1
|
Kim M, Ji S, Kim J, Min K, Jeong H, Youn J, Kim T, Jang J, Bilgic B, Shin H, Lee J. χ-sepnet: Deep Neural Network for Magnetic Susceptibility Source Separation. Hum Brain Mapp 2025; 46:e70136. [PMID: 39835664 PMCID: PMC11748151 DOI: 10.1002/hbm.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/11/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Magnetic susceptibility source separation (χ-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of paramagnetic and diamagnetic susceptibility source distributions in the brain. Similar to QSM, it requires solving the ill-conditioned problem of dipole inversion, suffering from so-called streaking artifacts. Additionally, the method utilizes reversible transverse relaxation (R 2 ' = R 2 * - R 2 $$ {R}_2^{\prime }={R}_2^{\ast }-{R}_2 $$ ) to complement frequency shift information for estimating susceptibility source concentrations, requiring time-consuming data acquisition forR 2 $$ {R}_2 $$ (e.g., multi-echo spin-echo) in addition to multi-echo GRE data forR 2 * $$ {R}_2^{\ast } $$ . To address these challenges, we develop a new deep learning network, χ-sepnet, and propose two deep learning-based susceptibility source separation pipelines, χ-sepnet-R 2 ' $$ {R}_2^{\prime } $$ for inputs with multi-echo GRE and multi-echo spin-echo (or turbo spin-echo) and χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ for input with multi-echo GRE only. The neural network is trained using multiple head orientation data that provide streaking artifact-free labels, generating high-quality χ-separation maps. The evaluation of the pipelines encompasses both qualitative and quantitative assessments in healthy subjects, and visual inspection of lesion characteristics in multiple sclerosis patients. The susceptibility source-separated maps of the proposed pipelines delineate detailed brain structures with substantially reduced artifacts compared to those from the conventional regularization-based reconstruction methods. In quantitative analysis, χ-sepnet-R 2 ' $$ {R}_2^{\prime } $$ achieves the best outcomes followed by χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ , outperforming the conventional methods. When the lesions of multiple sclerosis patients are classified into subtypes, most lesions are identified as the same subtype in the maps from χ-sepnet-R 2 ' $$ {R}_2^{\prime } $$ and χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ (paramagnetic susceptibility: 99.6% and diamagnetic susceptibility: 98.4%; both out of 250 lesions). The χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ pipeline, which only requires multi-echo GRE data, has demonstrated its potential to offer broad clinical and scientific applications, although further evaluations for various diseases and pathological conditions are necessary.
Collapse
Affiliation(s)
- Minjun Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Sooyeon Ji
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
- Division of Computer EngineeringHankuk University of Foreign StudiesYonginRepublic of Korea
| | - Jiye Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Kyeongseon Min
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Hwihun Jeong
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Jonghyo Youn
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Taechang Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Jinhee Jang
- Department of RadiologySeoul St Mary's Hospital, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
- Institute for Precision HealthUniversity of CaliforniaIrvineCaliforniaUSA
| | - Berkin Bilgic
- Massachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Hyeong‐Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
- F.M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
2
|
Kim J, Kim M, Ji S, Min K, Jeong H, Shin HG, Oh C, Fox RJ, Sakaie KE, Lowe MJ, Oh S, Straub S, Kim SG, Lee J. In-vivo high-resolution χ-separation at 7T. Neuroimage 2025:121060. [PMID: 39884410 DOI: 10.1016/j.neuroimage.2025.121060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
A recently introduced quantitative susceptibility mapping (QSM) technique, χ-separation, offers the capability to separate paramagnetic (χpara) and diamagnetic (χdia) susceptibility distribution within the brain. In-vivo high-resolution mapping of iron and myelin distribution, estimated by χ-separation, could provide a deeper understanding of brain substructures, assisting the investigation of their functions and alterations. This can be achieved using 7T MRI, which benefits from a high signal-to-noise ratio and susceptibility effects. However, applying χ-separation at 7T presents difficulties due to the requirement of an R2 map, coupled with issues such as high specific absorption rate (SAR), large B1 transmit field inhomogeneities, and prolonged scan time. To address these challenges, we developed a novel deep neural network, R2PRIMEnet7T, designed to convert a 7T R2* map into a 3T R2' map. Building on this development, we present a new pipeline for χ-separation at 7T, enabling us to generate high-resolution χ-separation maps from multi-echo gradient-echo data. The proposed method is compared with alternative pipelines, such as an end-to-end network and linearly-scaled R2', and is validated against χ-separation maps at 3T, demonstrating its accuracy. The 7T χ-separation maps generated by the proposed method exhibit similar contrasts to those from 3T, while 7T high-resolution maps offer enhanced clarity and detail. Quantitative analysis confirms that the proposed method surpasses the alternative pipelines. The proposed method results well delineate the detailed brain structures associated with iron and myelin. This new pipeline holds promise for analyzing iron and myelin concentration changes in various neurodegenerative diseases through precise structural examination.
Collapse
Affiliation(s)
- Jiye Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Minjun Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sooyeon Ji
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea; Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea
| | - Kyeongseon Min
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hwihun Jeong
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyeong-Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea; Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Chungseok Oh
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Robert J Fox
- Mellen Center for Treatment and Research in MS, Cleveland Clinic, Cleveland, OH, USA
| | - Ken E Sakaie
- Imaging Sciences, Diagnostics Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mark J Lowe
- Imaging Sciences, Diagnostics Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sehong Oh
- Imaging Sciences, Diagnostics Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea
| | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Thompson GJ, Wang Z, Kim JY, Li H, Kim DH, Ye Q, Su MY. Histological Validation of Multi-Echo Gradient Echo (MGRE)-Derived Myelin Water Fraction (MWF) at 9.4 T and the Influence of Orientation on Quantification. NMR IN BIOMEDICINE 2025; 38:e5303. [PMID: 39701559 DOI: 10.1002/nbm.5303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
Myelin is essential in the nervous system of mammals. As the location and degree of myelin loss can reflect varied pathophysiological status, noninvasive measurement of myelin is of high importance. The magnetic resonance imaging (MRI) technique of myelin water fraction (MWF) derived from multi-echo gradient echo (MGRE) sequence is a promising tool for the quantification of myelin content due to the low specific absorption rate (SAR) compared with the spin-echo sequence, time efficiency, and wide availability. Yet to our knowledge, MGRE-derived MWF has never been quantitatively validated with histology. The main objective of this study was to quantitatively validate the MRI findings by referencing the myelin histology using a rat model. As a second objective, we investigated how the orientation of white matter fibers with respect to the static B0 field impacted both the apparent transverse relaxation rate (R2* = 1/T2*) and the derived MWF. Moreover, MWF is known to change with age; thus, we compared rat brains of different ages. The orientation effect of MWF in a clinical setting was studied using 3 T human data. Twenty ex vivo rat brains with different ages and three healthy volunteers were scanned on a 9.4 T Bruker and 3.0 T Siemens systems, respectively. The 3D MGRE and diffusion tensor imaging (DTI) data were acquired. Our results showed a highly significant correlation between MGRE-derived MWF and histological stain of myelin, and susceptibility and diffusivity also demonstrated a significant association with myelin. Both MWF and R2* (R2* = 1/T2*) values changed as a function of orientation, and the function varied with age. Furthermore, MWF and R2* were more sensitive to age than DTI. In vivo 3 T human MWF also changed substantially with the orientation as well. Our results support that MGRE-derived MWF can be used to assess the myelin content quantitatively.
Collapse
Affiliation(s)
| | - Ziyi Wang
- Human Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jae-Yoon Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Hui Li
- Human Institute, ShanghaiTech University, Shanghai, China
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Qiong Ye
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Min-Ying Su
- Department of Radiological Sciences, University of California, Irvine, California, USA
| |
Collapse
|
4
|
Winther S, Lundell H, Rafael-Patiño J, Andersson M, Thiran JP, Dyrby TB. Susceptibility-induced internal gradients reveal axon morphology and cause anisotropic effects in the diffusion-weighted MRI signal. Sci Rep 2024; 14:29636. [PMID: 39609481 PMCID: PMC11605075 DOI: 10.1038/s41598-024-79043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Diffusion-weighted MRI is our most promising method for estimating microscopic tissue morphology in vivo. The signal acquisition is based on scanner-generated external magnetic gradients. However, it will also be affected by susceptibility-induced internal magnetic gradients caused by interactions between the tissue and the static magnetic field of the scanner. With 3D in silico experiments, we show how internal gradients cause morphology-, compartment-, and orientation-dependence of spin-echo and pulsed-gradient spin-echo experiments in myelinated axons. These effects surpass those observed with previous 2D modelling corresponding to straight cylinders. For an ex vivo monkey brain, we observe the orientation-dependence generated only when including non-circular cross-sections in the in silico morphological configurations, and find orientation-dependent deviation of up to 17% for diffusion tensor metrics. Interestingly, we find that the orientation-dependence not only biases the signal across different brain regions, but also carries a sensitivity to the morphology of axonal cross-sections which is not attainable by the idealised theoretical diffusion-weighted MRI signal.
Collapse
Affiliation(s)
- S Winther
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, 2650, Copenhagen, Denmark.
| | - H Lundell
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, 2650, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - J Rafael-Patiño
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - M Andersson
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, 2650, Copenhagen, Denmark
| | - J-P Thiran
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - T B Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, 2650, Copenhagen, Denmark.
| |
Collapse
|
5
|
Kawaguchi S, Kan H, Uchida Y, Kasai H, Hiwatashi A, Ueki Y. Anisotropy of the R1/T2* value dependent on white matter fiber orientation with respect to the B0 field. Magn Reson Imaging 2024; 109:83-90. [PMID: 38387713 DOI: 10.1016/j.mri.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The R1 (1/T1) map divided by the T2* map (R1/T2* map) draws attention as a high-resolution myelin-related map. However, both R1 and R2* (1/T2*) values demonstrate anisotropy dependent on the white matter (WM) fiber orientation with respect to the static magnetic (B0) field. Therefore, this study primarily aimed to investigate the comprehensive impact of these angular-dependent anisotropies on the R1/T2* value. This study enrolled 10 healthy human volunteers (age = 25 ± 1.3) on the 3.0 T MRI system. For R1/T2* map calculation, whole brain R1 and T2* maps were repeatedly obtained in three head tilt positions by magnetization-prepared two rapid gradient echoes and multiple spoiled gradient echo sequences, respectively. Afterward, all maps were spatially normalized and registered to the Johns Hopkins University WM atlas. R1/T2*, R1, and R2* values were binned for fiber orientation related to the B0 field, which was estimated from diffusion-weighted echo-planar imaging data with 3° intervals, to investigate angular-dependent anisotropies in vivo. A larger change in the R1/T2* value in the global WM region as a function of fiber orientation with respect to the B0 field was observed compared to the R1 and R2* values alone. The minimum R1/T2* value at the near magic-angle range was 18.86% lower than the maximum value at the perpendicular angle range. Furthermore, R1/T2* values in the corpus callosum tract and the right and left cingulum cingulate gyrus tracts changed among the three head tilt positions due to fiber orientation changes. In conclusion, the R1/T2* value demonstrates distinctive and complicated angular-dependent anisotropy indicating the trends of both R1 and R2* values and may provide supplemental information for detecting slight changes in the microstructure of myelin and axons.
