1
|
Giglio L, Sharoh D, Ostarek M, Hagoort P. Connectivity of Fronto-Temporal Regions in Syntactic Structure Building During Speaking and Listening. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:922-941. [PMID: 39439740 PMCID: PMC11495677 DOI: 10.1162/nol_a_00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
The neural infrastructure for sentence production and comprehension has been found to be mostly shared. The same regions are engaged during speaking and listening, with some differences in how strongly they activate depending on modality. In this study, we investigated how modality affects the connectivity between regions previously found to be involved in syntactic processing across modalities. We determined how constituent size and modality affected the connectivity of the pars triangularis of the left inferior frontal gyrus (LIFG) and of the left posterior temporal lobe (LPTL) with the pars opercularis of the LIFG, the left anterior temporal lobe (LATL), and the rest of the brain. We found that constituent size reliably increased the connectivity across these frontal and temporal ROIs. Connectivity between the two LIFG regions and the LPTL was enhanced as a function of constituent size in both modalities, and it was upregulated in production possibly because of linearization and motor planning in the frontal cortex. The connectivity of both ROIs with the LATL was lower and only enhanced for larger constituent sizes, suggesting a contributing role of the LATL in sentence processing in both modalities. These results thus show that the connectivity among fronto-temporal regions is upregulated for syntactic structure building in both sentence production and comprehension, providing further evidence for accounts of shared neural resources for sentence-level processing across modalities.
Collapse
Affiliation(s)
- Laura Giglio
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Daniel Sharoh
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Markus Ostarek
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Bonandrini R, Gornetti E, Paulesu E. A meta-analytical account of the functional lateralization of the reading network. Cortex 2024; 177:363-384. [PMID: 38936265 DOI: 10.1016/j.cortex.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
The observation that the neural correlates of reading are left-lateralized is ubiquitous in the cognitive neuroscience and neuropsychological literature. Still, reading is served by a constellation of neural units, and the extent to which these units are consistently left-lateralized is unclear. In this regard, the functional lateralization of the fusiform gyrus is of particular interest, by virtue of its hypothesized role as a "visual word form area". A quantitative Activation Likelihood Estimation meta-analysis was conducted on activation foci from 35 experiments investigating silent reading, and both a whole-brain and a bayesian ROI-based approach were used to assess the lateralization of the data submitted to meta-analysis. Perirolandic areas showed the highest level of left-lateralization, the fusiform cortex and the parietal cortex exhibited only a moderate pattern of left-lateralization, while in the occipital, insular cortices and in the cerebellum the lateralization turned out to be the lowest observed. The relatively limited functional lateralization of the fusiform gyrus was further explored in a regression analysis on the lateralization profile of each study. The functional lateralization of the fusiform gyrus during reading was positively associated with the lateralization of the precentral and inferior occipital gyri and negatively associated with the lateralization of the triangular portion of the inferior frontal gyrus and of the temporal pole. Overall, the present data highlight how lateralization patterns differ within the reading network. Furthermore, the present data highlight how the functional lateralization of the fusiform gyrus during reading is related to the degree of functional lateralization of other language brain areas.
Collapse
Affiliation(s)
| | - Edoardo Gornetti
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; The International Max Planck Research School for Language Sciences, Nijmegen, the Netherlands
| | - Eraldo Paulesu
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; fMRI Unit, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| |
Collapse
|
3
|
Yu J, Zou Y, Wu Y. The neural mechanisms underlying the processing of consonant, vowel and tone during Chinese typing: an fNIRS study. Front Neurosci 2023; 17:1258480. [PMID: 38178832 PMCID: PMC10766364 DOI: 10.3389/fnins.2023.1258480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Many studies have explored the role of consonant, vowel, and tone in Chinese word identification or sentence comprehension. However, few studies have explored their roles and neural basis during Chinese word production, especially when involving neural basis. The present fNIRS study investigated the neural mechanisms of consonant, vowel, and tone processing during Chinese typing. Participants were asked to name the Chinese characters displayed on a computer screen by typing on a keyboard while hearing a simultaneously presented auditory stimulus. The auditory stimulus was either consistent with the characters' pronunciation (consistent condition) or mismatched in the consonant, vowel, or tone of the character pronunciation. The fNIRS results showed that compared with the consistent condition (as baseline), the consonant mismatch condition evoked lower levels of oxygenated hemoglobin (HbO) activation in the left inferior frontal gyrus Broca's triangle and left superior temporal gyrus. Vowel mismatch condition evoked a higher level of HbO activation in the top of the left inferior frontal gyrus and left middle frontal gyrus. The regions and patterns of brain activation evoked by tone mismatch were the same as those of vowel mismatch. The study indicated that consonant, vowel and tone all play a role in Chinese character production. The sensitive brain areas were all in the left hemisphere. However, the neural mechanism of consonant processing differed from vowel processing in both brain regions and patterns, while tone and vowel processing shared the same regions.
