1
|
Hidalgo MMT, de Almeida ABM, Dos Santos Silva LA, Greghi JR, Silva VW, Sambatti NR, Trautwein LGC, Martins MIM. Comparison of two pharmacological semen collection times with α2-adrenergic agonist in domestic cats. Reprod Domest Anim 2023; 58:1207-1213. [PMID: 37386933 DOI: 10.1111/rda.14420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
The use of α2-adrenergic agonists in association with urethral catheterization has been used as a technique for pharmacological semen collection in cats. The mechanism of action of this drug is the stimulation of adrenoreceptors in the vas deferens, which results in ejaculation. While medetomidine is the α2-agonist most commonly used in studies, ejaculation with the use of dexmedetomidine associated with ketamine has been effective, but with variable results. Therefore, further studies regarding the methodology of use are required to obtain better seminal quality. This study aimed to compare two pharmacological semen collection times after the association of dexmedetomidine (30 μg/kg, IM; Dormitor®, Zoetis), ketamine (5 mg/kg, IM; ketamine, Vetnil) and urethral catheterization using a tomcat probe (0.8 mm × 1.00 mm × 11 cm). The collections were divided into two experimental groups: G10 (N = 8; urethral catheterization after 10 min of anaesthesia) and G15 (N = 8; urethral catheterization after 15 min of anaesthesia). The ejaculates were evaluated for ejaculate volume, sperm concentration, morphology and kinetics using the CASA system. To compare the groups, the t-test and the Mann-Whitney U-test were used with a significance level of 5%. It was identified that ejaculate volume (G10: 22.62 ± 2.13 vs. G15: 26.81 ± 1.55; p < .001) and sperm concentration (G10: 48.10 × 106 ± 17.84 vs. G15: 90.18 × 106 ± 19.35; p < .001) was higher in G15 than in G10 and had a lower percentage of minor defects than G10 (G10: 3.12 ± 2.41 vs. G15: 1.00 ± 1.19; p = .043). Regarding the kinetic parameters, the results of G15 were better for total motility-TM (G10: 67.00 ± 10.33 vs. G15: 81.87 ± 7.99; p = .006) and faster cells-RAPID: (G10: 55.00 ± 16.63 vs. G15: 74.25 ± 11.94; p = .019); whereas a higher proportion of cells with slow speed-SLOW were seen in G10 (G10: 31.00 ± 12.07 vs. 17.12 ± 7.53; p = .015). Based on these findings, we suggest that collection via urethral catheterization should be performed 15 min after the application of ketamine-associated dexmedetomidine to obtain a better-quality ejaculate.
Collapse
Affiliation(s)
| | | | | | - Julia Rodrigues Greghi
- Laboratório de Andrologia e Reprodução Animal Assistida - LARAA, Londrina, Paraná, Brazil
| | - Vinícius Wagner Silva
- Laboratório de Andrologia e Reprodução Animal Assistida - LARAA, Londrina, Paraná, Brazil
| | | | | | | |
Collapse
|
2
|
Fuentes N, Garcia A, Guevara R, Orofino R, Mateos DM. Complexity of Brain Dynamics as a Correlate of Consciousness in Anaesthetized Monkeys. Neuroinformatics 2022; 20:1041-1054. [PMID: 35511398 DOI: 10.1007/s12021-022-09586-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/31/2022]
Abstract
The use of anaesthesia is a fundamental tool in the investigation of consciousness. Anesthesia procedures allow to investigate different states of consciousness from sedation to deep anesthesia within controlled scenarios. In this study we use information quantifiers to measure the complexity of electrocorticogram recordings in monkeys. We apply these metrics to compare different stages of general anesthesia for evaluating consciousness in several anesthesia protocols. We find that the complexity of brain activity can be used as a correlate of consciousness. For two of the anaesthetics used, propofol and medetomidine, we find that the anaesthetised state is accompanied by a reduction in the complexity of brain activity. On the other hand we observe that use of ketamine produces an increase in complexity measurements. We relate this observation with increase activity within certain brain regions associated with the ketamine used doses. Our measurements indicate that complexity of brain activity is a good indicator for a general evaluation of different levels of consciousness awareness, both in anesthetized and non anesthetizes states.
Collapse
Affiliation(s)
- Nicolas Fuentes
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alexis Garcia
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ramón Guevara
- Department of Physics and Astronomy, University of Padua, Padua, Italy
| | - Roberto Orofino
- Hospital de Ninos Pedro de Elizalde, Buenos Aires, Argentina.,Hospital Español, La Plata, Argentina
| | - Diego M Mateos
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Facultad de Ciencia y Tecnología. Universidad Autónoma de Entre Ríos (UADER), Oro Verde, Entre Ríos, Argentina. .,Instituto de Matemática Aplicada del Litoral (IMAL-CONICET-UNL), CCT CONICET, Santa Fé, Argentina.
| |
Collapse
|
3
|
Yuan C, Gao A, Xu Q, Zhang B, Xue R, Dou Y, Yu C. A multi-dosing regimen to enhance the spatial memory of normal rats with α5-containing GABA A receptor negative allosteric modulator L-655,708. Psychopharmacology (Berl) 2021; 238:3375-3389. [PMID: 34389882 DOI: 10.1007/s00213-021-05951-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 08/03/2021] [Indexed: 01/20/2023]
Abstract
RATIONALE AND OBJECTIVES The reported inconsistent effects of negative allosteric modulators of α5-containing GABAA receptors on learning and memory may be attributed to receptor selectivity, effective plasma concentration maintenance, and administration time. This study aimed to compare the effects of L-655,708 administered by single-dosing regimen versus multi-dosing regimen on spatial memory, signaling molecules, and brain functional connectivity. METHODS After comparing the maintenance time of the effective plasma concentration of L-655,708 between multi-dosing and single-dosing regimens, we further compared the effects of the administration of the two regimens at different phases (before-learning, during-learning, and before-probe) of the Morris water maze (MWM) test on the performance of learning and memory and the levels of signaling molecules related to learning and memory in hippocampal tissues. Functional connectivity analyses between hippocampal and cortical regions were performed to further clarify the effects of the multi-dosing regimen. RESULTS The multi-dosing regimen could maintain the effective plasma concentration of L-655,708 much longer than the single-dosing regimen. Only the multi-dosing regimen for L-655,708 administration during the learning period led to significant improvement in spatial memory in the MWM test and increases in levels of glutamate receptors and phosphorylated signaling molecules (p-PKAα, p-CaMKII, and p-CREB-1). Compared with the vehicle control, the multi-dosing regimen increased the functional connectivity of the left hippocampal CA1 with cingulate and motor cortices. CONCLUSIONS A multi-dosing regimen for L-655,708 administered during the learning period is an effective strategy to improve spatial memory, increase signaling molecule levels, and enhance the functional connectivity of the hippocampus.
Collapse
Affiliation(s)
- Congcong Yuan
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - An Gao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Beibei Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Rui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
4
|
Pradier B, Wachsmuth L, Nagelmann N, Segelcke D, Kreitz S, Hess A, Pogatzki-Zahn EM, Faber C. Combined resting state-fMRI and calcium recordings show stable brain states for task-induced fMRI in mice under combined ISO/MED anesthesia. Neuroimage 2021; 245:118626. [PMID: 34637903 DOI: 10.1016/j.neuroimage.2021.118626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
For fMRI in animal models, the combination of low-dose anesthetic, isoflurane (ISO), and the sedative medetomidine (MED) has recently become an advocated regimen to achieve stable neuronal states and brain networks in rats that are required for reliable task-induced BOLD fMRI. However, in mice the temporal stability of neuronal states and networks in resting-state (rs)-fMRI experiments during the combined ISO/MED regimen has not been systematically investigated. Using a multimodal approach with optical calcium (Ca2+) recordings and rs-fMRI, we investigated cortical neuronal/astrocytic Ca2+activity states and brain networks at multiple time points while switching from anesthesia with 1% ISO to a combined ISO/MED regimen. We found that cortical activity states reached a steady-state 45 min following start of MED infusion as indicated by stable Ca2+ transients. Similarly, rs-networks were not statistically different between anesthesia with ISO and the combined ISO/MED regimen 45 and 100 min after start of MED. Importantly, during the transition time we identified changed rs-network signatures that likely reflect the different mode of action of the respective anesthetic; these included a dose-dependent increase in cortico-cortical functional connectivity (FC) presumably caused by reduction of ISO concentration and decreased FC in subcortical arousal nuclei due to MED infusion. Furthermore, we report detection of visual stimulation-induced BOLD fMRI during the stable ISO/MED neuronal state 45 min after induction. Based on our findings, we recommend a 45-minute waiting period after switching from ISO anesthesia to the combined ISO/MED regimen before performing rs- or task-induced fMRI experiments.