Collapse
Affiliation(s)
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan; Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan.
| | - Yuto Uchida
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Harumasa Kasai
- Department of Radiology, Nagoya City University Hospital, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Yoshino Ueki
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
6
|
Yablonskiy DA, Sukstanskii AL. Quantum dipole interactions and transient hydrogen bond orientation order in cells, cellular membranes and myelin sheath: Implications for MRI signal relaxation, anisotropy, and T 1 magnetic field dependence. Magn Reson Med 2024; 91:2597-2611. [PMID: 38241135 PMCID: PMC10997466 DOI: 10.1002/mrm.29996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE Despite significant impact on the study of human brain, MRI lacks a theory of signal formation that integrates quantum interactions involving proton dipoles (a primary MRI signal source) with brain intricate cellular environment. The purpose of the present study is developing such a theory. METHODS We introduce the Transient Hydrogen Bond (THB) model, where THB-mediated quantum dipole interactions between water and protons of hydrophilic heads of amphipathic biomolecules forming cells, cellular membranes and myelin sheath serve as a major source of MR signal relaxation. RESULTS The THB theory predicts the existence of a hydrogen-bond-driven structural order of dipole-dipole connections within THBs as a primary factor for the anisotropy observed in MRI signal relaxation. We have also demonstrated that the conventional Lorentzian spectral density function decreases too fast at high frequencies to adequately capture the field dependence of brain MRI signal relaxation. To bridge this gap, we introduced a stretched spectral density function that surpasses the limitations of Lorentzian dispersion. In human brain, our findings reveal that at any time point only about 4% to 7% of water protons are engaged in quantum encounters within THBs. These ultra-short (2 to 3 ns), but frequent quantum spin exchanges lead to gradual recovery of magnetization toward thermodynamic equilibrium, that is, relaxation of MRI signal. CONCLUSION By incorporating quantum proton interactions involved in brain imaging, the THB approach introduces new insights on the complex relationship between brain tissue cellular structure and MRI measurements, thus offering a promising new tool for better understanding of brain microstructure in health and disease.
Collapse
Affiliation(s)
- Dmitriy A. Yablonskiy
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave. Room 3216, St. Louis MO, 63110
- Hope Center for Neurological Disorder, 660 S. Euclid Ave., St. Louis, Missouri 63110
- Knight Alzheimer Disease Research Center, 4488 Forest Park Ave., St. Louis, MO 63108
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130
| | - Alexander L. Sukstanskii
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave. Room 3216, St. Louis MO, 63110
| |
Collapse
|
7
|
Kleban E, Jones DK, Tax CM. The impact of head orientation with respect to B 0 on diffusion tensor MRI measures. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:1-17. [PMID: 38405373 PMCID: PMC10884544 DOI: 10.1162/imag_a_00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/27/2023] [Indexed: 02/27/2024]
Abstract
Diffusion tensor MRI (DT-MRI) remains the most commonly used approach to characterise white matter (WM) anisotropy. However, DT estimates may be affected by tissue orientation w.r.t. B → 0 due to local gradients and intrinsic T 2 orientation dependence induced by the microstructure. This work aimed to investigate whether and how diffusion tensor MRI-derived measures depend on the orientation of the head with respect to the static magnetic field, B → 0 . By simulating WM as two compartments, we demonstrated that compartmental T 2 anisotropy can induce the dependence of diffusion tensor measures on the angle between WM fibres and the magnetic field. In in vivo experiments, reduced radial diffusivity and increased axial diffusivity were observed in white matter fibres perpendicular to B → 0 compared to those parallel to B → 0 . Fractional anisotropy varied by up to 20 % as a function of the angle between WM fibres and the orientation of the main magnetic field. To conclude, fibre orientation w.r.t. B → 0 is responsible for up to 7 % variance in diffusion tensor measures across the whole brain white matter from all subjects and head orientations. Fibre orientation w.r.t. B → 0 may introduce additional variance in clinical research studies using diffusion tensor imaging, particularly when it is difficult to control for (e.g., fetal or neonatal imaging, or when the trajectories of fibres change due to, e.g., space occupying lesions).
Collapse
Affiliation(s)
- Elena Kleban
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Inselspital, University of Bern, Bern, Switzerland
| | - Derek K. Jones
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
- MMIHR, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Chantal M.W. Tax
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
- UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Fritz FJ, Mordhorst L, Ashtarayeh M, Periquito J, Pohlmann A, Morawski M, Jaeger C, Niendorf T, Pine KJ, Callaghan MF, Weiskopf N, Mohammadi S. Fiber-orientation independent component of R 2* obtained from single-orientation MRI measurements in simulations and a post-mortem human optic chiasm. Front Neurosci 2023; 17:1133086. [PMID: 37694109 PMCID: PMC10491021 DOI: 10.3389/fnins.2023.1133086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
The effective transverse relaxation rate (R2*) is sensitive to the microstructure of the human brain like the g-ratio which characterises the relative myelination of axons. However, the fibre-orientation dependence of R2* degrades its reproducibility and any microstructural derivative measure. To estimate its orientation-independent part (R2,iso*) from single multi-echo gradient-recalled-echo (meGRE) measurements at arbitrary orientations, a second-order polynomial in time model (hereafter M2) can be used. Its linear time-dependent parameter, β1, can be biophysically related to R2,iso* when neglecting the myelin water (MW) signal in the hollow cylinder fibre model (HCFM). Here, we examined the performance of M2 using experimental and simulated data with variable g-ratio and fibre dispersion. We found that the fitted β1 can estimate R2,iso* using meGRE with long maximum-echo time (TEmax ≈ 54 ms), but not accurately captures its microscopic dependence on the g-ratio (error 84%). We proposed a new heuristic expression for β1 that reduced the error to 12% for ex vivo compartmental R2 values. Using the new expression, we could estimate an MW fraction of 0.14 for fibres with negligible dispersion in a fixed human optic chiasm for the ex vivo compartmental R2 values but not for the in vivo values. M2 and the HCFM-based simulations failed to explain the measured R2*-orientation-dependence around the magic angle for a typical in vivo meGRE protocol (with TEmax ≈ 18 ms). In conclusion, further validation and the development of movement-robust in vivo meGRE protocols with TEmax ≈ 54 ms are required before M2 can be used to estimate R2,iso* in subjects.
Collapse
Affiliation(s)
- Francisco J. Fritz
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laurin Mordhorst
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mohammad Ashtarayeh
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joao Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Morawski
- Paul Flechsig Institute – Center for Neuropathology and Brain Research, University of Leipzig, Leipzig, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Carsten Jaeger
- Paul Flechsig Institute – Center for Neuropathology and Brain Research, University of Leipzig, Leipzig, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kerrin J. Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martina F. Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Max Planck Research Group MR Physics, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
9
|
Barakovic M, Pizzolato M, Tax CMW, Rudrapatna U, Magon S, Dyrby TB, Granziera C, Thiran JP, Jones DK, Canales-Rodríguez EJ. Estimating axon radius using diffusion-relaxation MRI: calibrating a surface-based relaxation model with histology. Front Neurosci 2023; 17:1209521. [PMID: 37638307 PMCID: PMC10457121 DOI: 10.3389/fnins.2023.1209521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Axon radius is a potential biomarker for brain diseases and a crucial tissue microstructure parameter that determines the speed of action potentials. Diffusion MRI (dMRI) allows non-invasive estimation of axon radius, but accurately estimating the radius of axons in the human brain is challenging. Most axons in the brain have a radius below one micrometer, which falls below the sensitivity limit of dMRI signals even when using the most advanced human MRI scanners. Therefore, new MRI methods that are sensitive to small axon radii are needed. In this proof-of-concept investigation, we examine whether a surface-based axonal relaxation process could mediate a relationship between intra-axonal T2 and T1 times and inner axon radius, as measured using postmortem histology. A unique in vivo human diffusion-T1-T2 relaxation dataset was acquired on a 3T MRI scanner with ultra-strong diffusion gradients, using a strong diffusion-weighting (i.e., b = 6,000 s/mm2) and multiple inversion and echo times. A second reduced diffusion-T2 dataset was collected at various echo times to evaluate the model further. The intra-axonal relaxation times were estimated by fitting a diffusion-relaxation model to the orientation-averaged spherical mean signals. Our analysis revealed that the proposed surface-based relaxation model effectively explains the relationship between the estimated relaxation times and the histological axon radius measured in various corpus callosum regions. Using these histological values, we developed a novel calibration approach to predict axon radius in other areas of the corpus callosum. Notably, the predicted radii and those determined from histological measurements were in close agreement.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Chantal M. W. Tax
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Stefano Magon
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Tim B. Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Centre d’Imagerie Biomédicale (CIBM), EPFL, Lausanne, Switzerland
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Erick J. Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
10
|
Kauppinen RA, Thothard J, Leskinen HPP, Pisharady PK, Manninen E, Kettunen M, Lenglet C, Gröhn OHJ, Garwood M, Nissi MJ. Axon fiber orientation as the source of T 1 relaxation anisotropy in white matter: A study on corpus callosum in vivo and ex vivo. Magn Reson Med 2023; 90:708-721. [PMID: 37145027 DOI: 10.1002/mrm.29667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Recent studies indicate that T1 in white matter (WM) is influenced by fiber orientation in B0 . The purpose of the study was to investigate the interrelationships between axon fiber orientation in corpus callosum (CC) and T1 relaxation time in humans in vivo as well as in rat brain ex vivo. METHODS Volunteers were scanned for relaxometric and diffusion MRI at 3 T and 7 T. Angular T1 plots from WM were computed using fractional anisotropy and fiber-to-field-angle maps. T1 and fiber-to-field angle were measured in five sections of CC to estimate the effects of inherently varying fiber orientations on T1 within the same tracts in vivo. Ex vivo rat-brain preparation encompassing posterior CC was rotated in B0 and T1 , and diffusion MRI images acquired at 9.4 T. T1 angular plots were determined at several rotation angles in B0 . RESULTS Angular T1 plots from global WM provided reference for estimated fiber orientation-linked T1 changes within CC. In anterior midbody of CC in vivo, where small axons are dominantly present, a shift in axon orientation is accompanied by a change in T1 , matching that estimated from WM T1 data. In CC, where large and giant axons are numerous, the measured T1 change is about 2-fold greater than the estimated one. Ex vivo rotation of the same midsagittal CC region of interest produced angular T1 plots at 9.4 T, matching those observed at 7 T in vivo. CONCLUSION These data causally link axon fiber orientation in B0 to the T1 relaxation anisotropy in WM.
