1
|
Moffat R, Cross ES. Awareness of embodiment enhances enjoyment and engages sensorimotor cortices. Hum Brain Mapp 2024; 45:e26786. [PMID: 38994692 PMCID: PMC11240146 DOI: 10.1002/hbm.26786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Whether in performing arts, sporting, or everyday contexts, when we watch others move, we tend to enjoy bodies moving in synchrony. Our enjoyment of body movements is further enhanced by our own prior experience with performing those movements, or our 'embodied experience'. The relationships between movement synchrony and enjoyment, as well as embodied experience and movement enjoyment, are well known. The interaction between enjoyment of movements, synchrony, and embodiment is less well understood, and may be central for developing new approaches for enriching social interaction. To examine the interplay between movement enjoyment, synchrony, and embodiment, we asked participants to copy another person's movements as accurately as possible, thereby gaining embodied experience of movement sequences. Participants then viewed other dyads performing the same or different sequences synchronously, and we assessed participants' recognition of having performed these sequences, as well as their enjoyment of each movement sequence. We used functional near-infrared spectroscopy to measure cortical activation over frontotemporal sensorimotor regions while participants performed and viewed movements. We found that enjoyment was greatest when participants had mirrored the sequence and recognised it, suggesting that awareness of embodiment may be central to enjoyment of synchronous movements. Exploratory analyses of relationships between cortical activation and enjoyment and recognition implicated the sensorimotor cortices, which subserve action observation and aesthetic processing. These findings hold implications for clinical research and therapies seeking to foster successful social interaction.
Collapse
Affiliation(s)
- Ryssa Moffat
- Professorship for Social Brain Sciences, ETH ZurichZurichSwitzerland
- School of Psychological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Emily S. Cross
- Professorship for Social Brain Sciences, ETH ZurichZurichSwitzerland
- School of Psychological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- MARCS InstituteWestern Sydney UniversitySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Moffat R, Caruana N, Cross ES. Inhibiting responses under the watch of a recently synchronized peer increases self-monitoring: evidence from functional near-infrared spectroscopy. Open Biol 2024; 14:230382. [PMID: 38378138 PMCID: PMC10878812 DOI: 10.1098/rsob.230382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Developing motor synchrony with a peer (through interventions such as the mirror game) can yield collaborative, cognitive and social benefits. However, it is also well established that observation by an audience can improve cognition. The combined and relative advantages offered by motor synchronization and audience effects are not yet understood. It is important to address this gap to determine the extent to which synchronizing activities might interact with the positive effects of an audience. In this preregistered study, we investigate the extent to which response inhibition may be improved when observed by a peer after motor synchronization with this peer. We compare behavioural and cortical (functional near-infrared spectroscopy; fNIRS) measures of inhibition between synchronized and non-synchronized dyads and find that the presence of a synchronized peer-audience introduces a speed-accuracy trade-off, consisting of slower reaction times and improved accuracy. This co-occurs with cortical activation in bilateral inferior frontal and middle prefrontal cortices, which are implicated in monitoring and maintenance of social alignment. Our findings have implications for carers and support people, who may benefit from synchronizing activities for rehabilitating inhibition and social skills in clinical settings.
Collapse
Affiliation(s)
- R. Moffat
- School of Psychological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Professorship for Social Brain Sciences, ETH Zurich, Zurich 8092, Switzerland
| | - N. Caruana
- School of Psychological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- College of Education, Psychology and Social Work, Flinders University, Bedford Park, South Australia, Australia
| | - E. S. Cross
- School of Psychological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Westmead Innovation Quarter Building U, Westmead New South Wales 2145, Australia
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
- Professorship for Social Brain Sciences, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
3
|
Highton D, Caldwell M, Tachtsidis I, Elwell CE, Smith M, Cooper CE. The influence of carbon dioxide on cerebral metabolism and oxygen consumption: combining multimodal monitoring with dynamic systems modelling. Biol Open 2024; 13:bio060087. [PMID: 38180242 PMCID: PMC10810564 DOI: 10.1242/bio.060087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Hypercapnia increases cerebral blood flow. The effects on cerebral metabolism remain incompletely understood although studies show an oxidation of cytochrome c oxidase, Complex IV of the mitochondrial respiratory chain. Systems modelling was combined with previously published non-invasive measurements of cerebral tissue oxygenation, cerebral blood flow, and cytochrome c oxidase redox state to evaluate any metabolic effects of hypercapnia. Cerebral tissue oxygen saturation and cytochrome oxidase redox state were measured with broadband near infrared spectroscopy and cerebral blood flow velocity with transcranial Doppler ultrasound. Data collected during 5-min hypercapnia in awake human volunteers were analysed using a Fick model to determine changes in brain oxygen consumption and a mathematical model of cerebral hemodynamics and metabolism (BrainSignals) to inform on mechanisms. Either a decrease in metabolic substrate supply or an increase in metabolic demand modelled the cytochrome oxidation in hypercapnia. However, only the decrease in substrate supply explained both the enzyme redox state changes and the Fick-calculated drop in brain oxygen consumption. These modelled outputs are consistent with previous reports of CO2 inhibition of mitochondrial succinate dehydrogenase and isocitrate dehydrogenase. Hypercapnia may have physiologically significant effects suppressing oxidative metabolism in humans and perturbing mitochondrial signalling pathways in health and disease.
Collapse
Affiliation(s)
- David Highton
- Neurocritical Care Unit, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- Princess Alexandra Hospital Southside Clinical Unit, University of Queensland, Brisbane QLD 4102, Australia
| | - Matthew Caldwell
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Clare E. Elwell
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Martin Smith
- Neurocritical Care Unit, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Chris E. Cooper
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
4
|
Wang Q, Zhang X, Suo Y, Chen Z, Wu M, Wen X, Lai Q, Yin X, Bao B. Normobaric hyperoxia therapy in acute ischemic stroke: A literature review. Heliyon 2024; 10:e23744. [PMID: 38223732 PMCID: PMC10787244 DOI: 10.1016/j.heliyon.2023.e23744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/17/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Background Ischemic stroke is one of the most severe cerebrovascular diseases that leads to disability and death and seriously endangers health and quality of life. Insufficient oxygen supply is a critical factor leading to ischemic brain injury. However, effective therapies for ischemic stroke are lacking. Oxygen therapy has been shown to increase oxygen supply to ischemic tissues and improve prognosis after cerebral ischemia/reperfusion. Normobaric hyperoxia (NBHO) has been shown to have neuroprotective effects during ischemic stroke and is considered an appropriate neuroprotective therapy for ischemic stroke. Evidence indicates that NBHO plays a neuroprotective role through different mechanisms in acute ischemic stroke. Recent studies have also reported that combinations with other drug therapies can enhance the efficacy of NBHO in ischemic stroke. Here, we aimed to provide a summary of the potential mechanisms underlying the use of NBHO in ischemic stroke and an overview of the benefits of NBHO in ischemic stroke. Methods We screened 83 articles on PubMed and other websites. A quick review was conducted, including clinical trials, animal trials, and reviews of studies in the field of NBHO treatment published before July 1, 2023. The results were described and synthesized, and the bias risk and evidence quality of all included studies were assessed. Results The results were divided into four categories: the mechanism of NBHO, animal and clinical trials of NBHO, the clinical application and prospects of NBHO, and adverse reactions of NBHO. Conclusion NBHO is a simple, non-invasive therapy that may be delivered early after stroke onset, with promising potential for the treatment of acute ischemic stroke. However, the optimal therapeutic regimen remains uncertain. Further studies are needed to confirm its efficacy and safety.
Collapse
Affiliation(s)
| | | | | | - Zhiying Chen
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Moxin Wu
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Xiaoqin Wen
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Qin Lai
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Xiaoping Yin
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Bing Bao
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| |
Collapse
|
5
|
Leadley G, Austin T, Bale G. Review of measurements and imaging of cytochrome-c-oxidase in humans using near-infrared spectroscopy: an update. BIOMEDICAL OPTICS EXPRESS 2024; 15:162-184. [PMID: 38223181 PMCID: PMC10783912 DOI: 10.1364/boe.501915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2024]
Abstract
This review examines advancements in the measurement and imaging of oxidized cytochrome-c-oxidase (oxCCO) using near-infrared spectroscopy (NIRS) in humans since 2016. A total of 34 published papers were identified, with a focus on both adult and neonate populations. The NIRS-derived oxCCO signal has been demonstrated to correlate with physiological parameters and hemodynamics. New instrumentation, such as systems that allow the imaging of changes of oxCCO with diffuse optical tomography or combine the oxCCO measurement with diffuse correlation spectroscopy measures of blood flow, have advanced the field in the past decade. However, variability in its response across different populations and paradigms and lack of standardization limit its potential as a reliable and valuable indicator of brain health. Future studies should address these issues to fulfill the vision of oxCCO as a clinical biomarker.
Collapse
Affiliation(s)
- Georgina Leadley
- Department of Paediatrics, University of Cambridge, UK
- Department of Engineering, University of Cambridge, UK
- Department of Medical Physics and Biomedical Engineering, UCL, UK
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, UK
| | - Gemma Bale
- Department of Engineering, University of Cambridge, UK
- Department of Physics, University of Cambridge, UK
| |
Collapse
|
6
|
Li NC, Ioussoufovitch S, Diop M. HyperTRCSS: A hyperspectral time-resolved compressive sensing spectrometer for depth-sensitive monitoring of cytochrome-c-oxidase and blood oxygenation. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:015002. [PMID: 38269084 PMCID: PMC10807872 DOI: 10.1117/1.jbo.29.1.015002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Significance Hyperspectral time-resolved (TR) near-infrared spectroscopy offers the potential to monitor cytochrome-c-oxidase (oxCCO) and blood oxygenation in the adult brain with minimal scalp/skull contamination. We introduce a hyperspectral TR spectrometer that uses compressive sensing to minimize acquisition time without compromising spectral range or resolution and demonstrate oxCCO and blood oxygenation monitoring in deep tissue. Aim Develop a hyperspectral TR compressive sensing spectrometer and use it to monitor oxCCO and blood oxygenation in deep tissue. Approach Homogeneous tissue-mimicking phantom experiments were conducted to confirm the spectrometer's sensitivity to oxCCO and blood oxygenation. Two-layer phantoms were used to evaluate the spectrometer's sensitivity to oxCCO and blood oxygenation in the bottom layer through a 10 mm thick static top layer. Results The spectrometer was sensitive to oxCCO and blood oxygenation changes in the bottom layer of the two-layer phantoms, as confirmed by concomitant measurements acquired directly from the bottom layer. Measures of oxCCO and blood oxygenation by the spectrometer were highly correlated with "gold standard" measures in the homogeneous and two-layer phantom experiments. Conclusions The results show that the hyperspectral TR compressive sensing spectrometer is sensitive to changes in oxCCO and blood oxygenation in deep tissue through a thick static top layer.
