reported neck pain. K-means clustering was applied to baseline DBSI measures to identify 3 clinically relevant CSM disease phenotypes. Baseline demographic, clinical, radiographic, and patient-reported outcome measures were compared among clusters using one-way analysis of variance (ANOVA). RESULTS Twenty-three (55%) mild, 9 (21%) moderate, and 10 (24%) severe myelopathy patients were enrolled. Eight patients were excluded due to MRI data of insufficient quality. Of the remaining 42 patients, 3 groups were generated by k-means clustering. When compared with clusters 1 and 2, cluster 3 performed significantly worse on the modified Japanese Orthopedic Association and all patient-reported outcome measures (P<0.001), except the 36-Item Short Form Survey mental component summary (P>0.05). Cluster 3 also possessed the highest proportion of non-Caucasian patients (43%, P=0.04), the worst hand dynamometer measurements (P<0.05), and significantly higher intra-axonal axial diffusivity and extra-axonal fraction values (P<0.001). CONCLUSIONS Using baseline imaging data, we delineated a clinically meaningful CSM disease phenotype, characterized by worse neurofunctional status, quality-of-life, and pain, and more severe imaging markers of vasogenic edema. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Justin K. Zhang
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Saad Javeed
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Jacob K. Greenberg
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Christopher F. Dibble
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Sheng-Kwei Song
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Wilson Z. Ray
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| |
Collapse
|
6
|
Zhang JK, Jayasekera D, Javeed S, Greenberg JK, Blum J, Dibble CF, Sun P, Song SK, Ray WZ. Diffusion basis spectrum imaging predicts long-term clinical outcomes following surgery in cervical spondylotic myelopathy. Spine J 2023; 23:504-512. [PMID: 36509379 PMCID: PMC10629376 DOI: 10.1016/j.spinee.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND CONTEXT A major shortcoming in improving care for cervical spondylotic myelopathy (CSM) patients is the lack of robust quantitative imaging tools to guide surgical decision-making. Diffusion basis spectrum imaging (DBSI), an advanced diffusion-weighted MRI technique, provides objective assessments of white matter tract integrity that may help prognosticate outcomes in patients undergoing surgery for CSM. PURPOSE To examine the ability of DBSI to predict clinically important CSM outcome measures at 2-years follow-up. STUDY DESIGN/SETTING Prospective cohort study. PATIENT SAMPLE Patients undergoing decompressive cervical surgery for CSM. OUTCOME MEASURES Neurofunctional status was assessed by the mJOA, MDI, and DASH. Quality-of-life was measured by the SF-36 PCS and SF-36 MCS. The NDI evaluated self-reported neck pain, and patient satisfaction was assessed by the NASS satisfaction index. METHODS Fifty CSM patients who underwent cervical decompressive surgery were enrolled. Preoperative DBSI metrics assessed white matter tract integrity through fractional anisotropy, fiber fraction, axial diffusivity, and radial diffusivity. To evaluate extra-axonal diffusion, DBSI measures restricted and nonrestricted fractions. Patient-reported outcome measures were evaluated preoperatively and up to 2-years follow-up. Support vector machine classification algorithms were used to predict surgical outcomes at 2-years follow-up. Specifically, three feature sets were built for each of the seven clinical outcome measures (eg, mJOA), including clinical only, DBSI only, and combined feature sets. RESULTS Twenty-seven mild (mJOA 15-17), 12 moderate (12-14) and 11 severe (0-11) CSM patients were enrolled. Twenty-four (60%) patients underwent anterior decompressive surgery compared with 16 (40%) posterior approaches. The mean (SD) follow-up was 23.2 (5.6, range 6.1-32.8) months. Feature sets built on combined data (ie, clinical+DBSI metrics) performed significantly better for all outcome measures compared with those only including clinical or DBSI data. When predicting improvement in the mJOA, the clinically driven feature set had an accuracy of 61.9 [61.6, 62.5], compared with 78.6 [78.4, 79.2] in the DBSI feature set, and 90.5 [90.2, 90.8] in the combined feature set. CONCLUSIONS When combined with key clinical covariates, preoperative DBSI metrics predicted improvement after surgical decompression for CSM with high accuracy for multiple outcome measures. These results suggest that DBSI may serve as a noninvasive imaging biomarker for CSM valuable in guiding patient selection and informing preoperative counseling. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Justin K Zhang
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Dinal Jayasekera
- Department of Biomedical Engineering, Washington University McKelvey School of Engineering, Saint Louis, MO 63130, USA
| | - Saad Javeed
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jacob K Greenberg
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jacob Blum
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher F Dibble
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Peng Sun
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wilson Z Ray
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
7
|
Wu X, Wang Y, Chang J, Zhu K, Zhang S, Li Y, Zuo J, Chen S, Jin W, Yan T, Yang K, Xu P, Song P, Wu Y, Qian Y, Shen C, Yu Y, Dong F. Remodeling of the brain correlates with gait instability in cervical spondylotic myelopathy. Front Neurosci 2023; 17:1087945. [PMID: 36816111 PMCID: PMC9932596 DOI: 10.3389/fnins.2023.1087945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Cervical spondylotic myelopathy (CSM) is a common form of non-traumatic spinal cord injury (SCI) and usually leads to remodeling of the brain and spinal cord. In CSM with gait instability, the remodeling of the brain and cervical spinal cord is unclear. We attempted to explore the remodeling of these patients' brains and spinal cords, as well as the relationship between the remodeling of the brain and spinal cord and gait instability. Methods According to the CSM patients' gait, we divided patients into two groups: normal gait patients (nPT) and abnormal gait patients (aPT). Voxel-wise z-score transformation amplitude of low-frequency fluctuations (zALFF) and resting-state functional connectivity (rs-FC) were performed for estimating brain changes. Cross-sectional area (CSA) and fractional anisotropy (FA) of the spinal cord were computed by Spinal cord toolbox. Correlations of these measures and the modified Japanese Orthopedic Association (mJOA) score were analyzed. Results We found that the zALFF of caudate nucleus in aPT was higher than that in healthy controls (HC) and lower than that in nPT. The zALFF of the right postcentral gyrus and paracentral lobule in HC was higher than those of aPT and nPT. Compared with the nPT, the aPT showed increased functional connectivity between the caudate nucleus and left angular gyrus, bilateral precuneus and bilateral posterior cingulate cortex (PCC), which constitute a vital section of the default mode network (DMN). No significantly different FA values or CSA of spinal tracts at the C2 level were observed between the HC, nPT and aPT groups. In CSM, the right paracentral lobule's zALFF was negatively correlated with the FA value of fasciculus gracilis (FCG), and the right caudate zALFF was positively correlated with the FA value of the fasciculus cuneatus (FCC). The results showed that the functional connectivity between the right caudate nucleus and DMN was negatively correlated with the CSA of the lateral corticospinal tract (CST). Discussion The activation of the caudate nucleus and the strengthening functional connectivity between the caudate nucleus and DMN were associated with gait instability in CSM patients. Correlations between spinal cord and brain function might be related to the clinical symptoms in CSM.
Collapse
Affiliation(s)
- Xianyong Wu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianchao Chang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siya Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junxun Zuo
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Senlin Chen
- Department of Orthopedics, Dongcheng Branch of The First Affiliated Hospital of Anhui Medical University (Feidong People’s Hospital), Hefei, China
| | - Weiming Jin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tingfei Yan
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Yang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peng Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peiwen Song
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanyuan Wu
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Yuanyuan Wu,
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fulong Dong
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,*Correspondence: Fulong Dong,
| |
Collapse
|
8
|
Zhang JK, Jayasekera D, Song C, Greenberg JK, Javeed S, Dibble CF, Blum J, Sun P, Song SK, Ray WZ. Diffusion Basis Spectrum Imaging Provides Insights Into Cervical Spondylotic Myelopathy Pathology. Neurosurgery 2023; 92:102-109. [PMID: 36519861 PMCID: PMC10158908 DOI: 10.1227/neu.0000000000002183] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/11/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Diffusion basis spectrum imaging (DBSI) is a noninvasive quantitative imaging modality that may improve understanding of cervical spondylotic myelopathy (CSM) pathology through detailed evaluations of spinal cord microstructural compartments. OBJECTIVE To determine the utility of DBSI as a biomarker of CSM disease severity. METHODS A single-center prospective cohort study enrolled 50 patients with CSM and 20 controls from 2018 to 2020. All patients underwent clinical evaluation and diffusion-weighted MRI, followed by diffusion tensor imaging and DBSI analyses. Diffusion-weighted MRI metrics assessed white matter integrity by fractional anisotropy, axial diffusivity, radial diffusivity, and fiber fraction. In addition, DBSI further evaluates extra-axonal changes by isotropic restricted and nonrestricted fraction. Including an intra-axonal diffusion compartment, DBSI improves estimations of axonal injury through intra-axonal axial diffusivity. Patients were categorized into mild, moderate, and severe CSM using modified Japanese Orthopedic Association classifications. Imaging parameters were compared among patient groups using independent samples t tests and ANOVA. RESULTS Twenty controls, 27 mild (modified Japanese Orthopedic Association 15-17), 12 moderate (12-14), and 11 severe (0-11) patients with CSM were enrolled. Diffusion tensor imaging and DBSI fractional anisotropy, axial diffusivity, and radial diffusivity were significantly different between control and patients with CSM ( P < .05). DBSI fiber fraction, restricted fraction, and nonrestricted fraction were significantly different between groups ( P < .01). DBSI intra-axonal axial diffusivity was lower in mild compared with moderate (mean difference [95% CI]: 1.1 [0.3-2.1], P < .01) and severe (1.9 [1.3-2.4], P < .001) CSM. CONCLUSION DBSI offers granular data on white matter tract integrity in CSM that provide novel insights into disease pathology, supporting its potential utility as a biomarker of CSM disease progression.
Collapse
Affiliation(s)
- Justin K. Zhang
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Dinal Jayasekera
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, Saint Louis, Missouri, USA
| | - Chunyu Song
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jacob K. Greenberg
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Saad Javeed
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Christopher F. Dibble
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Jacob Blum
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Peng Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wilson Z. Ray
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
9
|
Zhang JK, Sun P, Jayasekera D, Greenberg JK, Javeed S, Dibble CF, Blum J, Song C, Song SK, Ray WZ. Utility of Diffusion Basis Spectrum Imaging in Quantifying Baseline Disease Severity and Prognosis of Cervical Spondylotic Myelopathy. Spine (Phila Pa 1976) 2022; 47:1687-1693. [PMID: 35969006 PMCID: PMC9712150 DOI: 10.1097/brs.0000000000004456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Prospective cohort study. OBJECTIVE The aim was to assess the association between diffusion tensor imaging (DTI) and diffusion basis spectrum imaging (DBSI) measures and cervical spondylotic myelopathy (CSM) clinical assessments at baseline and two-year follow-up. SUMMARY OF BACKGROUND DATA Despite advancements in diffusion-weighted imaging, few studies have examined associations between diffusion magnetic resonance imaging (MRI) markers and CSM-specific clinical domains at baseline and long-term follow-up. MATERIALS AND METHODS A single-center prospective cohort study enrolled 50 CSM patients who underwent surgical decompression and 20 controls from 2018 to 2020. At initial evaluation, all patients underwent diffusion-weighted MRI acquisition, followed by DTI and DBSI analyses. Diffusion-weighted MRI metrics assessed white matter integrity by fractional anisotropy, axial diffusivity, radial diffusivity, and fiber fraction. To improve estimations of intra-axonal anisotropic diffusion, DBSI measures intra-/extra-axonal fraction and intra-axonal axial diffusivity. DBSI also evaluates extra-axonal isotropic diffusion by restricted and nonrestricted fraction. Clinical assessments were performed at baseline and two-year follow-up and included the modified Japanese Orthopedic Association (mJOA); 36-Item Short Form Survey physical component summary (SF-36 PCS); SF-36 mental component summary; neck disability index; myelopathy disability index; and disability of the arm, shoulder, and hand. Pearson correlation coefficients were computed to compare associations between DTI/DBSI and clinical measures. A False Discovery Rate correction was applied for multiple comparisons testing. RESULTS At baseline presentation, of 36 correlations analyzed between DTI metrics and CSM clinical measures, only DTI fractional anisotropy showed a positive correlation with SF-36 PCS ( r =0.36, P =0.02). In comparison, there were 30/81 (37%) significant correlations among DBSI and clinical measures. Increased DBSI axial diffusivity, intra-axonal axial diffusivity, intra-axonal fraction, restricted fraction, and extra-axonal anisotropic fraction were associated with worse clinical presentation (decreased mJOA; SF-36 PCS/mental component summary; and increased neck disability index; myelopathy disability index; disability of the arm, shoulder, and hand). At latest follow-up, increased preoperative DBSI intra-axonal axial diffusivity and extra-axonal anisotropic fraction were significantly correlated with improved mJOA. CONCLUSIONS This findings demonstrate that DBSI measures may reflect baseline disease burden and long-term prognosis of CSM as compared with DTI. With further validation, DBSI may serve as a noninvasive biomarker following decompressive surgery. LEVEL OF EVIDENCE 3.