Collapse
Affiliation(s)
- Jianan Yu
- School of Psychology, Northeast Normal University, Changchun, Jilin, China
| | - Yun Zou
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Yan Wu
- School of Psychology, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
4
|
Ness T, Langlois VJ, Kim AE, Novick JM. The State of Cognitive Control in Language Processing. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023:17456916231197122. [PMID: 37819251 DOI: 10.1177/17456916231197122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Understanding language requires readers and listeners to cull meaning from fast-unfolding messages that often contain conflicting cues pointing to incompatible ways of interpreting the input (e.g., "The cat was chased by the mouse"). This article reviews mounting evidence from multiple methods demonstrating that cognitive control plays an essential role in resolving conflict during language comprehension. How does cognitive control accomplish this task? Psycholinguistic proposals have conspicuously failed to address this question. We introduce an account in which cognitive control aids language processing when cues conflict by sending top-down biasing signals that strengthen the interpretation supported by the most reliable evidence available. We also provide a computationally plausible model that solves the critical problem of how cognitive control "knows" which way to direct its biasing signal by allowing linguistic knowledge itself to issue crucial guidance. Such a mental architecture can explain a range of experimental findings, including how moment-to-moment shifts in cognitive-control state-its level of activity within a person-directly impact how quickly and successfully language comprehension is achieved.
Collapse
Affiliation(s)
- Tal Ness
- Department of Hearing and Speech Sciences and Program in Neuroscience and Cognitive Science, University of Maryland, College Park
| | - Valerie J Langlois
- Institute for Cognitive Science and Department of Psychology and Neuroscience, University of Colorado, Boulder
| | - Albert E Kim
- Institute for Cognitive Science and Department of Psychology and Neuroscience, University of Colorado, Boulder
| | - Jared M Novick
- Department of Hearing and Speech Sciences and Program in Neuroscience and Cognitive Science, University of Maryland, College Park
| |
Collapse
|
5
|
van Lieburg R, Hartsuiker R, Bernolet S. Two sides of the same coin? Comparing structural priming between production and comprehension in choice data and in reaction times. Cogn Neuropsychol 2023; 40:265-286. [PMID: 38470967 DOI: 10.1080/02643294.2023.2279735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/31/2023] [Indexed: 03/14/2024]
Abstract
Although structural priming seems to rely on the same mechanisms in production and comprehension, effects are not always consistent between modalities. Methodological differences often result in different data types, namely choice data in production and reaction time data in comprehension. In a structural priming experiment with English ditransitives, we collected choice data and reaction time data in both modalities. The choice data showed priming of the DO and PO dative. The reaction times revealed priming of the PO dative. In production, PO targets were chosen faster after a PO prime than after a baseline prime. In comprehension, DO targets were read slower after a PO prime than after a baseline prime. This result can be explained from competition between alternatives during structure selection. Priming leads to facilitation of the primed structure or inhibition of the opposite structure depending on the relative frequency of structures, which may differ across modalities.