Collapse
Affiliation(s)
- Natalie C. Li
- Western University, School of Biomedical Engineering, Faculty of Engineering, London, Ontario, Canada
| | - Seva Ioussoufovitch
- Western University, School of Biomedical Engineering, Faculty of Engineering, London, Ontario, Canada
| | - Mamadou Diop
- Western University, School of Biomedical Engineering, Faculty of Engineering, London, Ontario, Canada
- Western University, Schulich School of Medicine and Dentistry, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| |
Collapse
|
7
|
Khaksari K, Chen WL, Chanvanichtrakool M, Taylor A, Kotla R, Gropman AL. Applications of near-infrared spectroscopy in epilepsy, with a focus on mitochondrial disorders. Neurotherapeutics 2024; 21:e00323. [PMID: 38244258 PMCID: PMC10903079 DOI: 10.1016/j.neurot.2024.e00323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Mitochondrial diseases are inherited disorders that impede the mitochondria's ability to produce sufficient energy for the cells. They can affect different parts of the body, notably the brain. Neurological symptoms and epilepsy are prevalent in patients with mitochondrial disorders. The epileptogenicity of mitochondrial disorder is a complex process involving the intricate interplay between abnormal energy metabolism and neuronal activity. Several modalities have been used to detect seizures in different disorders including mitochondrial disorders. EEG serve as the gold standard for diagnosis and localization, commonly complemented by additional imaging modalities to enhance source localization. In the current work, we propose the use of functional near-infrared spectroscopy (fNIRS) to identify the occurrence of epilepsy and seizure in patients with mitochondrial disorders. fNIRS proves an advantageous imaging technique due to its portability and insensitivity to motion especially for imaging infants and children. It has added a valuable factor to our understanding of energy metabolism and neuronal activity. Its real-time monitoring with high spatial resolution supplements traditional diagnostic tools such as EEG and provides a comprehensive understanding of seizure and epileptogenesis. The utility of fNIRS extends to its ability to detect changes in Cytochrome c oxidase (CcO) which is a crucial enzyme in cellular respiration. This facet enhances our insight into the metabolic dimension of epilepsy related to mitochondrial dysfunction. By providing valuable insights into both energy metabolism and neuronal activity, fNIRS emerges as a promising imaging technique for unveiling the complexities of mitochondrial disorders and their neurological manifestations.
Collapse
Affiliation(s)
- Kosar Khaksari
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA; Department of Neurology, George Washington University, Washington, DC, USA.
| | - Wei-Liang Chen
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA; Department of Neurology, George Washington University, Washington, DC, USA
| | - Mongkol Chanvanichtrakool
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA
| | - Alexa Taylor
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA
| | - Rohan Kotla
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA; Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA
| | - Andrea L Gropman
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA; Department of Neurology, George Washington University, Washington, DC, USA
| |
Collapse
|
8
|
Moffat R, Başkent D, Luke R, McAlpine D, Van Yper L. Cortical haemodynamic responses predict individual ability to recognise vocal emotions with uninformative pitch cues but do not distinguish different emotions. Hum Brain Mapp 2023; 44:3684-3705. [PMID: 37162212 PMCID: PMC10203806 DOI: 10.1002/hbm.26305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 02/23/2023] [Accepted: 03/30/2023] [Indexed: 05/11/2023] Open
Abstract
We investigated the cortical representation of emotional prosody in normal-hearing listeners using functional near-infrared spectroscopy (fNIRS) and behavioural assessments. Consistent with previous reports, listeners relied most heavily on F0 cues when recognizing emotion cues; performance was relatively poor-and highly variable between listeners-when only intensity and speech-rate cues were available. Using fNIRS to image cortical activity to speech utterances containing natural and reduced prosodic cues, we found right superior temporal gyrus (STG) to be most sensitive to emotional prosody, but no emotion-specific cortical activations, suggesting that while fNIRS might be suited to investigating cortical mechanisms supporting speech processing it is less suited to investigating cortical haemodynamic responses to individual vocal emotions. Manipulating emotional speech to render F0 cues less informative, we found the amplitude of the haemodynamic response in right STG to be significantly correlated with listeners' abilities to recognise vocal emotions with uninformative F0 cues. Specifically, listeners more able to assign emotions to speech with degraded F0 cues showed lower haemodynamic responses to these degraded signals. This suggests a potential objective measure of behavioural sensitivity to vocal emotions that might benefit neurodiverse populations less sensitive to emotional prosody or hearing-impaired listeners, many of whom rely on listening technologies such as hearing aids and cochlear implants-neither of which restore, and often further degrade, the F0 cues essential to parsing emotional prosody conveyed in speech.
Collapse
Affiliation(s)
- Ryssa Moffat
- School of Psychological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- International Doctorate of Experimental Approaches to Language and Brain (IDEALAB)Universities of Potsdam, Germany; Groningen, Netherlands; Newcastle University, UK; and Macquarie UniversityAustralia
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Deniz Başkent
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Research School of Behavioral and Cognitive Neuroscience, Graduate School of Medical SciencesUniversity of GroningenGroningenThe Netherlands
| | - Robert Luke
- Macquarie University Hearing, and Department of LinguisticsMacquarie UniversitySydneyNew South WalesAustralia
- Bionics InstituteEast MelbourneVictoriaAustralia
| | - David McAlpine
- Macquarie University Hearing, and Department of LinguisticsMacquarie UniversitySydneyNew South WalesAustralia
| | - Lindsey Van Yper
- Macquarie University Hearing, and Department of LinguisticsMacquarie UniversitySydneyNew South WalesAustralia
- Institute of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
9
|
Vidal-Rosas EE, von Lühmann A, Pinti P, Cooper RJ. Wearable, high-density fNIRS and diffuse optical tomography technologies: a perspective. NEUROPHOTONICS 2023; 10:023513. [PMID: 37207252 PMCID: PMC10190166 DOI: 10.1117/1.nph.10.2.023513] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
Recent progress in optoelectronics has made wearable and high-density functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) technologies possible for the first time. These technologies have the potential to open new fields of real-world neuroscience by enabling functional neuroimaging of the human cortex at a resolution comparable to fMRI in almost any environment and population. In this perspective article, we provide a brief overview of the history and the current status of wearable high-density fNIRS and DOT approaches, discuss the greatest ongoing challenges, and provide our thoughts on the future of this remarkable technology.
Collapse
Affiliation(s)
- Ernesto E. Vidal-Rosas
- University College London, DOT-HUB, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- Gowerlabs Ltd., London, United Kingdom
| | - Alexander von Lühmann
- Technische Universität Berlin – BIFOLD, Intelligent Biomedical Sensing Lab, Machine Learning Department, Berlin, Germany
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Paola Pinti
- University of London, Birkbeck College, Centre for Brain and Cognitive Development, London, United Kingdom
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Robert J. Cooper
- University College London, DOT-HUB, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|
10
|
Suwalski M, Shoemaker LN, Shoemaker JK, Diop M, Murkin JM, Chui J, St. Lawrence K, Milej D. Assessing the Sensitivity of Multi-Distance Hyperspectral NIRS to Changes in the Oxidation State of Cytochrome C Oxidase in the Brain. Metabolites 2022; 12:metabo12090817. [PMID: 36144221 PMCID: PMC9502461 DOI: 10.3390/metabo12090817] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) measurements of tissue oxygen saturation (StO2) are frequently used during vascular and cardiac surgeries as a non-invasive means of assessing brain health; however, signal contamination from extracerebral tissues remains a concern. As an alternative, hyperspectral (hs)NIRS can be used to measure changes in the oxidation state of cytochrome c oxidase (ΔoxCCO), which provides greater sensitivity to the brain given its higher mitochondrial concentration versus the scalp. The purpose of this study was to evaluate the depth sensitivity of the oxCCO signal to changes occurring in the brain and extracerebral tissue components. The oxCCO assessment was conducted using multi-distance hsNIRS (source-detector separations = 1 and 3 cm), and metabolic changes were compared to changes in StO2. Ten participants were monitored using an in-house system combining hsNIRS and diffuse correlation spectroscopy (DCS). Data were acquired during carotid compression (CC) to reduce blood flow and hypercapnia to increase flow. Reducing blood flow by CC resulted in a significant decrease in oxCCO measured at rSD = 3 cm but not at 1 cm. In contrast, significant changes in StO2 were found at both distances. Hypercapnia caused significant increases in StO2 and oxCCO at rSD = 3 cm, but not at 1 cm. Extracerebral contamination resulted in elevated StO2 but not oxCCO after hypercapnia, which was significantly reduced by applying regression analysis. This study demonstrated that oxCCO was less sensitive to extracerebral signals than StO2.
Collapse
Affiliation(s)
- Marianne Suwalski
- Department of Medical Biophysics, Western University, 1151 Richmond St, London, ON N6A 3K7, Canada
- Imaging Division, Lawson Health Research Institute, Imaging Program, 268 Grosvenor St, London, ON N6A 4V2, Canada
- Correspondence: (M.S.); (D.M.)
| | - Leena N. Shoemaker
- Imaging Division, Lawson Health Research Institute, Imaging Program, 268 Grosvenor St, London, ON N6A 4V2, Canada
- Department of Kinesiology, Western University, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - J. Kevin Shoemaker
- Department of Kinesiology, Western University, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - Mamadou Diop
- Department of Medical Biophysics, Western University, 1151 Richmond St, London, ON N6A 3K7, Canada
- Imaging Division, Lawson Health Research Institute, Imaging Program, 268 Grosvenor St, London, ON N6A 4V2, Canada
| | - John M. Murkin
- Department of Anesthesiology and Perioperative Medicine, London Health Science Centre, 339 Windermere Rd, London, ON N6A 5A5, Canada
| | - Jason Chui
- Department of Anesthesiology and Perioperative Medicine, London Health Science Centre, 339 Windermere Rd, London, ON N6A 5A5, Canada
| | - Keith St. Lawrence
- Department of Medical Biophysics, Western University, 1151 Richmond St, London, ON N6A 3K7, Canada
- Imaging Division, Lawson Health Research Institute, Imaging Program, 268 Grosvenor St, London, ON N6A 4V2, Canada
| | - Daniel Milej
- Department of Medical Biophysics, Western University, 1151 Richmond St, London, ON N6A 3K7, Canada
- Imaging Division, Lawson Health Research Institute, Imaging Program, 268 Grosvenor St, London, ON N6A 4V2, Canada
- Correspondence: (M.S.); (D.M.)
| |
Collapse
|
11
|
Milej D, Rajaram A, Suwalski M, Morrison LB, Shoemaker LN, St. Lawrence K. Assessing the relationship between the cerebral metabolic rate of oxygen and the oxidation state of cytochrome-c-oxidase. NEUROPHOTONICS 2022; 9:035001. [PMID: 35874144 PMCID: PMC9298853 DOI: 10.1117/1.nph.9.3.035001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2022] [Indexed: 05/07/2023]
Abstract
Significance: Hyperspectral near-infrared spectroscopy (hsNIRS) combined with diffuse correlation spectroscopy (DCS) provides a noninvasive approach for monitoring cerebral blood flow (CBF), the cerebral metabolic rate of oxygen ( CMRO 2 ) and the oxidation state of cytochrome-c-oxidase (oxCCO). CMRO 2 is calculated by combining tissue oxygen saturation ( S t O 2 ) with CBF, whereas oxCCO can be measured directly by hsNIRS. Although both reflect oxygen metabolism, a direct comparison has yet to be studied. Aim: We aim to investigate the relationship between CMRO 2 and oxCCO during periods of restricted oxygen delivery and lower metabolic demand. Approach: A hybrid hsNIRS/DCS system was used to measure hemodynamic and metabolic responses in piglets exposed to cerebral ischemia and anesthetic-induced reductions in brain activity. Results: Although a linear relationship was observed between CMRO 2 and oxCCO during ischemia, both exhibited a nonlinear relationship with respect to CBF. In contrast, linear correlation was sufficient to characterize the relationships between CMRO 2 and CBF and between the two metabolic markers during reduced metabolic demand. Conclusions: The observed relationship between CMRO 2 and oxCCO during periods of restricted oxygen delivery and lower metabolic demand indicates that the two metabolic markers are strongly correlated.
