1
|
Vagias H, Byrne ML, Millist L, White O, Clough M, Fielding J. Visuo-Cognitive Phenotypes in Early Multiple Sclerosis: A Multisystem Model of Visual Processing. J Clin Med 2024; 13:649. [PMID: 38337342 PMCID: PMC10855997 DOI: 10.3390/jcm13030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Cognitive impairment can emerge in the earliest stages of multiple sclerosis (MS), with heterogeneity in cognitive deficits often hindering symptom identification and management. Sensory-motor dysfunction, such as visual processing impairment, is also common in early disease and can impact neuropsychological task performance in MS. However, cognitive phenotype research in MS does not currently consider the relationship between early cognitive changes and visual processing impairment. OBJECTIVES This study explored the relationship between cognition and visual processing in early MS by adopting a three-system model of afferent sensory, central cognitive and efferent ocular motor visual processing to identify distinct visuo-cognitive phenotypes. METHODS Patients with clinically isolated syndrome and relapsing-remitting MS underwent neuro-ophthalmic, ocular motor and neuropsychological evaluation to assess each visual processing system. The factor structure of ocular motor variables was examined using exploratory factor analysis, and phenotypes were identified using latent profile analysis. RESULTS Analyses revealed three ocular-motor constructs (cognitive control, cognitive processing speed and basic visual processing) and four visuo-cognitive phenotypes (early visual changes, efferent-cognitive, cognitive control and afferent-processing speed). While the efferent-cognitive phenotype was present in significantly older patients than was the early visual changes phenotype, there were no other demographic differences between phenotypes. The efferent-cognitive and cognitive control phenotypes had poorer performance on the Symbol Digit Modalities Test compared to that of other phenotypes; however, no other differences in performance were detected. CONCLUSION Our findings suggest that distinct visual processing deficits in early MS may differentially impact cognition, which is not captured using standard neuropsychological evaluation. Further research may facilitate improved symptom identification and intervention in early disease.
Collapse
Affiliation(s)
- Hariklia Vagias
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Melbourne 3800, Australia; (H.V.)
| | - Michelle L. Byrne
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Melbourne 3800, Australia; (H.V.)
| | - Lyn Millist
- Department of Neuroscience, Alfred Hospital, Melbourne 3004, Australia
| | - Owen White
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia (J.F.)
| | - Meaghan Clough
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia (J.F.)
| | - Joanne Fielding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia (J.F.)
| |
Collapse
|
2
|
Coors A, Imtiaz MA, Boenniger MM, Aziz NA, Breteler MMB, Ettinger U. Polygenic risk scores for schizophrenia are associated with oculomotor endophenotypes. Psychol Med 2023; 53:1611-1619. [PMID: 34412712 PMCID: PMC10009390 DOI: 10.1017/s0033291721003251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/15/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Schizophrenia is a heterogeneous disorder with substantial heritability. The use of endophenotypes may help clarify its aetiology. Measures from the smooth pursuit and antisaccade eye movement tasks have been identified as endophenotypes for schizophrenia in twin and family studies. However, the genetic basis of the overlap between schizophrenia and these oculomotor markers is largely unknown. Here, we tested whether schizophrenia polygenic risk scores (PRS) were associated with oculomotor performance in the general population. METHODS Analyses were based on the data of 2956 participants (aged 30-95) of the Rhineland Study, a community-based cohort study in Bonn, Germany. Genotyping was performed on Omni-2.5 exome arrays. Using summary statistics from a recent meta-analysis based on the two largest schizophrenia genome-wide association studies to date, we quantified genetic risk for schizophrenia by creating PRS at different p value thresholds for genetic markers. We examined associations between PRS and oculomotor performance using multivariable regression models. RESULTS Higher PRS were associated with higher antisaccade error rate and latency, and lower antisaccade amplitude gain. PRS showed inconsistent patterns of association with smooth pursuit velocity gain and were not associated with saccade rate during smooth pursuit or performance on a prosaccade control task. CONCLUSIONS There is an overlap between genetic determinants of schizophrenia and oculomotor endophenotypes. Our findings suggest that the mechanisms that underlie schizophrenia also affect oculomotor function in the general population.