Collapse
Affiliation(s)
| | - Robert Hartsuiker
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Sarah Bernolet
- Department of Linguistics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Valdés Kroff JR, Dussias PE. Production, processing, and prediction in bilingual codeswitching. PSYCHOLOGY OF LEARNING AND MOTIVATION 2023. [DOI: 10.1016/bs.plm.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
7
|
Bongaerts FLP, Schutter DJLG, Klaus J. Cerebellar tDCS does not modulate language processing performance in healthy individuals. Neuropsychologia 2022; 169:108206. [PMID: 35278462 DOI: 10.1016/j.neuropsychologia.2022.108206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Clinical and neuroscientific studies in healthy volunteers have established that the cerebellum contributes to language comprehension and production. Yet most evidence is correlational and the exact role of the cerebellum remains unclear. The aim of this study was to investigate the role of the right cerebellum in unimpaired language comprehension and production using non-invasive brain stimulation. In this double-blind, sham-controlled experiment, thirty-six healthy participants received anodal or sham transcranial direct current (tDCS) stimulation to the right cerebellum while performing a lexical decision, sentence comprehension, verbal fluency and a non-language control task. Active tDCS did not modulate performance in any of the tasks. Additional exploratory analyses suggest difficulty-specific performance modulation in the sentence comprehension and lexical decision task, with tDCS improving performance in easy trials of the sentence comprehension task and difficult trials in the lexical decision task. Overall, our findings provide no evidence for the involvement of the right posterior cerebellum in language processing. Further research is needed to dissociate the influence of task difficulty of the underlying cognitive processes.
Collapse
Affiliation(s)
| | | | - Jana Klaus
- Utrecht University, Helmholtz Institute, the Netherlands.
| |
Collapse
|
8
|
Wu SH, Henderson LM, Gennari SP. Animacy-induced conflict in sentence production and comprehension from late childhood to adolescence. J Exp Child Psychol 2022; 217:105350. [PMID: 35104690 DOI: 10.1016/j.jecp.2021.105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Some animacy configurations elicit parallel semantic interference in adult production and comprehension; for example, phrases with similar animate nouns like the man that the girl is hugging are more difficult than phrases like the doll that the girl is hugging. Yet little is known about how this interference manifests in development, particularly, beyond early childhood. Because frontal brain maturation and cognitive control improvements are known to occur across late childhood and adolescence, we investigated (a) how animacy-induced difficulty in production and comprehension vary with age throughout this period and (b) whether control processes reflected in the backward digit span (BDS) test uniquely explained these differences besides other language measures. In separate tasks, participants (8- to 15-year-old children; N = 91) heard auditory descriptions of depicted characters, produced characters' descriptions, and completed BDS, vocabulary, and reading experience tests. Results indicated that, as in adults, animacy modulated performance in production and comprehension across all ages. The animacy modulation interacted with age in production but not in comprehension, suggesting age-related animacy differences in production but relatively stable differences in comprehension despite processing speed improvements. Importantly, these age-related production differences were also modulated by the BDS scores; only participants with higher BDS scores displayed age-related animacy differences. Together, these results indicate that comprehension and production develop at different rates and that the development of BDS performance interacts with age-dependent changes in sentence planning from late childhood to adolescence. More generally, the study highlights tasks' disparities to be explained by cognitive and developmental models of language.
Collapse
Affiliation(s)
- Shi Hui Wu
- Department of Psychology, University of York, York YO10 5DD, UK.
| | | | | |
Collapse
|
9
|
Giglio L, Ostarek M, Weber K, Hagoort P. Commonalities and Asymmetries in the Neurobiological Infrastructure for Language Production and Comprehension. Cereb Cortex 2021; 32:1405-1418. [PMID: 34491301 PMCID: PMC8971077 DOI: 10.1093/cercor/bhab287] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/30/2023] Open
Abstract
The neurobiology of sentence production has been largely understudied compared to the neurobiology of sentence comprehension, due to difficulties with experimental control and motion-related artifacts in neuroimaging. We studied the neural response to constituents of increasing size and specifically focused on the similarities and differences in the production and comprehension of the same stimuli. Participants had to either produce or listen to stimuli in a gradient of constituent size based on a visual prompt. Larger constituent sizes engaged the left inferior frontal gyrus (LIFG) and middle temporal gyrus (LMTG) extending to inferior parietal areas in both production and comprehension, confirming that the neural resources for syntactic encoding and decoding are largely overlapping. An ROI analysis in LIFG and LMTG also showed that production elicited larger responses to constituent size than comprehension and that the LMTG was more engaged in comprehension than production, while the LIFG was more engaged in production than comprehension. Finally, increasing constituent size was characterized by later BOLD peaks in comprehension but earlier peaks in production. These results show that syntactic encoding and parsing engage overlapping areas, but there are asymmetries in the engagement of the language network due to the specific requirements of production and comprehension.