Collapse
Affiliation(s)
- Daniel Milej
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Address all correspondence to Daniel Milej,
| | - Ajay Rajaram
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Marianne Suwalski
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Laura B. Morrison
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Leena N. Shoemaker
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Western University, Department of Kinesiology, London, Ontario, Canada
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| |
Collapse
|
12
|
Oh Y, Nguyen N, Jung HJ, Choe Y, Kim JG. Changes in Cytochrome C Oxidase Redox State and Hemoglobin Concentration in Rat Brain During 810 nm Irradiation Measured by Broadband Near-Infrared Spectroscopy. Photobiomodul Photomed Laser Surg 2022; 40:315-324. [DOI: 10.1089/photob.2021.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yoonho Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Nam Nguyen
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
13
|
Advances in Neuroimaging and Monitoring to Defend Cerebral Perfusion in Noncardiac Surgery. Anesthesiology 2022; 136:1015-1038. [PMID: 35482943 DOI: 10.1097/aln.0000000000004205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Noncardiac surgery conveys a substantial risk of secondary organ dysfunction and injury. Neurocognitive dysfunction and covert stroke are emerging as major forms of perioperative organ dysfunction, but a better understanding of perioperative neurobiology is required to identify effective treatment strategies. The likelihood and severity of perioperative brain injury may be increased by intraoperative hemodynamic dysfunction, tissue hypoperfusion, and a failure to recognize complications early in their development. Advances in neuroimaging and monitoring techniques, including optical, sonographic, and magnetic resonance, have progressed beyond structural imaging and now enable noninvasive assessment of cerebral perfusion, vascular reserve, metabolism, and neurologic function at the bedside. Translation of these imaging methods into the perioperative setting has highlighted several potential avenues to optimize tissue perfusion and deliver neuroprotection. This review introduces the methods, metrics, and evidence underlying emerging optical and magnetic resonance neuroimaging methods and discusses their potential experimental and clinical utility in the setting of noncardiac surgery.
Collapse
|
14
|
Photobiomodulation at Different Wavelengths Boosts Mitochondrial Redox Metabolism and Hemoglobin Oxygenation: Lasers vs. Light-Emitting Diodes In Vivo. Metabolites 2022; 12:metabo12020103. [PMID: 35208178 PMCID: PMC8880116 DOI: 10.3390/metabo12020103] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Our group previously examined 8 min photobiomodulation (PBM) by 1064 nm laser on the human forearm in vivo to determine its significant effects on vascular hemodynamics and cytochrome c oxidase redox activity. Since PBM uses a wide array of wavelengths, in this paper, we investigated (i) whether different wavelengths of lasers induced different PBM effects, and (ii) if a light-emitting diode (LED) at a similar wavelength to a laser could induce similar PBM effects. A broadband near-infrared spectroscopy (bbNIRS) system was utilized to assess concentration changes in oxygenated hemoglobin (Δ[HbO]) and oxidized cytochrome c oxidase (Δ[oxCCO]) during and after PBM with lasers at 800 nm, 850 nm, and 1064 nm, as well as a LED at 810 nm. Two groups of 10 healthy participants were measured before, during, and after active and sham PBM on their forearms. All results were tested for significance using repeated measures ANOVA. Our results showed that (i) lasers at all three wavelengths enabled significant increases in Δ[HbO] and Δ[oxCCO] of the human forearm while the 1064 nm laser sustained the increases longer, and that (ii) the 810-nm LED with a moderate irradiance (≈135 mW/cm2) induced measurable and significant rises in Δ[HbO] and Δ[oxCCO] with respect to the sham stimulation on the human forearm.
Collapse
|
15
|
Hashem M, Wu Y, Dunn JF. Quantification of cytochrome c oxidase and tissue oxygenation using CW-NIRS in a mouse cerebral cortex. BIOMEDICAL OPTICS EXPRESS 2021; 12:7632-7656. [PMID: 35003857 PMCID: PMC8713667 DOI: 10.1364/boe.435532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/06/2021] [Accepted: 11/05/2021] [Indexed: 05/05/2023]
Abstract
We provide a protocol for measuring the absolute concentration of the oxidized and reduced state of cytochrome c oxidase (CCO) in the cerebral cortex of mice, using broadband continuous-wave NIRS. The algorithm (NIR-AQUA) allows for absolute quantification of CCO and deoxyhemoglobin. Combined with an anoxia pulse, this also allows for quantification of total hemoglobin, and tissue oxygen saturation. CCO in the cortex was 4.9 ± 0.1 μM (mean ± SD, n=6). In normoxia, 84% of CCO was oxidized. We include hypoxia and cyanide validation studies to show CCO can be quantified independently to hemoglobin. This can be applied to study oxidative metabolism in the many rodent models of neurological disease.
Collapse
Affiliation(s)
- Mada Hashem
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1, Canada
- Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada T2N 4N1, Canada
| | - Ying Wu
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1, Canada
- Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada T2N 4N1, Canada
| | - Jeff F. Dunn
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1, Canada
- Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada T2N 4N1, Canada
| |
Collapse
|
16
|
Badenes R, Bogossian EG, Chisbert V, Robba C, Oddo M, Taccone FS, Matta BF. The role of non-invasive brain oximetry in adult critically ill patients without primary brain injury. Minerva Anestesiol 2021; 87:1226-1238. [PMID: 33938677 DOI: 10.23736/s0375-9393.21.15333-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A primary objective in intensive care and perioperative settings is to promote an adequate supply and delivery of oxygen to tissues and organs, particularly to the brain. Cerebral near infrared spectroscopy (NIRS) is a non-invasive, continuous monitoring technique, that can be used to assess cerebral oxygenation. Using NIRS to monitor cerebral oximetry is not new, and has been in widespread use in neonates and cardiac surgery for decades. In addition, it has become common to see NIRS being used in adult and pediatric cardiac surgery, acute neurological diseases, neurosurgical procedures, vascular surgery, severe trauma and other acute medical diseases. Furthermore, recent evidence suggests a role for NIRS in the perioperative settings; detecting and preventing episodes of cerebral desaturation aiming to reduce the development of post-operative delirium. NIRS is not without its limitations; these include the risk of extra-cranial contamination, spatial limitations and skin blood flow/volume changes, as well being a measure of localized blood oxygenation underneath the sensor. However, NIRS is a non-invasive technique and can, therefore, be used in those patients without indications or justification for invasive brain monitoring; non-neurosurgical procedures such as liver transplantation, major orthopedic surgery and critically illness where the brain is at risk. The aim of this manuscript was to discuss the physical principles of NIRS and to report the current evidence regarding its use in critically ill patients without primary non-anoxic brain injury.
Collapse
Affiliation(s)
- Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, Valencia, Spain - .,Department of Surgery, School of Medicine, University of Valencia, Valencia, Spain - .,INCLIVA Health Research Institute, Valencia, Spain -
| | - Elisa G Bogossian
- Department of Intensive Care Medicine, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Vicente Chisbert
- INCLIVA Health Research Institute, Valencia, Spain.,Escuela de Doctorado, Universidad Católica de Valencia, Valencia, Spain
| | - Chiara Robba
- Anaesthesia and Intensive Care, IRCSS S. Martino Hospital, Genoa, Italy
| | - Mauro Oddo
- Department of Intensive Care Medicine, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Hospital, Lausanne, Switzerland
| | - Fabio S Taccone
- Department of Intensive Care Medicine, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Basil F Matta
- Trauma and NeuroCritical Care Unit, Cambridge University Hospital, Cambridge, UK
| |
Collapse
|
17
|
Pinti P, Siddiqui MF, Levy AD, Jones EJH, Tachtsidis I. An analysis framework for the integration of broadband NIRS and EEG to assess neurovascular and neurometabolic coupling. Sci Rep 2021; 11:3977. [PMID: 33597576 PMCID: PMC7889942 DOI: 10.1038/s41598-021-83420-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
With the rapid growth of optical-based neuroimaging to explore human brain functioning, our research group has been developing broadband Near Infrared Spectroscopy (bNIRS) instruments, a technological extension to functional Near Infrared Spectroscopy (fNIRS). bNIRS has the unique capacity of monitoring brain haemodynamics/oxygenation (measuring oxygenated and deoxygenated haemoglobin), and metabolism (measuring the changes in the redox state of cytochrome-c-oxidase). When combined with electroencephalography (EEG), bNIRS provides a unique neuromonitoring platform to explore neurovascular coupling mechanisms. In this paper, we present a novel pipeline for the integrated analysis of bNIRS and EEG signals, and demonstrate its use on multi-channel bNIRS data recorded with concurrent EEG on healthy adults during a visual stimulation task. We introduce the use of the Finite Impulse Response functions within the General Linear Model for bNIRS and show its feasibility to statistically localize the haemodynamic and metabolic activity in the occipital cortex. Moreover, our results suggest that the fusion of haemodynamic and metabolic measures unveils additional information on brain functioning over haemodynamic imaging alone. The cross-correlation-based analysis of interrelationships between electrical (EEG) and haemodynamic/metabolic (bNIRS) activity revealed that the bNIRS metabolic signal offers a unique marker of brain activity, being more closely coupled to the neuronal EEG response.
Collapse
Affiliation(s)
- P. Pinti
- grid.83440.3b0000000121901201Department of Medical Physics and Biomedical Engineering, University College London, London, UK ,grid.4464.20000 0001 2161 2573Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK
| | - M. F. Siddiqui
- grid.4464.20000 0001 2161 2573Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK
| | - A. D. Levy
- grid.83440.3b0000000121901201Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK ,grid.83440.3b0000000121901201Headache and Facial Pain, Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK
| | - E. J. H. Jones
- grid.4464.20000 0001 2161 2573Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK
| | - Ilias Tachtsidis
- grid.83440.3b0000000121901201Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
18
|
Kaynezhad P, Tachtsidis I, Aboelnour A, Sivaprasad S, Jeffery G. Watching synchronous mitochondrial respiration in the retina and its instability in a mouse model of macular degeneration. Sci Rep 2021; 11:3274. [PMID: 33558624 PMCID: PMC7870852 DOI: 10.1038/s41598-021-82811-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial function declines with age and in some diseases, but we have been unable to analyze this in vivo. Here, we optically examine retinal mitochondrial function as well as choroidal oxygenation and hemodynamics in aging C57 and complement factor H (CFH-/-) mice, proposed models of macular degeneration which suffer early retinal mitochondrial decline. In young C57s mitochondrial populations respire in coupled oscillatory behavior in cycles of ~ 8 min, which is phase linked to choroidal oscillatory hemodynamics. In aging C57s, the oscillations are less regular being ~ 14 min and more dissociated from choroidal hemodynamics. The mitochondrial oscillatory cycles are extended in CFH-/- mice being ~ 16 min and are further dissociated from choroidal hemodynamics. Mitochondrial decline occurs before age-related changes to choroidal vasculature, hence, is the likely origin of oscillatory disruption in hemodynamics. This technology offers a non-invasive technique to detect early retinal disease and its relationship to blood oxygenation in vivo and in real time.