Collapse
Affiliation(s)
- Annabell Coors
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Mohammed-Aslam Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Meta M. Boenniger
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - N. Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Monique M. B. Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | | |
Collapse
|
3
|
Métais C, Nicolas J, Diarra M, Cheviet A, Koun E, Pélisson D. Neural substrates of saccadic adaptation: Plastic changes versus error processing and forward versus backward learning. Neuroimage 2022; 262:119556. [PMID: 35964865 DOI: 10.1016/j.neuroimage.2022.119556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022] Open
Abstract
Previous behavioral, clinical, and neuroimaging studies suggest that the neural substrates of adaptation of saccadic eye movements involve, beyond the central role of the cerebellum, several, still incompletely determined, cortical areas. Furthermore, no neuroimaging study has yet tackled the differences between saccade lengthening ("forward adaptation") and shortening ("backward adaptation") and neither between their two main components, i.e. error processing and oculomotor changes. The present fMRI study was designed to fill these gaps. Blood-oxygen-level-dependent (BOLD) signal and eye movements of 24 healthy volunteers were acquired while performing reactive saccades under 4 conditions repeated in short blocks of 16 trials: systematic target jump during the saccade and in the saccade direction (forward: FW) or in the opposite direction (backward: BW), randomly directed FW or BW target jump during the saccade (random: RND) and no intra-saccadic target jump (stationary: STA). BOLD signals were analyzed both through general linear model (GLM) approaches applied at the whole-brain level and through sensitive Multi-Variate Pattern Analyses (MVPA) applied to 34 regions of interest (ROIs) identified from independent 'Saccade Localizer' functional data. Oculomotor data were consistent with successful induction of forward and backward adaptation in FW and BW blocks, respectively. The different analyses of voxel activation patterns (MVPAs) disclosed the involvement of 1) a set of ROIs specifically related to adaptation in the right occipital cortex, right and left MT/MST, right FEF and right pallidum; 2) several ROIs specifically involved in error signal processing in the left occipital cortex, left PEF, left precuneus, Medial Cingulate cortex (MCC), left inferior and right superior cerebellum; 3) ROIs specific to the direction of adaptation in the occipital cortex and MT/MST (left and right hemispheres for FW and BW, respectively) and in the pallidum of the right hemisphere (FW). The involvement of the left PEF and of the (left and right) occipital cortex were further supported and qualified by the whole brain GLM analysis: clusters of increased activity were found in PEF for the RND versus STA contrast (related to error processing) and in the left (right) occipital cortex for the FW (BW) versus STA contrasts [related to the FW (BW) direction of error and/or adaptation]. The present study both adds complementary data to the growing literature supporting a role of the cerebral cortex in saccadic adaptation through feedback and feedforward relationships with the cerebellum and provides the basis for improving conceptual frameworks of oculomotor plasticity and of its link with spatial cognition.
Collapse
Affiliation(s)
- Camille Métais
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France
| | - Judith Nicolas
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France; Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Moussa Diarra
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France; Université Bourgogne Franche-Comté, LEAD - CNRS UMR5022, Université de Bourgogne, Pôle AAFE, 11 Esplanade Erasme, 21000, Dijon, France
| | - Alexis Cheviet
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France
| | - Eric Koun
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France
| | - Denis Pélisson
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France.