Collapse
Affiliation(s)
- Laura Giglio
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Donders Institute for Cognition, Brain and Behaviour, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Markus Ostarek
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Donders Institute for Cognition, Brain and Behaviour, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Kirsten Weber
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Donders Institute for Cognition, Brain and Behaviour, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Donders Institute for Cognition, Brain and Behaviour, Radboud University, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
10
|
Creyaufmüller M, Heim S, Habel U, Mühlhaus J. The influence of semantic associations on sentence production in schizophrenia: an fMRI study. Eur Arch Psychiatry Clin Neurosci 2020; 270:359-372. [PMID: 30094543 DOI: 10.1007/s00406-018-0936-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/30/2018] [Indexed: 11/24/2022]
Abstract
One of the most prominent symptoms of schizophrenia is thought disorder, which manifests itself in language production difficulties. In patients with thought disorders the associations are loosened and sentence production is impaired. The determining behavioral and neural mechanisms of sentence production are still an important subject of recent research and have not yet been fully understood. The aim of the current study was to examine the influence of associative relations and distractor modalities on sentence production in healthy participants and participants with schizophrenia. Therefore, reaction times and neural activation of 12 healthy subjects and 13 subjects with schizophrenia were compared in an adapted picture word interference paradigm (PWI). No significant group differences were found, neither on the behavioral nor on the neural level. On the behavioral level, for the entire group incremental sentence processing was found, i.e. processing of the second noun only starts after the first noun was processed. At the neural level, activation was discovered in the bilateral caudate nuclei and the cerebellum. Those activations could be related to response enhancement and suppression as well as to the modulation of cognitive processes.
Collapse
Affiliation(s)
- Maike Creyaufmüller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Stefan Heim
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany. .,JARA Translational Brain Medicine, Aachen, Germany. .,AG Neuroanatomy of Language, Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Leo-Brand-Straße 5, 52428, Jülich, Germany.
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.,JARA Translational Brain Medicine, Aachen, Germany
| | - Juliane Mühlhaus
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.,JARA Translational Brain Medicine, Aachen, Germany.,Department of Computer Science, Speech and Language Therapy, Trier University of Applied Sciences, Trier, Germany
| |
Collapse
|
11
|
Abstract
In addition to the role of left frontotemporal areas in language processing, there is increasing evidence that language comprehension and production require cognitive control and working memory resources involving the left dorsolateral prefrontal cortex (DLPFC). The aim of this study was to investigate the role of the left DLPFC in both language comprehension and production. In a double-blind, sham-controlled crossover experiment, thirty-two participants received cathodal or sham transcranial direct current stimulation (tDCS) to the left DLPFC while performing a language comprehension and a language production task. Results showed that cathodal tDCS increases reaction times in the language comprehension task, but decreases naming latencies in the language production task. However, additional analyses revealed that the polarity of tDCS effects was highly correlated across tasks, implying differential individual susceptibility to the effect of tDCS within participants. Overall, our findings demonstrate that left DLPFC is part of the complex cortical network associated with language processing.