Collapse
Affiliation(s)
- Justin K. Zhang
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Peng Sun
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Dinal Jayasekera
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, Saint Louis, Missouri, 63130, USA
| | - Jacob K. Greenberg
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Saad Javeed
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Christopher F. Dibble
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Jacob Blum
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Chunyu Song
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Wilson Z. Ray
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| |
Collapse
|
10
|
Joers JM, Adanyeguh IM, Deelchand DK, Hutter DH, Eberly LE, Iltis I, Bushara KO, Lenglet C, Henry PG. Spinal cord magnetic resonance imaging and spectroscopy detect early-stage alterations and disease progression in Friedreich ataxia. Brain Commun 2022; 4:fcac246. [PMID: 36300142 PMCID: PMC9581897 DOI: 10.1093/braincomms/fcac246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/04/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023] Open
Abstract
Friedreich ataxia is the most common hereditary ataxia. Atrophy of the spinal cord is one of the hallmarks of the disease. MRI and magnetic resonance spectroscopy are powerful and non-invasive tools to investigate pathological changes in the spinal cord. A handful of studies have reported cross-sectional alterations in Friedreich ataxia using MRI and diffusion MRI. However, to our knowledge no longitudinal MRI, diffusion MRI or MRS results have been reported in the spinal cord. Here, we investigated early-stage cross-sectional alterations and longitudinal changes in the cervical spinal cord in Friedreich ataxia, using a multimodal magnetic resonance protocol comprising morphometric (anatomical MRI), microstructural (diffusion MRI), and neurochemical (1H-MRS) assessments.We enrolled 28 early-stage individuals with Friedreich ataxia and 20 age- and gender-matched controls (cross-sectional study). Disease duration at baseline was 5.5 ± 4.0 years and Friedreich Ataxia Rating Scale total neurological score at baseline was 42.7 ± 13.6. Twenty-one Friedreich ataxia participants returned for 1-year follow-up, and 19 of those for 2-year follow-up (cohort study). Each visit consisted in clinical assessments and magnetic resonance scans. Controls were scanned at baseline only. At baseline, individuals with Friedreich ataxia had significantly lower spinal cord cross-sectional area (-31%, P = 8 × 10-17), higher eccentricity (+10%, P = 5 × 10-7), lower total N-acetyl-aspartate (tNAA) (-36%, P = 6 × 10-9) and higher myo-inositol (mIns) (+37%, P = 2 × 10-6) corresponding to a lower ratio tNAA/mIns (-52%, P = 2 × 10-13), lower fractional anisotropy (-24%, P = 10-9), as well as higher radial diffusivity (+56%, P = 2 × 10-9), mean diffusivity (+35%, P = 10-8) and axial diffusivity (+17%, P = 4 × 10-5) relative to controls. Longitudinally, spinal cord cross-sectional area decreased by 2.4% per year relative to baseline (P = 4 × 10-4), the ratio tNAA/mIns decreased by 5.8% per year (P = 0.03), and fractional anisotropy showed a trend to decrease (-3.2% per year, P = 0.08). Spinal cord cross-sectional area correlated strongly with clinical measures, with the strongest correlation coefficients found between cross-sectional area and Scale for the Assessment and Rating of Ataxia (R = -0.55, P = 7 × 10-6) and between cross-sectional area and Friedreich ataxia Rating Scale total neurological score (R = -0.60, P = 4 × 10-7). Less strong but still significant correlations were found for fractional anisotropy and tNAA/mIns. We report here the first quantitative longitudinal magnetic resonance results in the spinal cord in Friedreich ataxia. The largest longitudinal effect size was found for spinal cord cross-sectional area, followed by tNAA/mIns and fractional anisotropy. Our results provide direct evidence that abnormalities in the spinal cord result not solely from hypoplasia, but also from neurodegeneration, and show that disease progression can be monitored non-invasively in the spinal cord.
Collapse
Affiliation(s)
- James M Joers
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Isaac M Adanyeguh
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Diane H Hutter
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Isabelle Iltis
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Khalaf O Bushara
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Jayasekera D, Zhang JK, Blum J, Jakes R, Sun P, Javeed S, Greenberg JK, Song SK, Ray WZ. Analysis of combined clinical and diffusion basis spectrum imaging metrics to predict the outcome of chronic cervical spondylotic myelopathy following cervical decompression surgery. J Neurosurg Spine 2022; 37:588-598. [PMID: 35523255 PMCID: PMC10629375 DOI: 10.3171/2022.3.spine2294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/24/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cervical spondylotic myelopathy (CSM) is the most common cause of chronic spinal cord injury, a significant public health problem. Diffusion tensor imaging (DTI) is a neuroimaging technique widely used to assess CNS tissue pathology and is increasingly used in CSM. However, DTI lacks the needed accuracy, precision, and recall to image pathologies of spinal cord injury as the disease progresses. Thus, the authors used diffusion basis spectrum imaging (DBSI) to delineate white matter injury more accurately in the setting of spinal cord compression. It was hypothesized that the profiles of multiple DBSI metrics can serve as imaging outcome predictors to accurately predict a patient's response to therapy and his or her long-term prognosis. This hypothesis was tested by using DBSI metrics as input features in a support vector machine (SVM) algorithm. METHODS Fifty patients with CSM and 20 healthy controls were recruited to receive diffusion-weighted MRI examinations. All spinal cord white matter was identified as the region of interest (ROI). DBSI and DTI metrics were extracted from all voxels in the ROI and the median value of each patient was used in analyses. An SVM with optimized hyperparameters was trained using clinical and imaging metrics separately and collectively to predict patient outcomes. Patient outcomes were determined by calculating changes between pre- and postoperative modified Japanese Orthopaedic Association (mJOA) scale scores. RESULTS Accuracy, precision, recall, and F1 score were reported for each SVM iteration. The highest performance was observed when a combination of clinical and DBSI metrics was used to train an SVM. When assessing patient outcomes using mJOA scale scores, the SVM trained with clinical and DBSI metrics achieved accuracy and an area under the curve of 88.1% and 0.95, compared with 66.7% and 0.65, respectively, when clinical and DTI metrics were used together. CONCLUSIONS The accuracy and efficacy of the SVM incorporating clinical and DBSI metrics show promise for clinical applications in predicting patient outcomes. These results suggest that DBSI metrics, along with the clinical presentation, could serve as a surrogate in prognosticating outcomes of patients with CSM.
Collapse
Affiliation(s)
- Dinal Jayasekera
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis
| | - Justin K. Zhang
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
| | - Jacob Blum
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Rachel Jakes
- Department of Biomedical Engineering, Case School of Engineering, Cleveland, Ohio
| | - Peng Sun
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Saad Javeed
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
| | - Jacob K. Greenberg
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Wilson Z. Ray
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
| |
Collapse
|
12
|
Lindig T, Ruff C, Rattay TW, König S, Schöls L, Schüle R, Nägele T, Ernemann U, Klose U, Bender B. Detection of spinal long fiber tract degeneration in HSP: Improved diffusion tensor imaging. Neuroimage Clin 2022; 36:103213. [PMID: 36270162 PMCID: PMC9668628 DOI: 10.1016/j.nicl.2022.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Spinal diffusion tensor imaging (sDTI) is still a challenging technique for selectively evaluating anatomical areas like the pyramidal tracts (PT), dorsal columns (DC), and anterior horns (AH) in clinical routine and for reliably quantifying white matter anisotropy and diffusivity. In neurodegenerative diseases, the value of sDTI is promising but not yet well understood. The objective of this prospective, single-center study was to evaluate the long fiber tract degeneration within the spinal cord in normal aging (n = 125) and to prove its applicability in pathologic conditions as in patients with molecular genetically confirmed hereditary spastic paraplegias (HSP; n = 40), a prototypical disease of the first motor neuron and in some genetic variants with affection of the dorsal columns. An optimized monopolar Stejskal-Tanner sequence for high-resolution, axial sDTI of the cervical spinal cord at 3.0 T with advanced standardized evaluation methods was developed for a robust DTI value estimation of PT, DC, and AH in both groups. After sDTI measurement at C2, an automatic motion correction and an advanced semi-automatic ROI-based, standardized evaluation of white matter anisotropy and diffusivity was performed to obtain regional diffusivity measures for PT, DC, and AH. Reliable and stable sDTI values were acquired in a healthy population without significant decline between age 20 and 65. Reference values for PT, DC, and AH for fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) were established. In HSP patients, the decline of the long spinal fiber tracts could be demonstrated by diffusivity abnormalities in the pyramidal tracts with significantly reduced PTFA (p < 0.001), elevated PTRD (p = 0.002) and reduced PTMD (p = 0.003) compared to healthy controls. Furthermore, FA was significantly reduced in DCFA (p < 0.001) with no differences in AH. In a genetically homogeneous subgroup of SPG4 patients (n = 12) with affection of the dorsal columns, DCRD significantly correlated with the overall disease severity as measured by the Spastic Paraplegia Rating Scale (SPRS) (r = - 0.713, p = 0.009). With the most extensive sDTI study in vivo to date, we showed that axial sDTI combined with motion correction and advanced data post-processing strategies enables robust measurements and is ready to use, allowing recognition and quantification of disease- and age-related changes of the PT, DC, and AH. These results may also encourage the usage of sDTI in other neurodegenerative diseases with spinal cord involvement to explore its capability as selective biomarkers.
Collapse
Affiliation(s)
- Tobias Lindig
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| | - Christer Ruff
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany.
| | - Tim W Rattay
- Center for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, Hoppe-Seyler-Str. 3, Tübingen 72076, Germany; German Research Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen 72076, Germany
| | - Stephan König
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| | - Ludger Schöls
- Center for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, Hoppe-Seyler-Str. 3, Tübingen 72076, Germany; German Research Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen 72076, Germany
| | - Rebecca Schüle
- Center for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, Hoppe-Seyler-Str. 3, Tübingen 72076, Germany; German Research Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen 72076, Germany
| | - Thomas Nägele
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| | - Ulrike Ernemann
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| |
Collapse
|
13
|
Trò R, Roascio M, Tortora D, Severino M, Rossi A, Cohen-Adad J, Fato MM, Arnulfo G. Diffusion Kurtosis Imaging of Neonatal Spinal Cord in Clinical Routine. FRONTIERS IN RADIOLOGY 2022; 2:794981. [PMID: 37492682 PMCID: PMC10365122 DOI: 10.3389/fradi.2022.794981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 07/27/2023]
Abstract
Diffusion kurtosis imaging (DKI) has undisputed advantages over the more classical diffusion magnetic resonance imaging (dMRI) as witnessed by the fast-increasing number of clinical applications and software packages widely adopted in brain imaging. However, in the neonatal setting, DKI is still largely underutilized, in particular in spinal cord (SC) imaging, because of its inherently demanding technological requirements. Due to its extreme sensitivity to non-Gaussian diffusion, DKI proves particularly suitable for detecting complex, subtle, fast microstructural changes occurring in this area at this early and critical stage of development, which are not identifiable with only DTI. Given the multiplicity of congenital anomalies of the spinal canal, their crucial effect on later developmental outcome, and the close interconnection between the SC region and the brain above, managing to apply such a method to the neonatal cohort becomes of utmost importance. This study will (i) mention current methodological challenges associated with the application of advanced dMRI methods, like DKI, in early infancy, (ii) illustrate the first semi-automated pipeline built on Spinal Cord Toolbox for handling the DKI data of neonatal SC, from acquisition setting to estimation of diffusion measures, through accurate adjustment of processing algorithms customized for adult SC, and (iii) present results of its application in a pilot clinical case study. With the proposed pipeline, we preliminarily show that DKI is more sensitive than DTI-related measures to alterations caused by brain white matter injuries in the underlying cervical SC.
Collapse
Affiliation(s)
- Rosella Trò
- Departments of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, Genoa, Italy
| | - Monica Roascio
- Departments of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, Genoa, Italy
| | | | | | - Andrea Rossi
- Neuroradiology Unit, Istituto Giannina Gaslini, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
- Mila—Quebec AI Institute, Montreal, QC, Canada
| | - Marco Massimo Fato
- Departments of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, Genoa, Italy
| | - Gabriele Arnulfo
- Departments of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, Genoa, Italy
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Xue J, Zhu Y, Liu Z, Lin J, Li Y, Li Y, Zhuo Y. Demyelination of the Optic Nerve: An Underlying Factor in Glaucoma? Front Aging Neurosci 2021; 13:701322. [PMID: 34795572 PMCID: PMC8593209 DOI: 10.3389/fnagi.2021.701322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disorders are characterized by typical neuronal degeneration and axonal loss in the central nervous system (CNS). Demyelination occurs when myelin or oligodendrocytes experience damage. Pathological changes in demyelination contribute to neurodegenerative diseases and worsen clinical symptoms during disease progression. Glaucoma is a neurodegenerative disease characterized by progressive degeneration of retinal ganglion cells (RGCs) and the optic nerve. Since it is not yet well understood, we hypothesized that demyelination could play a significant role in glaucoma. Therefore, this study started with the morphological and functional manifestations of demyelination in the CNS. Then, we discussed the main mechanisms of demyelination in terms of oxidative stress, mitochondrial damage, and immuno-inflammatory responses. Finally, we summarized the existing research on the relationship between optic nerve demyelination and glaucoma, aiming to inspire effective treatment plans for glaucoma in the future.