| |
Collapse
|
4
|
Coors A, Merten N, Ward DD, Schmid M, Breteler MMB, Ettinger U. Strong age but weak sex effects in eye movement performance in the general adult population: Evidence from the Rhineland Study. Vision Res 2020; 178:124-133. [PMID: 33387946 DOI: 10.1016/j.visres.2020.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 10/22/2022]
Abstract
Assessing physiological changes that occur with healthy ageing is prerequisite for understanding pathophysiological age-related changes. Eye movements are studied as biomarkers for pathological changes because they are altered in patients with neurodegenerative disorders. However, there is a lack of data from large samples assessing age-related physiological changes and sex differences in oculomotor performance. Thus, we assessed and quantified cross-sectional relations of age and sex with oculomotor performance in the general population. We report results from the first 4,000 participants (aged 30-95 years) of the Rhineland Study, a community-based prospective cohort study in Bonn, Germany. Participants completed fixation, smooth pursuit, prosaccade and antisaccade tasks. We quantified associations of age and sex with oculomotor outcomes using multivariable linear regression models. Performance in 12 out of 18 oculomotor measures declined with increasing age. No differences between age groups were observed in five antisaccade outcomes (amplitude-adjusted and unadjusted peak velocity, amplitude gain, spatial error and percentage of corrected errors) and for blink rate during fixation. Small sex differences occurred in smooth pursuit velocity gain (men have higher gain) and blink rate during fixation (men blink less). We conclude that performance declines with age in two thirds of oculomotor outcomes but that there was no evidence of sex differences in eye movement performance except for two outcomes. Since the percentage of corrected antisaccade errors was not associated with age but is known to be affected by pathological cognitive decline, it represents a promising candidate preclinical biomarker of neurodegeneration.
Collapse
Affiliation(s)
- Annabell Coors
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Natascha Merten
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - David D Ward
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Germany.
| | | |
Collapse
|
5
|
Simonet M, Ruggeri P, Barral J. Effector-Specific Characterization of Brain Dynamics in Manual vs. Oculomotor Go/NoGo Tasks. Front Hum Neurosci 2020; 14:600667. [PMID: 33343320 PMCID: PMC7744377 DOI: 10.3389/fnhum.2020.600667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
Motor inhibitory control (IC), the ability to suppress unwanted actions, has been previously shown to rely on domain-general IC processes that are involved in a wide range of IC tasks. Nevertheless, the existence of effector-specific regions and activation patterns that would differentiate manual vs. oculomotor response inhibition remains unknown. In this study, we investigated the brain dynamics supporting these two response effectors with the same IC task paradigm. We examined the behavioral performance and electrophysiological activity in a group of healthy young people (n = 25) with a Go/NoGo task using the index finger for the manual modality and the eyes for the oculomotor modality. By computing topographic analysis of variance, we found significant differences between topographies of scalp recorded potentials of the two response effectors between 250 and 325 ms post-stimulus onset. The source estimations localized this effect within the left precuneus, a part of the superior parietal lobule, showing stronger activity in the oculomotor modality than in the manual modality. Behaviorally, we found a significant positive correlation in response time between the two modalities. Our collective results revealed that while domain-general IC processes would be engaged across different response effectors in the same IC task, effector-specific activation patterns exist. In this case, the stronger activation of the left precuneus likely accounts for the increased demand for visual attentional processes in the oculomotor Go/NoGo task.