Collapse
Affiliation(s)
- Bruno Pradier
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany; Department of Anesthesiology Intensive Care and Pain Medicine, University Hospital Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany
| | - Nina Nagelmann
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany
| | - Daniel Segelcke
- Department of Anesthesiology Intensive Care and Pain Medicine, University Hospital Münster, Germany
| | - Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Esther M Pogatzki-Zahn
- Department of Anesthesiology Intensive Care and Pain Medicine, University Hospital Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany.
| |
Collapse
|
5
|
Madrigal-Valverde M, Bittencourt RF, Ribeiro Filho ADL, Barbosa VF, Vieira CA, Romão EA, Carneiro IB, Azevedo MC, Araujo GR. Quality of domestic cat semen collected by urethral catheterization after the use of different alpha 2-adrenergic agonists. J Feline Med Surg 2021; 23:745-750. [PMID: 33206029 PMCID: PMC10812191 DOI: 10.1177/1098612x20973183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES We compared the effects of two alpha (α)2-adrenergic agonists on semen traits. METHODS In this study, 13 adult domestic cats were divided into two experimental groups, according to the chemical ejaculation protocol used: the first group received medetomidine hydrochloride (100 µg/kg) and ketamine (5000 µg/kg); the second group received dexmedetomidine hydrochloride (25 µg/kg) and ketamine (5000 µg/kg), both by the intramuscular route. RESULTS The animals responded positively (P >0.05) to chemical collection. Seminal parameters evaluated included volume, sperm vigor, total motility, progressive motility, sperm concentration, and the structural and functional integrity of the plasma membrane; sperm morphology values did not differ between groups (P >0.05). CONCLUSIONS AND RELEVANCE The results indicated that dexmedetomidine is a more viable and economical alternative to medetomidine in domestic cats submitted to semen collection by urethral catheterization. Semen collection by urethral catheterization after using α2-adrenergic agonists is a recently developed technique in feline species that is considered to be quick and highly applicable to assisted reproduction programs in felids.
Collapse
Affiliation(s)
- Mónica Madrigal-Valverde
- School of Agronomy, Costa Rica Institute of Technology, CTLSC, San Carlos, Alajuela, Costa Rica
- Animal Sciences Department, University of Costa Rica, Campus Rodrigo Facio, San Jose, Costa Rica
| | - Rodrigo F Bittencourt
- School of Veterinary and Animal Science Medicine, Federal University of Bahia, Salvador, Brazil
| | | | - Vivian F Barbosa
- Departament Anatomy, Pathology and Clinics, Renato R de Madeiros Veterinary Hospital, Federal University of Bahia, Salvador, Brazil
| | - Catharina A Vieira
- Departament Anatomy, Pathology and Clinics, Renato R de Madeiros Veterinary Hospital, Federal University of Bahia, Salvador, Brazil
| | - Elton A Romão
- Departament Anatomy, Pathology and Clinics, Renato R de Madeiros Veterinary Hospital, Federal University of Bahia, Salvador, Brazil
| | - Isabella B Carneiro
- Departament Anatomy, Pathology and Clinics, Renato R de Madeiros Veterinary Hospital, Federal University of Bahia, Salvador, Brazil
| | - Milena C Azevedo
- Departament Anatomy, Pathology and Clinics, Renato R de Madeiros Veterinary Hospital, Federal University of Bahia, Salvador, Brazil
| | | |
Collapse
|
6
|
Tokunaga R, Paquette T, Tsurugizawa T, Leblond H, Piché M. Fasting prevents medetomidine-induced hyperglycaemia and alterations of neurovascular coupling in the somatosensory cortex of the rat during noxious stimulation. Eur J Neurosci 2021; 54:4906-4919. [PMID: 34137097 DOI: 10.1111/ejn.15350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 11/28/2022]
Abstract
Medetomidine and isoflurane are commonly used for general anaesthesia in fMRI studies, but they alter cerebral blood flow (CBF) regulation and neurovascular coupling (NVC). In addition, medetomidine induces hypoinsulinemia and hyperglycaemia, which also alter CBF regulation and NVC. Furthermore, sudden changes in arterial pressure induced by noxious stimulation may affect NVC differently under medetomidine and isoflurane anaesthesia, considering their different effects on vascular functions. The first objective of this study was to compare NVC under medetomidine and isoflurane anaesthesia during noxious stimulation. The second objective was to examine whether fasting may improve NVC by reducing medetomidine-induced hyperglycaemia. In male Wister rats, noxious electrical stimulation was applied to the sciatic nerve in fasted or non-fasted animals. CBF and local field potentials (LFP) were recorded in the somatosensory cortex to assess NVC (CBF/LFP ratio). The CBF/LFP ratio was increased by medetomidine compared with isoflurane (p = 0.004), but this effect was abolished by fasting (p = 0.8). Accordingly, medetomidine produced a threefold increase in blood glucose (p < 0.001), but this effect was also abolished by fasting (p = 0.3). This indicates that isoflurane and medetomidine anaesthesia alter NVC differently, but the undesirable glucose dependent effects of medetomidine on NVC can be prevented by fasting.
Collapse
Affiliation(s)
- Ryota Tokunaga
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Thierry Paquette
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hugues Leblond
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| |
Collapse
|
7
|
Steiner AR, Rousseau-Blass F, Schroeter A, Hartnack S, Bettschart-Wolfensberger R. Systematic Review: Anesthetic Protocols and Management as Confounders in Rodent Blood Oxygen Level Dependent Functional Magnetic Resonance Imaging (BOLD fMRI)-Part B: Effects of Anesthetic Agents, Doses and Timing. Animals (Basel) 2021; 11:ani11010199. [PMID: 33467584 PMCID: PMC7830239 DOI: 10.3390/ani11010199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary To understand brain function in rats and mice functional magnetic resonance imaging of the brain is used. With this type of “brain scan” regional changes in blood flow and oxygen consumption are measured as an indirect surrogate for activity of brain regions. Animals are often anesthetized for the experiments to prevent stress and blurred images due to movement. However, anesthesia may alter the measurements, as blood flow within the brain is differently affected by different anesthetics, and anesthetics also directly affect brain function. Consequently, results obtained under one anesthetic protocol may not be comparable with those obtained under another, and/or not representative for awake animals and humans. We have systematically searched the existing literature for studies analyzing the effects of different anesthesia methods or studies that compared anesthetized and awake animals. Most studies reported that anesthetic agents, doses and timing had an effect on functional magnetic resonance imaging results. To obtain results which promote our understanding of brain function, it is therefore essential that a standard for anesthetic protocols for functional magnetic resonance is defined and their impact is well characterized. Abstract In rodent models the use of functional magnetic resonance imaging (fMRI) under anesthesia is common. The anesthetic protocol might influence fMRI readouts either directly or via changes in physiological parameters. As long as those factors cannot be objectively quantified, the scientific validity of fMRI in rodents is impaired. In the present systematic review, literature analyzing in rats and mice the influence of anesthesia regimes and concurrent physiological functions on blood oxygen level dependent (BOLD) fMRI results was investigated. Studies from four databases that were searched were selected following pre-defined criteria. Two separate articles publish the results; the herewith presented article includes the analyses of 83 studies. Most studies found differences in BOLD fMRI readouts with different anesthesia drugs and dose rates, time points of imaging or when awake status was compared to anesthetized animals. To obtain scientifically valid, reproducible results from rodent fMRI studies, stable levels of anesthesia with agents suitable for the model under investigation as well as known and objectively quantifiable effects on readouts are, thus, mandatory. Further studies should establish dose ranges for standardized anesthetic protocols and determine time windows for imaging during which influence of anesthesia on readout is objectively quantifiable.