Collapse
Affiliation(s)
- Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yangjiani Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Hernandez ALCC, Rezende TJR, Martinez ARM, de Brito MR, França MC. Tract-Specific Spinal Cord Diffusion Tensor Imaging in Friedreich's Ataxia. Mov Disord 2021; 37:354-364. [PMID: 34713932 DOI: 10.1002/mds.28841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Spinal cord (SC) damage is a hallmark in Friedreich's ataxia (FRDA). Neuroimaging has been able to capture some SC macroscopic changes, but no study has evaluated microstructural SC white matter (WM) damage in vivo. OBJECTIVES We designed a cross-sectional study to evaluate microstructural integrity in SC WM tracts of FRDA patients using diffusion tensor imaging (DTI) with an automated analysis pipeline. METHODS Thirty patients and 30 matched healthy controls underwent 3 Tesla (T) magnetic resonance imaging (MRI). We obtained cervical SC T2 and diffusion-weighted imaging (DWI) acquisitions. Images were processed using the Spinal Cord Toolbox v.4.3.0. For levels C2-C5, we measured cross-sectional area (CSA) and WM DTI parameters (axial diffusivity [AD], fractional anisotropy [FA], radial diffusivity [RD], and mean diffusivity [MD]). Age, duration, and FARS scores were also obtained. RESULTS Mean age and disease duration of patients were 31 ± 10 and 11 ± 9 years, respectively. There was CSA reduction in FRDA amongst all levels. Between-group differences in FA, MD, and RD in total white matter (TWM), dorsal columns (DC), fasciculus gracilis (FG), fasciculus cuneatus (FC), and corticospinal tracts (CST) were present in all levels. FA and RD from TWM, DC, FC, and CST correlated with FARS scores, and in CST they also correlated with disease duration. CONCLUSION DTI uncovered abnormalities in SC WM tracts, which correlated with clinical features in FRDA. CSA and CST FA in C2 correlated best with disease severity, whereas DC FA showed the largest effect size to differentiate patients and healthy controls. SC WM microstructure is a potential neuroimaging biomarker to be explored in the disease. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ana Luisa C C Hernandez
- Department of Neurology and Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences - University of Campinas (UNICAMP), Campinas, Brazil
| | - Thiago J R Rezende
- Department of Neurology and Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences - University of Campinas (UNICAMP), Campinas, Brazil
| | - Alberto R M Martinez
- Department of Neurology and Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences - University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana R de Brito
- Department of Neurology and Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences - University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcondes C França
- Department of Neurology and Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences - University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
16
|
Cohen-Adad J, Alonso-Ortiz E, Abramovic M, Arneitz C, Atcheson N, Barlow L, Barry RL, Barth M, Battiston M, Büchel C, Budde M, Callot V, Combes AJE, De Leener B, Descoteaux M, de Sousa PL, Dostál M, Doyon J, Dvorak A, Eippert F, Epperson KR, Epperson KS, Freund P, Finsterbusch J, Foias A, Fratini M, Fukunaga I, Wheeler-Kingshott CAMG, Germani G, Gilbert G, Giove F, Gros C, Grussu F, Hagiwara A, Henry PG, Horák T, Hori M, Joers J, Kamiya K, Karbasforoushan H, Keřkovský M, Khatibi A, Kim JW, Kinany N, Kitzler H, Kolind S, Kong Y, Kudlička P, Kuntke P, Kurniawan ND, Kusmia S, Labounek R, Laganà MM, Laule C, Law CS, Lenglet C, Leutritz T, Liu Y, Llufriu S, Mackey S, Martinez-Heras E, Mattera L, Nestrasil I, O'Grady KP, Papinutto N, Papp D, Pareto D, Parrish TB, Pichiecchio A, Prados F, Rovira À, Ruitenberg MJ, Samson RS, Savini G, Seif M, Seifert AC, Smith AK, Smith SA, Smith ZA, Solana E, Suzuki Y, Tackley G, Tinnermann A, Valošek J, Van De Ville D, Yiannakas MC, Weber KA, Weiskopf N, Wise RG, Wyss PO, Xu J. Generic acquisition protocol for quantitative MRI of the spinal cord. Nat Protoc 2021; 16:4611-4632. [PMID: 34400839 PMCID: PMC8811488 DOI: 10.1038/s41596-021-00588-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, including a lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area computation, multi-echo gradient echo for gray matter cross-sectional area, and magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. In a companion paper from the same authors, the spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine generic protocol are also available in an open-access document that can be found at https://github.com/spine-generic/protocols . The protocol will serve as a starting point for researchers and clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in neuroimaging protocols will be more common. The protocol could be implemented by any trained MR technician or by a researcher/clinician familiar with MRI acquisition.
Collapse
Affiliation(s)
- Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada.
- Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Quebec, Canada.
- Mila-Quebec AI Institute, Montreal, Quebec, Canada.
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Mihael Abramovic
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Carina Arneitz
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Nicole Atcheson
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Laura Barlow
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Markus Barth
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Marco Battiston
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Virginie Callot
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
| | - Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benjamin De Leener
- Department of Computer and Software Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
- CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Maxime Descoteaux
- Centre de Recherche CHUS, CIMS, Sherbrooke, Quebec, Canada
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Marek Dostál
- UHB - University Hospital Brno and Masaryk University, Department of Radiology and Nuclear Medicine, Brno, Czech Republic
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Adam Dvorak
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Falk Eippert
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Karla R Epperson
- Richard M. Lucas Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin S Epperson
- Richard M. Lucas Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University of Zurich, Zurich, Switzerland
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Michela Fratini
- Institute of Nanotechnology, CNR, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Issei Fukunaga
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Giancarlo Germani
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Federico Giove
- IRCCS Santa Lucia Foundation, Rome, Italy
- CREF - Museo storico della fisica e Centro studi e ricerche Enrico Fermi, Rome, Italy
| | - Charley Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Francesco Grussu
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Tomáš Horák
- Multimodal and functional imaging laboratory, Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - James Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Kouhei Kamiya
- Department of Radiology, the University of Tokyo, Tokyo, Japan
| | - Haleh Karbasforoushan
- Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Miloš Keřkovský
- UHB - University Hospital Brno and Masaryk University, Department of Radiology and Nuclear Medicine, Brno, Czech Republic
| | - Ali Khatibi
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Joo-Won Kim
- BioMedical Engineering and Imaging Institute (BMEII), Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nawal Kinany
- Institute of Bioengineering/Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Hagen Kitzler
- Institute of Diagnostic and Interventional Neuroradiology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Shannon Kolind
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine (Neurology), University of British Columbia, Vancouver, British Columbia, Canada
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Petr Kudlička
- Multimodal and functional imaging laboratory, Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Slawomir Kusmia
- CUBRIC, Cardiff University, Wales, UK
- Centre for Medical Image Computing (CMIC), Medical Physics and Biomedical Engineering Department, University College London, London, UK
- Epilepsy Society MRI Unit, Chalfont St Peter, UK
| | - René Labounek
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Departments of Neurology and Biomedical Engineering, University Hospital Olomouc, Olomouc, Czech Republic
| | | | - Cornelia Laule
- Departments of Radiology, Pathology & Laboratory Medicine, Physics & Astronomy; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Christine S Law
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eloy Martinez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Loan Mattera
- Fondation Campus Biotech Genève, Geneva, Switzerland
| | - Igor Nestrasil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nico Papinutto
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Deborah Pareto
- Neuroradiology Section, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Todd B Parrish
- Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anna Pichiecchio
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Ferran Prados
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Medical Physics and Biomedical Engineering Department, University College London, London, UK
- E-health Centre, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Àlex Rovira
- Neuroradiology Section, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Rebecca S Samson
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Giovanni Savini
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Maryam Seif
- Spinal Cord Injury Center Balgrist, University of Zurich, Zurich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alan C Seifert
- BioMedical Engineering and Imaging Institute (BMEII), Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex K Smith
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zachary A Smith
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elisabeth Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Yuichi Suzuki
- Department of Radiology, the University of Tokyo, Tokyo, Japan
| | | | - Alexandra Tinnermann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Valošek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Dimitri Van De Ville
- Institute of Bioengineering/Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Marios C Yiannakas
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Kenneth A Weber
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Richard G Wise
- CUBRIC, Cardiff University, Wales, UK
- Institute for Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio University" of Chieti-Pescara, Chieti, Italy
| | - Patrik O Wyss
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Junqian Xu
- BioMedical Engineering and Imaging Institute (BMEII), Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Cohen-Adad J, Alonso-Ortiz E, Abramovic M, Arneitz C, Atcheson N, Barlow L, Barry RL, Barth M, Battiston M, Büchel C, Budde M, Callot V, Combes AJE, De Leener B, Descoteaux M, de Sousa PL, Dostál M, Doyon J, Dvorak A, Eippert F, Epperson KR, Epperson KS, Freund P, Finsterbusch J, Foias A, Fratini M, Fukunaga I, Gandini Wheeler-Kingshott CAM, Germani G, Gilbert G, Giove F, Gros C, Grussu F, Hagiwara A, Henry PG, Horák T, Hori M, Joers J, Kamiya K, Karbasforoushan H, Keřkovský M, Khatibi A, Kim JW, Kinany N, Kitzler HH, Kolind S, Kong Y, Kudlička P, Kuntke P, Kurniawan ND, Kusmia S, Labounek R, Laganà MM, Laule C, Law CS, Lenglet C, Leutritz T, Liu Y, Llufriu S, Mackey S, Martinez-Heras E, Mattera L, Nestrasil I, O'Grady KP, Papinutto N, Papp D, Pareto D, Parrish TB, Pichiecchio A, Prados F, Rovira À, Ruitenberg MJ, Samson RS, Savini G, Seif M, Seifert AC, Smith AK, Smith SA, Smith ZA, Solana E, Suzuki Y, Tackley G, Tinnermann A, Valošek J, Van De Ville D, Yiannakas MC, Weber Ii KA, Weiskopf N, Wise RG, Wyss PO, Xu J. Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers. Sci Data 2021; 8:219. [PMID: 34400655 PMCID: PMC8368310 DOI: 10.1038/s41597-021-00941-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/ . The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord.
Collapse
Affiliation(s)
- Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada.
- Mila - Quebec AI Institute, Montreal, QC, Canada.
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Mihael Abramovic
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Carina Arneitz
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Nicole Atcheson
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Laura Barlow
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Markus Barth
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Marco Battiston
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Virginie Callot
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
| | - Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benjamin De Leener
- Department of Computer and Software Engineering, Polytechnique Montreal, Montreal, Canada
- CHU Sainte-Justine Research Centre, Montreal, QC, Canada
| | - Maxime Descoteaux
- Centre de Recherche CHUS, CIMS, Sherbrooke, Canada
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Marek Dostál
- UHB - University Hospital Brno and Masaryk University, Department of Radiology and Nuclear Medicine, Brno, Czech Republic
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Adam Dvorak
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Falk Eippert
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Karla R Epperson
- Richard M. Lucas Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin S Epperson
- Richard M. Lucas Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University of Zurich, Zurich, Switzerland
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Michela Fratini
- Institute of Nanotechnology, CNR, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Issei Fukunaga
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Giancarlo Germani
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Federico Giove
- IRCCS Santa Lucia Foundation, Rome, Italy
- CREF - Museo storico della fisica e Centro studi e ricerche Enrico Fermi, Rome, Italy
| | - Charley Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Francesco Grussu
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Tomáš Horák
- Multimodal and functional imaging laboratory, Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - James Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Kouhei Kamiya
- Department of Radiology, the University of Tokyo, Tokyo, Japan
| | - Haleh Karbasforoushan
- Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Miloš Keřkovský
- UHB - University Hospital Brno and Masaryk University, Department of Radiology and Nuclear Medicine, Brno, Czech Republic
| | - Ali Khatibi
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Joo-Won Kim
- BioMedical Engineering and Imaging Institute (BMEII), Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nawal Kinany
- Institute of Bioengineering/Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Hagen H Kitzler
- Institute of Diagnostic and Interventional Neuroradiology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Shannon Kolind
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department Of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Petr Kudlička
- Multimodal and functional imaging laboratory, Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Slawomir Kusmia
- CUBRIC, Cardiff University, Wales, UK
- Centre for Medical Image Computing (CMIC), Medical Physics and Biomedical Engineering Department, University College London, London, UK
- Epilepsy Society MRI Unit, Chalfont St Peter, UK
| | - René Labounek
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Departments of Neurology and Biomedical Engineering, University Hospital Olomouc, Olomouc, Czech Republic
| | | | - Cornelia Laule
- Departments of Radiology, Pathology & Laboratory Medicine, Physics & Astronomy; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Christine S Law
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eloy Martinez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Loan Mattera
- Fondation Campus Biotech Genève, 1202, Geneva, Switzerland
| | - Igor Nestrasil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nico Papinutto
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Deborah Pareto
- Neuroradiology Section, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Todd B Parrish
- Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anna Pichiecchio
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Ferran Prados
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Medical Physics and Biomedical Engineering Department, University College London, London, UK
- E-health Centre, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Àlex Rovira
- Neuroradiology Section, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Rebecca S Samson
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Giovanni Savini
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Maryam Seif
- Spinal Cord Injury Center Balgrist, University of Zurich, Zurich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alan C Seifert
- BioMedical Engineering and Imaging Institute (BMEII), Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex K Smith
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zachary A Smith
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elisabeth Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Y Suzuki
- Department of Radiology, the University of Tokyo, Tokyo, Japan
| | | | - Alexandra Tinnermann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Valošek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Dimitri Van De Ville
- Institute of Bioengineering/Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Marios C Yiannakas
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Kenneth A Weber Ii
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Richard G Wise
- CUBRIC, Cardiff University, Wales, UK
- Institute for Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio University" of Chieti-Pescara, Chieti-Pescara, Italy
| | - Patrik O Wyss
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Junqian Xu
- BioMedical Engineering and Imaging Institute (BMEII), Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
High-fidelity diffusion tensor imaging of the cervical spinal cord using point-spread-function encoded EPI. Neuroimage 2021; 236:118043. [PMID: 33857617 DOI: 10.1016/j.neuroimage.2021.118043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 01/21/2023] Open
Abstract
Diffusion tensor imaging (DTI) of the spinal cord is technically challenging due to the size of its structure and susceptibility-induced field inhomogeneity, which impedes clinical applications. This study aimed to achieve high-fidelity spinal cord DTI with reasonable SNR and practical acquisition efficiency. Particularly, a distortion-free multi-shot EPI technique, namely point-spread-function encoded EPI (PSF-EPI), was adopted for diffusion imaging of the cervical spinal cord (CSC). The shot number can be reduced to six for sagittal scans through titled-CAIPI acceleration and partial Fourier undersampling, consequently rendering this technique beneficial in clinics. Fifteen healthy volunteers and seven patients with metallic implants underwent sagittal scans using tilted-CAIPI PSF-EPI at 3T. Unsuppressed fat signals were further removed by retrospective water/fat separation using the intrinsic chemical-shift encoded signals. Compared with multi-shot interleaved EPI method, highly accelerated PSF-EPI method provided evidently improved distortion reduction and higher consistency with anatomical references even with metallic implants. Additionally, axial DTI scans using PSF-EPI were also evaluated quantitatively, and the measured DTI metrics are similar to those obtained from the zonal oblique multi-slice EPI (ZOOM-EPI) method and reported values. The high anatomical consistency, practical scan time and quantitative reliability indicate PSF-EPI's clinical potential for CSC diffusion imaging.