Collapse
Affiliation(s)
- Pardis Kaynezhad
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Asmaa Aboelnour
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Sobha Sivaprasad
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.
| |
Collapse
|
19
|
Pruitt T, Wang X, Wu A, Kallioniemi E, Husain MM, Liu H. Transcranial Photobiomodulation (tPBM) With 1,064-nm Laser to Improve Cerebral Metabolism of the Human Brain In Vivo. Lasers Surg Med 2020; 52:807-813. [PMID: 32173886 PMCID: PMC7492377 DOI: 10.1002/lsm.23232] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES In our previous proof-of-principle study, transcranial photobiomodulation (tPBM) with 1,064-nm laser was reported to significantly increase concentration changes of oxygenated hemoglobin (∆[HbO]) and oxidized-state cytochrome c oxidase (∆[oxi-CCO]) in the human brain. This paper further investigated (i) its validity in two different subsets of young human subjects at two study sites over a period of 3 years and (ii) age-related effects of tPBM by comparing sham-controlled increases of ∆[HbO] and ∆[oxi-CCO] between young and older adults. STUDY DESIGN/MATERIALS AND METHODS We measured sham-controlled ∆[HbO] and ∆[oxi-CCO] using broadband near-infrared spectroscopy (bb-NIRS) in 15 young (26.7 ± 2.7 years of age) and 5 older (68.2 ± 4.8 years of age) healthy normal subjects before, during, and after right-forehead tPBM/sham stimulation with 1,064-nm laser. Student t tests were used to test statistical differences in tPBM-induced ∆[HbO] and ∆[oxi-CCO] (i) between the 15 young subjects and those of 11 reported previously and (ii) between the two age groups measured in this study. RESULTS Statistical analysis showed that no significant difference existed in ∆[HbO] and ∆[oxi-CCO] during and post tPBM between the two subsets of young subjects at two study sites over a period of 3 years. Furthermore, the two age groups showed statistically identical net increases in sham-controlled ∆[HbO] and ∆[oxi-CCO]. CONCLUSIONS This study provided strong evidence to validate/confirm our previous findings that tPBM with 1,064-nm laser enables to increase cerebral ∆[HbO] and ∆[oxi-CCO] in the human brain, as measured by bb-NIRS. Overall, it demonstrated the robust reproducibility of tPBM being able to improve cerebral hemodynamics and metabolism of the human brain in vivo in both young and older adults. Lasers Surg. Med. © 2020 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tyrell Pruitt
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76019.,Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390
| | - Xinlong Wang
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76019
| | - Anqi Wu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76019
| | - Elisa Kallioniemi
- Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390
| | - Mustafa M Husain
- Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76019
| |
Collapse
|
20
|
Ibrahim BA, Llano DA. Aging and Central Auditory Disinhibition: Is It a Reflection of Homeostatic Downregulation or Metabolic Vulnerability? Brain Sci 2019; 9:brainsci9120351. [PMID: 31805729 PMCID: PMC6955996 DOI: 10.3390/brainsci9120351] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 01/08/2023] Open
Abstract
Aging-related changes have been identified at virtually every level of the central auditory system. One of the most common findings across these nuclei is a loss of synaptic inhibition with aging, which has been proposed to be at the heart of several aging-related changes in auditory cognition, including diminished speech perception in complex environments and the presence of tinnitus. Some authors have speculated that downregulation of synaptic inhibition is a consequence of peripheral deafferentation and therefore is a homeostatic mechanism to restore excitatory/inhibitory balance. As such, disinhibition would represent a form of maladaptive plasticity. However, clinical data suggest that deafferentation-related disinhibition tends to occur primarily in the aged brain. Therefore, aging-related disinhibition may, in part, be related to the high metabolic demands of inhibitory neurons relative to their excitatory counterparts. These findings suggest that both deafferentation-related maladaptive plastic changes and aging-related metabolic factors combine to produce changes in central auditory function. Here, we explore the arguments that downregulation of inhibition may be due to homeostatic responses to diminished afferent input vs. metabolic vulnerability of inhibitory neurons in the aged brain. Understanding the relative importance of these mechanisms will be critical for the development of treatments for the underlying causes of aging-related central disinhibition.
Collapse
Affiliation(s)
- Baher A. Ibrahim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Daniel A. Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
21
|
Kaynezhad P, Mitra S, Bale G, Bauer C, Lingam I, Meehan C, Avdic-Belltheus A, Martinello KA, Bainbridge A, Robertson NJ, Tachtsidis I. Quantification of the severity of hypoxic-ischemic brain injury in a neonatal preclinical model using measurements of cytochrome-c-oxidase from a miniature broadband-near-infrared spectroscopy system. NEUROPHOTONICS 2019; 6:045009. [PMID: 31737744 PMCID: PMC6855218 DOI: 10.1117/1.nph.6.4.045009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/14/2019] [Indexed: 05/05/2023]
Abstract
We describe the development of a miniaturized broadband near-infrared spectroscopy system (bNIRS), which measures changes in cerebral tissue oxyhemoglobin ( [ HbO 2 ] ) and deoxyhemoglobin ([HHb]) plus tissue metabolism via changes in the oxidation state of cytochrome-c-oxidase ([oxCCO]). The system is based on a small light source and a customized mini-spectrometer. We assessed the instrument in a preclinical study in 27 newborn piglets undergoing transient cerebral hypoxia-ischemia (HI). We aimed to quantify the recovery of the HI insult and estimate the severity of the injury. The recovery in brain oxygenation ( Δ [ HbDiff ] = Δ [ HbO 2 ] - Δ [ HHb ] ), blood volume ( Δ [ HbT ] = Δ [ HbO 2 ] + Δ [ HHb ] ), and metabolism ( Δ [ oxCCO ] ) for up to 30 min after the end of HI were quantified in percentages using the recovery fraction (RF) algorithm, which quantifies the recovery of a signal with respect to baseline. The receiver operating characteristic analysis was performed on bNIRS-RF measurements compared to proton ( H 1 ) magnetic resonance spectroscopic (MRS)-derived thalamic lactate/N-acetylaspartate (Lac/NAA) measured at 24-h post HI insult; Lac/NAA peak area ratio is an accurate surrogate marker of neurodevelopmental outcome in babies with neonatal HI encephalopathy. The Δ [ oxCCO ] -RF cut-off threshold of 79% within 30 min of HI predicted injury severity based on Lac/NAA with high sensitivity (100%) and specificity (93%). A significant difference in thalamic Lac/NAA was noticed ( p < 0.0001 ) between the two groups based on this cut-off threshold of 79% Δ [ oxCCO ] -RF. The severe injury group ( n = 13 ) had ∼ 30 % smaller recovery in Δ [ HbDiff ] -RF ( p = 0.0001 ) and no significant difference was observed in Δ [ HbT ] -RF between groups. At 48 h post HI, significantly higher P 31 -MRS-measured inorganic phosphate/exchangeable phosphate pool (epp) ( p = 0.01 ) and reduced phosphocreatine/epp ( p = 0.003 ) were observed in the severe injury group indicating persistent cerebral energy depletion. Based on these results, the bNIRS measurement of the oxCCO recovery fraction offers a noninvasive real-time biomarker of brain injury severity within 30 min following HI insult.
Collapse
Affiliation(s)
- Pardis Kaynezhad
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- Address all correspondence to Ilias Tachtsidis, E-mail:
| | - Subhabrata Mitra
- University College London, Institute for Women’s Health, London, United Kingdom
| | - Gemma Bale
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Cornelius Bauer
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Ingran Lingam
- University College London, Institute for Women’s Health, London, United Kingdom
| | - Christopher Meehan
- University College London, Institute for Women’s Health, London, United Kingdom
| | | | | | - Alan Bainbridge
- University College London Hospital, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Nicola J. Robertson
- University College London, Institute for Women’s Health, London, United Kingdom
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|
22
|
Bale G, Mitra S, de Roever I, Sokolska M, Price D, Bainbridge A, Gunny R, Uria-Avellanal C, Kendall GS, Meek J, Robertson NJ, Tachtsidis I. Oxygen dependency of mitochondrial metabolism indicates outcome of newborn brain injury. J Cereb Blood Flow Metab 2019; 39:2035-2047. [PMID: 29775114 PMCID: PMC6775592 DOI: 10.1177/0271678x18777928] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is a need for a method of real-time assessment of brain metabolism during neonatal hypoxic-ischaemic encephalopathy (HIE). We have used broadband near-infrared spectroscopy (NIRS) to monitor cerebral oxygenation and metabolic changes in 50 neonates with HIE undergoing therapeutic hypothermia treatment. In 24 neonates, 54 episodes of spontaneous decreases in peripheral oxygen saturation (desaturations) were recorded between 6 and 81 h after birth. We observed differences in the cerebral metabolic responses to these episodes that were related to the predicted outcome of the injury, as determined by subsequent magnetic resonance spectroscopy derived lactate/N-acetyl-aspartate. We demonstrated that a strong relationship between cerebral metabolism (broadband NIRS-measured cytochrome-c-oxidase (CCO)) and cerebral oxygenation was associated with unfavourable outcome; this is likely to be due to a lower cerebral metabolic rate and mitochondrial dysfunction in severe encephalopathy. Specifically, a decrease in the brain tissue oxidation state of CCO greater than 0.06 µM per 1 µM brain haemoglobin oxygenation drop was able to predict the outcome with 64% sensitivity and 79% specificity (receiver operating characteristic area under the curve = 0.73). With further work on the implementation of this methodology, broadband NIRS has the potential to provide an early, cotside, non-invasive, clinically relevant metabolic marker of perinatal hypoxic-ischaemic injury.
Collapse
Affiliation(s)
- Gemma Bale
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Subhabrata Mitra
- Institute of Women's Health, University College London, London, UK
| | - Isabel de Roever
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Magdalena Sokolska
- Department of Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - David Price
- Department of Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Alan Bainbridge
- Department of Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Roxana Gunny
- Paediatric Neuroradiology, Great Ormond Street Hospital for Children, London, UK
| | | | - Giles S Kendall
- Neonatal Unit, University College London Hospital, London, UK
| | - Judith Meek
- Institute of Women's Health, University College London, London, UK
| | | | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
23
|
Sudakou A, Wojtkiewicz S, Lange F, Gerega A, Sawosz P, Tachtsidis I, Liebert A. Depth-resolved assessment of changes in concentration of chromophores using time-resolved near-infrared spectroscopy: estimation of cytochrome-c-oxidase uncertainty by Monte Carlo simulations. BIOMEDICAL OPTICS EXPRESS 2019; 10:4621-4635. [PMID: 31565513 PMCID: PMC6757481 DOI: 10.1364/boe.10.004621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Time-resolved near-infrared spectroscopy (TR-NIRS) measurements can be used to recover changes in concentrations of tissue constituents ( Δ C ) by applying the moments method and the Beer-Lambert law. In this work we carried out the error propagation analysis allowing to calculate the standard deviations of uncertainty in estimation of the Δ C . Here, we show the process of choosing wavelengths for the evaluation of hemodynamic (oxy-, deoxyhemoglobin) and metabolic (cytochrome-c-oxidase (CCO)) responses within the brain tissue as measured with an in-house developed TR-NIRS multi-wavelength system, which measures at 16 consecutive wavelengths separated by 12.5 nm and placed between 650 and 950 nm. Data generated with Monte Carlo simulations on three-layered model (scalp, skull, brain) for wavelengths range from 650 to 950 nm were used to carry out the error propagation analysis for varying choices of wavelengths. For a detector with a spectrally uniform responsivity, the minimal standard deviation of the estimated changes in CCO within the brain layer, σ Δ C CCO brain = 0.40 µM, was observed for the 16 consecutive wavelengths from 725 to 912.5 nm. For realistic a detector model, i.e. the spectral responsivity characteristic is considered, the minimum, σ Δ C CCO brain = 0.47 µM, was observed at the 16 consecutive wavelengths from 688 to 875 nm. We introduce the method of applying the error propagation analysis to data as measured with spectral TR-NIRS systems to calculate uncertainty of recovery of tissue constituents concentrations.
Collapse
Affiliation(s)
- Aleh Sudakou
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Stanislaw Wojtkiewicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
- School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Frédéric Lange
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
24
|
Holper L, Lan MJ, Brown PJ, Sublette ME, Burke A, Mann JJ. Brain cytochrome-c-oxidase as a marker of mitochondrial function: A pilot study in major depression using NIRS. Depress Anxiety 2019; 36:766-779. [PMID: 31111623 PMCID: PMC6716511 DOI: 10.1002/da.22913] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/12/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Brain mitochondrial dysfunction is implicated in the pathophysiology of mood disorders. Brain cytochrome-c-oxidase (COX) activity is associated with the mitochondrial function. Near-infrared spectroscopy (NIRS) noninvasively measures oxidized COX (oxCOX) and tissue oxygenation index (TOI) reflecting cerebral blood flow and oxygenation. METHODS oxCOX and TOI were assessed in prefrontal cortex (Fp1/2, Brodmann area 10) in patients in a major depressive episode (N = 13) with major depressive disorder (MDD; N = 7) and bipolar disorder (BD; N = 6) compared with the controls (N = 10). One patient with MDD and all the patients with BD were taking medications. Computational modeling estimated oxCOX and TOI related indices of mitochondrial function and cerebral blood flow, respectively. RESULTS oxCOX was lower in patients than controls (p = .014) correlating inversely with depression severity (r = -.72; p = .006), driven primarily by lower oxCOX in BD compared with the controls. Computationally modeled mitochondrial parameters of the electron transport chain, such as the nicotinamide adenine dinucleotide ratio (NAD+ /NADH; p = .001) and the proton leak rate across the inner mitochondrial membrane (klk2 ; p = .008), were also lower in patients and correlated inversely with depression severity. No such effects were found for TOI. CONCLUSIONS In this pilot study, oxCOX and related mitochondrial parameters assessed by NIRS indicate an abnormal cerebral metabolic state in mood disorders proportional to depression severity, potentially providing a biomarker of antidepressant effect. Because the effect was driven by the medicated BD group, findings need to be evaluated in a larger, medication-free population.