Collapse
Affiliation(s)
- Risto A Kauppinen
- Department of Electric and Electronic Engineering, University of Bristol, Bristol, UK
| | - Jeromy Thothard
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Henri P P Leskinen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Pramod K Pisharady
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eppu Manninen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Mikko Kettunen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Olli H J Gröhn
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mikko J Nissi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
11
|
Morris SR, Vavasour IM, Smolina A, MacMillan EL, Gilbert G, Lam M, Kozlowski P, Michal CA, Manning A, MacKay AL, Laule C. Myelin biomarkers in the healthy adult brain: Correlation, reproducibility, and the effect of fiber orientation. Magn Reson Med 2023; 89:1809-1824. [PMID: 36511247 DOI: 10.1002/mrm.29552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/17/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE We investigated the correlation, reproducibility, and effect of white matter fiber orientation for three myelin-sensitive MRI techniques: magnetization transfer ratio (MTR), inhomogeneous magnetization transfer ratio (ihMTR), and gradient and spin echo-derived myelin water fraction (MWF). METHODS We measured the three metrics in 17 white and three deep grey matter regions in 17 healthy adults at 3 T. RESULTS We found a strong correlation between ihMTR and MTR (r = 0.70, p < 0.001) and ihMTR and MWF (r = 0.79, p < 0.001), and a weaker correlation between MTR and MWF (r = 0.54, p < 0.001). The dynamic range in white matter was greatest for MWF (2.0%-27.5%), followed by MTR (14.4%-23.2%) and then ihMTR (1.2%-5.4%). The average scan-rescan coefficient of variation for white matter regions was 0.6% MTR, 0.3% ihMTR, and 0.7% MWF in metric units; however, when adjusted by the dynamic range, these became 6.3%, 6.1% and 2.8%, respectively. All three metrics varied with fiber direction: MWF and ihMTR were lower in white matter fibers perpendicular to B0 by 6% and 1%, respectively, compared with those parallel, whereas MTR was lower by 0.5% at about 40°, with the highest values at 90°. However, separating the apparent orientation dependence by white matter region revealed large dissimilarities in the trends, suggesting that real differences in myelination between regions are confounding the apparent orientation dependence measured using this method. CONCLUSION The strong correlation between ihMTR and MWF suggests that these techniques are measuring the same myelination; however, the larger dynamic range of MWF may provide more power to detect small differences in myelin.
Collapse
Affiliation(s)
- Sarah R Morris
- Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Irene M Vavasour
- Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anastasia Smolina
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Erin L MacMillan
- Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, University of British Columbia, Vancouver, British Columbia, Canada.,MR Clinical Science, Philips Healthcare Canada, Mississauga, Ontario, Canada
| | - Guillaume Gilbert
- MR Clinical Science, Philips Healthcare Canada, Mississauga, Ontario, Canada
| | - Michelle Lam
- Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carl A Michal
- Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alan Manning
- Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alex L MacKay
- Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cornelia Laule
- Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, University of British Columbia, Vancouver, British Columbia, Canada.,Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Pang Y. Orientation dependent proton transverse relaxation in the human brain white matter: The magic angle effect on a cylindrical helix. Magn Reson Imaging 2023; 100:73-83. [PMID: 36965837 DOI: 10.1016/j.mri.2023.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
PURPOSE To overcome some limitations of previous proton orientation-dependent transverse relaxation formalisms in human brain white matter (WM) by a generalized magic angle effect function. METHODS A cylindrical helix model was developed embracing anisotropic rotational and translational diffusion of restricted molecules in WM, with the former characterized by an axially symmetric system. Transverse relaxation rates R2 and R2∗ were divided into isotropic R2i and anisotropic parts, R2a ∗ f(α,Φ - ε0), with α denoting an open angle and ε0 an orientation (Φ) offset from DTI-derived primary diffusivity direction. The proposed framework (Fit A) was compared to prior models without ε0 on previously published water and methylene proton transverse relaxation rates from developing, healthy, and pathological WM at 3 T. Goodness of fit was represented by root-mean-square error (RMSE). F-test and linear correlation were used with statistical significance set to P ≤ 0.05. RESULTS Fit A significantly (P < 0.01) outperformed prior models as demonstrated by reduced RMSEs, e.g., 0.349 vs. 0.724 in myelin water. Fitted ε0 was in good agreement with calculated ε0 from directional diffusivities. Compared with those from healthy adult, the fitted R2i, R2a, and α from neonates were substantially reduced but ε0 increased, consistent with developing myelination. Significant positive (R2i) and negative (α and R2a) correlations were found with aging (demyelination) in elderly. CONCLUSION The developed framework can better characterize orientation dependences from a wide range of proton transverse relaxation measurements in the human brain WM, thus shedding new light on myelin microstructural alterations at the molecular level.
Collapse
Affiliation(s)
- Yuxi Pang
- Department of Radiology, University of Michigan, 1500 E. Medical Center Dr., UH B2 RM A205F, Ann Arbor, MI 48109-5030, USA.
| |
Collapse
|
13
|
Pang Y. Phase-shifted transverse relaxation orientation dependences in human brain white matter. NMR IN BIOMEDICINE 2023:e4925. [PMID: 36908074 DOI: 10.1002/nbm.4925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
This work aimed to demonstrate an essential phase shift ε 0 $$ {\varepsilon}_0 $$ for better quantifying R 2 $$ {R}_2 $$ and R 2 * $$ {R}_2^{\ast } $$ in human brain white matter (WM), and to further elucidate its origin related to the directional diffusivities from standard diffusion tensor imaging (DTI). ε 0 $$ {\varepsilon}_0 $$ was integrated into a proposed generalized transverse relaxation model for characterizing previously published R 2 $$ {R}_2 $$ and R 2 * $$ {R}_2^{\ast } $$ orientation dependence profiles in brain WM, and then comparisons were made with those without ε 0 $$ {\varepsilon}_0 $$ . It was theorized that anisotropic diffusivity direction ε $$ \varepsilon $$ was collinear with an axon fiber subject to all eigenvalues and eigenvectors from an apparent diffusion tensor. To corroborate the origin of ε 0 $$ {\varepsilon}_0 $$ , R 2 $$ {R}_2 $$ orientation dependences referenced by ε $$ \varepsilon $$ were compared with those referenced by the standard principal diffusivity direction Φ $$ \Phi $$ at b-values of 1000 and 2500 (s/mm2 ). These R 2 $$ {R}_2 $$ orientation dependences were obtained from T 2 $$ {T}_2 $$ -weighted images (b = 0) of ultrahigh-resolution Connectome DTI datasets in the public domain. A normalized root-mean-square error ( NRMSE % $$ NRMSE\% $$ ) and an F $$ F $$ -test were used for evaluating curve-fittings, and statistical significance was considered to be a p of 0.05 or less. A phase-shifted model resulted in significantly reduced NRMSE % $$ NRMSE\% $$ compared with that without ε 0 $$ {\varepsilon}_0 $$ in quantifying various R 2 $$ {R}_2 $$ and R 2 * $$ {R}_2^{\ast } $$ profiles, both in vivo and ex vivo at multiple B 0 $$ {B}_0 $$ fields. The R 2 $$ {R}_2 $$ profiles based on Φ $$ \Phi $$ manifested a right-shifted phase ( ε 0 > 0 $$ {\varepsilon}_0>0 $$ ) at two b-values, while those based on ε $$ \varepsilon $$ became free from ε 0 $$ {\varepsilon}_0 $$ . For all phase-shifted R 2 $$ {R}_2 $$ and R 2 * $$ {R}_2^{\ast } $$ profiles, ε 0 $$ {\varepsilon}_0 $$ generally depended on the directional diffusivities by tan - 1 D ⊥ / D ∥ $$ {\tan}^{-1}\left({D}_{\perp }/{D}_{\parallel}\right) $$ , as predicted. In summary, a ubiquitous phase shift ε 0 $$ {\varepsilon}_0 $$ has been demonstrated as a prerequisite for better quantifying transverse relaxation orientation dependences in human brain WM. Furthermore, the origin of ε 0 $$ {\varepsilon}_0 $$ associated with the directional diffusivities from DTI has been elucidated. These findings could have a significant impact on interpretations of prior R 2 $$ {R}_2 $$ and R 2 * $$ {R}_2^{\ast } $$ datasets and on future research.
Collapse
Affiliation(s)
- Yuxi Pang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Lee S, Shin HG, Kim M, Lee J. Depth-wise profiles of iron and myelin in the cortex and white matter using χ-separation: A preliminary study. Neuroimage 2023; 273:120058. [PMID: 36997135 DOI: 10.1016/j.neuroimage.2023.120058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
The in-vivo profiling of iron and myelin across cortical depths and underlying white matter has important implications for advancing knowledge about their roles in brain development and degeneration. Here, we utilize χ-separation, a recently-proposed advanced susceptibility mapping that creates positive (χpos) and negative (χneg) susceptibility maps, to generate the depth-wise profiles of χpos and χneg as surrogate biomarkers for iron and myelin, respectively. Two regional sulcal fundi of precentral and middle frontal areas are profiled and compared with findings from previous studies. The results show that the χpos profiles peak at superificial white matter (SWM), which is an area beneath cortical gray matter known to have the highest accumulation of iron within the cortex and white matter. On the other hand, the χneg profiles increase in SWM toward deeper white matter. These characteristics in the two profiles are in agreement with histological findings of iron and myelin. Furthermore, the χneg profiles report regional differences that agree with well-known distributions of myelin concentration. When the two profiles are compared with those of QSM and R2*, different shapes and peak locations are observed. This preliminary study offers an insight into one of the possible applications of χ-separation for exploring microstructural information of the human brain, as well as clinical applications in monitoring changes of iron and myelin in related diseases.
Collapse
|
15
|
Orientation dependence of R 2 relaxation in the newborn brain. Neuroimage 2022; 264:119702. [PMID: 36272671 DOI: 10.1016/j.neuroimage.2022.119702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/25/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
In MRI the transverse relaxation rate, R2 = 1/T2, shows dependence on the orientation of ordered tissue relative to the main magnetic field. In previous studies, orientation effects of R2 relaxation in the mature brain's white matter have been found to be described by a susceptibility-based model of diffusion through local magnetic field inhomogeneities created by the diamagnetic myelin sheaths. Orientation effects in human newborn white matter have not yet been investigated. The newborn brain is known to contain very little myelin and is therefore expected to exhibit a decrease in orientation dependence driven by susceptibility-based effects. We measured R2 orientation dependence in the white matter of human newborns. R2 data were acquired with a 3D Gradient and Spin Echo (GRASE) sequence and fiber orientation was mapped with diffusion tensor imaging (DTI). We found orientation dependence in newborn white matter that is not consistent with the susceptibility-based model and is best described by a model of residual dipolar coupling. In the near absence of myelin in the newborn brain, these findings suggest the presence of residual dipolar coupling between rotationally restricted water molecules. This has important implications for quantitative imaging methods such as myelin water imaging, and suggests orientation dependence of R2 as a potential marker in early brain development.