Collapse
|
19
|
Johnson B, Walter AE, Wilkes JR, Papa L, Slobounov SM. Changes in White Matter of the Cervical Spinal Cord after a Single Season of Collegiate Football. Neurotrauma Rep 2021; 2:84-93. [PMID: 34223548 PMCID: PMC8240824 DOI: 10.1089/neur.2020.0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The involvement of the central nervous system (CNS), specifically the white matter tracts in the cervical spinal cord, was examined with diffusion tensor imaging (DTI) following exposure to repetitive head acceleration events (HAEs) after a single season of collegiate football. Fifteen National Collegiate Athletic Association (NCAA) Division 1 football players underwent DTI of the cervical spinal cord (vertebral level C1–4) at pre-season (before any contact practices began) and post-season (within 1 week of the last regular season game) intervals. Helmet accelerometer data were also collected in parallel throughout the season. From pre-season to post-season, a significant decrease (p < 0.05) of axial diffusivity was seen within the right spino-olivary tract. In addition, a significant decrease (p < 0.05) in global white matter fractional anisotropy (FA) along with increases (p < 0.05) in global white matter mean diffusivity (MD) and radial diffusivity (RD) were found. These changes in FA from pre-season to post-season were significantly moderated by previous concussion history (p < 0.05) and number of HAEs over 80 g (p < 0.05). Despite the absence of sports-related concussion (SRC), we present measurable changes in the white matter integrity of the cervical spinal cord suggesting injury from repetitive HAEs, or SRC, may include the entirety of the CNS, not just the brain.
Collapse
Affiliation(s)
- Brian Johnson
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexa E Walter
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - James R Wilkes
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida, USA.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Semyon M Slobounov
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
20
|
Zhang Z, Vernekar D, Qian W, Kim M. Non-local means based Rician noise filtering for diffusion tensor and kurtosis imaging in human brain and spinal cord. BMC Med Imaging 2021; 21:16. [PMID: 33516178 PMCID: PMC7847150 DOI: 10.1186/s12880-021-00549-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/18/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND To investigate the effect of using a Rician nonlocal means (NLM) filter on quantification of diffusion tensor (DT)- and diffusion kurtosis (DK)-derived metrics in various anatomical regions of the human brain and the spinal cord, when combined with a constrained linear least squares (CLLS) approach. METHODS Prospective brain data from 9 healthy subjects and retrospective spinal cord data from 5 healthy subjects from a 3 T MRI scanner were included in the study. Prior to tensor estimation, registered diffusion weighted images were denoised by an optimized blockwise NLM filter with CLLS. Mean kurtosis (MK), radial kurtosis (RK), axial kurtosis (AK), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD) and fractional anisotropy (FA), were determined in anatomical structures of the brain and the spinal cord. DTI and DKI metrics, signal-to-noise ratio (SNR) and Chi-square values were quantified in distinct anatomical regions for all subjects, with and without Rician denoising. RESULTS The averaged SNR significantly increased with Rician denoising by a factor of 2 while the averaged Chi-square values significantly decreased up to 61% in the brain and up to 43% in the spinal cord after Rician NLM filtering. In the brain, the mean MK varied from 0.70 (putamen) to 1.27 (internal capsule) while AK and RK varied from 0.58 (corpus callosum) to 0.92 (cingulum) and from 0.70 (putamen) to 1.98 (corpus callosum), respectively. In the spinal cord, FA varied from 0.78 in lateral column to 0.81 in dorsal column while MD varied from 0.91 × 10-3 mm2/s (lateral) to 0.93 × 10-3 mm2/s (dorsal). RD varied from 0.34 × 10-3 mm2/s (dorsal) to 0.38 × 10-3 mm2/s (lateral) and AD varied from 1.96 × 10-3 mm2/s (lateral) to 2.11 × 10-3 mm2/s (dorsal). CONCLUSIONS Our results show a Rician denoising NLM filter incorporated with CLLS significantly increases SNR and reduces estimation errors of DT- and KT-derived metrics, providing the reliable metrics estimation with adequate SNR levels.
Collapse
Affiliation(s)
- Zhongping Zhang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong SAR, China.,Philips Healthcare, Shanghai, China
| | - Dhanashree Vernekar
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong SAR, China
| | - Wenshu Qian
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong SAR, China.,Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, USA
| | - Mina Kim
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong SAR, China. .,Department of Neuroinflammation, Faculty of Brain Sciences, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
21
|
Tinnermann A, Büchel C, Cohen-Adad J. Cortico-spinal imaging to study pain. Neuroimage 2020; 224:117439. [PMID: 33039624 DOI: 10.1016/j.neuroimage.2020.117439] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Functional magnetic resonance imaging of the brain has helped to reveal mechanisms of pain perception in health and disease. Recently, imaging approaches have been developed that allow recording neural activity simultaneously in the brain and in the spinal cord. These approaches offer the possibility to examine pain perception in the entire central pain system and in addition, to investigate cortico-spinal interactions during pain processing. Although cortico-spinal imaging is a promising technique, it bears challenges concerning data acquisition and data analysis strategies. In this review, we discuss studies that applied simultaneous imaging of the brain and spinal cord to explore central pain processing. Furthermore, we describe different MR-related acquisition techniques, summarize advantages and disadvantages of approaches that have been implemented so far and present software that has been specifically developed for the analysis of spinal fMRI data to address challenges of spinal data analysis.
Collapse
Affiliation(s)
- Alexandra Tinnermann
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck School of Cognition, Leipzig, Germany.
| | - Christian Büchel
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck School of Cognition, Leipzig, Germany
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
Lévy S, Rapacchi S, Massire A, Troalen T, Feiweier T, Guye M, Callot V. Intravoxel Incoherent Motion at 7 Tesla to quantify human spinal cord perfusion: limitations and promises. Magn Reson Med 2020; 84:1198-1217. [DOI: 10.1002/mrm.28195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/16/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Simon Lévy
- Aix‐Marseille Univ, CNRS, CRMBM Marseille France
- APHM, Hopital Universitaire Timone, CEMEREM Marseille France
- Aix‐Marseille Univ, IFSTTAR, LBA Marseille France
- iLab‐Spine International Associated Laboratory Marseille‐Montreal France‐Canada
| | - Stanislas Rapacchi
- Aix‐Marseille Univ, CNRS, CRMBM Marseille France
- APHM, Hopital Universitaire Timone, CEMEREM Marseille France
| | - Aurélien Massire
- Aix‐Marseille Univ, CNRS, CRMBM Marseille France
- APHM, Hopital Universitaire Timone, CEMEREM Marseille France
- iLab‐Spine International Associated Laboratory Marseille‐Montreal France‐Canada
| | | | | | - Maxime Guye
- Aix‐Marseille Univ, CNRS, CRMBM Marseille France
- APHM, Hopital Universitaire Timone, CEMEREM Marseille France
| | - Virginie Callot
- Aix‐Marseille Univ, CNRS, CRMBM Marseille France
- APHM, Hopital Universitaire Timone, CEMEREM Marseille France
- iLab‐Spine International Associated Laboratory Marseille‐Montreal France‐Canada
| |
Collapse
|
23
|
Liu XY, Liang J, Wang Y, Zhong L, Zhao CY, Wei MG, Wang JJ, Sun XZ, Wang KQ, Duan JH, Chen C, Tu Y, Zhang S, Ming D, Li XH. Diffusion tensor imaging predicting neurological repair of spinal cord injury with transplanting collagen/chitosan scaffold binding bFGF. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:123. [PMID: 31686219 DOI: 10.1007/s10856-019-6322-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Prognosis and treatment evaluation of spinal cord injury (SCI) are still in the long-term research stage. Prognostic factors for SCI treatment need effective biomarker to assess therapeutic effect. Quantitative diffusion tensor imaging (DTI) may become a potential indicators for assessing SCI repair. However, its correlation with the results of locomotor function recovery and tissue repair has not been carefully studied. The aim of this study was to use quantitative DTI to predict neurological repair of SCI with transplanting collagen/chitosan scaffold binding basic fibroblast growth factor (bFGF). To achieve our research goals, T10 complete transection SCI model was established. Then collagen/chitosan mixture adsorbed with bFGF (CCS/bFGF) were implanted into rats with SCI. At 8 weeks after modeling, implanting CCS/bFGF demonstrated more significant improvements in locomotor function according to Basso-Beattie-Bresnahan (BBB) score, inclined-grid climbing test, and electrophysiological examinations. DTI was carried out to evaluate the repair of axons by diffusion tensor tractgraphy (DTT), fractional anisotropy (FA) and apparent diffusion coefficient (ADC), a numerical measure of relative white matter from the rostral to the caudal. Parallel to locomotor function recovery, the CCS/bFGF group could significantly promote the regeneration of nerve fibers tracts according to DTT, magnetic resonance imaging (MRI), Bielschowsky's silver staining and immunofluorescence staining. Positive correlations between imaging and locomotor function or histology were found at all locations from the rostral to the caudal (P < 0.0001). These results demonstrated that DTI might be used as an effective predictor for evaluating neurological repair after SCI in experimental trails and clinical cases.
Collapse
Affiliation(s)
- Xiao-Yin Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
- Tianjin Medical University, Qixiangtai Road No. 22, Tianjin, 300070, China
| | - Jun Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yi Wang
- Department of Neurology, Tianjin Hospital of Tianjin, Tianjin, 300211, China
| | - Lin Zhong
- Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Chang-Yu Zhao
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Meng-Guang Wei
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Xiao-Zhe Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Ke-Qiang Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing-Hao Duan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Chong Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Yue Tu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
24
|
Schilling KG, By S, Feiler HR, Box BA, O'Grady KP, Witt A, Landman BA, Smith SA. Diffusion MRI microstructural models in the cervical spinal cord - Application, normative values, and correlations with histological analysis. Neuroimage 2019; 201:116026. [PMID: 31326569 DOI: 10.1016/j.neuroimage.2019.116026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Multi-compartment tissue modeling using diffusion magnetic resonance imaging has proven valuable in the brain, offering novel indices sensitive to the tissue microstructural environment in vivo on clinical MRI scanners. However, application, characterization, and validation of these models in the spinal cord remain relatively under-studied. In this study, we apply a diffusion "signal" model (diffusion tensor imaging, DTI) and two commonly implemented "microstructural" models (neurite orientation dispersion and density imaging, NODDI; spherical mean technique, SMT) in the human cervical spinal cord of twenty-one healthy controls. We first provide normative values of DTI, SMT, and NODDI indices in a number of white matter ascending and descending pathways, as well as various gray matter regions. We then aim to validate the sensitivity and specificity of these diffusion-derived contrasts by relating these measures to indices of the tissue microenvironment provided by a histological template. We find that DTI indices are sensitive to a number of microstructural features, but lack specificity. The microstructural models also show sensitivity to a number of microstructure features; however, they do not capture the specific microstructural features explicitly modelled. Although often regarded as a simple extension of the brain in the central nervous system, it may be necessary to re-envision, or specifically adapt, diffusion microstructural models for application to the human spinal cord with clinically feasible acquisitions - specifically, adjusting, adapting, and re-validating the modeling as it relates to both theory (i.e. relevant biology, assumptions, and signal regimes) and parameter estimation (for example challenges of acquisition, artifacts, and processing).