Collapse
Affiliation(s)
- Aline R. Steiner
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Correspondence:
| | - Frédérik Rousseau-Blass
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Aileen Schroeter
- Institute for Biomedical Engineering, University and ETH Zurich, 8093 Zurich, Switzerland;
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Regula Bettschart-Wolfensberger
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
8
|
Moezzi B, Pratti LM, Hordacre B, Graetz L, Berryman C, Lavrencic LM, Ridding MC, Keage HAD, McDonnell MD, Goldsworthy MR. Characterization of Young and Old Adult Brains: An EEG Functional Connectivity Analysis. Neuroscience 2020; 422:230-239. [PMID: 31806080 DOI: 10.1016/j.neuroscience.2019.08.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 01/01/2023]
Abstract
Brain connectivity studies have reported that functional networks change with older age. We aim to (1) investigate whether electroencephalography (EEG) data can be used to distinguish between individual functional networks of young and old adults; and (2) identify the functional connections that contribute to this classification. Two eyes-open resting-state EEG recording sessions with 64 electrodes for each of 22 younger adults (19-37 years) and 22 older adults (63-85 years) were conducted. For each session, imaginary coherence matrices in delta, theta, alpha, beta and gamma bands were computed. A range of machine learning classification methods were utilized to distinguish younger and older adult brains. A support vector machine (SVM) classifier was 93% accurate in classifying the brains by age group. We report decreased functional connectivity with older age in delta, theta, alpha and gamma bands, and increased connectivity with older age in beta band. Most connections involving frontal, temporal, and parietal electrodes, and more than half of connections involving occipital electrodes, showed decreased connectivity with older age. Slightly less than half of the connections involving central electrodes showed increased connectivity with older age. Functional connections showing decreased strength with older age were not significantly different in electrode-to-electrode distance than those that increased with older age. Most of the connections used by the classifier to distinguish participants by age group belonged to the alpha band. Findings suggest a decrease in connectivity in key networks and frequency bands associated with attention and awareness, and an increase in connectivity of the sensorimotor functional networks with aging during a resting state.
Collapse
Affiliation(s)
- Bahar Moezzi
- Cognitive Ageing and Impairment Neurosciences Laboratory, School of Psychology, Social Work and Social Policy, University of South Australia, Australia.
| | | | - Brenton Hordacre
- School of Health Sciences, University of South Australia, Australia
| | - Lynton Graetz
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia
| | - Carolyn Berryman
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia
| | - Louise M Lavrencic
- Cognitive Ageing and Impairment Neurosciences Laboratory, School of Psychology, Social Work and Social Policy, University of South Australia, Australia; Neuroscience Research of Australia, Australia
| | - Michael C Ridding
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia
| | - Hannah A D Keage
- Cognitive Ageing and Impairment Neurosciences Laboratory, School of Psychology, Social Work and Social Policy, University of South Australia, Australia
| | - Mark D McDonnell
- Computational Learning Systems Laboratory, School of Information Technology and Mathematical Sciences, University of South Australia, Australia
| | | |
Collapse
|
9
|
Shim H, Lee J, Kim S. BOLD fMRI and hemodynamic responses to somatosensory stimulation in anesthetized mice: spontaneous breathing vs. mechanical ventilation. NMR IN BIOMEDICINE 2020; 33:e4311. [PMID: 32297409 PMCID: PMC7317444 DOI: 10.1002/nbm.4311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Mouse functional MRI (fMRI) has been of great interest due to the abundance of transgenic models. Due to a mouse's small size, spontaneous breathing has often been used. Because the vascular physiology affecting fMRI might not be controlled normally, its effects on functional responses were investigated with optical intrinsic signal (OIS) imaging and 9.4 T BOLD fMRI. Three conditions were tested in C57BL/6 mice: spontaneous breathing under ketamine and xylazine anesthesia (KX), mechanical ventilation under KX, and mechanical ventilation under isoflurane. Spontaneous breathing under KX induced an average pCO2 of 83 mmHg, whereas a mechanical ventilation condition achieved a pCO2 of 37-41 mmHg within a physiological range. The baseline diameter of arterial and venous vessels was only 7%-9% larger with spontaneous breathing than with mechanical ventilation under KX, but it was much smaller than that in normocapnic isoflurane-anesthetized mice. Three major functional studies were performed. First, CBV-weighted OIS and arterial dilations to 4-second forepaw stimulation were rapid and larger at normocapnia than hypercapnia under KX, but very small under isoflurane. Second, CBV-weighted OIS and arterial dilations by vasodilator acetazolamide were measured for investigating vascular reactivity and were larger in the normocapnic condition than in the hypercapnic condition under KX. Third, evoked OIS and BOLD fMRI responses in the contralateral mouse somatosensory cortex to 20-second forepaw stimulation were faster and larger in the mechanical ventilation than spontaneous breathing. BOLD fMRI peaked at the end of the 20-second stimulation under hypercapnic spontaneous breathing, and at ~9 seconds under mechanical ventilation. The peak amplitude of BOLD fMRI was 2.2% at hypercapnia and ~3.4% at normocapnia. Overall, spontaneous breathing induces sluggish reduced hemodynamic and fMRI responses, but it is still viable for KX anesthesia due to its simplicity, noninvasiveness, and well-localized BOLD activity in the somatosensory cortex.
Collapse
Affiliation(s)
- Hyun‐Ji Shim
- Center for Neuroscience Imaging Research (CNIR)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of Health Sciences and Technology, SAIHSTSungkyunkwan UniversitySeoul06355Republic of Korea
| | - Joonyeol Lee
- Center for Neuroscience Imaging Research (CNIR)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Seong‐Gi Kim
- Center for Neuroscience Imaging Research (CNIR)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of Health Sciences and Technology, SAIHSTSungkyunkwan UniversitySeoul06355Republic of Korea
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
10
|
Aedo-Jury F, Schwalm M, Hamzehpour L, Stroh A. Brain states govern the spatio-temporal dynamics of resting-state functional connectivity. eLife 2020; 9:53186. [PMID: 32568067 PMCID: PMC7329332 DOI: 10.7554/elife.53186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
Previously, using simultaneous resting-state functional magnetic resonance imaging (fMRI) and photometry-based neuronal calcium recordings in the anesthetized rat, we identified blood oxygenation level-dependent (BOLD) responses directly related to slow calcium waves, revealing a cortex-wide and spatially organized correlate of locally recorded neuronal activity (Schwalm et al., 2017). Here, using the same techniques, we investigate two distinct cortical activity states: persistent activity, in which compartmentalized network dynamics were observed; and slow wave activity, dominated by a cortex-wide BOLD component, suggesting a strong functional coupling of inter-cortical activity. During slow wave activity, we find a correlation between the occurring slow wave events and the strength of functional connectivity between different cortical areas. These findings suggest that down-up transitions of neuronal excitability can drive cortex-wide functional connectivity. This study provides further evidence that changes in functional connectivity are dependent on the brain's current state, directly linked to the generation of slow waves.
Collapse
Affiliation(s)
- Felipe Aedo-Jury
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Miriam Schwalm
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Lara Hamzehpour
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany
| | - Albrecht Stroh
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
11
|
Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020; 14:8. [PMID: 32508601 PMCID: PMC7248373 DOI: 10.3389/fnsys.2020.00008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca2+ imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species.
Collapse
Affiliation(s)
- Henning M. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
12
|
Sirmpilatze N, Baudewig J, Boretius S. Temporal stability of fMRI in medetomidine-anesthetized rats. Sci Rep 2019; 9:16673. [PMID: 31723186 PMCID: PMC6853937 DOI: 10.1038/s41598-019-53144-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023] Open
Abstract
Medetomidine has become a popular choice for anesthetizing rats during long-lasting sessions of blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI). Despite this, it has not yet been thoroughly established how commonly reported fMRI readouts evolve over several hours of medetomidine anesthesia and how they are affected by the precise timing, dose, and route of administration. We used four different protocols of medetomidine administration to anesthetize rats for up to six hours and repeatedly evaluated somatosensory stimulus-evoked BOLD responses and resting state functional connectivity. We found that the temporal evolution of fMRI readouts strongly depended on the method of administration. Intravenous administration of a medetomidine bolus (0.05 mg/kg), combined with a subsequent continuous infusion (0.1 mg/kg/h), led to temporally stable measures of stimulus-evoked activity and functional connectivity throughout the anesthesia. Deviating from the above protocol-by omitting the bolus, lowering the medetomidine dose, or using the subcutaneous route-compromised the stability of these measures in the initial two-hour period. We conclude that both an appropriate protocol of medetomidine administration and a suitable timing of fMRI experiments are crucial for obtaining consistent results. These factors should be considered for the design and interpretation of future rat fMRI studies.
Collapse
Affiliation(s)
- Nikoloz Sirmpilatze
- Functional Imaging Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany.
- Georg-August University of Göttingen, Göttingen, Germany.
- International Max Planck Research School for Neurosciences, Göttingen, Germany.
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| | - Jürgen Baudewig
- Functional Imaging Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Susann Boretius
- Functional Imaging Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany.
- Georg-August University of Göttingen, Göttingen, Germany.
- International Max Planck Research School for Neurosciences, Göttingen, Germany.