Collapse
Affiliation(s)
- L Holper
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, 8032 Zurich, Switzerland
| | - MJ Lan
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - PJ Brown
- Geriatric Psychiatry, Columbia University College of Physicians and Surgeons and New York State Psychiatric Institute, New York, NY
| | - ME Sublette
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - A Burke
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - JJ Mann
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY,Department of Radiology, Columbia University, New York, NY
| |
Collapse
|
25
|
Nosrati R, Lin S, Mohindra R, Ramadeen A, Toronov V, Dorian P. Study of the Effects of Epinephrine on Cerebral Oxygenation and Metabolism During Cardiac Arrest and Resuscitation by Hyperspectral Near-Infrared Spectroscopy. Crit Care Med 2019; 47:e349-e357. [PMID: 30747772 DOI: 10.1097/ccm.0000000000003640] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Epinephrine is routinely administered to sudden cardiac arrest patients during resuscitation, but the neurologic effects on patients treated with epinephrine are not well understood. This study aims to assess the cerebral oxygenation and metabolism during ventricular fibrillation cardiac arrest, cardiopulmonary resuscitation, and epinephrine administration. DESIGN To investigate the effects of equal dosages of IV epinephrine administrated following sudden cardiac arrest as a continuous infusion or successive boluses during cardiopulmonary resuscitation, we monitored cerebral oxygenation and metabolism using hyperspectral near-infrared spectroscopy. SETTINGS A randomized laboratory animal study. SUBJECTS Nine healthy pigs. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Our study showed that although continuous epinephrine administration had no significant impact on overall cerebral hemodynamics, epinephrine boluses transiently improved cerebral oxygenation (oxygenated hemoglobin) and metabolism (cytochrome c oxidase) by 15% ± 6.7% and 49% ± 18%, respectively (p < 0.05) compared with the baseline (untreated) ventricular fibrillation. Our results suggest that the effects of epinephrine diminish with successive boluses as the impact of the third bolus on brain oxygen metabolism was 24.6% ± 3.8% less than that of the first two boluses. CONCLUSIONS Epinephrine administration by bolus resulted in transient improvements in cerebral oxygenation and metabolism, whereas continuous epinephrine infusion did not, compared with placebo. Future studies are needed to evaluate and optimize the use of epinephrine in cardiac arrest resuscitation, particularly the dose, timing, and mode of administration.
Collapse
Affiliation(s)
- Reyhaneh Nosrati
- Department of Physics, Ryerson University, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Steve Lin
- Department of Physics, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Rohit Mohindra
- Jewish General Hospital Department of Emergency Medicine, 3755 Ch de la Côte-Sainte-Catherine, Montreal, QC, Canada
- Department of Critical Care Research, McGill University, Montreal, QC, Canada
| | - Andrew Ramadeen
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | | | - Paul Dorian
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Nguyen TN, Wu W, Woldermichael E, Toronov V, Lin S. Hyperspectral near-infrared spectroscopy assessment of the brain during hypoperfusion. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-6. [PMID: 30877717 PMCID: PMC6975180 DOI: 10.1117/1.jbo.24.3.035007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/23/2019] [Indexed: 05/10/2023]
Abstract
Two-thirds of out-of-hospital cardiac arrest patients, who survive to hospital admission, die in the hospital from neurological injuries related to cerebral hypoperfusion. Therefore, noninvasive real-time monitoring of the cerebral oxygen metabolism in cardiac arrest patients is extremely important. Hyperspectral near-infrared spectroscopy (hNIRS) is a noninvasive technique that measures concentrations of the key chromophores in the brain, such as oxygenated hemoglobin, deoxygenated hemoglobin, and cytochrome C oxidase (CCO), an intracellular marker of oxygen consumption. We tested hNIRS on 10 patients undergoing transcatheter aortic valve insertion, where rapid ventricular pacing (RVP) is required to temporarily induce sudden hypotension and hypoperfusion that mimic cardiac arrest. Using multidistance hNIRS, we found that tissue oxygen saturation changes in the cerebral tissue were lower than those in the scalp during RVP. CCO redox changes were detected in cerebral tissue but not in the scalp during RVP. We have demonstrated that hNIRS is feasible and can detect sudden changes in cerebral oxygenation and metabolism in patients during profound hypotension.
Collapse
Affiliation(s)
- Thu Nga Nguyen
- Ryerson University, Faculty of Science, Department of Physics, Toronto, Ontario, Canada
- Address all correspondence to Thu Nga Nguyen, E-mail:
| | - Wen Wu
- St. Michael’s Hospital, Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
- University of Toronto, Department of Medicine, Toronto, Ontario, Canada
| | - Ermias Woldermichael
- Ryerson University, Faculty of Science, Department of Physics, Toronto, Ontario, Canada
| | - Vladislav Toronov
- Ryerson University, Faculty of Science, Department of Physics, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology, Toronto, Ontario, Canada
| | - Steve Lin
- St. Michael’s Hospital, Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
- University of Toronto, Department of Medicine, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Lange F, Dunne L, Hale L, Tachtsidis I. MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2019; 25:7100312. [PMID: 30450021 PMCID: PMC6054019 DOI: 10.1109/jstqe.2018.2833205] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 05/17/2023]
Abstract
We present a multiwavelength, multichannel, time-domain near-infrared spectroscopy system named MAESTROS. This instrument can measure absorption and scattering coefficients and can quantify the concentrations of oxy- and deoxy-haemoglobin ([HbO2], [HHb]), and oxidation state of cytochrome-c-oxidase ([oxCCO]). This system is composed of a supercontinuum laser source coupled with two acousto-optic tuneable filters. The light is collected by four photomultipliers tubes, connected to a router to redirect the signal to a single time-correlated single-photon counting card. The interface between the system and the tissue is based on optical fibres. This arrangement allows us to resolve up to 16 wavelengths, within the range of 650-900 nm, at a sampling rate compatible with the physiology (from 0.5 to 2 Hz). In this paper, we describe the system and assess its performance based on two specifically designed protocols for photon migration instruments, the basic instrument protocol and nEUROPt protocols, and on a well characterized liquid phantom based on Intralipid and water. Then, the ability to resolve [HbO2 ], [HHb], and [oxCCO] is demonstrated on a homogeneous liquid phantom, based on blood for [HbO2], [HHb], and yeast for [oxCCO]. In the future, the system could be used to monitor brain tissue physiology.
Collapse
Affiliation(s)
- Frederic Lange
- 1Biomedical Optics Research Laboratory Department of Medical Physics and Biomedical Engineering University College London LondonWC1E 6BTU.K
| | - Luke Dunne
- 1Biomedical Optics Research Laboratory Department of Medical Physics and Biomedical Engineering University College London LondonWC1E 6BTU.K
| | - Lucy Hale
- 2Biomedical Optics Research Laboratory Department of Medical Physics and Biomedical Engineering University College London LondonWC1E 6BTU.K
- 3Electronic and Electrical Engineering University College London LondonWC1E 7JEU.K
| | - Ilias Tachtsidis
- 1Biomedical Optics Research Laboratory Department of Medical Physics and Biomedical Engineering University College London LondonWC1E 6BTU.K
| |
Collapse
|
28
|
de Roever I, Bale G, Mitra S, Meek J, Robertson NJ, Tachtsidis I. Investigation of the Pattern of the Hemodynamic Response as Measured by Functional Near-Infrared Spectroscopy (fNIRS) Studies in Newborns, Less Than a Month Old: A Systematic Review. Front Hum Neurosci 2018; 12:371. [PMID: 30333736 PMCID: PMC6176492 DOI: 10.3389/fnhum.2018.00371] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/29/2018] [Indexed: 01/03/2023] Open
Abstract
It has been 20 years since functional near-infrared spectroscopy (fNIRS) was first used to investigate the evoked hemodynamic response to a stimulus in newborns. The hemodynamic response to functional activation is well-established in adults, with an observed increase in concentration change of oxygenated hemoglobin (Δ[HbO2]) and decrease in deoxygenated hemoglobin (Δ[HHb]). However, functional studies in newborns have revealed a mixed response, particularly with Δ[HHb] where an inconsistent change in direction is observed. The reason for this heterogeneity is unknown, with potential explanations arising from differing physiology in the developing brain, or differences in instrumentation or methodology. The aim of this review is to collate the findings from studies that have employed fNIRS to monitor cerebral hemodynamics in term newborn infants aged 1 day-1 month. A total of 46 eligible studies were identified; some studies investigated more than one stimulus type, resulting in a total of 51 reported results. The NIRS parameters reported varied across studies with 50/51 cases reporting Δ[HbO2], 39/51 reporting Δ[HHb], and 13/51 reporting total hemoglobin concentration Δ[HbT] (Δ[HbO2] + Δ[HHb]). However, of the 39 cases reporting Δ[HHb] in graphs or tables, only 24 studies explicitly discussed the response (i.e., direction of change) of this variable. In the studies where the fNIRS responses were discussed, 46/51 cases observed an increase in Δ[HbO2], 7/51 observed an increase or varied Δ[HHb], and 2/51 reported a varied or negative Δ[HbT]. An increase in Δ[HbO2] and decrease or no change in Δ[HHb] was observed in 15 studies. By reviewing this body of literature, we have identified that the majority of research articles reported an increase in Δ[HbO2] across various functional tasks and did not report the response of Δ[HHb]. Confirming the normal, healthy hemodynamic response in newborns will allow identification of unhealthy patterns and their association to normal neurodevelopment.
Collapse
Affiliation(s)
- Isabel de Roever
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Gemma Bale
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Subhabrata Mitra
- Department of Neonatology, Institute for Women's Health, University College London, London, United Kingdom
| | - Judith Meek
- Department of Neonatology, Institute for Women's Health, University College London, London, United Kingdom
| | - Nicola J. Robertson
- Department of Neonatology, Institute for Women's Health, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
29
|
Singh H, Modi HN, Ranjan S, Dilley JWR, Airantzis D, Yang GZ, Darzi A, Leff DR. Robotic Surgery Improves Technical Performance and Enhances Prefrontal Activation During High Temporal Demand. Ann Biomed Eng 2018; 46:1621-1636. [PMID: 29869104 PMCID: PMC6153983 DOI: 10.1007/s10439-018-2049-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/11/2018] [Indexed: 02/08/2023]
Abstract
Robotic surgery may improve technical performance and reduce mental demands compared to laparoscopic surgery. However, no studies have directly compared the impact of robotic and laparoscopic techniques on surgeons' brain function. This study aimed to assess the effect of the operative platform (robotic surgery or conventional laparoscopy) on prefrontal cortical activation during a suturing task performed under temporal demand. Eight surgeons (mean age ± SD = 34.5 ± 2.9 years, male:female ratio = 7:1) performed an intracorporeal suturing task in a self-paced manner and under a 2 min time restriction using conventional laparoscopic and robotic techniques. Prefrontal activation was assessed using near-infrared spectroscopy, subjective workload was captured using SURG-TLX questionnaires, and a continuous heart rate monitor measured systemic stress responses. Task progression scores (au), error scores (au), leak volumes (mL) and knot tensile strengths (N) provided objective assessment of technical performance. Under time pressure, robotic suturing led to improved technical performance (median task progression score: laparoscopic suturing = 4.5 vs. robotic suturing = 5.0; z = - 2.107, p = 0.035; median error score: laparoscopic suturing = 3.0 mm vs. robotic suturing = 2.1 mm; z = - 2.488, p = 0.013). Compared to laparoscopic suturing, greater prefrontal activation was identified in seven channels located primarily in lateral prefrontal regions. These results suggest that robotic surgery improves performance during high workload conditions and is associated with enhanced activation in regions of attention, concentration and task engagement.