Collapse
|
16
|
Viessmann O, Tian Q, Bernier M, Polimeni JR. Static and dynamic BOLD fMRI components along white matter fibre tracts and their dependence on the orientation of the local diffusion tensor axis relative to the B 0-field. J Cereb Blood Flow Metab 2022; 42:1905-1919. [PMID: 35650710 PMCID: PMC9536127 DOI: 10.1177/0271678x221106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies have reported functional MRI (fMRI) activation within cerebral white matter (WM) using blood-oxygenation-level-dependent (BOLD) contrast. Many blood vessels in WM run parallel to the fibre bundles, and other studies observed dependence of susceptibility contrast-based measures of blood volume on the local orientation of the fibre bundles relative to the magnetic field or B0 axis. Motivated by this, we characterized the dependence of gradient-echo BOLD fMRI on fibre orientation (estimated by the local diffusion tensor) relative to the B0 axis to test whether the alignment between bundles and vessels imparts an orientation dependence on resting-state BOLD fluctuations in the WM. We found that the baseline signal level of the T2*-weighted data is 11% higher in voxels containing fibres parallel to B0 than those containing perpendicular fibres, consistent with a static influence of either fibre or vessel orientation on local T2* values. We also found that BOLD fluctuations in most bundles exhibit orientation effects expected from oxygenation changes, with larger amplitudes from voxels containing perpendicular fibres. Different magnitudes of this orientation effect were observed across the major WM bundles, with inferior fasciculus, corpus callosum and optic radiation exhibiting 14-19% higher fluctuations in voxels containing perpendicular compared to parallel fibres.
Collapse
Affiliation(s)
- Olivia Viessmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Michaël Bernier
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
17
|
Glasser MF, Coalson TS, Harms MP, Xu J, Baum GL, Autio JA, Auerbach EJ, Greve DN, Yacoub E, Van Essen DC, Bock NA, Hayashi T. Empirical transmit field bias correction of T1w/T2w myelin maps. Neuroimage 2022; 258:119360. [PMID: 35697132 PMCID: PMC9483036 DOI: 10.1016/j.neuroimage.2022.119360] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/30/2022] Open
Abstract
T1-weighted divided by T2-weighted (T1w/T2w) myelin maps were initially developed for neuroanatomical analyses such as identifying cortical areas, but they are increasingly used in statistical comparisons across individuals and groups with other variables of interest. Existing T1w/T2w myelin maps contain radiofrequency transmit field (B1+) biases, which may be correlated with these variables of interest, leading to potentially spurious results. Here we propose two empirical methods for correcting these transmit field biases using either explicit measures of the transmit field or alternatively a 'pseudo-transmit' approach that is highly correlated with the transmit field at 3T. We find that the resulting corrected T1w/T2w myelin maps are both better neuroanatomical measures (e.g., for use in cross-species comparisons), and more appropriate for statistical comparisons of relative T1w/T2w differences across individuals and groups (e.g., sex, age, or body-mass-index) within a consistently acquired study at 3T. We recommend that investigators who use the T1w/T2w approach for mapping cortical myelin use these B1+ transmit field corrected myelin maps going forward.
Collapse
Affiliation(s)
| | | | - Michael P Harms
- Psychiatry, Washington University Medical School, St. Louis, MO, United States
| | - Junqian Xu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Graham L Baum
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Joonas A Autio
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | | | - Nicholas A Bock
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Takuya Hayashi
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
18
|
Relaxation anisotropy of quantitative MRI parameters in biological tissues. Sci Rep 2022; 12:12155. [PMID: 35840627 PMCID: PMC9287339 DOI: 10.1038/s41598-022-15773-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Quantitative MR relaxation parameters vary in the sensitivity to the orientation of the tissue in the magnetic field. In this study, the orientation dependence of multiple relaxation parameters was assessed in various tissues. Ex vivo samples of each tissue type were prepared either from bovine knee (tendon, cartilage) or mouse (brain, spinal cord, heart, kidney), and imaged at 9.4 T MRI with T1, T2, continuous wave (CW-) T1ρ, adiabatic T1ρ and T2ρ, and Relaxation along fictitious field (RAFF2-4) sequences at five different orientations with respect to the main magnetic field. Relaxation anisotropy of the measured parameters was quantified and compared. The highly ordered collagenous tissues, i.e. cartilage and tendon, presented the highest relaxation anisotropy for T2, CW-T1ρ with spin-lock power < 1 kHz, Ad-T2ρ and RAFF2-4. Maximally anisotropy was 75% in cartilage and 30% in tendon. T1 and adiabatic T1ρ did not exhibit observable anisotropy. In the other measured tissue types, anisotropy was overall less than 10% for all the parameters. The results confirm that highly ordered collagenous tissues have properties that induce very clearly observable relaxation anisotropy, whereas in other tissues the effect is not as prominent. Quantitative comparison of anisotropy of different relaxation parameters highlights the importance of sequence choice and design in MR imaging.
Collapse
|
19
|
Boursianis T, Kalaitzakis G, Gourzoulidis G, Karantanas A, Papadaki E, Maris TG. Introduction of a new simple dynamic phantom for physical BOLD effect simulation. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 35:389-399. [PMID: 34661790 DOI: 10.1007/s10334-021-00968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To propose a new method of simulating the BOLD contrast using a dynamic, easy to construct and operate, low-cost physical phantom. MATERIALS AND METHODS A structure of thin pipelines passing through a gel volume was used to simulate blood vessels in human tissue. Quantitative T2*, R2* measurements were used to study the signal change of the phantom. BOLD fMRI experiments and analysis were performed to evaluate its potential use as an fMRI simulator. RESULTS Experimental T2*, R2* measurements showed similar behavior with published references. BOLD contrast was successfully achieved with the proposed method. In addition, there were several proposed parameters, like the angle of the phantom relative to B0, which can easily adjust the signal change and the activation area. Coefficients of variation showed good reproducibility within a month period. Statistical t maps were produced with in-house software for the BOLD measurements. DISCUSSION T2*maps and BOLD images confirm the potential use of this phantom as an fMRI simulator and also as a tool for studying sensitivity and specificity of BOLD sequences/algorithms.
Collapse
Affiliation(s)
| | | | - Georgios Gourzoulidis
- Research and Measurements Center of OHS Hazardous Agents, OHS Directorate, Hellenic Ministry of Labor, Athens, Greece
- Lighting Lab, National Technical University of Athens, Athens, Greece
| | - Apostolos Karantanas
- Department of Radiology, University of Crete, Heraklion, Crete, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Efrosini Papadaki
- Department of Radiology, University of Crete, Heraklion, Crete, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Thomas G Maris
- Department of Medical Physics, University of Crete, Heraklion, Crete, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| |
Collapse
|
20
|
Chen J, Gong NJ, Chaim KT, Otaduy MCG, Liu C. Decompose quantitative susceptibility mapping (QSM) to sub-voxel diamagnetic and paramagnetic components based on gradient-echo MRI data. Neuroimage 2021; 242:118477. [PMID: 34403742 PMCID: PMC8720043 DOI: 10.1016/j.neuroimage.2021.118477] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE A method named DECOMPOSE-QSM is developed to decompose bulk susceptibility measured with QSM into sub-voxel paramagnetic and diamagnetic components based on a three-pool complex signal model. METHODS Multi-echo gradient echo signal is modeled as a summation of three weighted exponentials corresponding to three types of susceptibility sources: reference susceptibility, diamagnetic and paramagnetic susceptibility relative to the reference. Paramagnetic component susceptibility (PCS) and diamagnetic component susceptibility (DCS) maps are constructed to represent the sub-voxel compartments by solving for linear and nonlinear parameters in the model. RESULTS Numerical forward simulation and phantom validation confirmed the ability of DECOMPOSE-QSM to separate the mixture of paramagnetic and diamagnetic components. The PCS obtained from temperature-variant brainstem imaging follows the Curie's Law, which further validated the model and the solver. Initial in vivo investigation of human brain images showed the ability to extract sub-voxel PCS and DCS sources that produce visually enhanced contrast between brain structures comparing to threshold QSM.
Collapse
Affiliation(s)
- Jingjia Chen
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Nan-Jie Gong
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA; Vector Lab for Intelligent Medical Imaging and Neural Engineering, International Innovation Center of Tsinghua University, Shanghai, China
| | - Khallil Taverna Chaim
- LIM44, Instituto e Departamento de Radiologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
21
|
Tax CMW, Kleban E, Chamberland M, Baraković M, Rudrapatna U, Jones DK. Measuring compartmental T 2-orientational dependence in human brain white matter using a tiltable RF coil and diffusion-T 2 correlation MRI. Neuroimage 2021; 236:117967. [PMID: 33845062 PMCID: PMC8270891 DOI: 10.1016/j.neuroimage.2021.117967] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
The anisotropy of brain white matter microstructure manifests itself in orientational-dependence of various MRI contrasts, and can result in significant quantification biases if ignored. Understanding the origins of this orientation-dependence could enhance the interpretation of MRI signal changes in development, ageing and disease and ultimately improve clinical diagnosis. Using a novel experimental setup, this work studies the contributions of the intra- and extra-axonal water to the orientation-dependence of one of the most clinically-studied parameters, apparent transverse relaxation T2. Specifically, a tiltable receive coil is interfaced with an ultra-strong gradient MRI scanner to acquire multidimensional MRI data with an unprecedented range of acquisition parameters. Using this setup, compartmental T2 can be disentangled based on differences in diffusional-anisotropy, and its orientation-dependence further elucidated by re-orienting the head with respect to the main magnetic field B→0. A dependence of (compartmental) T2 on the fibre orientation w.r.t. B→0 was observed, and further quantified using characteristic representations for susceptibility- and magic angle effects. Across white matter, anisotropy effects were dominated by the extra-axonal water signal, while the intra-axonal water signal decay varied less with fibre-orientation. Moreover, the results suggest that the stronger extra-axonal T2 orientation-dependence is dominated by magnetic susceptibility effects (presumably from the myelin sheath) while the weaker intra-axonal T2 orientation-dependence may be driven by a combination of microstructural effects. Even though the current design of the tiltable coil only offers a modest range of angles, the results demonstrate an overall effect of tilt and serve as a proof-of-concept motivating further hardware development to facilitate experiments that explore orientational anisotropy. These observations have the potential to lead to white matter microstructural models with increased compartmental sensitivity to disease, and can have direct consequences for longitudinal and group-wise T2- and diffusion-MRI data analysis, where the effect of head-orientation in the scanner is commonly ignored.