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
13
|
Wu CW, Tsai PJ, Chen SCJ, Li CW, Hsu AL, Wu HY, Ko YT, Hung PC, Chang CY, Lin CP, Lane TJ, Chen CY. Indication of dynamic neurovascular coupling from inconsistency between EEG and fMRI indices across sleep–wake states. Sleep Biol Rhythms 2019. [DOI: 10.1007/s41105-019-00232-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Chang WT, Puspitasari F, Garcia-Miralles M, Yeow LY, Tay HC, Koh KB, Tan LJ, Pouladi MA, Chuang KH. Connectomic imaging reveals Huntington-related pathological and pharmaceutical effects in a mouse model. NMR IN BIOMEDICINE 2018; 31:e4007. [PMID: 30260561 DOI: 10.1002/nbm.4007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/05/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Recent studies suggest that neurodegenerative diseases could affect brain structure and function in disease-specific network patterns; however, how spontaneous activity affects structural covariance network (SC) is not clear. We hypothesized that hyper-excitability in Huntington disease (HD) disrupts the coordinated structural and functional connectivity, and treatment with memantine helps to reduce excitotoxicity and normalize the connectivity. MRI was conducted to measure somatosensory activation, resting-state functional-connectivity (rsFC), SC, amplitude of low frequency fluctuation (ALFF) and ALFF covariance (ALFFC) in the YAC128 mouse model of HD. We found somatosensory activation was unchanged but the subcortical ALFF was increased in HD mice, indicating subcortical but not cortical hyperactivity. The reduced sensorimotor rsFC but spared hippocampal and default mode networks in the HD mice was consistent with the more pronounced impairment in motor function compared with cognitive performance. The disease suppressed SC globally and reduced ALFFC in the basal ganglia network as well as its anti-correlation with the default mode network. By comparing these connectivity measures, we found that the originally coupled rsFC-SC relationship was impaired whereas SC-ALFFC correlation was increased by HD, suggesting disease facilitated covariation of brain volume and activity amplitude but not neural synchrony. The comparison with mono-synaptic axonal projection supports the hypothesis that rsFC, but not SC or ALFFC, is highly dependent on structural connectivity under healthy conditions. Treatment with memantine had a strong effect on normalizing the SC and reducing ALFF while slightly increasing other connectivity measures and restoring the rsFC-SC coupling, which is consistent with its effect on alleviating hyper-excitability and improving the coordinated neural growth. These results indicate that HD affects the cerebral structure-function relationship which could be partially reverted by NMDA antagonism. These connectivity measures provide unique insights into pathological and pharmaceutical effects in brain circuitry, and could be translatable biomarkers for evaluating drug effect and refining its efficacy.
Collapse
Affiliation(s)
- Wei-Tang Chang
- Singapore BioImaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
| | - Fiftarina Puspitasari
- Singapore BioImaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
| | - Marta Garcia-Miralles
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ling Yun Yeow
- Singapore BioImaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hui-Chien Tay
- Singapore BioImaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
| | - Katrianne Bethia Koh
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore
| | - Liang Juin Tan
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai-Hsiang Chuang
- Singapore BioImaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| |
Collapse
|
15
|
Mouse fMRI under ketamine and xylazine anesthesia: Robust contralateral somatosensory cortex activation in response to forepaw stimulation. Neuroimage 2018; 177:30-44. [DOI: 10.1016/j.neuroimage.2018.04.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022] Open
|
16
|
Asaad M, Lee JH. A guide to using functional magnetic resonance imaging to study Alzheimer's disease in animal models. Dis Model Mech 2018; 11:dmm031724. [PMID: 29784664 PMCID: PMC5992611 DOI: 10.1242/dmm.031724] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models.
Collapse
Affiliation(s)
- Mazen Asaad
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Clemm von Hohenberg C, Weber-Fahr W, Lebhardt P, Ravi N, Braun U, Gass N, Becker R, Sack M, Cosa Linan A, Gerchen MF, Reinwald JR, Oettl LL, Meyer-Lindenberg A, Vollmayr B, Kelsch W, Sartorius A. Lateral habenula perturbation reduces default-mode network connectivity in a rat model of depression. Transl Psychiatry 2018; 8:68. [PMID: 29581421 PMCID: PMC5913319 DOI: 10.1038/s41398-018-0121-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/05/2017] [Accepted: 12/30/2017] [Indexed: 01/01/2023] Open
Abstract
Hyperconnectivity of the default-mode network (DMN) is one of the most widely replicated neuroimaging findings in major depressive disorder (MDD). Further, there is growing evidence for a central role of the lateral habenula (LHb) in the pathophysiology of MDD. There is preliminary neuroimaging evidence linking LHb and the DMN, but no causal relationship has been shown to date. We combined optogenetics and functional magnetic resonance imaging (fMRI), to establish a causal relationship, using an animal model of treatment-resistant depression, namely Negative Cognitive State rats. First, an inhibitory light-sensitive ion channel was introduced into the LHb by viral transduction. Subsequently, laser stimulation was performed during fMRI acquisition on a 9.4 Tesla animal scanner. Neural activity and connectivity were assessed, before, during and after laser stimulation. We observed a connectivity decrease in the DMN following laser-induced LHb perturbation. Our data indicate a causal link between LHb downregulation and reduction in DMN connectivity. These findings may advance our mechanistic understanding of LHb inhibition, which had previously been identified as a promising therapeutic principle, especially for treatment-resistant depression.
Collapse
Affiliation(s)
- Christian Clemm von Hohenberg
- RG Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany. .,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Wolfgang Weber-Fahr
- 0000 0001 2190 4373grid.7700.0RG Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Philipp Lebhardt
- 0000 0001 2190 4373grid.7700.0RG Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Namasivayam Ravi
- 0000 0001 2190 4373grid.7700.0RG Developmental Biology of Psychiatric Disorders, Department of Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Urs Braun
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany ,0000 0001 2190 4373grid.7700.0RG Systems Neuroscience in Psychiatry, Department of Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Natalia Gass
- 0000 0001 2190 4373grid.7700.0RG Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Robert Becker
- 0000 0001 2190 4373grid.7700.0RG Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Markus Sack
- 0000 0001 2190 4373grid.7700.0RG Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alejandro Cosa Linan
- 0000 0001 2190 4373grid.7700.0Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Fungisai Gerchen
- 0000 0001 2190 4373grid.7700.0Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jonathan Rochus Reinwald
- 0000 0001 2190 4373grid.7700.0RG Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany ,0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lars-Lennart Oettl
- 0000 0001 2190 4373grid.7700.0RG Developmental Biology of Psychiatric Disorders, Department of Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Barbara Vollmayr
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany ,0000 0001 2190 4373grid.7700.0RG Animal Models in Psychiatry, Department of Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Wolfgang Kelsch
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany ,0000 0001 2190 4373grid.7700.0RG Developmental Biology of Psychiatric Disorders, Department of Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Sartorius
- 0000 0001 2190 4373grid.7700.0RG Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany ,0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
18
|
Functional networks and network perturbations in rodents. Neuroimage 2017; 163:419-436. [DOI: 10.1016/j.neuroimage.2017.09.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022] Open
|
19
|
McIntosh AL, Gormley S, Tozzi L, Frodl T, Harkin A. Recent Advances in Translational Magnetic Resonance Imaging in Animal Models of Stress and Depression. Front Cell Neurosci 2017; 11:150. [PMID: 28596724 PMCID: PMC5442179 DOI: 10.3389/fncel.2017.00150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/09/2017] [Indexed: 12/28/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a valuable translational tool that can be used to investigate alterations in brain structure and function in both patients and animal models of disease. Regional changes in brain structure, functional connectivity, and metabolite concentrations have been reported in depressed patients, giving insight into the networks and brain regions involved, however preclinical models are less well characterized. The development of more effective treatments depends upon animal models that best translate to the human condition and animal models may be exploited to assess the molecular and cellular alterations that accompany neuroimaging changes. Recent advances in preclinical imaging have facilitated significant developments within the field, particularly relating to high resolution structural imaging and resting-state functional imaging which are emerging techniques in clinical research. This review aims to bring together the current literature on preclinical neuroimaging in animal models of stress and depression, highlighting promising avenues of research toward understanding the pathological basis of this hugely prevalent disorder.