Collapse
Affiliation(s)
- Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Samantha By
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Haley R Feiler
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bailey A Box
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Atlee Witt
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
25
|
Rao JS, Liu Z, Zhao C, Wei RH, Liu RX, Zhao W, Zhou X, Tian PY, Yang ZY, Li XG. Image correction for diffusion tensor imaging of Rhesus monkey thoracic spinal cord. J Med Primatol 2019; 48:320-328. [PMID: 31148186 DOI: 10.1111/jmp.12422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 04/03/2019] [Accepted: 05/12/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The relatively tiny spinal cord of non-human primate (NHP) causes increased challenge in diffusion tensor imaging (DTI) post-processing. This study aimed to establish a reliable correction strategy applied to clinical DTI images of NHP. METHODS Six normal and partial spinal cord injury (SCI) rhesus monkeys underwent 3T MR scanning. A correction strategy combining multiple iterations and non-rigid deformation was used for DTI image post-processing. Quantitative evaluations were then conducted to investigate effects of distortion correction. RESULTS After correction, longitudinal geometric distortion, global distortion, and residual distance errors were all significantly decreased (P < 0.05). Fractional anisotropy at the injured site was remarkably lower than that at the contralateral site (P = 0.0488) and was substantially lower than those at the adjacent superior (P = 0.0157) and inferior (P = 0.0128) areas at the same side. CONCLUSIONS Our image correction strategy can improve the quality of the DTI images of NHP thoracic cords, contributing to the development of SCI preclinical research.
Collapse
Affiliation(s)
- Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zuxiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Beijing, China.,Department of Biology, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhao
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,Department of Measurement Control and Information Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Rui-Han Wei
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ruo-Xi Liu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xia Zhou
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Peng-Yu Tian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhao-Yang Yang
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
26
|
Zheng W, Xu F, Chen H, Wang N, Xiao W, Liang Y, Wen S. Time course of diffusion tensor imaging metrics in the chronic spinal cord compression rat model. Acta Radiol 2019; 60:653-662. [PMID: 30142996 DOI: 10.1177/0284185118795335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) provides information about water molecule diffusion in spinal cord. PURPOSE This study was aimed to investigate DTI changes in the different stages of compressive spinal cord induced by water-absorbing material implantation. MATERIAL AND METHODS The spinal cord compression was administered over the fourth cervical vertebral level in rat. Rat models were divided into five subgroups according to compression stages: sham group, group A: three-day compression rat models; group B: 12-day compression rat models; group C: 20-day compression rat models; group D: 60-day compression rat models. DTI including fractional anisotropy (FA) and apparent diffusion coefficient (ADC) in the compressive spinal cord were collected. The relationship between the Basso, Beattie, and Bresnahan (BBB) scores and DTI metrics was further explored. RESULTS Compared with the sham group, BBB scoring of rat model showed a decreased tendency from group A ( P < 0.05) to group B ( P < 0.05). Then the motor function of rat model hindlimbs was recovered in some degree from group C ( P < 0.05) to group D ( P < 0.05) but had significant motor defects when compared with the normal level ( P < 0.05). The DTI metrics results revealed that chronic spinal cord compression resulted in lower FA value and higher ADC value at the compressive spinal cord level assessed at all four time-points ( P < 0.05). DTI metrics also showed a close correlation with motor function ( P < 0.05). CONCLUSION DTI is an optimal pre-clinical imaging tool to reflect locomotor performance and pathological status of compressive spinal cord epicenter in chronic spinal cord compression rat model.
Collapse
Affiliation(s)
- Weipeng Zheng
- Department of Orthopedics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Fangtian Xu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, PR China
| | - Haoyi Chen
- Department of Orthopedics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Ning Wang
- Department of Orthopedics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Wende Xiao
- Department of Orthopedics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
- Department of Orthopedics, First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China
| | - YingJie Liang
- Department of Orthopedics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
- Department of Orthopedics, First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Shifeng Wen
- Department of Orthopedics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
- Department of Orthopedics, First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China
| |
Collapse
|
27
|
Kim JW, Andersson JL, Seifert AC, Sun P, Song SK, Dula C, Naismith RT, Xu J. Incorporating non-linear alignment and multi-compartmental modeling for improved human optic nerve diffusion imaging. Neuroimage 2019; 196:102-113. [PMID: 30930313 DOI: 10.1016/j.neuroimage.2019.03.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022] Open
Abstract
In vivo human optic nerve diffusion magnetic resonance imaging (dMRI) is technically challenging with two outstanding issues not yet well addressed: (i) non-linear optic nerve movement, independent of head motion, and (ii) effect from partial-volumed cerebrospinal fluid or interstitial fluid such as in edema. In this work, we developed a non-linear optic nerve registration algorithm for improved volume alignment in axial high resolution optic nerve dMRI. During eyes-closed dMRI data acquisition, optic nerve dMRI measurements by diffusion tensor imaging (DTI) with and without free water elimination (FWE), and by diffusion basis spectrum imaging (DBSI), as well as optic nerve motion, were characterized in healthy adults at various locations along the posterior-to-anterior dimension. Optic nerve DTI results showed consistent trends in microstructural parametric measurements along the posterior-to-anterior direction of the entire intraorbital optic nerve, while the anterior portion of the intraorbital optic nerve exhibited the largest spatial displacement. Multi-compartmental dMRI modeling, such as DTI with FWE or DBSI, was less subject to spatially dependent biases in diffusivity and anisotropy measurements in the optic nerve which corresponded to similar spatial distributions of the estimated fraction of isotropic diffusion components. DBSI results derived from our clinically feasible (∼10 min) optic nerve dMRI protocol in this study are consistent with those from small animal studies, which provides the basis for evaluating the utility of multi-compartmental dMRI modeling in characterizing coexisting pathophysiology in human optic neuropathies.
Collapse
Affiliation(s)
- Joo-Won Kim
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jesper Lr Andersson
- Wellcome Center for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Alan C Seifert
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Courtney Dula
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert T Naismith
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Junqian Xu
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
28
|
Shimony JS, Rutlin J, Karimi M, Tian L, Snyder AZ, Loftin SK, Norris SA, Perlmutter JS. Validation of diffusion tensor imaging measures of nigrostriatal neurons in macaques. PLoS One 2018; 13:e0202201. [PMID: 30183721 PMCID: PMC6124722 DOI: 10.1371/journal.pone.0202201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022] Open
Abstract
Objective Interpretation of diffusion MRI in the living brain requires validation against gold standard histological measures. We compared diffusion values of the nigrostriatal tract to PET and histological results in non-human primates (NHPs) with varying degrees of unilateral nigrostriatal injury induced by MPTP, a toxin selective for dopaminergic neurons. Methods Sixteen NHPs had MRI and PET scans of three different presynaptic radioligands and blinded video-based motor ratings before and after unilateral carotid artery infusion of variable doses of MPTP. Diffusion measures of connections between midbrain and striatum were calculated. Then animals were euthanized to quantify striatal dopamine concentration, stereologic measures of striatal tyrosine hydroxylase (TH) immunostained fiber density and unbiased stereologic counts of TH stained nigral cells. Results Diffusion measures correlated with MPTP dose, nigral TH-positive cell bodies and striatal TH-positive fiber density but did not correlate with in vitro nigrostriatal terminal field measures or in vivo PET measures of striatal uptake of presynaptic markers. Once nigral TH cell count loss exceeded 50% the stereologic terminal field measures reached a near zero floor effect but the diffusion measures continued to correlate with nigral cell counts. Conclusion Diffusion measures in the nigrostriatal tract correlate with nigral dopamine neurons and striatal fiber density, but have the same relationship to terminal field measures as a previous report of striatal PET measures of presynaptic neurons. These diffusion measures have the potential to act as non-invasive index of the severity of nigrostriatal injury. Diffusion imaging of the nigrostriatal tract could potentially have diagnostic value in humans with Parkinson disease or related disorders.
Collapse
Affiliation(s)
- Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| | - Jerrel Rutlin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Morvarid Karimi
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Linlin Tian
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Abraham Z. Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan K. Loftin
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott A. Norris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joel S. Perlmutter
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
29
|
Abstract
STUDY DESIGN A retrospective cohort study. OBJECTIVE The aim of this study was to investigate the relationship between spinal cord microstructures and spinal cord dysfunction in degenerative cervical myelopathy (DCM) patients; a follow-up study was carried out using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI), an advanced diffusion model. SUMMARY OF BACKGROUND DATA DTI has been used for diagnosis of DCM. Although DTI has advantages of high sensitivity and quantitative features, it is limited by its low specificity for measuring microstructures. METHODS Fifty-eight postoperative DCM patients with 12 to 14 months of surgical recovery were recruited, as well as 14 healthy volunteers for control group. All DTI and NODDI metrics were measured at the most stenotic levels of patients and at all levels of control group. A t test was used to compare the metrics between patient and control groups, and Spearman correlation was used to test the relationship between the metrics and clinical assessment, modified Japanese Orthopedic Association (mJOA) scores. RESULTS t test showed that DTI metrics, neurite density Vic, and free water fraction Viso had significant differences between control group and the most stenotic levels in patients. For DTI metrics, fractional anisotropy (FA), radial diffusivity (RD), and mean diffusivity (MD) in patients were significantly correlated with mJOA. For NODDI metrics, only Vic is positively correlated with mJOA. CONCLUSION The results of t test and correlation with mJOA suggest that DTI and NODDI are valuable for evaluating spinal cord function. Results of NODDI indicate that the reason for FA reduction in DCM may be decreased neurite density, not increased orientation dispersion. LEVEL OF EVIDENCE 3.
Collapse
|
30
|
Abstract
STUDY DESIGN An experimental study. OBJECTIVE This study aimed to investigate task-dependent changes in fractional anisotropy (FA) within the spinal cord during painful stimulation. SUMMARY OF BACKGROUND DATA Earlier experiments by Mandl et al (2008, 2013) used non-invasive functional diffusion tensor imaging (fDTI) to detect white matter fibers that were active during functional tasks. In two studies, it was observed that FA of involved white matter tracts exhibited repeatable task-related increases. In this study, we attempted to extend the fDTI work in the spinal cord. METHODS Twenty-three healthy, right-handed men (mean age 22 yrs, standard deviation [SD] = 4) were invited to participate in this study. Diffusion-weighted images were collected over spinal levels C2 to T4 during a painful thermal stimulus applied to the left thenar eminence. In order to investigate task-related activity, FA values within the contralateral (right) spinothalamic tract were analyzed using a generalized estimating equations (GEE) procedure. As a control, we also examined activity in the ipsilateral and contralateral corticospinal tracts, which are not considered to be involved in nociception. RESULTS Significant task-related decreases in FA were observed in the right spinothalamic tract at vertebral levels C2-C5 (Wald X(1) = 17.754, P < 0.001). There was no change in control regions at levels C7-T2 of the same tract, which are located below the level of input from dermatome C6, Wald X(1) = 0.185, P = 0.667. Results in all other regions assessed, that is, the left spinothalamic tract and bilateral corticospinal tract, were also not significant (P > 0.05). CONCLUSION The current findings suggest that task-related changes in FA associated with the transmission of pain signals along the spinal cord can be detected using fDTI. We observed decreased FA values in the contralateral (right) spinothalamic tract following painful stimulation, while no such activity was apparent in control regions. LEVEL OF EVIDENCE 5.
Collapse
|
31
|
Cohen-Adad J. Microstructural imaging in the spinal cord and validation strategies. Neuroimage 2018; 182:169-183. [PMID: 29635029 DOI: 10.1016/j.neuroimage.2018.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/02/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
In vivo histology using magnetic resonance imaging (MRI) is a newly emerging research field that aims to non-invasively characterize tissue microstructure. The implications of in vivo histology are many, from discovering novel biomarkers to studying human development, to providing tools for disease diagnosis and monitoring the effects of novel treatments on tissue. This review focuses on quantitative MRI (qMRI) techniques that are used to map spinal cord microstructure. Opening with a rationale for non-invasive imaging of the spinal cord, this article continues with a brief overview of the existing MRI techniques for axon and myelin imaging, followed by the specific challenges and potential solutions for acquiring and processing such data. The final part of this review focuses on histological validation, with suggested tissue preparation, acquisition and processing protocols for large-scale microscopy.
Collapse
Affiliation(s)
- J Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
32
|
Dong F, Wu Y, Song P, Qian Y, Wang Y, Xu L, Yin M, Zhang R, Tao H, Ge P, Liu C, Zhang H, Zhu J, Shen C, Yu Y. A preliminary study of 3.0-T magnetic resonance diffusion tensor imaging in cervical spondylotic myelopathy. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:1839-1845. [DOI: 10.1007/s00586-018-5579-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/05/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
|
33
|
Effect of cardiac-related translational motion in diffusion MRI of the spinal cord. Magn Reson Imaging 2018; 50:119-124. [PMID: 29626518 DOI: 10.1016/j.mri.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022]
Abstract
Cardiac-related spinal cord motion affects diffusion-weighted (DWI) signal. The goal of this study was to further quantify the specific detrimental effect of cord translational motion on the DWI signal in order to make better informed decisions about the cost-benefit of cardiac gating. We designed an MRI-compatible phantom mimicking the spinal cord translational motion. Cardiac-gated DWI data were acquired by varying the trigger delay and the b-values. Evaluation of the effect of motion on the DWI signal was done by computing the apparent diffusion coefficient (ADC) along (z-direction) and orthogonal (y- and x-directions) to the phantom. The computed ADCs of the phantom moving along Z were similar for the three orthogonal diffusion-encoding directions, with an average value of 1.65·10-9 , 1.66·10-9 and 1.65·10-9 m2/s along X, Y and Z respectively. DW phase images on the other hand showed the expected linear relationship with phantom velocity. Pure translational motion has minor effect on the diffusion-weighted magnitude signal. The sudden signal drop typically observed in in vivo spinal cord DWI is likely not caused by translational motion of the spinal cord, and possibly originates from non-rigid compression/stretching of the cord and/or from intra-voxel incoherent motion (IVIM).