Collapse
Affiliation(s)
- Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, UK; University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Elena Kleban
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Muhamed Baraković
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK; Signal Processing Laboratory 5, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, University Hospital Basel, Basel, Switzerland
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK; Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
22
|
Lenz C, Berger C, Bauer M, Scheurer E, Birkl C. Sensitivity of fiber orientation dependent R 2 ∗ to temperature and post mortem interval. Magn Reson Med 2021; 86:2703-2715. [PMID: 34086354 DOI: 10.1002/mrm.28874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE R 2 ∗ imaging of brain white matter is well known for being sensitive to the orientation of nerve fibers with respect to the B0 field of the MRI scanner. The goal of this study was to evaluate whether and to which extent fiber orientation dependent R 2 ∗ differs between in vivo and post mortem in situ examinations, and to investigate the influence of varying temperatures and post mortem intervals (PMI). METHODS Post mortem in situ and in vivo MRI scans were conducted at 3T. R 2 ∗ was acquired with a multi-echo gradient-echo sequence, and the orientation of white matter fibers was computed using diffusion tensor imaging (DTI). Fitting of the measured fiber orientation dependent R 2 ∗ was performed using three different formulations of a previously proposed model. RESULTS R 2 ∗ increased with increasing fiber angle for in vivo and post mortem in situ examinations, whereby the orientation dependency was lower post mortem. The different formulations of the fiber orientation model resulted in an identical fit, but showed large variations of the estimated parameters. The higher order orientation dependent R 2 ∗ components significantly decreased with decreasing temperature, while the orientation independent R 2 ∗ components showed no significant correlation with either temperature or PMI. CONCLUSION Although the mean diffusivity is strongly reduced post mortem, we could successfully estimate the fiber angle using DTI. Due to the strong correlation of the higher order orientation dependent R 2 ∗ components with temperature, the decreased R 2 ∗ fiber orientation dependency post mortem in situ might primarily be attributed to the lower brain temperature.
Collapse
Affiliation(s)
- Claudia Lenz
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Celine Berger
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Melanie Bauer
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Eva Scheurer
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Christoph Birkl
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
van der Weijden CWJ, García DV, Borra RJH, Thurner P, Meilof JF, van Laar PJ, Dierckx RAJO, Gutmann IW, de Vries EFJ. Myelin quantification with MRI: A systematic review of accuracy and reproducibility. Neuroimage 2020; 226:117561. [PMID: 33189927 DOI: 10.1016/j.neuroimage.2020.117561] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/27/2020] [Accepted: 11/07/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Currently, multiple sclerosis is treated with anti-inflammatory therapies, but these treatments lack efficacy in progressive disease. New treatment strategies aim to repair myelin damage and efficacy evaluation of such new therapies would benefit from validated myelin imaging techniques. Several MRI methods for quantification of myelin density are available now. This systematic review aims to analyse the performance of these MRI methods. METHODS Studies comparing myelin quantification by MRI with histology, the current gold standard, or assessing reproducibility were retrieved from PubMed/MEDLINE and Embase (until December 2019). Included studies assessed both myelin histology and MRI quantitatively. Correlation or variance measurements were extracted from the studies. Non-parametric tests were used to analyse differences in study methodologies. RESULTS The search yielded 1348 unique articles. Twenty-two animal studies and 13 human studies correlated myelin MRI with histology. Eighteen clinical studies analysed the reproducibility. Overall bias risk was low or unclear. All MRI methods performed comparably, with a mean correlation between MRI and histology of R2=0.54 (SD=0.30) for animal studies, and R2=0.54 (SD=0.18) for human studies. Reproducibility for the MRI methods was good (ICC=0.75-0.93, R2=0.90-0.98, COV=1.3-27%), except for MTR (ICC=0.05-0.51). CONCLUSIONS Overall, MRI-based myelin imaging methods show a fairly good correlation with histology and a good reproducibility. However, the amount of validation data is too limited and the variability in performance between studies is too large to select the optimal MRI method for myelin quantification yet.
Collapse
Affiliation(s)
- Chris W J van der Weijden
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Ronald J H Borra
- Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Patrick Thurner
- Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090 Wien, Austria.
| | - Jan F Meilof
- Multiple Sclerosis Center Noord Nederland, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Peter-Jan van Laar
- Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Radiology, Zorggroep Twente, Zilvermeeuw 1, 7609 PP Almelo, the Netherlands.
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Ingomar W Gutmann
- Physics of Functional Material, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| |
Collapse
|
24
|
Birkl C, Doucette J, Fan M, Hernández-Torres E, Rauscher A. Myelin water imaging depends on white matter fiber orientation in the human brain. Magn Reson Med 2020; 85:2221-2231. [PMID: 33017486 PMCID: PMC7821018 DOI: 10.1002/mrm.28543] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Purpose The multi‐exponential T2 decay of the MRI signal from cerebral white matter can be separated into short T2 components related to myelin water and long T2 components related to intracellular and extracellular water. In this study, we investigated to what degree the apparent myelin water fraction (MWF) depends on the angle between white matter fibers and the main magnetic field. Methods Maps of the apparent MWF were acquired using multi‐echo Carr‐Purcell‐Meiboom‐Gill and gradient‐echo spin‐echo sequences. The Carr‐Purcell‐Meiboom‐Gill sequence was acquired with a TR of 1073 ms, 1500 ms, and 2000 ms. The fiber orientation was mapped with DTI. By angle‐wise pooling the voxels across the brain’s white matter, orientation‐dependent apparent MWF curves were generated. Results We found that the apparent MWF varied between 25% and 35% across different fiber orientations. Furthermore, the selection of the TR influences the apparent MWF. Conclusion White matter fiber orientation induces a strong systematic bias on the estimation of the apparent MWF. This finding has implications for future research and the interpretation of MWI results in previously published studies.
Collapse
Affiliation(s)
- Christoph Birkl
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada.,Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Neurology, Medical University of Graz, Graz, Austria
| | - Jonathan Doucette
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada.,Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada
| | - Michael Fan
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada.,Texas Oncology, Dallas, Texas, USA
| | - Enedino Hernández-Torres
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada.,Department of Medicine (Division of Neurology), University of British Columbia, Vancouver, Canada
| | - Alexander Rauscher
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada.,Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada.,Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, Canada
| |
Collapse
|
25
|
Kirilina E, Helbling S, Morawski M, Pine K, Reimann K, Jankuhn S, Dinse J, Deistung A, Reichenbach JR, Trampel R, Geyer S, Müller L, Jakubowski N, Arendt T, Bazin PL, Weiskopf N. Superficial white matter imaging: Contrast mechanisms and whole-brain in vivo mapping. SCIENCE ADVANCES 2020; 6:6/41/eaaz9281. [PMID: 33028535 PMCID: PMC7541072 DOI: 10.1126/sciadv.aaz9281] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/26/2020] [Indexed: 05/11/2023]
Abstract
Superficial white matter (SWM) contains the most cortico-cortical white matter connections in the human brain encompassing the short U-shaped association fibers. Despite its importance for brain connectivity, very little is known about SWM in humans, mainly due to the lack of noninvasive imaging methods. Here, we lay the groundwork for systematic in vivo SWM mapping using ultrahigh resolution 7 T magnetic resonance imaging. Using biophysical modeling informed by quantitative ion beam microscopy on postmortem brain tissue, we demonstrate that MR contrast in SWM is driven by iron and can be linked to the microscopic iron distribution. Higher SWM iron concentrations were observed in U-fiber-rich frontal, temporal, and parietal areas, potentially reflecting high fiber density or late myelination in these areas. Our SWM mapping approach provides the foundation for systematic studies of interindividual differences, plasticity, and pathologies of this crucial structure for cortico-cortical connectivity in humans.
Collapse
Affiliation(s)
- Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany.
- Center for Cognitive Neuroscience Berlin, Free University Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany
| | - Saskia Helbling
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany
| | - Kerrin Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Katja Reimann
- Paul Flechsig Institute of Brain Research, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany
| | - Steffen Jankuhn
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Juliane Dinse
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Philosophenweg 3, 07743 Jena, Germany
- Department of Radiology University Hospital Halle (Saale), Ernst-Grube-Str. 40, 06120 Halle, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Philosophenweg 3, 07743 Jena, Germany
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Stefan Geyer
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Larissa Müller
- Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Norbert Jakubowski
- Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
- Spetec GmbH, Berghamer Str. 2, 85435 Erding, Germany
| | - Thomas Arendt
- Paul Flechsig Institute of Brain Research, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany
| | - Pierre-Louis Bazin
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, 1001 NK Amsterdam, The Netherlands
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK
| |
Collapse
|
26
|
Foxley S, Wildenberg G, Sampathkumar V, Karczmar GS, Brugarolas P, Kasthuri N. Sensitivity to myelin using model-free analysis of the water resonance line-shape in postmortem mouse brain. Magn Reson Med 2020; 85:667-677. [PMID: 32783262 DOI: 10.1002/mrm.28440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Dysmyelinating diseases are characterized by abnormal myelin formation and function. Such microstructural abnormalities in myelin have been demonstrated to produce measurable effects on the MR signal. This work examines these effects on measurements of voxel-wise, high-resolution water spectra acquired using a 3D echo-planar spectroscopic imaging (EPSI) pulse sequence from both postmortem fixed control mouse brains and a dysmyelination mouse brain model. METHODS Perfusion fixed, resected control (n = 5) and shiverer (n = 4) mouse brains were imaged using 3D-EPSI with 100 µm isotropic resolution. The free induction decay (FID) was sampled every 2.74 ms over 192 echoes, for a total sampling duration of 526.08 ms. Voxel-wise FIDs were Fourier transformed to produce water spectra with 1.9 Hz resolution. Spectral asymmetry was computed and compared between the two tissue types. RESULTS The water resonance is more asymmetrically broadened in the white matter of control mouse brain compared with dysmyelinated white matter. In control brain, this is modulated by and consistent with previously reported orientationally dependent effects of white matter relative to B0 . Similar sensitivity to orientation is observed in dysmyelinated white matter as well; however, the magnitude of the resonance asymmetry is much lower across all directions. CONCLUSION Results demonstrate that components of the spectra are specifically differentially affected by myelin concentration. This suggests that water proton spectra may be sensitive to the presence of myelin, and as such, could serve as a MRI-based biomarker of dysmyelinating disease, free of mathematical models.