Collapse
Affiliation(s)
| | - Shane Gormley
- Institute of Neuroscience, Trinity College DublinDublin, Ireland
| | - Leonardo Tozzi
- Institute of Neuroscience, Trinity College DublinDublin, Ireland
| | - Thomas Frodl
- Institute of Neuroscience, Trinity College DublinDublin, Ireland.,Universitätsklinikum A.ö.R, Universitätsklinik für Psychiatrie und Psychotherapie, Medizinische Fakultät, Otto von Guericke UniversitätMagdeburg, Germany
| | - Andrew Harkin
- Institute of Neuroscience, Trinity College DublinDublin, Ireland.,School of Pharmacy and Pharmaceutical sciences, Trinity College DublinDublin, Ireland
| |
Collapse
|
20
|
Abe Y, Tsurugizawa T, Le Bihan D. Water diffusion closely reveals neural activity status in rat brain loci affected by anesthesia. PLoS Biol 2017; 15:e2001494. [PMID: 28406906 PMCID: PMC5390968 DOI: 10.1371/journal.pbio.2001494] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/16/2017] [Indexed: 11/18/2022] Open
Abstract
Diffusion functional MRI (DfMRI) reveals neuronal activation even when neurovascular coupling is abolished, contrary to blood oxygenation level—dependent (BOLD) functional MRI (fMRI). Here, we show that the water apparent diffusion coefficient (ADC) derived from DfMRI increased in specific rat brain regions under anesthetic conditions, reflecting the decreased neuronal activity observed with local field potentials (LFPs), especially in regions involved in wakefulness. In contrast, BOLD signals showed nonspecific changes, reflecting systemic effects of the anesthesia on overall brain hemodynamics status. Electrical stimulation of the central medial thalamus nucleus (CM) exhibiting this anesthesia-induced ADC increase led the animals to transiently wake up. Infusion in the CM of furosemide, a specific neuronal swelling blocker, led the ADC to increase further locally, although LFP activity remained unchanged, and increased the current threshold awakening the animals under CM electrical stimulation. Oppositely, induction of cell swelling in the CM through infusion of a hypotonic solution (−80 milliosmole [mOsm] artificial cerebrospinal fluid [aCSF]) led to a local ADC decrease and a lower current threshold to wake up the animals. Strikingly, the local ADC changes produced by blocking or enhancing cell swelling in the CM were also mirrored remotely in areas functionally connected to the CM, such as the cingulate and somatosensory cortex. Together, those results strongly suggest that neuronal swelling is a significant mechanism underlying DfMRI. It has been reported that neuronal activation results in a decrease of water diffusion in activated neural tissue. This new approach, known as diffusion functional MRI (DfMRI), has high potential for functional imaging of the brain, as the currently widespread blood oxygenation level—dependent (BOLD)-functional MRI (fMRI) method, which is based on neurovascular coupling, remains an indirect marker of neuronal activation. Here, we show that the water apparent diffusion coefficient (ADC) derived from DfMRI increased in specific rat brain regions under anesthetic conditions, reflecting the decreased neuronal activity, especially in regions involved in wakefulness. Electrical stimulation of the central medial (CM) thalamic nucleus exhibiting this anesthesia-induced ADC increase led the animals to transiently wake up. Infusion of the CM with furosemide—a specific blocker of neuronal swelling—led the ADC to increase further locally and increased the current threshold for waking the animals. Conversely, induction of cell swelling in the CM through infusion of a hypotonic solution led to a local ADC decrease and a lower current threshold to wake the animals. Strikingly, the local ADC changes produced by blocking or enhancing cell swelling in the CM were also mirrored remotely in areas functionally connected to the CM, such as the cingulate and somatosensory cortex. Those results strongly suggest that neuronal swelling is a significant mechanism underlying DfMRI.
Collapse
Affiliation(s)
- Yoshifumi Abe
- NeuroSpin, Joliot Institute, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France
| | - Tomokazu Tsurugizawa
- NeuroSpin, Joliot Institute, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France
| | - Denis Le Bihan
- NeuroSpin, Joliot Institute, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
21
|
GABAergic effect on resting-state functional connectivity: Dynamics under pharmacological antagonism. Neuroimage 2017; 149:53-62. [DOI: 10.1016/j.neuroimage.2017.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 12/06/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
|
22
|
Lecrux C, Sandoe CH, Neupane S, Kropf P, Toussay X, Tong XK, Lacalle-Aurioles M, Shmuel A, Hamel E. Impact of Altered Cholinergic Tones on the Neurovascular Coupling Response to Whisker Stimulation. J Neurosci 2017; 37:1518-1531. [PMID: 28069927 PMCID: PMC6705676 DOI: 10.1523/jneurosci.1784-16.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 11/21/2022] Open
Abstract
Brain imaging techniques that use vascular signals to map changes in neuronal activity rely on the coupling between electrophysiology and hemodynamics, a phenomenon referred to as "neurovascular coupling" (NVC). It is unknown whether this relationship remains reliable under altered brain states associated with acetylcholine (ACh) levels, such as attention and arousal and in pathological conditions such as Alzheimer's disease. We therefore assessed the effects of varying ACh tone on whisker-evoked NVC responses in rat barrel cortex, measured by cerebral blood flow (CBF) and neurophysiological recordings (local field potentials, LFPs). We found that acutely enhanced ACh tone significantly potentiated whisker-evoked CBF responses through muscarinic ACh receptors and concurrently facilitated neuronal responses, as illustrated by increases in the amplitude and power in high frequencies of the evoked LFPs. However, the cellular identity of the activated neuronal network within the responsive barrel was unchanged, as characterized by c-Fos upregulation in pyramidal cells and GABA interneurons coexpressing vasoactive intestinal polypeptide. In contrast, chronic ACh deprivation hindered whisker-evoked CBF responses and the amplitude and power in most frequency bands of the evoked LFPs and reduced the rostrocaudal extent and area of the activated barrel without altering its identity. Correlations between LFP power and CBF, used to estimate NVC, were enhanced under high ACh tone and disturbed significantly by ACh depletion. We conclude that ACh is not only a facilitator but also a prerequisite for the full expression of sensory-evoked NVC responses, indicating that ACh may alter the fidelity of hemodynamic signals in assessing changes in evoked neuronal activity.SIGNIFICANCE STATEMENT Neurovascular coupling, defined as the tight relationship between activated neurons and hemodynamic responses, is a fundamental brain function that underlies hemodynamic-based functional brain imaging techniques. However, the impact of altered brain states on this relationship is largely unknown. We therefore investigated how acetylcholine (ACh), known to drive brain states of attention and arousal and to be deficient in pathologies such as Alzheimer's disease, would alter neurovascular coupling responses to sensory stimulation. Whereas acutely increased ACh enhanced neuronal responses and the resulting hemodynamic signals, chronic loss of cholinergic input resulted in dramatic impairments in both types of sensory-evoked signals. We conclude that ACh is not only a potent modulator but also a requirement for the full expression of sensory-evoked neurovascular coupling responses.
Collapse
Affiliation(s)
- Clotilde Lecrux
- Laboratory of Cerebrovascular Research and
- Laboratory of Brain Imaging Signals, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada H3A 2B4
| | | | - Sujaya Neupane
- Laboratory of Brain Imaging Signals, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada H3A 2B4
| | - Pascal Kropf
- Laboratory of Brain Imaging Signals, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada H3A 2B4
| | | | | | | | - Amir Shmuel
- Laboratory of Brain Imaging Signals, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada H3A 2B4
| | | |
Collapse
|
23
|
Bukhari Q, Schroeter A, Cole DM, Rudin M. Resting State fMRI in Mice Reveals Anesthesia Specific Signatures of Brain Functional Networks and Their Interactions. Front Neural Circuits 2017; 11:5. [PMID: 28217085 PMCID: PMC5289996 DOI: 10.3389/fncir.2017.00005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/16/2017] [Indexed: 01/29/2023] Open
Abstract
fMRI studies in mice typically require the use of anesthetics. Yet, it is known that anesthesia alters responses to stimuli or functional networks at rest. In this work, we have used Dual Regression analysis Network Modeling to investigate the effects of two commonly used anesthetics, isoflurane and medetomidine, on rs-fMRI derived functional networks, and in particular to what extent anesthesia affected the interaction within and between these networks. Experimental data have been used from a previous study (Grandjean et al., 2014). We applied multivariate ICA analysis and Dual Regression to infer the differences in functional connectivity between isoflurane- and medetomidine-anesthetized mice. Further network analysis was performed to investigate within- and between-network connectivity differences between these anesthetic regimens. The results revealed five major networks in the mouse brain: lateral cortical, associative cortical, default mode, subcortical, and thalamic network. The anesthesia regime had a profound effect both on within- and between-network interactions. Under isoflurane anesthesia predominantly intra- and inter-cortical interactions have been observed, with only minor interactions involving subcortical structures and in particular attenuated cortico-thalamic connectivity. In contrast, medetomidine-anesthetized mice displayed subcortical functional connectivity including interactions between cortical and thalamic ICA components. Combining the two anesthetics at low dose resulted in network interaction that constituted the superposition of the interaction observed for each anesthetic alone. The study demonstrated that network modeling is a promising tool for analyzing the brain functional architecture in mice and comparing alterations therein caused by different physiological or pathological states. Understanding the differential effects of anesthetics on brain networks and their interaction is essential when interpreting fMRI data recorded under specific physiological and pathological conditions.