Collapse
|
34
|
Massire A, Rasoanandrianina H, Taso M, Guye M, Ranjeva JP, Feiweier T, Callot V. Feasibility of single-shot multi-level multi-angle diffusion tensor imaging of the human cervical spinal cord at 7T. Magn Reson Med 2018; 80:947-957. [DOI: 10.1002/mrm.27087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/07/2017] [Accepted: 12/26/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Aurélien Massire
- Aix-Marseille Univ, CNRS, AP-HM, CRMBM, Hôpital de la Timone; CEMEREM Marseille France
- iLab-Spine - Laboratoire international associé - Imagerie et Biomécanique du rachis, France; Canada
| | - Henitsoa Rasoanandrianina
- Aix-Marseille Univ, CNRS, AP-HM, CRMBM, Hôpital de la Timone; CEMEREM Marseille France
- iLab-Spine - Laboratoire international associé - Imagerie et Biomécanique du rachis, France; Canada
| | - Manuel Taso
- Aix-Marseille Univ, CNRS, AP-HM, CRMBM, Hôpital de la Timone; CEMEREM Marseille France
- iLab-Spine - Laboratoire international associé - Imagerie et Biomécanique du rachis, France; Canada
- Division of MRI Research, Department of Radiology; Beth Israel Deaconess Medical Center & Harvard Medical School; Boston Massachusetts USA
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, AP-HM, CRMBM, Hôpital de la Timone; CEMEREM Marseille France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Univ, CNRS, AP-HM, CRMBM, Hôpital de la Timone; CEMEREM Marseille France
- iLab-Spine - Laboratoire international associé - Imagerie et Biomécanique du rachis, France; Canada
| | | | - Virginie Callot
- Aix-Marseille Univ, CNRS, AP-HM, CRMBM, Hôpital de la Timone; CEMEREM Marseille France
- iLab-Spine - Laboratoire international associé - Imagerie et Biomécanique du rachis, France; Canada
| |
Collapse
|
35
|
Reduced Field-of-View Diffusion Tensor Imaging of the Spinal Cord Shows Motor Dysfunction of the Lower Extremities in Patients With Cervical Compression Myelopathy. Spine (Phila Pa 1976) 2018; 43:89-96. [PMID: 26274528 DOI: 10.1097/brs.0000000000001123] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A cross-sectional study. OBJECTIVE The aim of this study was to quantify spinal cord dysfunction at the tract level in patients with cervical compressive myelopathy (CCM) using reduced field-of-view (rFOV) diffusion tensor imaging (DTI). SUMMARY OF BACKGROUND DATA Although magnetic resonance imaging (MRI) is the standard used for radiological evaluation of CCM, information acquired by MRI does not necessarily reflect the severity of spinal cord disorder. There is a growing interest in developing imaging methods to quantify spinal cord dysfunction. To acquire high-resolution DTI, a new scheme using rFOV has been proposed. METHODS We enrolled 10 healthy volunteers and 20 patients with CCM in this study. The participants were studied using a 3.0-T MRI system. For DTI acquisitions, diffusion-weighted spin-echo rFOV single-shot echo-planar imaging was used. Regions-of-interest (ROI) for the lateral column (LC) and posterior column (PC) tracts were determined on the basis of a map of fractional anisotropy (FA) of the spinal cord and FA values were measured. The FA of patients with CCM was compared with that of healthy controls and correlated with Japanese Orthopaedic Association (JOA) score. RESULTS In LC and PC tracts, FA values in patients with CCM were significantly lower than in healthy volunteers. Total JOA scores correlated moderately with FA in LC and PC tracts. JOA subscores for motor dysfunction of the lower extremities correlated strongly with FA in LC and PC tracts. CONCLUSION It is feasible to evaluate the cervical spinal cord at the tract level using rFOV DTI. Although FA values at the maximum compression level were not well correlated with total JOA scores, they were strongly correlated with JOA subscores for motor dysfunction of the lower extremities. Our findings suggest that FA reflects white matter dysfunction below the maximum compression level and FA can be used as an imaging biomarker of spinal cord dysfunction. LEVEL OF EVIDENCE 4.
Collapse
|
36
|
Rasoanandrianina H, Grapperon AM, Taso M, Girard OM, Duhamel G, Guye M, Ranjeva JP, Attarian S, Verschueren A, Callot V. Region-specific impairment of the cervical spinal cord (SC) in amyotrophic lateral sclerosis: A preliminary study using SC templates and quantitative MRI (diffusion tensor imaging/inhomogeneous magnetization transfer). NMR IN BIOMEDICINE 2017; 30:e3801. [PMID: 28926131 DOI: 10.1002/nbm.3801] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/24/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
In this preliminary study, our objective was to investigate the potential of high-resolution anatomical imaging, diffusion tensor imaging (DTI) and conventional/inhomogeneous magnetization transfer imaging [magnetization transfer (MT)/inhomogeneous magnetization transfer (ihMT)] at 3 T, analyzed with template-extracted regions of interest, to measure the atrophy and structural changes of white (WM) and gray (GM) matter spinal cord (SC) occurring in patients with amyotrophic lateral sclerosis (ALS). Ten patients with ALS and 20 age-matched healthy controls were recruited. SC GM and WM areas were automatically segmented using dedicated templates. Atrophy indices were evaluated from T2 *-weighted images at each vertebral level from cervical C1 to C6. DTI and ihMT metrics were quantified within the corticospinal tract (CST), posterior sensory tract (PST) and anterior GM (aGM) horns at the C2 and C5 levels. Clinical disabilities of patients with ALS were evaluated using the Revised ALS Functional Rating Scale, upper motor neuron (UMN) and Medical Research Council scorings, and correlated with MR metrics. Compared with healthy controls, GM and WM atrophy was observed in patients with ALS, especially at lower cervical levels, where a strong correlation was also observed between GM atrophy and the UMN score (R = -0.75, p = 0.05 at C6). Interestingly, a significant decrease in ihMT ratio was found in all regions of interest (p < 0.0008), fractional anisotropy (FA) and MT ratios decreased significantly in CST, especially at C5 (p < 0.005), and λ// (axial diffusivity) decreased significantly in CST (p = 0.0004) and PST (p = 0.003) at C2. Strong correlations between MRI metrics and clinical scores were also found (0.47 < |R| < 0.87, p < 0.05). Altogether, these preliminary results suggest that high-resolution anatomical imaging and ihMT imaging, in addition to DTI, are valuable for the characterization of SC tissue impairment in ALS. In this study, in addition to an important SC WM demyelination, we also observed, for the first time in ALS, impairments of cervical aGM.
Collapse
Affiliation(s)
- Henitsoa Rasoanandrianina
- Aix-Marseille Université, CNRS, APHM, CRMBM, Hôpital de la Timone, CEMEREM, Marseille, France
- iLab-Spine International Associated Laboratory, Marseille-Montreal, France-Canada
- Aix-Marseille Université, IFSTTAR, LBA UMR T 24, Marseille, France
| | - Aude-Marie Grapperon
- Centre de Référence des Maladies neuro-musculaires et de la SLA, Hopital de La Timone, Marseille, France
| | - Manuel Taso
- Aix-Marseille Université, CNRS, APHM, CRMBM, Hôpital de la Timone, CEMEREM, Marseille, France
- iLab-Spine International Associated Laboratory, Marseille-Montreal, France-Canada
- Aix-Marseille Université, IFSTTAR, LBA UMR T 24, Marseille, France
| | - Olivier M Girard
- Aix-Marseille Université, CNRS, APHM, CRMBM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Guillaume Duhamel
- Aix-Marseille Université, CNRS, APHM, CRMBM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix-Marseille Université, CNRS, APHM, CRMBM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Université, CNRS, APHM, CRMBM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Shahram Attarian
- Centre de Référence des Maladies neuro-musculaires et de la SLA, Hopital de La Timone, Marseille, France
- Aix Marseille Université, INSERM, GMGF, Marseille, France
| | - Annie Verschueren
- Centre de Référence des Maladies neuro-musculaires et de la SLA, Hopital de La Timone, Marseille, France
| | - Virginie Callot
- Aix-Marseille Université, CNRS, APHM, CRMBM, Hôpital de la Timone, CEMEREM, Marseille, France
- iLab-Spine International Associated Laboratory, Marseille-Montreal, France-Canada
| |
Collapse
|
37
|
Zhao C, Rao JS, Pei XJ, Lei JF, Wang ZJ, Zhao W, Wei RH, Yang ZY, Li XG. Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury. Magn Reson Imaging 2017; 47:25-32. [PMID: 29154896 DOI: 10.1016/j.mri.2017.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/09/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Adequate evaluation of spinal cord parenchyma and accurate identification of injury range are considered two premises for the research and treatment of chronic spinal cord injury (SCI). Diffusion tensor imaging (DTI) provides information about water diffusion in spinal cord, and thus makes it possible to realize these premises. METHOD In this study, we conducted magnetic resonance imaging (MRI) for Wistar rats 84days after spinal cord contusion. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) from different positions of the injured cord were collected, analyzed, and compared with the histological results and locomotor outcomes. Moreover, we performed fiber tractography, and examined the difference in cavity percentage obtained respectively via conventional MRI, DTI and histology. RESULTS Results showed that the chronic SCI rats had the largest changes of all DTI metrics at the epicenter; the farther away from the epicenter, the smaller the variation. FA, AD and RD were all influenced by SCI in a greater space range than MD. The good consistency of FA values and histological results in specific regions evidenced FA's capability of reflecting Wallerian degeneration after SCI. DTI metrics at the epicenter in ventral funiculus also showed a close correlation with the BBB scores. Additionally, supported by the histological results, DTI enables a more accurate measurement of cavity percentage compared to the conventional MRI. CONCLUSION DTI parameters might comprehensively reflect the post-SCI pathological status of spinal cord parenchyma at the epicenter and distal parts during the chronic stage, while showing good consistency with locomotor performance. DTI combined with tractography could intuitively display the distribution of spared fibers after SCI and accurately provide information such as cavity area. This may shed light on the research and treatment of chronic SCI.
Collapse
Affiliation(s)
- Can Zhao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiao-Jiao Pei
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, China
| | - Jian-Feng Lei
- Medical Experiment and Test Center, Capital Medical University, Beijing 100069, China
| | - Zhan-Jing Wang
- Medical Experiment and Test Center, Capital Medical University, Beijing 100069, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Rui-Han Wei
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhao-Yang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
38
|
David G, Freund P, Mohammadi S. The efficiency of retrospective artifact correction methods in improving the statistical power of between-group differences in spinal cord DTI. Neuroimage 2017; 158:296-307. [PMID: 28669912 PMCID: PMC6168644 DOI: 10.1016/j.neuroimage.2017.06.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 11/10/2022] Open
Abstract
Diffusion tensor imaging (DTI) is a promising approach for investigating the white matter microstructure of the spinal cord. However, it suffers from severe susceptibility, physiological, and instrumental artifacts present in the cord. Retrospective correction techniques are popular approaches to reduce these artifacts, because they are widely applicable and do not increase scan time. In this paper, we present a novel outlier rejection approach (reliability masking) which is designed to supplement existing correction approaches by excluding irreversibly corrupted and thus unreliable data points from the DTI index maps. Then, we investigate how chains of retrospective correction techniques including (i) registration, (ii) registration and robust fitting, and (iii) registration, robust fitting, and reliability masking affect the statistical power of a previously reported finding of lower fractional anisotropy values in the posterior column and lateral corticospinal tracts in cervical spondylotic myelopathy (CSM) patients. While established post-processing steps had small effect on the statistical power of the clinical finding (slice-wise registration: −0.5%, robust fitting: +0.6%), adding reliability masking to the post-processing chain increased it by 4.7%. Interestingly, reliability masking and registration affected the t-score metric differently: while the gain in statistical power due to reliability masking was mainly driven by decreased variability in both groups, registration slightly increased variability. In conclusion, reliability masking is particularly attractive for neuroscience and clinical research studies, as it increases statistical power by reducing group variability and thus provides a cost-efficient alternative to increasing the group size. A novel outlier rejection technique (reliability masking) is introduced. Standard artifact correction has little effect on the statistical power of between-group differences. Reliability masking improves the statistical power of between-group differences. This improvement is driven by decreased group-level variability.