Collapse
Affiliation(s)
- Harsimrat Singh
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK.
- Department of Surgery and Cancer, Imperial College London, London, UK.
- Department of Surgery and Cancer, St Mary's Hospital, 2nd Floor, Paterson Wing, Praed Street, London, W2 1NY, UK.
| | - Hemel N Modi
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Samriddha Ranjan
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - James W R Dilley
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Dimitrios Airantzis
- Institute for Liver and Digestive Health (ILDH), University College London, London, UK
| | - Guang-Zhong Yang
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK
| | - Ara Darzi
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Daniel R Leff
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
30
|
Lange F, Peyrin F, Montcel B. Broadband time-resolved multi-channel functional near-infrared spectroscopy system to monitor in vivo physiological changes of human brain activity. APPLIED OPTICS 2018; 57:6417-6429. [PMID: 30117872 DOI: 10.1364/ao.57.006417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/21/2018] [Indexed: 05/18/2023]
Abstract
We have developed a broadband time-resolved multi-channel near-infrared spectroscopy system that can monitor the physiological responses of the adult human brain. This system is composed of a supercontinuum laser for the source part and of an intensified charge-coupled device camera coupled with an imaging spectrometer for the detection part. It allows the detection of the spectral, from 600 to 900 nm, and spatial dimensions as well as the arrival time of photon information simultaneously. We describe the setup and its characterization in terms of temporal instrument response function, wavelength sensitivity, and stability. The ability of the system to detect the hemodynamic response is then demonstrated. First, an in vivo experiment on an adult volunteer was performed to monitor the response in the arm during a cuff occlusion. Second, the response in the brain during a cognitive task was monitored on a group of five healthy volunteers. Moreover, looking at the response at different time windows, we could monitor the hemodynamic response in depth, enhancing the detection of the cortical activation. Those first results demonstrate the ability of our system to discriminate between the responses of superficial and deep tissues, addressing an important issue in functional near-infrared spectroscopy.
Collapse
|
31
|
Holper L, Mann JJ. Test-retest reliability of brain mitochondrial cytochrome-c-oxidase assessed by functional near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 29766685 DOI: 10.1117/1.jbo.23.5.056006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/24/2018] [Indexed: 05/10/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive method for measuring in vivo both hemodynamic and mitochondrial metabolic activities in brain cortical structures. Although the test-retest reliability of the hemodynamic measures, such as reflected by oxygenated (HbO2), deoxygenated (HHb) hemoglobin, and the tissue oxygenation index (TOI), has been previously reported to be good to excellent, the reliability of the metabolic signal indexed by oxidized cytochrome-c-oxidase (oxCCO) has not been reported. The present test-retest study compared the reliability of the metabolic and hemodynamic signals in 10 healthy participants undergoing hypo- and hypercapnia challenges. The primary reliability measure was the intraclass correlation coefficient (ICC). Results of both hypo- and hypercapnia showed that the oxCCO signal (ICC = 0.876 / 0.757) had robust reliability comparable with that of the HbO2 (ICC = 0.841 / 0.801), HHb (ICC = 0.804 / 0.571), and TOI (ICC = 0.574 / 0.614) signals. These findings show that the oxCCO signal can be assessed by fNIRS with comparable reliability to the hemodynamic measures. We discuss the results in light of current interest in a mitochondrial metabolic marker derived from fNIRS.
Collapse
Affiliation(s)
- Lisa Holper
- Columbia University, New York State Psychiatric Institute, Division of Molecular Imaging and Neuropa, United States
| | - J John Mann
- Columbia University, New York State Psychiatric Institute, Division of Molecular Imaging and Neuropa, United States
| |
Collapse
|
32
|
Giannoni L, Lange F, Tachtsidis I. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments. JOURNAL OF OPTICS (2010) 2018; 20:044009. [PMID: 29854375 PMCID: PMC5964611 DOI: 10.1088/2040-8986/aab3a6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/29/2018] [Accepted: 03/02/2018] [Indexed: 05/21/2023]
Abstract
Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.
Collapse
Affiliation(s)
- Luca Giannoni
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Frédéric Lange
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
33
|
Wang X, Tian F, Reddy DD, Nalawade SS, Barrett DW, Gonzalez-Lima F, Liu H. Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: A broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab 2017; 37:3789-3802. [PMID: 28178891 PMCID: PMC5718323 DOI: 10.1177/0271678x17691783] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transcranial infrared laser stimulation (TILS) is a noninvasive form of brain photobiomulation. Cytochrome-c-oxidase (CCO), the terminal enzyme in the mitochondrial electron transport chain, is hypothesized to be the primary intracellular photoacceptor. We hypothesized that TILS up-regulates cerebral CCO and causes hemodynamic changes. We delivered 1064-nm laser stimulation to the forehead of healthy participants ( n = 11), while broadband near-infrared spectroscopy was utilized to acquire light reflectance from the TILS-treated cortical region before, during, and after TILS. Placebo experiments were also performed for accurate comparison. Time course of spectroscopic readings were analyzed and fitted to the modified Beer-Lambert law. With respect to the placebo readings, we observed (1) significant increases in cerebral concentrations of oxidized CCO (Δ[CCO]; >0.08 µM; p < 0.01), oxygenated hemoglobin (Δ[HbO]; >0.8 µM; p < 0.01), and total hemoglobin (Δ[HbT]; >0.5 µM; p < 0.01) during and after TILS, and (2) linear interplays between Δ[CCO] versus Δ[HbO] and between Δ[CCO] versus Δ[HbT]. Ratios of Δ[CCO]/Δ[HbO] and Δ[CCO]/Δ[HbT] were introduced as TILS-induced metabolic-hemodynamic coupling indices to quantify the coupling strength between TILS-enhanced cerebral metabolism and blood oxygen supply. This study provides the first demonstration that TILS causes up-regulation of oxidized CCO in the human brain, and contributes important insight into the physiological mechanisms.
Collapse
Affiliation(s)
- Xinlong Wang
- 1 Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.,2 Joint Graduate Program between University of Texas at Arlington and UT Southwestern Medical Center at Dallas, University of Texas at Arlington, Arlington, TX, USA
| | - Fenghua Tian
- 1 Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.,2 Joint Graduate Program between University of Texas at Arlington and UT Southwestern Medical Center at Dallas, University of Texas at Arlington, Arlington, TX, USA
| | - Divya D Reddy
- 1 Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.,2 Joint Graduate Program between University of Texas at Arlington and UT Southwestern Medical Center at Dallas, University of Texas at Arlington, Arlington, TX, USA
| | - Sahil S Nalawade
- 1 Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.,2 Joint Graduate Program between University of Texas at Arlington and UT Southwestern Medical Center at Dallas, University of Texas at Arlington, Arlington, TX, USA
| | - Douglas W Barrett
- 3 Department of Psychology and Institute for Neuroscience, the University of Texas at Austin, Austin, TX, USA
| | - Francisco Gonzalez-Lima
- 3 Department of Psychology and Institute for Neuroscience, the University of Texas at Austin, Austin, TX, USA
| | - Hanli Liu
- 1 Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.,2 Joint Graduate Program between University of Texas at Arlington and UT Southwestern Medical Center at Dallas, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
34
|
Abstract
Transfusion decision making (TDM) in the critically ill requires consideration of: (1) anemia tolerance, which is linked to active pathology and to physiologic reserve, (2) differences in donor RBC physiology from that of native RBCs, and (3) relative risk from anemia-attributable oxygen delivery failure vs hazards of transfusion, itself. Current approaches to TDM (e.g. hemoglobin thresholds) do not: (1) differentiate between patients with similar anemia, but dissimilar pathology/physiology, and (2) guide transfusion timing and amount to efficacy-based goals (other than resolution of hemoglobin thresholds). Here, we explore approaches to TDM that address the above gaps.
Collapse
Affiliation(s)
- Chris Markham
- Division of Critical Care Medicine, Department of Pediatrics, Washington University School of Medicine, McDonnell Pediatric Research Building, Campus Box 8208, 660 South Euclid Avenue, St Louis, MO 63110-1093, USA
| | - Sara Small
- Social Systems Design Laboratory, Brown School of Social Work, Washington University, Campus Box 1196, 1 Brookings Drive, St Louis, MO 63130, USA
| | - Peter Hovmand
- Social Systems Design Laboratory, Brown School of Social Work, Washington University, Campus Box 1196, 1 Brookings Drive, St Louis, MO 63130, USA
| | - Allan Doctor
- Division of Critical Care Medicine, Department of Pediatrics, Washington University School of Medicine, McDonnell Pediatric Research Building, Campus Box 8208, 660 South Euclid Avenue, St Louis, MO 63110-1093, USA.
| |
Collapse
|
35
|
Ghosh A, Highton D, Kolyva C, Tachtsidis I, Elwell CE, Smith M. Hyperoxia results in increased aerobic metabolism following acute brain injury. J Cereb Blood Flow Metab 2017; 37:2910-2920. [PMID: 27837190 PMCID: PMC5536254 DOI: 10.1177/0271678x16679171] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acute brain injury is associated with depressed aerobic metabolism. Below a critical mitochondrial pO2 cytochrome c oxidase, the terminal electron acceptor in the mitochondrial respiratory chain, fails to sustain oxidative phosphorylation. After acute brain injury, this ischaemic threshold might be shifted into apparently normal levels of tissue oxygenation. We investigated the oxygen dependency of aerobic metabolism in 16 acutely brain-injured patients using a 120-min normobaric hyperoxia challenge in the acute phase (24-72 h) post-injury and multimodal neuromonitoring, including transcranial Doppler ultrasound-measured cerebral blood flow velocity, cerebral microdialysis-derived lactate-pyruvate ratio (LPR), brain tissue pO2 (pbrO2), and tissue oxygenation index and cytochrome c oxidase oxidation state (oxCCO) measured using broadband spectroscopy. Increased inspired oxygen resulted in increased pbrO2 [ΔpbrO2 30.9 mmHg p < 0.001], reduced LPR [ΔLPR -3.07 p = 0.015], and increased cytochrome c oxidase (CCO) oxidation (Δ[oxCCO] + 0.32 µM p < 0.001) which persisted on return-to-baseline (Δ[oxCCO] + 0.22 µM, p < 0.01), accompanied by a 7.5% increase in estimated cerebral metabolic rate for oxygen ( p = 0.038). Our results are consistent with an improvement in cellular redox state, suggesting oxygen-limited metabolism above recognised ischaemic pbrO2 thresholds. Diffusion limitation or mitochondrial inhibition might explain these findings. Further investigation is warranted to establish optimal oxygenation to sustain aerobic metabolism after acute brain injury.