Collapse
Affiliation(s)
- Qasim Bukhari
- Institute of Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Aileen Schroeter
- Institute of Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland
| | - David M Cole
- Institute of Biomedical Engineering, University of Zurich and ETH ZurichZurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of PsychiatryZurich, Switzerland
| | - Markus Rudin
- Institute of Biomedical Engineering, University of Zurich and ETH ZurichZurich, Switzerland; Institute of Pharmacology and Toxicology, University of ZurichZurich, Switzerland
| |
Collapse
|
24
|
Wu T, Grandjean J, Bosshard SC, Rudin M, Reutens D, Jiang T. Altered regional connectivity reflecting effects of different anaesthesia protocols in the mouse brain. Neuroimage 2017; 149:190-199. [PMID: 28159688 DOI: 10.1016/j.neuroimage.2017.01.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/17/2017] [Accepted: 01/30/2017] [Indexed: 01/19/2023] Open
Abstract
Studies in mice using resting-state functional magnetic resonance imaging (rs-fMRI) have provided opportunities to investigate the effects of pharmacological manipulations on brain function and map the phenotypes of mouse models of human brain disorders. Mouse rs-fMRI is typically performed under anaesthesia, which induces both regional suppression of brain activity and disruption of large-scale neural networks. Previous comparative studies using rodents investigating various drug effects on long-distance functional connectivity (FC) have reported agent-specific FC patterns, however, effects of regional suppression are sparsely explored. Here we examined changes in regional connectivity under six different anaesthesia conditions using mouse rs-fMRI with the goal of refining the framework of understanding the brain activation under anaesthesia at a local level. Regional homogeneity (ReHo) was used to map local synchronization in the brain, followed by analysis of several brain areas based on ReHo maps. The results revealed high local coherence in most brain areas. The primary somatosensory cortex and caudate-putamen showed agent-specific properties. Lower local coherence in the cingulate cortex was observed under medetomidine, particularly when compared to the combination of medetomidine and isoflurane. The thalamus was associated with retained local coherence across anaesthetic levels and multiple nuclei. These results show that anaesthesia induced by the investigated anaesthetics through different molecular targets promote agent-specific regional connectivity. In addition, ReHo is a data-driven method with minimum user interaction, easy to use and fast to compute. Given that examination of the brain at a local level is widely applied in human rs-fMRI studies, our results show its sensitivity to extract information on varied neuronal activity under six different regimens relevant to mouse functional imaging. These results, therefore, will inform future rs-fMRI studies on mice and the type of anaesthetic agent used, and will help to bridge observations between this burgeoning research field and ongoing human research across analytical scales.
Collapse
Affiliation(s)
- Tong Wu
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Joanes Grandjean
- Molecular Imaging and Functional Pharmacology, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; Singapore BioImaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Simone C Bosshard
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Markus Rudin
- Molecular Imaging and Functional Pharmacology, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - David Reutens
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Tianzi Jiang
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Brainnetome Centre, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, China
| |
Collapse
|
25
|
Khalili-Mahani N, Rombouts SARB, van Osch MJP, Duff EP, Carbonell F, Nickerson LD, Becerra L, Dahan A, Evans AC, Soucy JP, Wise R, Zijdenbos AP, van Gerven JM. Biomarkers, designs, and interpretations of resting-state fMRI in translational pharmacological research: A review of state-of-the-Art, challenges, and opportunities for studying brain chemistry. Hum Brain Mapp 2017; 38:2276-2325. [PMID: 28145075 DOI: 10.1002/hbm.23516] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 11/21/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
A decade of research and development in resting-state functional MRI (RSfMRI) has opened new translational and clinical research frontiers. This review aims to bridge between technical and clinical researchers who seek reliable neuroimaging biomarkers for studying drug interactions with the brain. About 85 pharma-RSfMRI studies using BOLD signal (75% of all) or arterial spin labeling (ASL) were surveyed to investigate the acute effects of psychoactive drugs. Experimental designs and objectives include drug fingerprinting dose-response evaluation, biomarker validation and calibration, and translational studies. Common biomarkers in these studies include functional connectivity, graph metrics, cerebral blood flow and the amplitude and spectrum of BOLD fluctuations. Overall, RSfMRI-derived biomarkers seem to be sensitive to spatiotemporal dynamics of drug interactions with the brain. However, drugs cause both central and peripheral effects, thus exacerbate difficulties related to biological confounds, structured noise from motion and physiological confounds, as well as modeling and inference testing. Currently, these issues are not well explored, and heterogeneities in experimental design, data acquisition and preprocessing make comparative or meta-analysis of existing reports impossible. A unifying collaborative framework for data-sharing and data-mining is thus necessary for investigating the commonalities and differences in biomarker sensitivity and specificity, and establishing guidelines. Multimodal datasets including sham-placebo or active control sessions and repeated measurements of various psychometric, physiological, metabolic and neuroimaging phenotypes are essential for pharmacokinetic/pharmacodynamic modeling and interpretation of the findings. We provide a list of basic minimum and advanced options that can be considered in design and analyses of future pharma-RSfMRI studies. Hum Brain Mapp 38:2276-2325, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Najmeh Khalili-Mahani
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,PERFORM Centre, Concordia University, Montreal, Canada
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | | | - Eugene P Duff
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.,Oxford Centre for Functional MRI of the Brain, Oxford University, Oxford, United Kingdom
| | | | - Lisa D Nickerson
- McLean Hospital, Belmont, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School & Boston Children's Hospital, Boston, Massachusetts
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jean-Paul Soucy
- PERFORM Centre, Concordia University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Richard Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Alex P Zijdenbos
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,Biospective Inc, Montreal, Quebec, Canada
| | - Joop M van Gerven
- Centre for Human Drug Research, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
26
|
Hudetz AG, Vizuete JA, Pillay S, Mashour GA. Repertoire of mesoscopic cortical activity is not reduced during anesthesia. Neuroscience 2016; 339:402-417. [PMID: 27751957 PMCID: PMC5118138 DOI: 10.1016/j.neuroscience.2016.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
Abstract
Consciousness has been linked to the repertoire of brain states at various spatiotemporal scales. Anesthesia is thought to modify consciousness by altering information integration in cortical and thalamocortical circuits. At a mesoscopic scale, neuronal populations in the cortex form synchronized ensembles whose characteristics are presumably state-dependent but this has not been rigorously tested. In this study, spontaneous neuronal activity was recorded with 64-contact microelectrode arrays in primary visual cortex of chronically instrumented, unrestrained rats under stepwise decreasing levels of desflurane anesthesia (8%, 6%, 4%, and 2% inhaled concentrations) and wakefulness (0% concentration). Negative phases of the local field potentials formed compact, spatially contiguous activity patterns (CAPs) that were not due to chance. The number of CAPs was 120% higher in wakefulness and deep anesthesia associated with burst-suppression than at intermediate levels of consciousness. The frequency distribution of CAP sizes followed a power-law with slope -1.5 in relatively deep anesthesia (8-6%) but deviated from that at the lighter levels. Temporal variance and entropy of CAP sizes were lowest in wakefulness (76% and 24% lower at 0% than at 8% desflurane, respectively) but changed little during recovery of consciousness. CAPs categorized by K-means clustering were conserved at all anesthesia levels and wakefulness, although their proportion changed in a state-dependent manner. These observations yield new knowledge about the dynamic landscape of ongoing population activity in sensory cortex at graded levels of anesthesia. The repertoire of population activity and self-organized criticality at the mesoscopic scale do not appear to contribute to anesthetic suppression of consciousness, which may instead depend on large-scale effects, more subtle dynamic properties, or changes outside of primary sensory cortex.
Collapse
Affiliation(s)
- Anthony G Hudetz
- Department of Anesthesiology, Center for Consciousness Science, Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.
| | - Jeannette A Vizuete
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Siveshigan Pillay
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - George A Mashour
- Department of Anesthesiology, Center for Consciousness Science, Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
27
|
Functional connectivity with the retrosplenial cortex predicts cognitive aging in rats. Proc Natl Acad Sci U S A 2016; 113:12286-12291. [PMID: 27791017 DOI: 10.1073/pnas.1525309113] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Changes in the functional connectivity (FC) of large-scale brain networks are a prominent feature of brain aging, but defining their relationship to variability along the continuum of normal and pathological cognitive outcomes has proved challenging. Here we took advantage of a well-characterized rat model that displays substantial individual differences in hippocampal memory during aging, uncontaminated by slowly progressive, spontaneous neurodegenerative disease. By this approach, we aimed to interrogate the underlying neural network substrates that mediate aging as a uniquely permissive condition and the primary risk for neurodegeneration. Using resting state (rs) blood oxygenation level-dependent fMRI and a restrosplenial/posterior cingulate cortex seed, aged rats demonstrated a large-scale network that had a spatial distribution similar to the default mode network (DMN) in humans, consistent with earlier findings in younger animals. Between-group whole brain contrasts revealed that aged subjects with documented deficits in memory (aged impaired) displayed widespread reductions in cortical FC, prominently including many areas outside the DMN, relative to both young adults (Y) and aged rats with preserved memory (aged unimpaired, AU). Whereas functional connectivity was relatively preserved in AU rats, they exhibited a qualitatively distinct network signature, comprising the loss of an anticorrelated network observed in Y adults. Together the findings demonstrate that changes in rs-FC are specifically coupled to variability in the cognitive outcome of aging, and that successful neurocognitive aging is associated with adaptive remodeling, not simply the persistence of youthful network dynamics.