Collapse
Affiliation(s)
- Gergely David
- Spinal Cord Injury Center Balgrist, Balgrist University Hospital, Zurich, Switzerland; Department of Systems Neuroscience, Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, Balgrist University Hospital, Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom; Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, London, United Kingdom; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neuroscience, Medical Center Hamburg-Eppendorf, Hamburg, Germany; Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
39
|
Choe AS, Sadowsky CL, Smith SA, van Zijl PCM, Pekar JJ, Belegu V. Subject-specific regional measures of water diffusion are associated with impairment in chronic spinal cord injury. Neuroradiology 2017; 59:747-758. [PMID: 28597208 DOI: 10.1007/s00234-017-1860-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/28/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE We aimed to identify non-invasive imaging parameters that can serve as biomarkers for the integrity of the spinal cord, which is paramount to neurological function. Diffusion tensor imaging (DTI) indices are sensitive to axonal and myelin damage, and have strong potential to serve as such biomarkers. However, averaging DTI indices over large regions of interest (ROIs), a common approach to analyzing the images of injured spinal cord, leads to loss of subject-specific information. We investigated if DTI-tractography-driven, subject-specific demarcation approach can yield measures that are more specific to impairment. METHODS In 18 individuals with chronic spinal cord injury (SCI), subject-specific demarcation of the injury region was performed using DTI tractography, which yielded three regions relative to injury (RRI; regions superior to, at, and below injury epicenter). DTI indices averaged over each RRI were correlated with measures of residual motor and sensory function, obtained using the International Standard of Neurological Classification for Spinal Cord Injury (ISNCSCI). RESULTS Total ISNCSCI score (ISNCSCI-tot; sum of ISNCSCI motor and sensory scores) was significantly (p < 0.05) correlated with fractional anisotropy and axial and radial diffusivities. ISNCSCI-tot showed strongest correlation with indices measured from the region inferior to the injury epicenter (IRRI), the degree of which exceeded that of those measured from the entire cervical cord-suggesting contribution from Wallerian degeneration. CONCLUSION DTI tractography-driven, subject-specific injury demarcation approach provided measures that were more specific to impairment. Notably, DTI indices obtained from the IRRI region showed the highest specificity to impairment, demonstrating their strong potential as biomarkers for the SCI severity.
Collapse
Affiliation(s)
- Ann S Choe
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD, 21205, USA.
| | - Cristina L Sadowsky
- International Center for Spinal Cord Injury, Kennedy Krieger Institute, Baltimore, MD, 21205, USA.,Physical Medicine and Rehabilitation, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Seth A Smith
- Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD, 21205, USA
| | - James J Pekar
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD, 21205, USA
| | - Visar Belegu
- International Center for Spinal Cord Injury, Kennedy Krieger Institute, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
40
|
Zhao C, Song W, Rao JS, Zhao W, Wei RH, Zhou X, Tian PY, Yang ZY, Li XG. Combination of kinematic analyses and diffusion tensor tractrography to evaluate the residual motor functions in spinal cord-hemisected monkeys. J Med Primatol 2017; 46:239-247. [PMID: 28543057 DOI: 10.1111/jmp.12276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) causes loss of locomotor functions. Nowadays, the relationship between the residual locomotion after SCI and the diffusion tensor tractography (DTT) results still remains unclear. METHODS Four rhesus monkeys were suffered thoracic cord hemisection. Kinematic evaluation and DTT were performed prior- and post-SCI (6 and 12 weeks). The longitudinal changes of gait parameters and the DTT parameters were analyzed for the injury-contralateral hindlimb. The correlations between gaits and DTT parameters were also investigated. RESULTS Almost gait parameters significantly changed after SCI, meanwhile, the caudal-rostral connection rate of DTT showed negative correlation with all gait parameters, demonstrating that the locomotor changes of the injury-contralateral hindlimb were associated with the ratio of residual fibers. CONCLUSIONS The combinatory use of gait analysis and DTT has been demonstrated to be sensitive to locomotion changes after SCI, and may therefore have potential applications in the pre-clinical studies of SCI.
Collapse
Affiliation(s)
- Can Zhao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wei Song
- Rehabilitation Engineering Research Institute, China Rehabilitation Research Center, Beijing, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Rui-Han Wei
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xia Zhou
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Peng-Yu Tian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhao-Yang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Zhang B, Seifert AC, Kim JW, Borrello J, Xu J. 7 Tesla 22-channel wrap-around coil array for cervical spinal cord and brainstem imaging. Magn Reson Med 2016; 78:1623-1634. [DOI: 10.1002/mrm.26538] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/12/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Bei Zhang
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai; New York New York USA
- Department of Radiology; Icahn School of Medicine at Mount Sinai; New York New York USA
| | - Alan C. Seifert
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai; New York New York USA
- Department of Radiology; Icahn School of Medicine at Mount Sinai; New York New York USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai; New York New York USA
| | - Joo-won Kim
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai; New York New York USA
- Department of Radiology; Icahn School of Medicine at Mount Sinai; New York New York USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai; New York New York USA
| | - Joseph Borrello
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai; New York New York USA
- Department of Radiology; Icahn School of Medicine at Mount Sinai; New York New York USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai; New York New York USA
| | - Junqian Xu
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai; New York New York USA
- Department of Radiology; Icahn School of Medicine at Mount Sinai; New York New York USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai; New York New York USA
- Department of Neuroscience; Icahn School of Medicine at Mount Sinai; New York New York USA
| |
Collapse
|
42
|
Crombe A, Alberti N, Hiba B, Uettwiller M, Dousset V, Tourdias T. Cervical Spinal Cord DTI Is Improved by Reduced FOV with Specific Balance between the Number of Diffusion Gradient Directions and Averages. AJNR Am J Neuroradiol 2016; 37:2163-2170. [PMID: 27365330 DOI: 10.3174/ajnr.a4850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/25/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Reduced-FOV DTI is promising for exploring the cervical spinal cord, but the optimal set of parameters needs to be clarified. We hypothesized that the number of excitations should be favored over the number of diffusion gradient directions regarding the strong orientation of the cord in a single rostrocaudal axis. MATERIALS AND METHODS Fifteen healthy individuals underwent cervical spinal cord MR imaging at 3T, including an anatomic 3D-Multi-Echo Recombined Gradient Echo, high-resolution full-FOV DTI with a NEX of 3 and 20 diffusion gradient directions and 5 sets of reduced-FOV DTIs differently balanced in terms of NEX/number of diffusion gradient directions: (NEX/number of diffusion gradient directions = 3/20, 5/16, 7/12, 9/9, and 12/6). Each DTI sequence lasted 4 minutes 30 seconds, an acceptable duration, to cover C1-C4 in the axial plane. Fractional anisotropy maps and tractograms were reconstructed. Qualitatively, 2 radiologists rated the DTI sets blinded to the sequence. Quantitatively, we compared distortions, SNR, variance of fractional anisotropy values, and numbers of detected fibers. RESULTS Qualitatively, reduced-FOV DTI sequences with a NEX of ≥5 were significantly better rated than the full-FOV DTI and the reduced-FOV DTI with low NEX (N = 3) and a high number of diffusion gradient directions (D = 20). Quantitatively, the best trade-off was reached by the reduced-FOV DTI with a NEX of 9 and 9 diffusion gradient directions, which provided significantly fewer artifacts, higher SNR on trace at b = 750 s/mm2 and an increased number of fibers tracked while maintaining similar fractional anisotropy values and dispersion. CONCLUSIONS Optimized reduced-FOV DTI improves spinal cord imaging. The best compromise was obtained with a NEX of 9 and 9 diffusion gradient directions, which emphasizes the need for increasing the NEX at the expense of the number of diffusion gradient directions for spinal cord DTI contrary to brain DTI.
Collapse
Affiliation(s)
- A Crombe
- From the Centre Hospitalier Universitaire de Bordeaux (A.C., V.D., T.T.), Service de NeuroImagerie Diagnostique de Thérapeutique, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale U1215 (A.C., V.D., T.T.), Physiopathologie de la Plasticité Neuronale, Bordeaux, France
- Institut de Bio-Imagerie de Bordeaux (A.C., N.A., B.H., V.D., T.T.), Université de Bordeaux, Bordeaux, France
| | - N Alberti
- Institut de Bio-Imagerie de Bordeaux (A.C., N.A., B.H., V.D., T.T.), Université de Bordeaux, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (N.A., B.H.), Centre National de la Recherche Scientifique Unité Mixte de Recherche 5536, Bordeaux, France
| | - B Hiba
- Institut de Bio-Imagerie de Bordeaux (A.C., N.A., B.H., V.D., T.T.), Université de Bordeaux, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (N.A., B.H.), Centre National de la Recherche Scientifique Unité Mixte de Recherche 5536, Bordeaux, France
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (B.H.), Centre National de la Recherche Scientifique Unité Mixte de Recherche 5287, Bordeaux, France
| | - M Uettwiller
- GE Healthcare (M.U.), Vélizy-Villacoublay, France
| | - V Dousset
- From the Centre Hospitalier Universitaire de Bordeaux (A.C., V.D., T.T.), Service de NeuroImagerie Diagnostique de Thérapeutique, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale U1215 (A.C., V.D., T.T.), Physiopathologie de la Plasticité Neuronale, Bordeaux, France
- Institut de Bio-Imagerie de Bordeaux (A.C., N.A., B.H., V.D., T.T.), Université de Bordeaux, Bordeaux, France
| | - T Tourdias
- From the Centre Hospitalier Universitaire de Bordeaux (A.C., V.D., T.T.), Service de NeuroImagerie Diagnostique de Thérapeutique, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale U1215 (A.C., V.D., T.T.), Physiopathologie de la Plasticité Neuronale, Bordeaux, France
- Institut de Bio-Imagerie de Bordeaux (A.C., N.A., B.H., V.D., T.T.), Université de Bordeaux, Bordeaux, France
| |
Collapse
|
43
|
Yiannakas MC, Grussu F, Louka P, Prados F, Samson RS, Battiston M, Altmann DR, Ourselin S, Miller DH, Gandini Wheeler-Kingshott CAM. Reduced Field-of-View Diffusion-Weighted Imaging of the Lumbosacral Enlargement: A Pilot In Vivo Study of the Healthy Spinal Cord at 3T. PLoS One 2016; 11:e0164890. [PMID: 27741303 PMCID: PMC5065166 DOI: 10.1371/journal.pone.0164890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/03/2016] [Indexed: 11/21/2022] Open
Abstract
Diffusion tensor imaging (DTI) has recently started to be adopted into clinical investigations of spinal cord (SC) diseases. However, DTI applications to the lower SC are limited due to a number of technical challenges, related mainly to the even smaller size of the SC structure at this level, its position relative to the receiver coil elements and the effects of motion during data acquisition. Developing methods to overcome these problems would offer new means to gain further insights into microstructural changes of neurological conditions involving the lower SC, and in turn could help explain symptoms such as bladder and sexual dysfunction. In this work, the feasibility of obtaining grey and white matter (GM/WM) DTI indices such as axial/radial/mean diffusivity (AD/RD/MD) and fractional anisotropy (FA) within the lumbosacral enlargement (LSE) was investigated using a reduced field-of-view (rFOV) single-shot echo-planar imaging (ss-EPI) acquisition in 14 healthy participants using a clinical 3T MR system. The scan-rescan reproducibility of the measurements was assessed by calculating the percentage coefficient of variation (%COV). Mean FA was higher in WM compared to GM (0.58 and 0.4 in WM and GM respectively), AD and MD were higher in WM compared to GM (1.66 μm2ms-1 and 0.94 μm2ms-1 in WM and 1.2 μm2ms-1 and 0.82 μm2ms-1 in GM for AD and MD respectively) and RD was lower in WM compared to GM (0.58 μm2ms-1 and 0.63 μm2ms-1 respectively). The scan-rescan %COV was lower than 10% in all cases with the highest values observed for FA and the lowest for MD. This pilot study demonstrates that it is possible to obtain reliable tissue-specific estimation of DTI indices within the LSE using a rFOV ss-EPI acquisition. The DTI acquisition and analysis protocol presented here is clinically feasible and may be used in future investigations of neurological conditions implicating the lower SC.
Collapse
Affiliation(s)
- Marios C. Yiannakas
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Francesco Grussu
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Polymnia Louka
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Ferran Prados
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
- Translational Imaging Group, Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- University College London / University College London Hospitals National Institute for Health Research (NIHR) Biomedical Research Centre, London, United Kingdom
| | - Rebecca S. Samson
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Marco Battiston
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Daniel R. Altmann
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- University College London / University College London Hospitals National Institute for Health Research (NIHR) Biomedical Research Centre, London, United Kingdom
| | - David H. Miller
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
- University College London / University College London Hospitals National Institute for Health Research (NIHR) Biomedical Research Centre, London, United Kingdom
| | - Claudia A. M. Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
- Brain MRI 3T Mondino Research Center, C. Mondino National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| |
Collapse
|
44
|
De Leener B, Lévy S, Dupont SM, Fonov VS, Stikov N, Louis Collins D, Callot V, Cohen-Adad J. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 2016; 145:24-43. [PMID: 27720818 DOI: 10.1016/j.neuroimage.2016.10.009] [Citation(s) in RCA: 355] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 11/17/2022] Open
Abstract
For the past 25 years, the field of neuroimaging has witnessed the development of several software packages for processing multi-parametric magnetic resonance imaging (mpMRI) to study the brain. These software packages are now routinely used by researchers and clinicians, and have contributed to important breakthroughs for the understanding of brain anatomy and function. However, no software package exists to process mpMRI data of the spinal cord. Despite the numerous clinical needs for such advanced mpMRI protocols (multiple sclerosis, spinal cord injury, cervical spondylotic myelopathy, etc.), researchers have been developing specific tools that, while necessary, do not provide an integrative framework that is compatible with most usages and that is capable of reaching the community at large. This hinders cross-validation and the possibility to perform multi-center studies. In this study we introduce the Spinal Cord Toolbox (SCT), a comprehensive software dedicated to the processing of spinal cord MRI data. SCT builds on previously-validated methods and includes state-of-the-art MRI templates and atlases of the spinal cord, algorithms to segment and register new data to the templates, and motion correction methods for diffusion and functional time series. SCT is tailored towards standardization and automation of the processing pipeline, versatility, modularity, and it follows guidelines of software development and distribution. Preliminary applications of SCT cover a variety of studies, from cross-sectional area measures in large databases of patients, to the precise quantification of mpMRI metrics in specific spinal pathways. We anticipate that SCT will bring together the spinal cord neuroimaging community by establishing standard templates and analysis procedures.