Collapse
Affiliation(s)
- Marie Simonet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Paolo Ruggeri
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Barral
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Schröder R, Kasparbauer AM, Meyhöfer I, Steffens M, Trautner P, Ettinger U. Functional connectivity during smooth pursuit eye movements. J Neurophysiol 2020; 124:1839-1856. [PMID: 32997563 DOI: 10.1152/jn.00317.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Smooth pursuit eye movements (SPEM) hold the image of a slowly moving stimulus on the fovea. The neural system underlying SPEM primarily includes visual, parietal, and frontal areas. In the present study, we investigated how these areas are functionally coupled and how these couplings are influenced by target motion frequency. To this end, healthy participants (n = 57) were instructed to follow a sinusoidal target stimulus moving horizontally at two different frequencies (0.2 Hz, 0.4 Hz). Eye movements and blood oxygen level-dependent (BOLD) activity were recorded simultaneously. Functional connectivity of the key areas of the SPEM network was investigated with a psychophysiological interaction (PPI) approach. How activity in five eye movement-related seed regions (lateral geniculate nucleus, V1, V5, posterior parietal cortex, frontal eye fields) relates to activity in other parts of the brain during SPEM was analyzed. The behavioral results showed clear deterioration of SPEM performance at higher target frequency. BOLD activity during SPEM versus fixation occurred in a geniculo-occipito-parieto-frontal network, replicating previous findings. PPI analysis yielded widespread, partially overlapping networks. In particular, frontal eye fields and posterior parietal cortex showed task-dependent connectivity to large parts of the entire cortex, whereas other seed regions demonstrated more regionally focused connectivity. Higher target frequency was associated with stronger activations in visual areas but had no effect on functional connectivity. In summary, the results confirm and extend previous knowledge regarding the neural mechanisms underlying SPEM and provide a valuable basis for further investigations such as in patients with SPEM impairments and known alterations in brain connectivity.NEW & NOTEWORTHY This study provides a comprehensive investigation of blood oxygen level-dependent (BOLD) functional connectivity during smooth pursuit eye movements. Results from a large sample of healthy participants suggest that key oculomotor regions interact closely with each other but also with regions not primarily associated with eye movements. Understanding functional connectivity during smooth pursuit is important, given its potential role as an endophenotype of psychoses.
Collapse
Affiliation(s)
| | | | - Inga Meyhöfer
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Maria Steffens
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Peter Trautner
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.,Core Facility MRI, Bonn Technology Campus, University of Bonn, Bonn, Germany
| | | |
Collapse
|
7
|
Duschek S, Hoffmann A, Montoro CI, Bair A, Reyes Del Paso GA, Ettinger U. Cerebral blood flow modulations during antisaccade preparation in chronic hypotension. Psychophysiology 2018; 56:e13305. [PMID: 30456801 DOI: 10.1111/psyp.13305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 01/11/2023]
Abstract
In addition to symptoms including fatigue, dizziness, reduced drive, or mood disturbance, individuals with chronic low blood pressure (hypotension) frequently report cognitive complaints. While attentional deficits have been empirically confirmed, it is still unknown whether the impairments also encompass executive functions. This study investigated cerebral blood flow modulations in hypotension during a precued antisaccade/prosaccade task requiring the executive function of proactive inhibition in addition to preparatory attention. Using functional transcranial Doppler sonography, bilateral blood flow velocities in the middle cerebral arteries (MCA) were recorded in 39 hypotensive and 40 normotensive participants. In the task, a stimulus appeared left or right of a fixation point 5 s after a cuing stimulus; subjects had to move their gaze to the mirror image position of the stimulus (antisaccade) or toward it (prosaccade control condition). Video-based eye tracking was used for ocular recording. A right dominant MCA blood flow increase arose during task preparation, which was smaller in hypotensive than normotensive participants. In addition, hypotensive participants exhibited lower peak velocity of the saccadic response. The extent of the reductions in blood flow and task performance in hypotension did not differ between antisaccade and prosaccade conditions. The smaller MCA flow increase may reflect reduced activity in the dorsolateral prefrontal and inferior parietal cortices during proactive inhibition and preparatory attention in hypotension. Given that group differences in blood flow and performance arose independent of task complexity and executive function load, hypotension may be characterized by basic attentional impairments rather than particular executive function deficits.