Collapse
Affiliation(s)
- Sean Foxley
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Gregg Wildenberg
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | | | | | - Pedro Brugarolas
- Department of Radiology, Harvard Medical School, Boston, Maryland, USA.,Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Maryland, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
27
|
Birkl C, Birkl-Toeglhofer AM, Kames C, Goessler W, Haybaeck J, Fazekas F, Ropele S, Rauscher A. The influence of iron oxidation state on quantitative MRI parameters in post mortem human brain. Neuroimage 2020; 220:117080. [PMID: 32585344 DOI: 10.1016/j.neuroimage.2020.117080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
A variety of Magnetic Resonance Imaging (MRI) techniques are known to be sensitive to brain iron content. In principle, iron sensitive MRI techniques are based on local magnetic field variations caused by iron particles in tissue. The purpose of this study was to investigate the sensitivity of MR relaxation and magnetization transfer parameters to changes in iron oxidation state compared to changes in iron concentration. Therefore, quantitative MRI parameters including R1, R2, R2∗, quantitative susceptibility maps (QSM) and magnetization transfer ratio (MTR) of post mortem human brain tissue were acquired prior and after chemical iron reduction to change the iron oxidation state and chemical iron extraction to decrease the total iron concentration. All assessed parameters were shown to be sensitive to changes in iron concentration whereas only R2, R2∗ and QSM were also sensitive to changes in iron oxidation state. Mass spectrometry confirmed that iron accumulated in the extraction solution but not in the reduction solution. R2∗ and QSM are often used as markers for iron content. Changes in these parameters do not necessarily reflect variations in iron content but may also be a result of changes in the iron's oxygenation state from ferric towards more ferrous iron or vice versa.
Collapse
Affiliation(s)
- Christoph Birkl
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Neuroradiology, Medical University of Innsbruck, Austria; Department of Neurology, Medical University of Graz, Austria.
| | - Anna Maria Birkl-Toeglhofer
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Christian Kames
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry, University of Graz, Austria
| | - Johannes Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria
| | - Alexander Rauscher
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada; Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Exploring linearity of deep neural network trained QSM: QSMnet+. Neuroimage 2020; 211:116619. [DOI: 10.1016/j.neuroimage.2020.116619] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/08/2020] [Accepted: 02/05/2020] [Indexed: 01/24/2023] Open
|
29
|
Kim EY. Do the Magic Angle Effects or Susceptibility Effects Affect the Visualization of Nigrosome 1? AJNR Am J Neuroradiol 2020; 41:E20. [PMID: 32139430 DOI: 10.3174/ajnr.a6458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- E Y Kim
- Department of RadiologyGil Medical CenterGachon University College of MedicineIncheon, South Korea
| |
Collapse
|
30
|
Kaczmarz S, Göttler J, Zimmer C, Hyder F, Preibisch C. Characterizing white matter fiber orientation effects on multi-parametric quantitative BOLD assessment of oxygen extraction fraction. J Cereb Blood Flow Metab 2020; 40:760-774. [PMID: 30952200 PMCID: PMC7168796 DOI: 10.1177/0271678x19839502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 01/23/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Relative oxygen extraction fraction (rOEF) is a fundamental indicator of cerebral metabolic function. An easily applicable method for magnetic resonance imaging (MRI) based rOEF mapping is the multi-parametric quantitative blood oxygenation level dependent (mq-BOLD) approach with separate acquisitions of transverse relaxation times T 2 * and T2 and dynamic susceptibility contrast (DSC) based relative cerebral blood volume (rCBV). Given that transverse relaxation and rCBV in white matter (WM) strongly depend on nerve fiber orientation, mq-BOLD derived rOEF is expected to be affected as well. To investigate fiber orientation related rOEF artefacts, we present a methodological study characterizing anisotropy effects of WM as measured by diffusion tensor imaging (DTI) on mq-BOLD in 30 healthy volunteers. Using a 3T clinical MRI-scanner, we performed a comprehensive correlation of all parameters ( T 2 * , T2, R 2 ' , rCBV, rOEF, where R 2 ' =1/ T 2 * -1/T2) with DTI-derived fiber orientation towards the main magnetic field (B0). Our results confirm strong dependencies of transverse relaxation and rCBV on the nerve fiber orientation towards B0, with anisotropy-driven variations up to 37%. Comparably weak orientation-dependent variations of mq-BOLD derived rOEF (3.8%) demonstrate partially counteracting influences of R 2 ' and rCBV effects, possibly suggesting applicability of rOEF as an oxygenation sensitive biomarker. However, unresolved issues warrant caution when applying mq-BOLD to WM.
Collapse
Affiliation(s)
- Stephan Kaczmarz
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Jens Göttler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Fahmeed Hyder
- Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Clinic for Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
31
|
Weber AM, Zhang Y, Kames C, Rauscher A. Myelin water imaging and R 2* mapping in neonates: Investigating R 2* dependence on myelin and fibre orientation in whole brain white matter. NMR IN BIOMEDICINE 2020; 33:e4222. [PMID: 31846134 DOI: 10.1002/nbm.4222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/27/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
R2* relaxation provides a semiquantitative method of detecting myelin, iron and white matter fibre orientation angles. Compared with standard histogram-based analyses, angle-resolved analysis of R2* has previously been shown to substantially improve the detection of subtle differences in the brain between healthy siblings of subjects with multiple sclerosis and unrelated healthy controls. Neonates, who are born with very little myelin and iron, and an underdeveloped connectome, provide researchers with an opportunity to investigate whether R2* is intimately linked with fibre-angle or myelin content as it is in adults, which may in future studies be explored as a potential white matter developmental biomarker. Five healthy adult volunteers (mean age [±SD] = 31.2 [±8.3] years; three males) were recruited from Vancouver, Canada. Eight term neonates (mean age = 38.6 ± 1.2 weeks; five males) were recruited from the Children's Hospital of Chongqing Medical University neonatal ward. All subjects were scanned on identical 3 T Philips Achieva scanners equipped with an eight-channel SENSE head coil and underwent a multiecho gradient echo scan, a 32-direction DTI scan and a myelin water imaging scan. For both neonates and adults, bin-averaged R2* variation across the brain's white matter was found to be best explained by fibre orientation. For adults, this represented a difference in R2* values of 3.5 Hz from parallel to perpendicular fibres with respect to the main magnetic field. In neonates, the fibre orientation dependency displayed a cosine wave shape, with a small R2* range of 0.4 Hz. This minor relationship in neonates provides further evidence for the key role myelin probably plays in creating this fibre orientation dependence later in life, but suggests limited clinical application in newborn populations. Future studies should investigate fibre-orientation dependency in infants in the first 5 years, when substantial myelin development occurs.
Collapse
Affiliation(s)
- Alexander Mark Weber
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Yuting Zhang
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Medical University, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Christian Kames
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Rauscher
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Viessmann O, Scheffler K, Bianciardi M, Wald LL, Polimeni JR. Dependence of resting-state fMRI fluctuation amplitudes on cerebral cortical orientation relative to the direction of B0 and anatomical axes. Neuroimage 2019; 196:337-350. [PMID: 31002965 PMCID: PMC6559854 DOI: 10.1016/j.neuroimage.2019.04.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/30/2019] [Accepted: 04/11/2019] [Indexed: 01/21/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) is now capable of sub-millimetre scale measurements over the entire human brain, however with such high resolutions each voxel is influenced by the local fine-scale details of the cerebral cortical vascular anatomy. The cortical vasculature is structured with the pial vessels lying tangentially along the grey matter surface, intracortical diving arterioles and ascending venules running perpendicularly to the surface, and a randomly oriented capillary network within the parenchyma. It is well-known that the amplitude of the blood-oxygenation level dependent (BOLD) signal emanating from a vessel depends on its orientation relative to the B0-field. Thus the vascular geometric hierarchy will impart an orientation dependence to the BOLD signal amplitudes and amplitude differences due to orientation differences constitute a bias for interpreting neuronal activity. Here, we demonstrate a clear effect of cortical orientation to B0 in the resting-state BOLD-fMRI amplitude (quantified as the coefficient of temporal signal variation) for 1.1 mm isotropic data at 7T and 2 mm isotropic at 3T. The maximum bias, i.e. the fluctuation amplitude difference between regions where cortex is perpendicular to vs. parallel to B0, is about +70% at the pial surface at 7T and +11% at 3T. The B0 orientation bias declines with cortical depth, becomes progressively smaller closer to the white matter surface, but then increases again to a local maximum within the white matter just beneath the cortical grey matter, suggesting a distinct tangential network of white matter vessels that also generate a BOLD orientation effect. We further found significant (negative) biases with the cortex orientation to the anterior-posterior anatomical axis of the head: a maximum negative bias of about -30% at the pial surface at 7T and about -13% at 3T. The amount of signal variance explained by the low frequency drift, motion and the respiratory cycle also showed a cortical orientation dependence; only the cardiac cycle induced signal variance was independent of cortical orientation, suggesting that the cardiac induced component of the image time-series fluctuations is not related to a significant change in susceptibility. Although these orientation effects represent a signal bias, and are likely to be a nuisance in high-resolution analyses, they may help characterize the vascular influences on candidate fMRI acquisitions and, thereby, may be exploited to improve the neuronal specificity of fMRI.
Collapse
Affiliation(s)
- Olivia Viessmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 13th St., Charlestown, Boston, MA 02129, USA.
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany.
| | - Marta Bianciardi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 13th St., Charlestown, Boston, MA 02129, USA.
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 13th St., Charlestown, Boston, MA 02129, USA; Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA, USA.
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 13th St., Charlestown, Boston, MA 02129, USA; Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
33
|
Papazoglou S, Streubel T, Ashtarayeh M, Pine KJ, Edwards LJ, Brammerloh M, Kirilina E, Morawski M, Jäger C, Geyer S, Callaghan MF, Weiskopf N, Mohammadi S. Biophysically motivated efficient estimation of the spatially isotropic R 2 * component from a single gradient-recalled echo measurement. Magn Reson Med 2019; 82:1804-1811. [PMID: 31293007 PMCID: PMC6771860 DOI: 10.1002/mrm.27863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/03/2019] [Accepted: 05/25/2019] [Indexed: 01/29/2023]
Abstract
Purpose To propose and validate an efficient method, based on a biophysically motivated signal model, for removing the orientation‐dependent part of R2* using a single gradient‐recalled echo (GRE) measurement. Methods The proposed method utilized a temporal second‐order approximation of the hollow‐cylinder‐fiber model, in which the parameter describing the linear signal decay corresponded to the orientation‐independent part of R2*. The estimated parameters were compared to the classical, mono‐exponential decay model for R2* in a sample of an ex vivo human optic chiasm (OC). The OC was measured at 16 distinct orientations relative to the external magnetic field using GRE at 7T. To show that the proposed signal model can remove the orientation dependence of R2*, it was compared to the established phenomenological method for separating R2* into orientation‐dependent and ‐independent parts. Results Using the phenomenological method on the classical signal model, the well‐known separation of R2* into orientation‐dependent and ‐independent parts was verified. For the proposed model, no significant orientation dependence in the linear signal decay parameter was observed. Conclusions Since the proposed second‐order model features orientation‐dependent and ‐independent components at distinct temporal orders, it can be used to remove the orientation dependence of R2* using only a single GRE measurement.