Collapse
|
28
|
Haaker J, Menz MM, Fadai T, Eippert F, Büchel C. Dopaminergic receptor blockade changes a functional connectivity network centred on the amygdala. Hum Brain Mapp 2016; 37:4148-4157. [PMID: 27412789 DOI: 10.1002/hbm.23302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 01/23/2023] Open
Abstract
Resting-state connectivity has become an increasingly important measure in characterizing the functional integrity of brain circuits in neuro-psychiatric conditions. One approach that has recently gained prominence in this regard-and which we use in this study-is to investigate how resting-state connectivity depends on the integrity of certain neuromodulator systems. Here, we use a pharmacological challenge in combination with functional magnetic resonance imaging to investigate the impact of dopaminergic receptor blockade on whole brain functional connectivity in twenty healthy human subjects. Administration of the D2-receptor antagonist haloperidol led to a profound change in functional integration in network nodes linked to the amygdala. Compared to placebo and baseline measurements, network-based statistics and pairwise connectivity analyses revealed reduced connectivity and decreased link strength between the amygdala and the bilateral posterior cingulate cortex and other cortical areas. This was complemented by less extensive but very circumscribed enhanced connectivity between the amygdala and the right putamen during D2-receptor blockade. It will be interesting to investigate whether these pharmacologically induced shifts in resting-state connectivity will similarly be evident in clinical conditions that involve a dysfunction of the dopaminergic system. Our findings might also aid in interpreting alterations in more complex states, such as those seen psychiatric conditions and their treatment. Hum Brain Mapp 37:4148-4157, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jan Haaker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Mareike M Menz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tahmine Fadai
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Falk Eippert
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Low LA, Bauer LC, Klaunberg BA. Comparing the Effects of Isoflurane and Alpha Chloralose upon Mouse Physiology. PLoS One 2016; 11:e0154936. [PMID: 27148970 PMCID: PMC4858227 DOI: 10.1371/journal.pone.0154936] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/21/2016] [Indexed: 11/30/2022] Open
Abstract
Functional magnetic resonance imaging of mice requires that the physiology of the mouse (body temperature, respiration and heart rates, blood pH level) be maintained in order to prevent changes affecting the outcomes of functional scanning, namely blood oxygenation level dependent (BOLD) measures and cerebral blood flow (CBF). The anesthetic used to sedate mice for scanning can have major effects on physiology. While alpha chloralose has been commonly used for functional imaging of rats, its effects on physiology are not well characterized in the literature for any species. In this study, we anesthetized or sedated mice with isoflurane or alpha chloralose for up to two hours, and monitored physiological parameters and arterial blood gasses. We found that, when normal body temperature is maintained, breathing rates for both drugs decrease over the course of two hours. In addition, alpha chloralose causes a substantial drop in heart rate and blood pH with severe hypercapnia (elevated blood CO2) that is not seen in isoflurane-treated animals. We suggest that alpha chloralose does not maintain normal mouse physiology adequately for functional brain imaging outcome measures.
Collapse
Affiliation(s)
- Lucie A. Low
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Lucy C. Bauer
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Brenda A. Klaunberg
- NIH Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
30
|
Shah D, Deleye S, Verhoye M, Staelens S, Van der Linden A. Resting-state functional MRI and [18F]-FDG PET demonstrate differences in neuronal activity between commonly used mouse strains. Neuroimage 2015; 125:571-577. [PMID: 26520769 DOI: 10.1016/j.neuroimage.2015.10.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/04/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
The existence of numerous interesting mouse models of neurological disorders enables the investigation of causal relations between pathological events and the effect of treatment regimes. However, mouse models of a specific neurological disease are often generated using different background strains, which raises the question whether the observed effects are specific to pathology or depend on the used strain. This study used two independent in vivo functional imaging techniques to evaluate whether mouse strain differences exist in functional connectivity (FC) and brain glucose metabolism i.e. indirect measures of neuronal activity. For this purpose, C57BL/6, BALB/C and SJL mice (N=15/group, male) were evaluated using resting-state functional MRI (rsfMRI) and static [18F]-fluorodeoxyglucose Positron Emission Tomography ([18F]-FDG PET). RsfMRI and [18F]-FDG PET data were analyzed with independent component analysis (ICA). FC was quantified by calculating the mean network-specific FC strength and [18F]-FDG uptake was quantified by calculating the mean network-specific standard uptake value corrected for plasma glucose levels and body weight (SUVglu). The ICA results showed spatially similar neurological components in the rsfMRI and [18F]-FDG PET data, suggesting that patterns of metabolic covariance in the mouse brain reflect FC networks. Comparing FC and [18F]-FDG data showed that strain-dependent differences in brain activity exist for several brain networks i.e. the frontal, cingulate, (hypo)thalamus, striatum, and sensorimotor networks. The results of this study have implications for the interpretation of in vivo functional imaging data in mouse models of neurological disorders generated on different background strains.
Collapse
Affiliation(s)
- Disha Shah
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp Belgium.
| | - Steven Deleye
- Molecular Imaging Center Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp Belgium
| |
Collapse
|
31
|
Jonckers E, Shah D, Hamaide J, Verhoye M, Van der Linden A. The power of using functional fMRI on small rodents to study brain pharmacology and disease. Front Pharmacol 2015; 6:231. [PMID: 26539115 PMCID: PMC4612660 DOI: 10.3389/fphar.2015.00231] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological considerations.
Collapse
Affiliation(s)
- Elisabeth Jonckers
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Disha Shah
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Julie Hamaide
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| |
Collapse
|
32
|
Pan WJ, Billings JCW, Grooms JK, Shakil S, Keilholz SD. Considerations for resting state functional MRI and functional connectivity studies in rodents. Front Neurosci 2015; 9:269. [PMID: 26300718 PMCID: PMC4525377 DOI: 10.3389/fnins.2015.00269] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/16/2015] [Indexed: 12/31/2022] Open
Abstract
Resting state functional MRI (rs-fMRI) and functional connectivity mapping have become widely used tools in the human neuroimaging community and their use is rapidly spreading into the realm of rodent research as well. One of the many attractive features of rs-fMRI is that it is readily translatable from humans to animals and back again. Changes in functional connectivity observed in human studies can be followed by more invasive animal experiments to determine the neurophysiological basis for the alterations, while exploratory work in animal models can identify possible biomarkers for further investigation in human studies. These types of interwoven human and animal experiments have a potentially large impact on neuroscience and clinical practice. However, impediments exist to the optimal application of rs-fMRI in small animals, some similar to those encountered in humans and some quite different. In this review we identify the most prominent of these barriers, discuss differences between rs-fMRI in rodents and in humans, highlight best practices for animal studies, and review selected applications of rs-fMRI in rodents. Our goal is to facilitate the integration of human and animal work to the benefit of both fields.
Collapse
Affiliation(s)
- Wen-Ju Pan
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University Atlanta, GA, USA
| | | | - Joshua K Grooms
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University Atlanta, GA, USA
| | - Sadia Shakil
- School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta, GA, USA
| | - Shella D Keilholz
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University Atlanta, GA, USA ; Neuroscience Program, Emory University Atlanta, GA, USA
| |
Collapse
|
33
|
Nasrallah FA, Yeow LY, Biswal B, Chuang KH. Dependence of BOLD signal fluctuation on arterial blood CO2 and O2: Implication for resting-state functional connectivity. Neuroimage 2015; 117:29-39. [PMID: 26003858 DOI: 10.1016/j.neuroimage.2015.05.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/22/2015] [Accepted: 05/13/2015] [Indexed: 11/16/2022] Open
Abstract
Blood oxygenation level dependent (BOLD) functional MRI signal is known to be modulated by the CO2 level. Typically only end-tidal CO2, rather than the arterial partial pressure of CO2 (paCO2), was measured while the arterial partial pressure of O2 (paO2) level was not controlled due to free breathing, making their contribution not separable. Especially, the influences of paO2 and paCO2 on resting-state functional connectivity are not well studied. In this study, we investigated the relationship between paCO2 and resting as well as stimulus-evoked BOLD signals under hyperoxic and hypercapnic manipulation with tight control of arterial paO2. Rats under isoflurane anesthesia were subjected to six inspired gas conditions: 47% O2 in air (Normal), adding 1%, 2% or 5% CO2, carbogen (95% O2/5% CO2), and 100% O2. Somatosensory BOLD activation was significantly increased under 100% O2, while reduced with increased paCO2 levels. However, while resting BOLD connectivity pattern expanded and bilateral correlation increased under 100% O2, the correlation coefficient between the left and right somatosensory cortex was generally not dependent on paCO2 or paO2. Interestingly, the correlation in 0.04-0.07Hz range significantly increased with CO2 levels. Intracortical electrophysiological recordings showed a similar trend as the BOLD but the neurovascular coupling varied. The results suggest that paO2 and paCO2 together rather than paCO2 alone alter the BOLD signal. The response is not purely vascular in nature but has strong neuronal origins. This should be taken into consideration when designing calibrated BOLD experiment and interpreting functional connectivity data especially in aging, under drug, or neurological disorders.