Collapse
Affiliation(s)
- Arnab Ghosh
- 1 Neurocritical Care, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London, UK
| | - David Highton
- 1 Neurocritical Care, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London, UK
| | - Christina Kolyva
- 2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Ilias Tachtsidis
- 2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Clare E Elwell
- 2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Martin Smith
- 1 Neurocritical Care, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London, UK.,2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,3 University College London Hospitals National Institute for Health Research Biomedical Research Centre, London, UK
| |
Collapse
|
36
|
Suemori T, Horton SB, Bottrell S, Skowno JJ, Davidson A. Changes in cerebral oxygen saturation and haemoglobin concentration during paediatric cardiac surgery. Anaesth Intensive Care 2017; 45:220-227. [PMID: 28267944 DOI: 10.1177/0310057x1704500212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although near-infrared spectroscopy (NIRS) enables bedside assessment of cerebral oxygenation, it provides little information on the cause of deoxygenation. The authors aimed to investigate the changes in cerebral oxygenation and haemoglobin concentration and their associations during paediatric cardiac surgery in order to elucidate the physiology underlying cerebral deoxygenation. An observational retrospective study on 399 patients who underwent paediatric cardiac surgery was conducted. With use of NIRS, cerebral oxygen saturation as expressed by tissue oxygen index (TOI) before and after surgery, concentration changes in oxygenated haemoglobin (Δ[HbO2]) and deoxygenated haemoglobin (Δ[HHb]) after surgery were studied as were the associations between these values and clinical variables. TOI decreased after surgery (preoperative versus postoperative value, 66.0% [56.9, 71.3] versus 63.2% [54.3, 69.4], median [25th, 75th percentile], P <0.001) and the decrease was greater in higher category groups in the Risk Adjusted Classification for Congenital Heart Surgery (RACHS-1). [HHb] increased from its baseline (+1.74 μmol/l [-1.57, +5.84], P <0.001) and the increase was greater in higher risk category groups. On the contrary, there was no evidence for a change in [HbO2] (+0.45 μmol/l [-4.76, +5.30], P=0.42). Cerebral oxygen saturation decreased after paediatric cardiac surgery and the decrease was greater in patients of higher risk groups. The increase in [HHb] was considered to play a predominant role in the cerebral deoxygenation noted, in particular in higher RACHS-1 category groups.
Collapse
Affiliation(s)
- T Suemori
- Visiting Researcher, Anaesthesia and Pain Management Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - S B Horton
- Senior Perfusionist, Department of Cardiac Surgery, The Royal Children's Hospital Melbourne, Heart Research, Murdoch Childrens Research Institute, Melbourne, Victoria
| | - S Bottrell
- Perfusionist, Department of Cardiac Surgery, The Royal Children's Hospital, Melbourne, Victoria
| | - J J Skowno
- Senior Staff Anaesthetist, Discipline of Paediatrics and Child Health, University of Sydney, Department of Anaesthesia, The Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, New South Wales
| | - A Davidson
- Senior Staff Anaesthetist, Anaesthesia and Pain Management Research Group, Murdoch Childrens Research Institute, Department of Paediatrics, University of Melbourne, Melbourne, Victoria
| |
Collapse
|
37
|
|
38
|
Brigadoi S, Phan P, Highton D, Powell S, Cooper RJ, Hebden J, Smith M, Tachtsidis I, Elwell CE, Gibson AP. Image reconstruction of oxidized cerebral cytochrome C oxidase changes from broadband near-infrared spectroscopy data. NEUROPHOTONICS 2017; 4:021105. [PMID: 28560239 PMCID: PMC5443419 DOI: 10.1117/1.nph.4.2.021105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/01/2017] [Indexed: 05/23/2023]
Abstract
In diffuse optical tomography (DOT), overlapping and multidistance measurements are required to reconstruct depth-resolved images of oxy- ([Formula: see text]) and deoxy- (HHb) hemoglobin concentration changes occurring in the brain. These can be considered an indirect measure of brain activity, under the assumption of intact neurovascular coupling. Broadband systems also allow changes in the redox state of cytochrome c oxidase (oxCCO) to be measured, which can be an important biomarker when neurovascular coupling is impaired. We used DOT to reconstruct images of [Formula: see text], [Formula: see text], and [Formula: see text] from data acquired with a broadband system. Four healthy volunteers were measured while performing a visual stimulation task (4-Hz inverting checkerboard). The broadband system was configured to allow multidistance and overlapping measurements of the participants' visual cortex with 32 channels. A multispectral approach was employed to reconstruct changes in concentration of the three chromophores during the visual stimulation. A clear and focused activation was reconstructed in the left occipital cortex of all participants. The difference between the residuals of the three-chromophore model and of the two-chromophore model (recovering only [Formula: see text] and [Formula: see text]) exhibits a spectrum similar to that of oxCCO. These results form a basis for further studies aimed to further optimize image reconstruction of [Formula: see text].
Collapse
Affiliation(s)
- Sabrina Brigadoi
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
- University of Padova, Department of Developmental and Social Psychology, Padova, Italy
| | - Phong Phan
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| | - David Highton
- National Hospital for Neurology and Neurosurgery, Neurocritical Care, London, United Kingdom
| | - Samuel Powell
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
- University College London, Department of Computer Science, London, United Kingdom
| | - Robert J. Cooper
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| | - Jeremy Hebden
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| | - Martin Smith
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
- National Hospital for Neurology and Neurosurgery, Neurocritical Care, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| | - Clare E. Elwell
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| | - Adam P. Gibson
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| |
Collapse
|
39
|
Functional NIRS Measurement of Cytochrome-C-Oxidase Demonstrates a More Brain-Specific Marker of Frontal Lobe Activation Compared to the Haemoglobins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 977:141-147. [PMID: 28685438 PMCID: PMC6126217 DOI: 10.1007/978-3-319-55231-6_19] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) is an increasingly common neuromonitoring technique used to observe evoked haemodynamic changes in the brain in response to a stimulus. The measurement is typically in terms of concentration changes of oxy- (∆HbO2) and deoxy- (∆HHb) haemoglobin. However, noise from systemic fluctuations in the concentration of these chromophores can contaminate stimulus-evoked haemodynamic responses, leading to misinterpretation of results. Short-separation channels can be used to regress out extracerebral haemodynamics to better reveal cerebral changes, significantly improving the reliability of fNIRS. Broadband NIRS can be used to additionally monitor concentration changes of the oxidation state of cytochrome-c-oxidase (∆oxCCO). Recent studies have shown ∆oxCCO to be a depth-dependent and hence brain-specific signal. This study aims to investigate whether ∆oxCCO can produce a more robust marker of functional activation. Continuous frontal lobe NIRS measurements were collected from 17 healthy adult volunteers. Short 1 cm source-detector separation channels were regressed from longer separation channels in order to minimise the extracerebral contribution to standard fNIRS channels. Significant changes in ∆HbO2 and ∆HHb were seen at 1 cm channels but were not observed in ∆oxCCO. An improvement in the haemodynamic signals was achieved with regression of the 1 cm channel. Broadband NIRS-measured concentration changes of the oxidation state of cytochrome-c-oxidase has the potential to be an alternative and more brain-specific marker of functional activation.
Collapse
|
40
|
Nosrati R, Lin S, Ramadeen A, Monjazebi D, Dorian P, Toronov V. Cerebral Hemodynamics and Metabolism During Cardiac Arrest and Cardiopulmonary Resuscitation Using Hyperspectral Near Infrared Spectroscopy. Circ J 2017; 81:879-887. [PMID: 28302943 DOI: 10.1253/circj.cj-16-1225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Maintaining cerebral oxygen delivery and metabolism during cardiac arrest (CA) through resuscitation is essential to improve the survival rate while avoiding brain injury. The effect of CA and cardiopulmonary resuscitation (CPR) on cerebral and muscle oxygen delivery and metabolism is not clearly quantified.Methods and Results:A novel hyperspectral near-infrared spectroscopy (hNIRS) technique was developed and evaluated to measure cerebral oxygen delivery and aerobic metabolism during ventricular fibrillation (VF) CA and CPR in 14 pigs. The hNIRS parameters were measured simultaneously on the dura and skull to investigate the validity of non-invasive hNIRS measurements. In addition, we compared the hNIRS data collected simultaneously on the brain and muscle. Following VF induction, oxygenated hemoglobin (HbO2) declined with a 9.9 s delay and then cytochrome-c-oxidase (Cyt-ox) decreased on average 4.4 s later (P<0.05). CPR improved cerebral metabolism, which was reflected by an average 0.4 μmol/L increase in Cyt-ox, but had no significant effect on HbO2, deoxygenated hemoglobin (HHb) and tissue oxygen saturation (tSO2). Cyt-ox had greater correlation with HHb than HbO2. Muscle metabolism during VF and CPR was significantly different from that of the brain. The total hemoglobin concentration (in the brain only) increased after ~200 s of untreated CA, which is most likely driven by cerebral autoregulation through vasodilation. CONCLUSIONS Overall, hNIRS showed consistent measurements of hemodynamics and metabolism during CA and CPR.
Collapse
Affiliation(s)
- Reyhaneh Nosrati
- Department of Physics, Ryerson University.,Medical Physics, Sunnybrook Health Sciences Centre
| | - Steve Lin
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital.,Department of Medicine, University of Toronto
| | - Andrew Ramadeen
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital
| | | | - Paul Dorian
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital.,Department of Medicine, University of Toronto
| | - Vladislav Toronov
- Department of Physics, Ryerson University.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital
| |
Collapse
|
41
|
|
42
|
Phan P, Highton D, Lai J, Smith M, Elwell C, Tachtsidis I. Multi-channel multi-distance broadband near-infrared spectroscopy system to measure the spatial response of cellular oxygen metabolism and tissue oxygenation. BIOMEDICAL OPTICS EXPRESS 2016; 7:4424-4440. [PMID: 27895985 PMCID: PMC5119585 DOI: 10.1364/boe.7.004424] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 05/22/2023]
Abstract
We present a multi-channel, multi-distance broadband near-infrared spectroscopy (NIRS) system with the capability of measuring changes in haemoglobin concentrations (Δ[HbO2], Δ[HHb]), oxidation state of cytochrome-c-oxidase (Δ[oxCCO]) and tissue oxygen saturation (TOI) in the adult human brain. The main components of the instrument are two customized spectrographs and two light sources. Each spectrograph is lens-based to improve light throughput, has a grating enhanced to optimise reflection in the near-infrared (NIR) spectral region and uses a front illuminated cooled CCD camera (-70° C) with a square chip dimension of 12.3 x 12.3 mm (512 x 512 pixels). Each light source uses a 50W halogen bulb with a gold plated mirror to increase the intensity of the NIR light. Each light source was connected to a custom-built bifurcated fibre bundle to create two source fibre bundles (3.2 mm diameter each). Each spectrograph received light input from another custom-built fibre bundle comprised of six individual bundles (one with 0.6 mm diameter and the other five with 1.5 mm diameter). All fibre bundles were fixed on a 3D printed optode holder (two light sources x two fibre bundles each = four probes; and two spectrographs x six fibre bundles each = 12 probes) that allowed 24 multi-distance channels across the forehead (six channels at 20 mm, three channels at 30 mm and 15 channels at 35 mm) and six TOI measurements. We demonstrated the use of the system in a cohort of nine healthy adult volunteers during prefrontal cortex functional activation using the Stroop task. We have observed functional responses identified as significant increase in Δ[HbO2], decrease in Δ[HHb] and increase in Δ[oxCCO] in five channels (out of 12), that overlay the left and right dorsolateral prefrontal cortices. There was no observable TOI functional response and we have shown small variations in TOI across different sites within the same subject and within the same site across subjects.
Collapse
Affiliation(s)
- Phong Phan
- Department of Medical Physics and Biomedical Engineering, UCL, London WC1E 6BT, UK
| | - David Highton
- Neurocritical Care Unit, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, UK
| | - Jonathan Lai
- Department of Medical Physics and Biomedical Engineering, UCL, London WC1E 6BT, UK
| | - Martin Smith
- Department of Medical Physics and Biomedical Engineering, UCL, London WC1E 6BT, UK
- Neurocritical Care Unit, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, UK
| | - Clare Elwell
- Department of Medical Physics and Biomedical Engineering, UCL, London WC1E 6BT, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, UCL, London WC1E 6BT, UK
| |
Collapse
|
43
|
Abstract
A mismatch between cerebral oxygen supply and demand can lead to cerebral hypoxia/ischemia and deleterious outcomes. Cerebral oxygenation monitoring is an important aspect of multimodality neuromonitoring. It is increasingly deployed whenever intracranial pressure monitoring is indicated. Although there is a large body of evidence demonstrating an association between cerebral hypoxia/ischemia and poor outcomes, it remains to be determined whether restoring cerebral oxygenation leads to improved outcomes. Randomized prospective studies are required to address uncertainties about cerebral oxygenation monitoring and management. This article describes the different methods of monitoring cerebral oxygenation, their indications, evidence base, limitations, and future perspectives.