Collapse
Affiliation(s)
- Sebastian Papazoglou
- Department of Systems NeurosciencesUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Tobias Streubel
- Department of Systems NeurosciencesUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Mohammad Ashtarayeh
- Department of Systems NeurosciencesUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Kerrin J. Pine
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Luke J. Edwards
- Department of Systems NeurosciencesUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Malte Brammerloh
- Department of Systems NeurosciencesUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Evgeniya Kirilina
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Neurocomputation and Neuroimaging Unit, Department of Education and PsychologyFreie Universität BerlinBerlinGermany
| | - Markus Morawski
- Paul Flechsig Institute of Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Carsten Jäger
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Stefan Geyer
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Martina F. Callaghan
- Wellcome Centre for Human NeuroimagingUCL Institute of NeurologyLondonUnited Kingdom
| | - Nikolaus Weiskopf
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Siawoosh Mohammadi
- Department of Systems NeurosciencesUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
34
|
Poster Viewing Sessions PA00-A01 to PA00-A49. J Cereb Blood Flow Metab 2019; 39:124-166. [PMID: 31265792 PMCID: PMC6610576 DOI: 10.1177/0271678x19851017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Kor D, Birkl C, Ropele S, Doucette J, Xu T, Wiggermann V, Hernández-Torres E, Hametner S, Rauscher A. The role of iron and myelin in orientation dependent R 2* of white matter. NMR IN BIOMEDICINE 2019; 32:e4092. [PMID: 31038240 DOI: 10.1002/nbm.4092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/05/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Brain myelin and iron content are important parameters in neurodegenerative diseases such as multiple sclerosis (MS). Both myelin and iron content influence the brain's R2* relaxation rate. However, their quantification based on R2* maps requires a realistic tissue model that can be fitted to the measured data. In structures with low myelin content, such as deep gray matter, R2* shows a linear increase with increasing iron content. In white matter, R2* is not only affected by iron and myelin but also by the orientation of the myelinated axons with respect to the external magnetic field. Here, we propose a numerical model which incorporates iron and myelin, as well as fibre orientation, to simulate R2* decay in white matter. Applying our model to fibre orientation-dependent in vivo R2* data, we are able to determine a unique solution of myelin and iron content in global white matter. We determine an averaged myelin volume fraction of 16.02 ± 2.07% in non-lesional white matter of patients with MS, 17.32 ± 2.20% in matched healthy controls, and 18.19 ± 2.98% in healthy siblings of patients with MS. Averaged iron content was 35.6 ± 8.9 mg/kg tissue in patients, 43.1 ± 8.3 mg/kg in controls, and 47.8 ± 8.2 mg/kg in siblings. All differences in iron content between groups were significant, while the difference in myelin content between MS patients and the siblings of MS patients was significant. In conclusion, we demonstrate that a model that combines myelin-induced orientation-dependent and iron-induced orientation-independent components is able to fit in vivo R2* data.
Collapse
Affiliation(s)
- Daniel Kor
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Christoph Birkl
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Jonathan Doucette
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
| | - Tianyou Xu
- Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - Vanessa Wiggermann
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
| | - Enedino Hernández-Torres
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
| | - Simon Hametner
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Rauscher
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
36
|
Tabelow K, Balteau E, Ashburner J, Callaghan MF, Draganski B, Helms G, Kherif F, Leutritz T, Lutti A, Phillips C, Reimer E, Ruthotto L, Seif M, Weiskopf N, Ziegler G, Mohammadi S. hMRI - A toolbox for quantitative MRI in neuroscience and clinical research. Neuroimage 2019; 194:191-210. [PMID: 30677501 PMCID: PMC6547054 DOI: 10.1016/j.neuroimage.2019.01.029] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroscience and clinical researchers are increasingly interested in quantitative magnetic resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-to-use tool available on GitHub, for qMRI data handling and processing, presented together with a tutorial and example dataset. This toolbox allows the estimation of high-quality multi-parameter qMRI maps (longitudinal and effective transverse relaxation rates R1 and R2⋆, proton density PD and magnetisation transfer MT saturation) that can be used for quantitative parameter analysis and accurate delineation of subcortical brain structures. The qMRI maps generated by the toolbox are key input parameters for biophysical models designed to estimate tissue microstructure properties such as the MR g-ratio and to derive standard and novel MRI biomarkers. Thus, the current version of the toolbox is a first step towards in vivo histology using MRI (hMRI) and is being extended further in this direction. Embedded in the Statistical Parametric Mapping (SPM) framework, it benefits from the extensive range of established SPM tools for high-accuracy spatial registration and statistical inferences and can be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps. From a user's perspective, the hMRI-toolbox is an efficient, robust and simple framework for investigating qMRI data in neuroscience and clinical research.
Collapse
Affiliation(s)
| | | | | | | | - Bogdan Draganski
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Switzerland; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gunther Helms
- Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Switzerland
| | | | - Enrico Reimer
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gabriel Ziegler
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany
| | | |
Collapse
|
37
|
Birkl C, Birkl-Toeglhofer AM, Endmayr V, Höftberger R, Kasprian G, Krebs C, Haybaeck J, Rauscher A. The influence of brain iron on myelin water imaging. Neuroimage 2019; 199:545-552. [PMID: 31108214 DOI: 10.1016/j.neuroimage.2019.05.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022] Open
Abstract
With myelin playing a vital role in normal brain integrity and function and thus in various neurological disorders, myelin sensitive magnetic resonance imaging (MRI) techniques are of great importance. In particular, multi-exponential T2 relaxation was shown to be highly sensitive to myelin. The myelin water imaging (MWI) technique allows to separate the T2 decay into short components, specific to myelin water, and long components reflecting the intra- and extracellular water. The myelin water fraction (MWF) is the ratio of the short components to all components. In the brain's white matter (WM), myelin and iron are closely linked via the presence of iron in the myelin generating oligodendrocytes. Iron is known to decrease T2 relaxation times and may therefore mimic myelin. In this study, we investigated if variations in WM iron content can lead to apparent MWF changes. We performed MWI in post mortem human brain tissue prior and after chemical iron extraction. Histology for iron and myelin confirmed a decrease in iron content and no change in myelin content after iron extraction. In MRI, iron extraction lead to a decrease in MWF by 26%-28% in WM. Thus, a change in MWF does not necessarily reflect a change in myelin content. This observation has important implications for the interpretation of MWI findings in previously published studies and future research.
Collapse
Affiliation(s)
- Christoph Birkl
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Neurology, Medical University of Graz, Austria.
| | - Anna Maria Birkl-Toeglhofer
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Verena Endmayr
- Institute of Neurology, Medical University of Vienna, Austria
| | | | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Claudia Krebs
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Johannes Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria; Department of Pathology, Medical Faculty, Otto-von-Guerecke University Magdeburg, Germany
| | - Alexander Rauscher
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada; Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
38
|
Schyboll F, Jaekel U, Petruccione F, Neeb H. Fibre-orientation dependent R 1(=1/T 1) relaxation in the brain: The role of susceptibility induced spin-lattice relaxation in the myelin water compartment. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 300:135-141. [PMID: 30743171 DOI: 10.1016/j.jmr.2019.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/03/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
We have recently observed a dependence of the longitudinal relaxation rate, R1, on the orientation of nerve fibres with respect to the main magnetic field. A similar dependence of R2∗ is long established and can be well explained by spin-dephasing in an inhomogeneous magnetic field induced by the susceptibility shift between myelin and water protons. The current study investigates if the same effect can also explain the R1 dependence, neglecting a possible directional dependence of magnetisation transfer between solid myelin and myelin water. A molecular model of the myelin lipid bilayer was employed to simulate the susceptibility induced fields on a microscopic scale for the different nerve fibre orientations. The resulting simulated magnetic fields were used to calculate an orientation dependent relaxation offset, ΔR1, based on both first-order perturbation theory and a simulation of the spin transition probabilities. Even though both methods yielded consistent orientation dependent relaxation offsets with a distribution that resembles the experimental data, the determined ΔR1 values are too low to explain the reported R1 angular dependency. Therefore, unlike R2∗, susceptibility induced spin flips can be excluded as a dominant source for the observed R1 angular dependence.
Collapse
Affiliation(s)
- Felix Schyboll
- University of Applied Sciences Koblenz, RheinAhrCampus Remagen, Germany
| | - Uwe Jaekel
- University of Applied Sciences Koblenz, RheinAhrCampus Remagen, Germany
| | | | - Heiko Neeb
- University of Applied Sciences Koblenz, RheinAhrCampus Remagen, Germany; Institute for Medical Engineering and Information Processing - MTI Mittelrhein, University of Koblenz, Germany.
| |
Collapse
|
39
|
Quantitative susceptibility mapping using deep neural network: QSMnet. Neuroimage 2018; 179:199-206. [DOI: 10.1016/j.neuroimage.2018.06.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
|
40
|
The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study. Neuroimage 2018; 179:117-133. [DOI: 10.1016/j.neuroimage.2018.06.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022] Open
|
41
|
Foxley S, Karczmar GS, Takahashi K. The effects of variations in tissue microstructure from postmortem rat brain on the asymmetry of the water proton resonance. Magn Reson Med 2018; 81:79-89. [PMID: 30014543 DOI: 10.1002/mrm.27338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/23/2018] [Accepted: 04/10/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE This work was performed to investigate the effects of tissue microstructure from postmortem rat brain on the shape of the water proton spectrum. METHODS Perfusion-fixed, resected rat brains (N = 4) were imaged at 9.4T. 3D DTI and 3D echo-planar spectroscopic imaging (EPSI) data were acquired with 150 μm isotropic resolution. DTI data were acquired over 60 directions with b = 3000 s/mm2 . Water spectra were produced from EPSI data acquired over 128 echoes, with 2.9 Hz spectral resolution. A voxel-wise metric reflecting spectral asymmetry about the peak of the resonance was computed and compared with orientation estimates from DTI data by fitting data with the susceptibility anisotropy model. RESULTS Asymmetric broadening of the water resonance was computed for mixed populations of grey and/or white matter as determined by thresholding the fractional anisotropy. Asymmetry was shown to be differentially affected by tract orientation relative to B0 in high FA voxels, whereas low FA voxels exhibited little sensitivity. Anatomic structures in the hippocampus were also found to produce distinct changes in the water resonance. CONCLUSION Present results demonstrate that structural variations in tissue architecture cause characteristic, reproducible changes in the water resonance shape. This suggests that water spectra are sensitive to cytoarchitectural variations in brain tissue.