Collapse
Affiliation(s)
- Stefan Duschek
- UMIT-University of Health Sciences Medical Informatics and Technology, Institute of Psychology, Hall in Tirol, Austria
| | - Alexandra Hoffmann
- UMIT-University of Health Sciences Medical Informatics and Technology, Institute of Psychology, Hall in Tirol, Austria
| | - Casandra I Montoro
- UMIT-University of Health Sciences Medical Informatics and Technology, Institute of Psychology, Hall in Tirol, Austria
| | - Angela Bair
- UMIT-University of Health Sciences Medical Informatics and Technology, Institute of Psychology, Hall in Tirol, Austria
| | | | | |
Collapse
|
8
|
Lencer R, Yao L, Reilly JL, Keedy SK, McDowell JE, Keshavan MS, Pearlson GD, Tamminga CA, Gershon ES, Clementz BA, Lui S, Sweeney JA. Alterations in intrinsic fronto-thalamo-parietal connectivity are associated with cognitive control deficits in psychotic disorders. Hum Brain Mapp 2018; 40:163-174. [PMID: 30260540 DOI: 10.1002/hbm.24362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/25/2018] [Accepted: 08/08/2018] [Indexed: 02/05/2023] Open
Abstract
Despite a growing number of reports about alterations in intrinsic/resting brain activity observed in patients with psychotic disorders, their relevance to well-established cognitive control deficits in this patient group is not well understood. Totally 88 clinically stabilized patients with a psychotic disorder and 50 healthy controls participated in a resting-state magnetic resonance imaging study (rs-MRI) and performed an antisaccade task in the laboratory to assess voluntary inhibitory control ability. Deficits on this task are a well-established biomarker across psychotic disorders as we found in the present patient sample. First, regional cerebral function was evaluated by measuring the amplitude of low frequency fluctuations (ALFF) in rs-MRI BOLD signals. We found reduced ALFF in patients in regions known to be relevant to antisaccade task performance including bilateral frontal eye fields (FEF), supplementary eye fields (SEF) and thalamus. Second, areas with ALFF alterations were used as seed areas in whole-brain functional connectivity (FC) analysis. Altered FC was observed in a fronto-thalamo-parietal network that was associated with inhibition error rate in patients but not in controls. In contrast, faster time to generate a correct antisaccade was associated with FC in FEF and SEF in controls but this effect was not seen in patients. These findings establish a behavioral relevance of resting-state fMRI findings in psychotic disorders, and extend previous reports of alterations in fronto-thalamo-parietal network activation during antisaccade performance seen in task-based fMRI studies.
Collapse
Affiliation(s)
- Rebekka Lencer
- Department of Psychiatry and Psychotherapy, and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Li Yao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - James L Reilly
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL
| | | | - Matcheri S Keshavan
- Department of Psychiatry, Harvard Medical School, Beth Israel Deacones Medical Center, Boston, MA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neurobiology, Yale School of Medicine, and Olin Research Center, Institute of Living/Hartford Hospital, Hartford, CT
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL
| | | | - Su Lui
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - John A Sweeney
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
9
|
Herweg NA, Kahana MJ. Spatial Representations in the Human Brain. Front Hum Neurosci 2018; 12:297. [PMID: 30104966 PMCID: PMC6078001 DOI: 10.3389/fnhum.2018.00297] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Abstract
While extensive research on the neurophysiology of spatial memory has been carried out in rodents, memory research in humans had traditionally focused on more abstract, language-based tasks. Recent studies have begun to address this gap using virtual navigation tasks in combination with electrophysiological recordings in humans. These studies suggest that the human medial temporal lobe (MTL) is equipped with a population of place and grid cells similar to that previously observed in the rodent brain. Furthermore, theta oscillations have been linked to spatial navigation and, more specifically, to the encoding and retrieval of spatial information. While some studies suggest a single navigational theta rhythm which is of lower frequency in humans than rodents, other studies advocate for the existence of two functionally distinct delta-theta frequency bands involved in both spatial and episodic memory. Despite the general consensus between rodent and human electrophysiology, behavioral work in humans does not unequivocally support the use of a metric Euclidean map for navigation. Formal models of navigational behavior, which specifically consider the spatial scale of the environment and complementary learning mechanisms, may help to better understand different navigational strategies and their neurophysiological mechanisms. Finally, the functional overlap of spatial and declarative memory in the MTL calls for a unified theory of MTL function. Such a theory will critically rely upon linking task-related phenomena at multiple temporal and spatial scales. Understanding how single cell responses relate to ongoing theta oscillations during both the encoding and retrieval of spatial and non-spatial associations appears to be key toward developing a more mechanistic understanding of memory processes in the MTL.