Collapse
Affiliation(s)
- Jana Klaus
- Radboud University, Nijmegen, The Netherlands.
| | | |
Collapse
|
12
|
Blank IA, Kiran S, Fedorenko E. Can neuroimaging help aphasia researchers? Addressing generalizability, variability, and interpretability. Cogn Neuropsychol 2017; 34:377-393. [PMID: 29188746 PMCID: PMC6157596 DOI: 10.1080/02643294.2017.1402756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neuroimaging studies of individuals with brain damage seek to link brain structure and activity to cognitive impairments, spontaneous recovery, or treatment outcomes. To date, such studies have relied on the critical assumption that a given anatomical landmark corresponds to the same functional unit(s) across individuals. However, this assumption is fallacious even across neurologically healthy individuals. Here, we discuss the severe implications of this issue, and argue for an approach that circumvents it, whereby: (i) functional brain regions are defined separately for each subject using fMRI, allowing for inter-individual variability in their precise location; (ii) the response profile of these subject-specific regions are characterized using various other tasks; and (iii) the results are averaged across individuals, guaranteeing generalizabliity. This method harnesses the complementary strengths of single-case studies and group studies, and it eliminates the need for post hoc "reverse inference" from anatomical landmarks back to cognitive operations, thus improving data interpretability.
Collapse
Affiliation(s)
- Idan A Blank
- a McGovern Institute for Brain Research , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Swathi Kiran
- b Department of Speech Language and Hearing Sciences, Aphasia Research Laboratory , Sargent College, Boston University , Boston , MA , USA
| | - Evelina Fedorenko
- c Department of Psychiatry , Massachusetts General Hospital , Charlestown , MA , USA
- d Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
13
|
Hsu NS, Jaeggi SM, Novick JM. A common neural hub resolves syntactic and non-syntactic conflict through cooperation with task-specific networks. BRAIN AND LANGUAGE 2017; 166:63-77. [PMID: 28110105 PMCID: PMC5293615 DOI: 10.1016/j.bandl.2016.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/29/2016] [Accepted: 12/18/2016] [Indexed: 05/09/2023]
Abstract
Regions within the left inferior frontal gyrus (LIFG) have simultaneously been implicated in syntactic processing and cognitive control. Accounts attempting to unify LIFG's function hypothesize that, during comprehension, cognitive control resolves conflict between incompatible representations of sentence meaning. Some studies demonstrate co-localized activity within LIFG for syntactic and non-syntactic conflict resolution, suggesting domain-generality, but others show non-overlapping activity, suggesting domain-specific cognitive control and/or regions that respond uniquely to syntax. We propose however that examining exclusive activation sites for certain contrasts creates a false dichotomy: both domain-general and domain-specific neural machinery must coordinate to facilitate conflict resolution across domains. Here, subjects completed four diverse tasks involving conflict -one syntactic, three non-syntactic- while undergoing fMRI. Though LIFG consistently activated within individuals during conflict processing, functional connectivity analyses revealed task-specific coordination with distinct brain networks. Thus, LIFG may function as a conflict-resolution "hub" that cooperates with specialized neural systems according to information content.
Collapse
Affiliation(s)
- Nina S Hsu
- Department of Psychology, University of Maryland, College Park, USA; Center for Advanced Study of Language, University of Maryland, College Park, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, USA; Department of Hearing and Speech Sciences, University of Maryland, College Park, USA.
| | - Susanne M Jaeggi
- School of Education, University of California, Irvine, USA; Department of Cognitive Sciences, University of California, Irvine, USA.
| | - Jared M Novick
- Center for Advanced Study of Language, University of Maryland, College Park, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, USA; Department of Hearing and Speech Sciences, University of Maryland, College Park, USA.
| |
Collapse
|
14
|
Mossbridge J, Zweig J, Grabowecky M, Suzuki S. An Association between Auditory-Visual Synchrony Processing and Reading Comprehension: Behavioral and Electrophysiological Evidence. J Cogn Neurosci 2017; 29:435-447. [PMID: 28129060 DOI: 10.1162/jocn_a_01052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension.