Collapse
Affiliation(s)
- Matthew A Kirkman
- Neurocritical Care Unit, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, UK
| | - Martin Smith
- Neurocritical Care Unit, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
44
|
Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep 2016; 6:30540. [PMID: 27484673 PMCID: PMC4971496 DOI: 10.1038/srep30540] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/06/2016] [Indexed: 01/11/2023] Open
Abstract
Photobiomodulation, also known as low-level laser/light therapy (LLLT), refers to the use of red-to-near-infrared light to stimulate cellular functions for physiological or clinical benefits. The mechanism of LLLT is assumed to rely on photon absorption by cytochrome c oxidase (CCO), the terminal enzyme in the mitochondrial respiratory chain that catalyzes the reduction of oxygen for energy metabolism. In this study, we used broadband near-infrared spectroscopy (NIRS) to measure the LLLT-induced changes in CCO and hemoglobin concentrations in human forearms in vivo. Eleven healthy participants were administered with 1064-nm laser and placebo treatments on their right forearms. The spectroscopic data were analyzed and fitted with wavelength-dependent, modified Beer-Lambert Law. We found that LLLT induced significant increases of CCO concentration (Δ[CCO]) and oxygenated hemoglobin concentration (Δ[HbO]) on the treated site as the laser energy dose accumulated over time. A strong linear interplay between Δ[CCO] and Δ[HbO] was observed for the first time during LLLT, indicating a hemodynamic response of oxygen supply and blood volume closely coupled to the up-regulation of CCO induced by photobiomodulation. These results demonstrate the tremendous potential of broadband NIRS as a non-invasive, in vivo means to study mechanisms of photobiomodulation and perform treatment evaluations of LLLT.
Collapse
|
45
|
Low-light-level therapy as a treatment for minimal hepatic encephalopathy: behavioural and brain assessment. Lasers Med Sci 2016; 31:1717-1726. [DOI: 10.1007/s10103-016-2042-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/27/2016] [Indexed: 12/15/2022]
|
46
|
Chitnis D, Airantzis D, Highton D, Williams R, Phan P, Giagka V, Powell S, Cooper RJ, Tachtsidis I, Smith M, Elwell CE, Hebden JC, Everdell N. Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:065112. [PMID: 27370501 PMCID: PMC4957669 DOI: 10.1063/1.4954722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The first wearable multi-wavelength technology for functional near-infrared spectroscopy has been developed, based on a custom-built 8-wavelength light emitting diode (LED) source. A lightweight fibreless probe is designed to monitor changes in the concentrations of multiple absorbers (chromophores) in biological tissue, the most dominant of which at near-infrared wavelengths are oxyhemoglobin and deoxyhemoglobin. The use of multiple wavelengths enables signals due to the less dominant chromophores to be more easily distinguished from those due to hemoglobin and thus provides more complete and accurate information about tissue oxygenation, hemodynamics, and metabolism. The spectroscopic probe employs four photodiode detectors coupled to a four-channel charge-to-digital converter which includes a charge integration amplifier and an analogue-to-digital converter (ADC). Use of two parallel charge integrators per detector enables one to accumulate charge while the other is being read out by the ADC, thus facilitating continuous operation without dead time. The detector system has a dynamic range of about 80 dB. The customized source consists of eight LED dies attached to a 2 mm × 2 mm substrate and encapsulated in UV-cured epoxy resin. Switching between dies is performed every 20 ms, synchronized to the detector integration period to within 100 ns. The spectroscopic probe has been designed to be fully compatible with simultaneous electroencephalography measurements. Results are presented from measurements on a phantom and a functional brain activation study on an adult volunteer, and the performance of the spectroscopic probe is shown to be very similar to that of a benchtop broadband spectroscopy system. The multi-wavelength capabilities and portability of this spectroscopic probe will create significant opportunities for in vivo studies in a range of clinical and life science applications.
Collapse
Affiliation(s)
- Danial Chitnis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Dimitrios Airantzis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - David Highton
- Neurocritical Care Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London WC1N 3BG, United Kingdom
| | - Rhys Williams
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Phong Phan
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Vasiliki Giagka
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Samuel Powell
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Robert J Cooper
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Martin Smith
- Neurocritical Care Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London WC1N 3BG, United Kingdom
| | - Clare E Elwell
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Jeremy C Hebden
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Nicholas Everdell
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
47
|
Nosrati R, Vesely K, Schweizer TA, Toronov V. Event-related changes of the prefrontal cortex oxygen delivery and metabolism during driving measured by hyperspectral fNIRS. BIOMEDICAL OPTICS EXPRESS 2016; 7:1323-35. [PMID: 27446658 PMCID: PMC4929644 DOI: 10.1364/boe.7.001323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/13/2016] [Accepted: 03/14/2016] [Indexed: 05/02/2023]
Abstract
Recent technological advancements in optical spectroscopy allow for the construction of hyperspectral (broadband) portable tissue oximeters. In a series of our recent papers we have shown that hyperspectral NIRS (hNIRS) has similar or better capabilities in the absolute tissue oximetry as frequency-domain NIRS, and that hNIRS is also very efficient in measuring temporal changes in tissue hemoglobin concentration and oxygenation. In this paper, we extend the application of hNIRS to the measurement of event-related hemodynamic and metabolic functional cerebral responses during simulated driving. In order to check if hNIRS can detect event-related changes in the brain, we measured the concentration changes of oxygenated (HbO2) and deoxygenated (HHb) hemoglobin and of the oxidized state of cytochrome c oxidase, on the right and left prefrontal cortices (PFC) simultaneously during simulated driving on sixteen healthy right-handed participants (aged between 22-32). We used our in-house hNIRS system based on a portable spectrometer with cooled CCD detector and a driving simulator with a fully functional steering wheel and foot pedals. Each participant performed different driving tasks and participants were distracted during some driving conditions by asking general knowledge true/false questions. Our findings suggest that more complex driving tasks (non-distracted) deactivate PFC while distractions during driving significantly activate PFC, which is in agreement with previous fMRI results. Also, we found the changes in the redox state of the cytochrome C oxidase to be very consistent with those in the concentrations of HbO2 and HHb. Overall our findings suggest that in addition to the suitability of absolute tissue oximetry, hyperspectral NIRS may also offer advantages in functional brain imaging. In particular, it can be used to measure the metabolic functional brain activity during actual driving.
Collapse
Affiliation(s)
- Reyhaneh Nosrati
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
- Medical Physics, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, Ontario, M4N 3M5, Canada
| | - Kristin Vesely
- Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
| | - Tom A. Schweizer
- Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
- Department of Surgery, Faculty of Medicine (Neurosurgery), University of Toronto, 27 King's College Cir, Toronto, ON, M5S, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto27 King's College Cir, Toronto, ON, M5S, Canada
| | - Vladislav Toronov
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
48
|
Martín-Aragón S, Villar Á, Benedí J. Age-dependent effects of esculetin on mood-related behavior and cognition from stressed mice are associated with restoring brain antioxidant status. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:1-16. [PMID: 26290950 DOI: 10.1016/j.pnpbp.2015.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022]
Abstract
Dietary antioxidants might exert an important role in the aging process by relieving oxidative damage, a likely cause of age-associated brain dysfunctions. This study aims to investigate the influence of esculetin (6,7-dihydroxycoumarin), a naturally occurring antioxidant in the diet, on mood-related behaviors and cognitive function and its relation with age and brain oxidative damage. Behavioral tests were employed in 11-, 17- and 22-month-old male C57BL/6J mice upon an oral 35day-esculetin treatment (25mg/kg). Activity of antioxidant enzymes, GSH and GSSG levels, GSH/GSSG ratio, and mitochondrial function were analyzed in brain cortex at the end of treatment in order to assess the oxidative status related to mouse behavior. Esculetin treatment attenuated the increased immobility time and enhanced the diminished climbing time in the forced swim task elicited by acute restraint stress (ARS) in the 11- and 17-month-old mice versus their counterpart controls. Furthermore, ARS caused an impairment of contextual memory in the step-through passive avoidance both in mature adult and aged mice which was partially reversed by esculetin only in the 11-month-old mice. Esculetin was effective to prevent the ARS-induced oxidative stress mostly in mature adult mice by restoring antioxidant enzyme activities, augmenting the GSH/GSSG ratio and increasing cytochrome c oxidase (COX) activity in cortex. Modulation of the mood-related behavior and cognitive function upon esculetin treatment in a mouse model of ARS depends on age and is partly due to the enhancement of redox status and levels of COX activity in cortex.
Collapse
Affiliation(s)
- Sagrario Martín-Aragón
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Ángel Villar
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Juana Benedí
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
49
|
Caldwell M, Hapuarachchi T, Highton D, Elwell C, Smith M, Tachtsidis I. BrainSignals Revisited: Simplifying a Computational Model of Cerebral Physiology. PLoS One 2015; 10:e0126695. [PMID: 25961297 PMCID: PMC4427507 DOI: 10.1371/journal.pone.0126695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Multimodal monitoring of brain state is important both for the investigation of healthy cerebral physiology and to inform clinical decision making in conditions of injury and disease. Near-infrared spectroscopy is an instrument modality that allows non-invasive measurement of several physiological variables of clinical interest, notably haemoglobin oxygenation and the redox state of the metabolic enzyme cytochrome c oxidase. Interpreting such measurements requires the integration of multiple signals from different sources to try to understand the physiological states giving rise to them. We have previously published several computational models to assist with such interpretation. Like many models in the realm of Systems Biology, these are complex and dependent on many parameters that can be difficult or impossible to measure precisely. Taking one such model, BrainSignals, as a starting point, we have developed several variant models in which specific regions of complexity are substituted with much simpler linear approximations. We demonstrate that model behaviour can be maintained whilst achieving a significant reduction in complexity, provided that the linearity assumptions hold. The simplified models have been tested for applicability with simulated data and experimental data from healthy adults undergoing a hypercapnia challenge, but relevance to different physiological and pathophysiological conditions will require specific testing. In conditions where the simplified models are applicable, their greater efficiency has potential to allow their use at the bedside to help interpret clinical data in near real-time.
Collapse
Affiliation(s)
- Matthew Caldwell
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Tharindi Hapuarachchi
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK
| | - David Highton
- Neurocritical Care Unit, University College Hospitals, London, UK
| | - Clare Elwell
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Martin Smith
- Neurocritical Care Unit, University College Hospitals, London, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
50
|
Arifler D, Zhu T, Madaan S, Tachtsidis I. Optimal wavelength combinations for near-infrared spectroscopic monitoring of changes in brain tissue hemoglobin and cytochrome c oxidase concentrations. BIOMEDICAL OPTICS EXPRESS 2015; 6:933-47. [PMID: 25798316 PMCID: PMC4361446 DOI: 10.1364/boe.6.000933] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 05/19/2023]
Abstract
We analyze broadband near-infrared spectroscopic measurements obtained from newborn piglets subjected to hypoxia-ischemia and we aim to identify optimal wavelength combinations for monitoring cerebral tissue chromophores. We implement an optimization routine based on the genetic algorithm to perform a heuristic search for discrete wavelength combinations that can provide accurate concentration information when benchmarked against the gold standard of 121 wavelengths. The results indicate that it is possible to significantly reduce the number of measurement wavelengths used in conjunction with spectroscopic algorithms and still achieve a high performance in estimating changes in concentrations of oxyhemoglobin, deoxyhemoglobin, and oxidized cytochrome c oxidase. While the use of a 3-wavelength combination leads to mean recovery errors of up to 10%, these errors drop to less than 4% with 4 or 5 wavelengths and to even less than 2% with 8 wavelengths.
Collapse
Affiliation(s)
- Dizem Arifler
- Physics Group, Middle East Technical University, Northern Cyprus Campus, Kalkanli, via Mersin 10
Turkey
| | - Tingting Zhu
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT,
UK
| | - Sara Madaan
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT,
UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT,
UK
| |
Collapse
|