Collapse
Affiliation(s)
- Nora A. Herweg
- Computational Memory Lab, Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael J. Kahana
- Computational Memory Lab, Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Ettinger U, Aichert DS, Wöstmann N, Dehning S, Riedel M, Kumari V. Response inhibition and interference control: Effects of schizophrenia, genetic risk, and schizotypy. J Neuropsychol 2017; 12:484-510. [DOI: 10.1111/jnp.12126] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/06/2017] [Indexed: 01/18/2023]
Affiliation(s)
| | | | | | - Sandra Dehning
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy; University of Munich; Germany
| | | | - Veena Kumari
- Research and Development; Sovereign Health Group; San Clemente California USA
| |
Collapse
|
11
|
Zhou W, Shu H. A meta-analysis of functional magnetic resonance imaging studies of eye movements and visual word reading. Brain Behav 2017; 7:e00683. [PMID: 28523225 PMCID: PMC5434188 DOI: 10.1002/brb3.683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION The pattern of eye movements during reading is substantially correlated with linguistic factors. While there have been a large number of studies on the neural mechanisms of eye movements and word reading separately, a limited number of studies have compared the activation patterns of these two processes and discussed the associations of their corresponding brain regions within the framework of naturalistic reading. METHODS This study conducted a meta-analysis of the existing functional magnetic resonance imaging literature on prosaccades and visual word reading using the activation likelihood estimation algorithm. RESULTS Our main finding was that, although prosaccades and word reading mainly activated dorsal and ventral brain areas, respectively, they both activated the left precentral gyrus (PreCG), left superior parietal lobe, right PreCG, right lingual gyrus, and bilateral medial frontal gyrus. CONCLUSION These findings provide new insights into cognitive processes involved with naturalistic reading, which requires both eye movements and word reading.
Collapse
Affiliation(s)
- Wei Zhou
- Beijing Key Lab of Learning and Cognition Department of Psychology Capital Normal University Beijing China.,Beijing Advanced Innovation Center for Imaging Technology Capital Normal University Beijing China
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| |
Collapse
|
12
|
Lemos J, Pereira D, Almendra L, Rebelo D, Patrício M, Castelhano J, Cunha G, Januário C, Cunha L, Freire A, Castelo-Branco M. Cortical control of vertical and horizontal saccades in progressive supranuclear palsy: An exploratory fMRI study. J Neurol Sci 2017; 373:157-166. [DOI: 10.1016/j.jns.2016.12.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/25/2016] [Accepted: 12/23/2016] [Indexed: 11/27/2022]
|
13
|
Pierce JE, McDowell JE. Reduced Cognitive Control Demands after Practice of Saccade Tasks in a Trial Type Probability Manipulation. J Cogn Neurosci 2017; 29:368-381. [DOI: 10.1162/jocn_a_01051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Cognitive control is engaged to facilitate stimulus–response mappings for novel, complex tasks and supervise performance in unfamiliar, challenging contexts—processes supported by pFC, ACC, and posterior parietal cortex. With repeated task practice, however, the appropriate task set can be selected in a more automatic fashion with less need for top–down cognitive control and weaker activation in these brain regions. One model system for investigating cognitive control is the ocular motor circuitry underlying saccade production, with basic prosaccade trials (look toward a stimulus) and complex antisaccade trials (look to the mirror image location) representing low and high levels of cognitive control, respectively. Previous studies have shown behavioral improvements on saccade tasks after practice with contradictory results regarding the direction of functional MRI BOLD signal change. The current study presented healthy young adults with prosaccade and antisaccade trials in five mixed blocks with varying probability of each trial type (0%, 25%, 50%, 75%, or 100% anti vs. pro) at baseline and posttest MRI sessions. Between the scans, participants practiced either the specific probability blocks used during testing or only a general 100% antisaccade block. Results indicated an overall reduction in BOLD activation within pFC, ACC, and posterior parietal cortex and across saccade circuitry for antisaccade trials. The specific practice group showed additional regions including ACC, insula, and thalamus with an activation decrease after practice, whereas the general practice group showed a little change from baseline in those clusters. These findings demonstrate that cognitive control regions recruited to support novel task behaviors were engaged less after practice, especially with exposure to mixed task contexts rather than a novel task in isolation.