Collapse
Affiliation(s)
- Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Simon Lévy
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| | - Sara M Dupont
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Vladimir S Fonov
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Virginie Callot
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France; AP-HM, Hopital de la Timone, Pôle d'imagerie médicale, CEMEREM, Marseille, France
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
45
|
Reduced FOV diffusion tensor MR imaging and fiber tractography of pediatric cervical spinal cord injury. Spinal Cord 2016; 55:314-320. [DOI: 10.1038/sc.2016.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/31/2016] [Accepted: 07/01/2016] [Indexed: 12/14/2022]
|
46
|
Liu X, Tian W, Chen H, LoStracco TA, Zhang J, Li MY, Germin B, Wang HZ. Advanced Neuroimaging in the Evaluation of Spinal Cord Tumors and Tumor Mimics: Diffusion Tensor and Perfusion-Weighted Imaging. Semin Ultrasound CT MR 2016; 38:163-175. [PMID: 28347419 DOI: 10.1053/j.sult.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spinal cord tumors are an important component of pathologic diseases involving the spinal cord. Conventional magnetic resonance (MR) imaging only provides anatomical information. MR diffusion tensor imaging (DTI) and MR perfusion-weighted imaging (PWI) may detect microstructure diffusion and hemodynamic changes in these tumors. We review recent application studies of MR DTI and PWI in spinal cord tumors. Overall, MR DTI and MR PWI are promising imaging tools that are especially useful in improving differential diagnosis between spinal cord tumors and tumor mimics, preoperative evaluation of resectability, and providing assistance in surgical navigation.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY.
| | - Wei Tian
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY
| | - Hongyan Chen
- Department of Radiology, Beijing TiantanHospital, Beijing, China
| | - Thomas A LoStracco
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY
| | - Jing Zhang
- GE Healthcare MR research center, Beijing, China
| | - Michael Yan Li
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY
| | - Barbara Germin
- (║)Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Henry Z Wang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
47
|
Taso M, Girard OM, Duhamel G, Le Troter A, Feiweier T, Guye M, Ranjeva JP, Callot V. Tract-specific and age-related variations of the spinal cord microstructure: a multi-parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT). NMR IN BIOMEDICINE 2016; 29:817-832. [PMID: 27100385 DOI: 10.1002/nbm.3530] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/17/2016] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Being able to finely characterize the spinal cord (SC) microstructure and its alterations is a key point when investigating neural damage mechanisms encountered in different central nervous system (CNS) pathologies, such as multiple sclerosis, amyotrophic lateral sclerosis or myelopathy. Based on novel methods, including inhomogeneous magnetization transfer (ihMT) and dedicated SC probabilistic atlas post-processing, the present study focuses on the in vivo characterization of the healthy SC tissue in terms of regional microstructure differences between (i) upper and lower cervical vertebral levels and (ii) sensory and motor tracts, as well as differences attributed to normal aging. Forty-eight healthy volunteers aged from 20 to 70 years old were included in the study and scanned at 3 T using axial high-resolution T2 *-w imaging, diffusion tensor imaging (DTI) and ihMT, at two vertebral levels (C2 and C5). A processing pipeline with minimal user intervention, SC segmentation and spatial normalization into a reference space was implemented in order to assess quantitative morphological and structural parameters (cross-sectional areas, scalar DTI and MT/ihMT metrics) in specific white and gray matter regions of interest. The multi-parametric MRI metrics collected allowed upper and lower cervical levels to be distinguished, with higher ihMT ratio (ihMTR), higher axial diffusivity (λ∥ ) and lower radial diffusivity (λ⊥ ) at C2 compared with C5. Significant differences were also observed between white matter fascicles, with higher ihMTR and lower λ∥ in motor tracts compared with posterior sensory tracts. Finally, aging was found to be associated with significant metric alterations (decreased ihMTR and λ∥ ). The methodology proposed here, which can be easily transferred to the clinic, provides new insights for SC characterization. It bears great potential to study focal and diffuse SC damage in neurodegenerative and demyelinating diseases. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Manuel Taso
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
- Aix-Marseille Université, IFSTTAR, Laboratoire de Biomécanique Appliquée (LBA), UMR T 24, Marseille, France
- Laboratoire International Associé iLab-Spine - Imagerie et Biomécanique du Rachis, Marseille, France/Montréal, Canada
| | - Olivier M Girard
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | - Guillaume Duhamel
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | - Arnaud Le Troter
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | | | - Maxime Guye
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
- Laboratoire International Associé iLab-Spine - Imagerie et Biomécanique du Rachis, Marseille, France/Montréal, Canada
| | - Virginie Callot
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
- Laboratoire International Associé iLab-Spine - Imagerie et Biomécanique du Rachis, Marseille, France/Montréal, Canada
| |
Collapse
|
48
|
Samson RS, Lévy S, Schneider T, Smith AK, Smith SA, Cohen-Adad J, Gandini Wheeler-Kingshott CAM. ZOOM or Non-ZOOM? Assessing Spinal Cord Diffusion Tensor Imaging Protocols for Multi-Centre Studies. PLoS One 2016; 11:e0155557. [PMID: 27171194 PMCID: PMC4865165 DOI: 10.1371/journal.pone.0155557] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/29/2016] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to develop and evaluate two spinal cord (SC) diffusion tensor imaging (DTI) protocols, implemented at multiple sites (using scanners from two different manufacturers), one available on any clinical scanner, and one using more advanced options currently available in the research setting, and to use an automated processing method for unbiased quantification. DTI parameters are sensitive to changes in the diseased SC. However, imaging the cord can be technically challenging due to various factors including its small size, patient-related and physiological motion, and field inhomogeneities. Rapid acquisition sequences such as Echo Planar Imaging (EPI) are desirable but may suffer from image distortions. We present a multi-centre comparison of two acquisition protocols implemented on scanners from two different vendors (Siemens and Philips), one using a reduced field-of-view (rFOV) EPI sequence, and one only using options available on standard clinical scanners such as outer volume suppression (OVS). Automatic analysis was performed with the Spinal Cord Toolbox for unbiased and reproducible quantification of DTI metrics in the white matter. Images acquired using the rFOV sequence appear less distorted than those acquired using OVS alone. SC DTI parameter values obtained using both sequences at all sites were consistent with previous measurements made at 3T. For the same scanner manufacturer, DTI parameter inter-site SDs were smaller for the rFOV sequence compared to the OVS sequence. The higher inter-site reproducibility (for the same manufacturer and acquisition details, i.e. ZOOM data acquired at the two Philips sites) of rFOV compared to the OVS sequence supports the idea that making research options such as rFOV more widely available would improve accuracy of measurements obtained in multi-centre clinical trials. Future multi-centre studies should also aim to match the rFOV technique and signal-to-noise ratios in all sequences from different manufacturers/sites in order to avoid any bias in measured DTI parameters and ensure similar sensitivity to pathological changes.
Collapse
Affiliation(s)
- Rebecca S. Samson
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
- * E-mail:
| | - Simon Lévy
- Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, University of Montreal, Montreal, QC, Canada
| | - Torben Schneider
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
- Philips Healthcare, Guilford, Surrey, United Kingdom
| | - Alex K. Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Seth A. Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Julien Cohen-Adad
- Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, University of Montreal, Montreal, QC, Canada
| | - Claudia A. M. Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
- Brain MRI 3T Center, C. Mondino National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
49
|
Murphy RK, Sun P, Han RH, Griffin KJ, Wagner J, Yarbrough CK, Wright NM, Dorward IG, Riew KD, Kelly MP, Santiago P, Zebala LP, Trinkaus K, Ray WZ, Song SK. Fractional anisotropy to quantify cervical spondylotic myelopathy severity. J Neurosurg Sci 2016; 62:406-412. [PMID: 27149369 DOI: 10.23736/s0390-5616.16.03678-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND A number of clinical tools exist for measuring the severity of cervical spondylotic myelopathy (CSM). Several studies have recently described the use of non-invasive imaging biomarkers to assess severity of disease. These imaging markers may provide an additional tool to measure disease progression and represent a surrogate marker of response to therapy. Correlating these imaging biomarkers with clinical quantitative measures is critical for accurate therapeutic stratification and quantification of axonal injury. METHODS Fourteen patients and seven healthy control subjects were enrolled. Patients were classified as mildly (7) or moderately (7) impaired based on Modified Japanese Orthopedic Association Scale. All patients underwent diffusion tensor imaging (DTI) and diffusion basis spectrum imaging (DBSI) analyses. In addition to standard neurological examination, all participants underwent 30-m Walking Test, 9-hole Peg Test (9HPT), grip strength, key pinch, and vibration sensation thresholds in the index finger and great toe. Differences in assessment scores between controls, mild and moderate CSM patients were correlated with DTI and DBSI derived fractional anisotropy (FA). RESULTS Clinically, 30-meter walking times were significantly longer in the moderately impaired group than in the control group. Maximum 9HPT times were significantly longer in both the mildly and moderately impaired groups as compared to normal controls. Scores on great toe vibration sensation thresholds were lower in the mildly impaired and moderately impaired groups as compared to controls. We found no clear evidence for any differences in minimum grip strength, minimum key pinch, or index finger vibration sensation thresholds. There were moderately strong associations between DTI and DBSI FA values and 30-meter walking times and 9HPT. CONCLUSIONS The 30-m Walking Test and 9HPT were both moderately to strongly associated with DTI/DBSI FA values. FA may represent an additional measure to help differentiate and stratify patients with mild or moderate CSM.
Collapse
Affiliation(s)
- Rory K Murphy
- Department of Neurosurgery, Washington University, St. Louis, MO, USA
| | - Peng Sun
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Rowland H Han
- Washington University School of Medicine, St. Louis, MO, USA
| | - Kim J Griffin
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Joanne Wagner
- Department of Physical Therapy and Athletic Training, Saint Louis University, St. Louis, MO, USA
| | | | - Neill M Wright
- Department of Neurosurgery, Washington University, St. Louis, MO, USA
| | - Ian G Dorward
- Department of Neurosurgery, Washington University, St. Louis, MO, USA
| | - K Daniel Riew
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - Michael P Kelly
- Department of Orthopedic Surgery, Washington University, St. Louis, MO, USA
| | - Paul Santiago
- Department of Neurosurgery, Washington University, St. Louis, MO, USA
| | - Lukas P Zebala
- Department of Orthopedic Surgery, Washington University, St. Louis, MO, USA
| | - Kathryn Trinkaus
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Wilson Z Ray
- Department of Neurosurgery, Washington University, St. Louis, MO, USA -
| | - Sheng-Kwei Song
- Department of Radiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
50
|
Abstract
STUDY DESIGN A prospective cohort study. OBJECTIVE In this study, we employed diffusion basis spectrum imaging (DBSI) to quantitatively assess axon/myelin injury, cellular inflammation, and axonal loss of cervical spondylotic myelopathy (CSM) spinal cords. SUMMARY OF BACKGROUND DATA A major shortcoming in the management of CSM is the lack of an effective diagnostic approach to stratify treatments and to predict outcomes. No current clinical diagnostic imaging approach is capable of accurately reflecting underlying spinal cord pathologies. METHODS Seven patients with mild (mJOA ≥15), five patients with moderate (14≥mJOA ≥11), and two patients with severe (mJOA <11) CSM were prospectively enrolled. Given the low number of severe patients, moderate and severe patients were combined for comparison with seven age-matched controls and statistical analysis. We employed the newly developed DBSI to quantitatively measure axon and myelin injury, cellular inflammation, and axonal loss. RESULTS Median DBSI-inflammation volume is similar in control (266 μL) and mild CSM (171 μL) subjects, with a significant overlap of the middle 50% of observations (quartile 3 - quartile 1). This was in contrast to moderate CSM subjects that had higher DBSI-inflammation volumes (382 μL; P = 0.033). DBSI-axon volume shows a strong correlation with clinical measures (r = 0.79 and 0.87, P = 1.9 x 10-5 and 2 x 10-4 for mJOA and MDI, respectively). In addition to axon and myelin injury, our findings suggest that both inflammation and axon loss contribute to neurological impairment. Most strikingly, DBSI-derived axon volume declines as severity of impairment increases. CONCLUSION DBSI-quantified axonal loss may be an imaging biomarker to predict functional recovery following decompression in CSM. Our results demonstrate an increase of about 60% in the odds of impairment relative to the control for each decrease of 100 μL in axon volume. LEVEL OF EVIDENCE 3.
Collapse
|