Collapse
|
15
|
Zhuang J, Johnson MA, Madden DJ, Burke DM, Diaz MT. Age-related differences in resolving semantic and phonological competition during receptive language tasks. Neuropsychologia 2016; 93:189-199. [PMID: 27984068 DOI: 10.1016/j.neuropsychologia.2016.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
Abstract
Receptive language (e.g., reading) is largely preserved in the aging brain, and semantic processes in particular may continue to develop throughout the lifespan. We investigated the neural underpinnings of phonological and semantic retrieval in older and younger adults during receptive language tasks (rhyme and semantic similarity judgments). In particular, we were interested in the role of competition on language retrieval and varied the similarities between a cue, target, and distractor that were hypothesized to affect the mental process of competition. Behaviorally, all participants responded faster and more accurately during the rhyme task compared to the semantic task. Moreover, older adults demonstrated higher response accuracy than younger adults during the semantic task. Although there were no overall age-related differences in the neuroimaging results, an Age×Task interaction was found in left inferior frontal gyrus (IFG), with older adults producing greater activation than younger adults during the semantic condition. These results suggest that at lower levels of task difficulty, older and younger adults engaged similar neural networks that benefited behavioral performance. As task difficulty increased during the semantic task, older adults relied more heavily on largely left hemisphere language regions, as well as regions involved in perception and internal monitoring. Our results are consistent with the stability of language comprehension across the adult lifespan and illustrate how the preservation of semantic representations with aging may influence performance under conditions of increased task difficulty.
Collapse
Affiliation(s)
- Jie Zhuang
- Brain Imaging and Analysis Center, Duke University School of Medicine, United States
| | - Micah A Johnson
- Brain Imaging and Analysis Center, Duke University School of Medicine, United States
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University School of Medicine, United States; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, United States
| | - Deborah M Burke
- Department of Linguistics and Cognitive Science, Pomona College, United States
| | - Michele T Diaz
- Department of Psychology, Pennsylvania State University, United States.
| |
Collapse
|
16
|
MacDonald MC, Montag JL, Gennari SP. Are There Really Syntactic Complexity Effects in Sentence Production? A Reply to Scontras et al. (2015). Cogn Sci 2015; 40:513-8. [DOI: 10.1111/cogs.12255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 11/30/2022]
|
17
|
Połczyńska M, Curtiss S, Walshaw P, Siddarth P, Benjamin C, Moseley BD, Vigil C, Jones M, Eliashiv D, Bookheimer S. Grammar tests increase the ability to lateralize language function in the Wada test. Epilepsy Res 2014; 108:1864-73. [DOI: 10.1016/j.eplepsyres.2014.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/12/2014] [Accepted: 09/13/2014] [Indexed: 10/24/2022]
|
18
|
Moody-Triantis C, Humphreys GF, Gennari SP. Hand specific representations in language comprehension. Front Hum Neurosci 2014; 8:360. [PMID: 24917803 PMCID: PMC4042095 DOI: 10.3389/fnhum.2014.00360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 05/11/2014] [Indexed: 11/18/2022] Open
Abstract
Theories of embodied cognition argue that language comprehension involves sensory-motor re-enactments of the actions described. However, the degree of specificity of these re-enactments as well as the relationship between action and language remains a matter of debate. Here we investigate these issues by examining how hand-specific information (left or right hand) is recruited in language comprehension and action execution. An fMRI study tested self-reported right-handed participants in two separate tasks that were designed to be as similar as possible to increase sensitivity of the comparison across task: an action execution go/no-go task where participants performed right or left hand actions, and a language task where participants read sentences describing the same left or right handed actions as in the execution task. We found that language-induced activity did not match the hand-specific patterns of activity found for action execution in primary somatosensory and motor cortex, but it overlapped with pre-motor and parietal regions associated with action planning. Within these pre-motor regions, both right hand actions and sentences elicited stronger activity than left hand actions and sentences—a dominant hand effect. Importantly, both dorsal and ventral sections of the left pre-central gyrus were recruited by both tasks, suggesting different action features being recruited. These results suggest that (a) language comprehension elicits motor representations that are hand-specific and akin to multimodal action plans, rather than full action re-enactments; and (b) language comprehension and action execution share schematic hand-specific representations that are richer for the dominant hand, and thus linked to previous motor experience.
Collapse
Affiliation(s)
| | - Gina F Humphreys
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester Manchester, UK
| | | |
Collapse
|