Collapse
Affiliation(s)
- Sean Foxley
- MRI Research Center, Department of Radiology, University of Chicago, Chicago, Illinois
| | - Gregory S Karczmar
- MRI Research Center, Department of Radiology, University of Chicago, Chicago, Illinois
| | - Kazutaka Takahashi
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| |
Collapse
|
42
|
Untangling the R2* contrast in multiple sclerosis: A combined MRI-histology study at 7.0 Tesla. PLoS One 2018; 13:e0193839. [PMID: 29561895 PMCID: PMC5862438 DOI: 10.1371/journal.pone.0193839] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/19/2018] [Indexed: 11/19/2022] Open
Abstract
T2*-weighted multi-echo gradient-echo magnetic resonance imaging and its reciprocal R2* are used in brain imaging due to their sensitivity to iron content. In patients with multiple sclerosis who display pathological alterations in iron and myelin contents, the use of R2* may offer a unique way to untangle mechanisms of disease. Coronal slices from 8 brains of deceased multiple sclerosis patients were imaged using a whole-body 7.0 Tesla MRI scanner. The scanning protocol included three-dimensional (3D) T2*-w multi-echo gradient-echo and 2D T2-w turbo spin echo (TSE) sequences. Histopathological analyses of myelin and iron content were done using Luxol fast blue and proteolipid myelin staining and 3,3′-diaminobenzidine tetrahydrochloride enhanced Turnbull blue staining. Quantification of R2*, myelin and iron intensity were obtained. Variations in R2* were found to be affected differently by myelin and iron content in different regions of multiple sclerosis brains. The data shall inform clinical investigators in addressing the role of T2*/R2* variations as a biomarker of tissue integrity in brains of MS patients, in vivo.
Collapse
|
43
|
Birkl C, Carassiti D, Hussain F, Langkammer C, Enzinger C, Fazekas F, Schmierer K, Ropele S. Assessment of ferritin content in multiple sclerosis brains using temperature-induced R* 2 changes. Magn Reson Med 2018; 79:1609-1615. [PMID: 28618066 DOI: 10.1002/mrm.26780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/13/2017] [Accepted: 05/13/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE Current MRI techniques cannot reliably assess iron content in white matter due to the confounding diamagnetic effect of myelin. The purpose of this study was to validate with histology a novel iron mapping technique that uses the temperature dependency of the paramagnetic susceptibility in multiple sclerosis (MS) brains, where white matter has been reported to show significant variations in iron content. METHODS We investigated post mortem brain tissue from three MS patients and one control subject. Temperature-dependent R2* relaxometry was performed between 4°C and 37°C. The resulting temperature coefficient ( TcR2*) maps were compared with immunohistochemical stains for ferritin light chain. RESULTS Good agreement between TcR2* maps and ferritin staining was found by way of visual comparison and quantitative analysis. The highest iron concentrations were detected at the edge of MS lesions and in the basal ganglia. For all regions, except the subcortical U-fibers, there was a significant negative correlation between the TcR2* values and the ferritin count. CONCLUSION This study provides further evidence that TcR2* may be a reliable measure of white matter iron content due to the elimination of myelin-induced susceptibility changes and is well suited for further research into neurological diseases with distortions of the iron homeostasis. Magn Reson Med 79:1609-1615, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Christoph Birkl
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Daniele Carassiti
- Blizard Institute (Neuroscience), Queen Mary, University of London, London, United Kingdom
| | - Fariha Hussain
- Blizard Institute (Neuroscience), Queen Mary, University of London, London, United Kingdom
| | | | | | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Klaus Schmierer
- Blizard Institute (Neuroscience), Queen Mary, University of London, London, United Kingdom.,Barts Health NHS Trust, Emergency Care and Acute Medicine Neuroscience Clinical Academic Group, London, United Kingdom
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| |
Collapse
|
44
|
How to choose the right MR sequence for your research question at 7 T and above? Neuroimage 2018; 168:119-140. [DOI: 10.1016/j.neuroimage.2017.04.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/29/2022] Open
|
45
|
Schyboll F, Jaekel U, Weber B, Neeb H. The impact of fibre orientation on T1-relaxation and apparent tissue water content in white matter. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:501-510. [DOI: 10.1007/s10334-018-0678-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 11/29/2022]
|
46
|
An R2* model of white matter for fiber orientation and myelin concentration. Neuroimage 2017; 162:269-275. [DOI: 10.1016/j.neuroimage.2017.08.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/10/2017] [Accepted: 08/16/2017] [Indexed: 01/31/2023] Open
|
47
|
Lancione M, Tosetti M, Donatelli G, Cosottini M, Costagli M. The impact of white matter fiber orientation in single-acquisition quantitative susceptibility mapping. NMR IN BIOMEDICINE 2017; 30:e3798. [PMID: 28902421 DOI: 10.1002/nbm.3798] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/10/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to assess the impact of tissue structural orientation on quantitative susceptibility mapping (QSM) reliability, and to provide a criterion to identify voxels in which measures of magnetic susceptibility (χ) are most affected by spatial orientation effects. Four healthy volunteers underwent 7-T magnetic resonance imaging (MRI). Multi-echo, gradient-echo sequences were used to obtain quantitative maps of frequency shift (FS) and χ. Information from diffusion tensor imaging (DTI) was used to investigate the relationship between tissue orientation and FS measures and QSM. After sorting voxels on the basis of their fractional anisotropy (FA), the variations in FS and χ values over tissue orientation were measured. Using a K-means clustering algorithm, voxels were separated into two groups depending on the variability of measures within each FA interval. The consistency of FS and QSM values, observed at low FA, was disrupted for FA > 0.6. The standard deviation of χ measured at high FA (0.0103 ppm) was nearly five times that at low FA (0.0022 ppm). This result was consistent through data across different head positions and for different brain regions considered separately, which confirmed that such behavior does not depend on structures with different bulk susceptibility oriented along particular angles. The reliability of single-orientation QSM anticorrelates with local FA. QSM provides replicable values with little variability in brain regions with FA < 0.6, but QSM should be interpreted cautiously in major and coherent fiber bundles, which are strongly affected by structural anisotropy and magnetic susceptibility anisotropy.
Collapse
Affiliation(s)
| | - Michela Tosetti
- IMAGO 7 Foundation, Pisa, Italy
- IRCCS Stella Maris, Pisa, Italy
| | | | | | - Mauro Costagli
- IMAGO 7 Foundation, Pisa, Italy
- IRCCS Stella Maris, Pisa, Italy
| |
Collapse
|
48
|
Álvarez GA, Shemesh N, Frydman L. Internal gradient distributions: A susceptibility-derived tensor delivering morphologies by magnetic resonance. Sci Rep 2017; 7:3311. [PMID: 28607445 PMCID: PMC5468317 DOI: 10.1038/s41598-017-03277-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/26/2017] [Indexed: 11/23/2022] Open
Abstract
Nuclear magnetic resonance is a powerful tool for probing the structures of chemical and biological systems. Combined with field gradients it leads to NMR imaging (MRI), a widespread tool in non-invasive examinations. Sensitivity usually limits MRI’s spatial resolution to tens of micrometers, but other sources of information like those delivered by constrained diffusion processes, enable one extract morphological information down to micron and sub-micron scales. We report here on a new method that also exploits diffusion – isotropic or anisotropic– to sense morphological parameters in the nm-mm range, based on distributions of susceptibility-induced magnetic field gradients. A theoretical framework is developed to define this source of information, leading to the proposition of internal gradient-distribution tensors. Gradient-based spin-echo sequences are designed to measure these new observables. These methods can be used to map orientations even when dealing with unconstrained diffusion, as is here demonstrated with studies of structured systems, including tissues.
Collapse
Affiliation(s)
- Gonzalo A Álvarez
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.,Centro Atómico Bariloche, CONICET, CNEA, 8400, S. C. de Bariloche, Argentina
| | - Noam Shemesh
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, 1400-138, Portugal
| | - Lucio Frydman
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
49
|
Puwal S, Roth BJ, Basser PJ. Heterogeneous anisotropic magnetic susceptibility of the myelin-water layers causes local magnetic field perturbations in axons. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3628. [PMID: 27731911 PMCID: PMC6130896 DOI: 10.1002/nbm.3628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/23/2016] [Accepted: 08/17/2016] [Indexed: 05/23/2023]
Abstract
One goal of MRI is to determine the myelin water fraction in neural tissue. One approach is to measure the reduction in T2 * arising from microscopic perturbations in the magnetic field caused by heterogeneities in the magnetic susceptibility of myelin. In this paper, analytic expressions for the induced magnetic field distribution are derived within and around an axon, assuming that the myelin susceptibility is anisotropic. Previous models considered the susceptibility to be piecewise continuous, whereas this model considers a sinusoidally varying susceptibility. Many conclusions are common in both models. When the magnetic field is applied perpendicular to the axon, the magnetic field in the intraaxonal space is uniformly perturbed, the magnetic field in the myelin sheath oscillates between the lipid and water layers, and the magnetic field in the extracellular space just outside the myelin sheath is heterogeneous. These field heterogeneities cause the spins to dephase, shortening T2 *. When the magnetic field is applied along the axon, the field is homogeneous within water-filled regions, including between lipid layers. Therefore the spins do not dephase and the magnetic susceptibility has no effect on T2 *. Generally, the response of an axon is given as the superposition of these two contributions. The sinusoidal model uses a different set of approximations compared with the piecewise model, so their common predictions indicate that the models are not too sensitive to the details of the myelin-water distribution. Other predictions, such as the sensitivity to water diffusion between myelin and water layers, may highlight differences between the two approaches. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Steffan Puwal
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Bradley J Roth
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Peter J Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
50
|
Lee J, Nam Y, Choi JY, Kim EY, Oh SH, Kim DH. Mechanisms of T 2 * anisotropy and gradient echo myelin water imaging. NMR IN BIOMEDICINE 2017; 30:e3513. [PMID: 27060968 DOI: 10.1002/nbm.3513] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/26/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
In MRI, structurally aligned molecular or micro-organization (e.g. axonal fibers) can be a source of substantial signal variations that depend on the structural orientation and the applied magnetic field. This signal anisotropy gives us a unique opportunity to explore information that exists at a resolution several orders of magnitude smaller than that of typical MRI. In this review, one of the signal anisotropies, T2 * anisotropy in white matter, and a related imaging method, gradient echo myelin water imaging (GRE-MWI), are explored. The T2 * anisotropy has been attributed to isotropic and anisotropic magnetic susceptibility of myelin and compartmentalized microstructure of white matter fibers (i.e. axonal, myelin, and extracellular space). The susceptibility and microstructure create magnetic frequency shifts that change with the relative orientation of the fiber and the main magnetic field, generating the T2 * anisotropy. The resulting multi-component magnitude decay and nonlinear phase evolution have been utilized for GRE-MWI, assisting in resolving the signal fraction of the multiple compartments in white matter. The GRE-MWI method has been further improved by signal compensation techniques including physiological noise compensation schemes. The T2 * anisotropy and GRE-MWI provide microstructural information on a voxel (e.g. fiber orientation and tissue composition), and may serve as sensitive biomarkers for microstructural changes in the brain. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Yoonho Nam
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joon Yul Choi
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Eung Yeop Kim
- Department of Radiology, Gachon University Gil Medical Center, Incheon, Korea
| | - Se-Hong Oh
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| |
Collapse
|