Collapse
Affiliation(s)
- Fatima A Nasrallah
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Ling Yun Yeow
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, NJ, USA
| | - Kai-Hsiang Chuang
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore; Clinical Imaging Research Centre, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
34
|
Papazachariadis O, Dante V, Verschure PFMJ, Del Giudice P, Ferraina S. iTBS-induced LTP-like plasticity parallels oscillatory activity changes in the primary sensory and motor areas of macaque monkeys. PLoS One 2014; 9:e112504. [PMID: 25383621 PMCID: PMC4226540 DOI: 10.1371/journal.pone.0112504] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/17/2014] [Indexed: 11/19/2022] Open
Abstract
Recently, neuromodulation techniques based on the use of repetitive transcranial magnetic stimulation (rTMS) have been proposed as a non-invasive and efficient method to induce in vivo long-term potentiation (LTP)-like aftereffects. However, the exact impact of rTMS-induced perturbations on the dynamics of neuronal population activity is not well understood. Here, in two monkeys, we examine changes in the oscillatory activity of the sensorimotor cortex following an intermittent theta burst stimulation (iTBS) protocol. We first probed iTBS modulatory effects by testing the iTBS-induced facilitation of somatosensory evoked potentials (SEP). Then, we examined the frequency information of the electrocorticographic signal, obtained using a custom-made miniaturised multi-electrode array for electrocorticography, after real or sham iTBS. We observed that iTBS induced facilitation of SEPs and influenced spectral components of the signal, in both animals. The latter effect was more prominent on the θ band (4–8 Hz) and the high γ band (55–90 Hz), de-potentiated and potentiated respectively. We additionally found that the multi-electrode array uniformity of β (13–26 Hz) and high γ bands were also afflicted by iTBS. Our study suggests that enhanced cortical excitability promoted by iTBS parallels a dynamic reorganisation of the interested neural network. The effect in the γ band suggests a transient local modulation, possibly at the level of synaptic strength in interneurons. The effect in the θ band suggests the disruption of temporal coordination on larger spatial scales.
Collapse
Affiliation(s)
| | | | - Paul F. M. J. Verschure
- Laboratory for Synthetic, Perceptive, Emotive and Cognitive Systems, Center of Autonomous Systems and Neurorobotics, ICREA-Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Stefano Ferraina
- Department Physiology & Pharmacology, Sapienza University Rome, Rome, Italy
| |
Collapse
|
35
|
Nasrallah FA, Low SMA, Lew SK, Chen K, Chuang KH. Pharmacological insight into neurotransmission origins of resting-state functional connectivity: α2-adrenergic agonist vs antagonist. Neuroimage 2014; 103:364-373. [PMID: 25241086 DOI: 10.1016/j.neuroimage.2014.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 08/11/2014] [Accepted: 09/03/2014] [Indexed: 12/15/2022] Open
Abstract
Resting-state functional connectivity MRI has emerged as a powerful tool for mapping large-scale neural networks based on synchronous BOLD signal; however, the neurobiological mechanisms are still unknown. To understand its neural substrates, especially the underlying neurotransmission, we applied pharmacological modulation with a receptor specific agonist and antagonist. Resting and evoked electrophysiology and BOLD signals in rat brains were measured under infusion of α2-adrenergic receptor agonist, medetomidine, the antagonist, atipamezole, and the vehicle individually. Both somatosensory BOLD activation and evoked potential were increased significantly under medetomidine compared to the vehicle while atipamezole slightly decreased both. The interhemispheric correlation at the resting state, in contrast, was suppressed by medetomidine but increased by atipamezole in regions with high receptor densities including the somatosensory cortex and thalamus. No change was seen in the caudate putamen, where receptor occupancy is low. The regional difference in connectivity was not related to cerebral blood flow, indicating that BOLD signal correlation is unlikely due to the vascular effects of the drugs. Resting intracortical recording exhibited agonist/antagonist dependent changes in beta and gamma bands that correlated with the BOLD functional connectivity measure. Our results confirm an important role of the adrenergic system on functional connectivity and suggest a neurotransmission basis of the phenomenon.
Collapse
Affiliation(s)
- Fatima A Nasrallah
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Si-Min Amanda Low
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Si Kang Lew
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Kaina Chen
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Kai-Hsiang Chuang
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore; Clinical Imaging Research Centre, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
36
|
Konno K, Shiotani Y, Itano N, Ogawa T, Hatakeyama M, Shioya K, Kasai N. Visible, safe and certain endotracheal intubation using endoscope system and inhalation anesthesia for rats. J Vet Med Sci 2014; 76:1375-81. [PMID: 25030602 PMCID: PMC4221171 DOI: 10.1292/jvms.14-0146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anesthesia strongly influences
laboratory animals, and it can also greatly affect the experimental data. Rats rank only
second to mice in the number used in research fields, such as organ transplantation,
regenerative medicine and imaging. Therefore, appropriate and effective anesthesia,
including the protocol of the endotracheal intubation and inhalation anesthesia, is
crucial. Hence, we evaluated these methods in this study. Twelve Wistar rats were
intraperitoneally injected with M/M/B: 0.3/4/5, comprising of medetomidine, midazolam and
butorphanol at a dose of 0.3 mg/kg + 4.0 mg/kg + 5.0 mg/kg body weight/rat, respectively.
An endotracheal tube was then intubated into the trachea. After intubation, the rats were
connected to the inhalation anesthesia circuit using isoflurane, and vital signs were
measured until 30 min after connection. All intubations were successfully finished within
1 min, and the values of the vital signs were normal and stable. In addition,
histopathological observation of the trachea and lungs showed no trauma. These results
suggest that this visible endotracheal intubation method is simple, reliable, safe and
favorable with regard to the rats’ welfare.
Collapse
Affiliation(s)
- Kenjiro Konno
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Nasrallah FA, Tay HC, Chuang KH. Detection of functional connectivity in the resting mouse brain. Neuroimage 2013; 86:417-24. [PMID: 24157920 DOI: 10.1016/j.neuroimage.2013.10.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 11/25/2022] Open
Abstract
Resting-state functional connectivity, manifested as spontaneous synchronous activity in the brain, has been detected by functional MRI (fMRI) across species such as humans, monkeys, and rats. Yet, most networks, especially the classical bilateral connectivity between hemispheres, have not been reliably found in the mouse brain. This could be due to anesthetic effects on neural activity and difficulty in maintaining proper physiology and neurovascular coupling in anesthetized mouse. For example, α2 adrenoceptor agonist, medetomidine, is a sedative for longitudinal mouse fMRI. However, the higher dosage needed compared to rats may suppress the functional synchrony and lead to unilateral connectivity. In this study, we investigated the influence of medetomidine dosage on neural activation and resting-state networks in mouse brain. We show that mouse can be stabilized with dosage as low as 0.1mg/kg/h. The stimulation-induced somatosensory activation was unchanged when medetomidine was increased from 0.1 to 6 and 10 folds. Especially, robust bilateral connectivity can be observed in the primary, secondary somatosensory and visual cortices, as well as the hippocampus, caudate putamen, and thalamus at low dose of medetomidine. Significant suppression of inter-hemispheric correlation was seen in the thalamus, where the receptor density is high, under 0.6mg/kg/h, and in all regions except the caudate, where the receptor density is low, under 1.0mg/kg/h. Furthermore, in mice whose activation was weaker or took longer time to detect, the bilateral connectivity was lower. This demonstrates that, with proper sedation and conservation of neurovascular coupling, similar bilateral networks like other species can be detected in the mouse brain.
Collapse
Affiliation(s)
- Fatima A Nasrallah
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Hui-Chien Tay
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Kai-Hsiang Chuang
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore; Clinical Imaging Research Centre, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|