Collapse
|
14
|
TERAO Y, FUKUDA H, HIKOSAKA O. What do eye movements tell us about patients with neurological disorders? - An introduction to saccade recording in the clinical setting. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:772-801. [PMID: 29225306 PMCID: PMC5790757 DOI: 10.2183/pjab.93.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/17/2017] [Indexed: 06/01/2023]
Abstract
Non-invasive and readily implemented in the clinical setting, eye movement studies have been conducted extensively not only in healthy human subjects but also in patients with neurological disorders. The purpose of saccade studies is to "read out" the pathophysiology underlying neurological disorders from the saccade records, referring to known primate physiology. In the current review, we provide an overview of studies in which we attempted to elucidate the patterns of saccade abnormalities in over 250 patients with neurological disorders, including cerebellar ataxia and brainstem pathology due to neurodegenerative disorders, and what they tell about the pathophysiology of patients with neurological disorders. We also discuss how interventions, such as deep brain stimulation, affect saccade performance and provide further insights into the workings of the oculomotor system in humans. Finally, we argue that it is important to understand the functional significance and behavioral correlate of saccade abnormalities in daily life, which could require eye tracking methodologies to be performed in settings similar to daily life.
Collapse
Affiliation(s)
- Yasuo TERAO
- Department of Cell Physiology, Kyorin University, Tokyo, Japan
| | | | - Okihide HIKOSAKA
- Section of Neuronal Networks, Laboratory of Sensorimotor Research, National Eye Institute, U.S.A.
| |
Collapse
|
15
|
Neural effects of methylphenidate and nicotine during smooth pursuit eye movements. Neuroimage 2016; 141:52-59. [DOI: 10.1016/j.neuroimage.2016.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/13/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022] Open
|
16
|
Zhou W, Wang X, Xia Z, Bi Y, Li P, Shu H. Neural Mechanisms of Dorsal and Ventral Visual Regions during Text Reading. Front Psychol 2016; 7:1399. [PMID: 27695434 PMCID: PMC5023685 DOI: 10.3389/fpsyg.2016.01399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/01/2016] [Indexed: 11/21/2022] Open
Abstract
When reading a narrative text, both the dorsal and ventral visual systems are activated. To illustrate the patterns of interactions between the dorsal and ventral visual systems in text reading, we conducted analyses of functional connectivity (FC) and effective connectivity (EC) in a left-hemispheric network for reading-driven functional magnetic resonance imaging (fMRI) and resting-state fMRI (rs-fMRI) data. In reading-driven fMRI (Experiment 1), we found significant FCs among the left middle frontal gyrus (MFG), the left intraparietal sulcus (IPS), and the visual word form area (VWFA), and there were top–down effects from the left MFG to the left IPS, from the left MFG to the VWFA, and from the left IPS to the VWFA. In rs-fMRI (Experiment 2), we identified FCs and ECs for MFG-IPS and IPS-VWFA connections. In addition, the brain–behavior relationship in resting states showed that the dorsal connection was more associated with reading fluency relative to lexical decision. The combination of two experiments revealed that the MFG-IPS and the VWFA-IPS connections were shared connections both in reading-driven fMRI and rs-fMRI, and that the MFG-VWFA was specific connectivity in reading-driven fMRI. These results suggest that top–down effects from the dorsal visual system to ventral visual system play an important role in text reading.
Collapse
Affiliation(s)
- Wei Zhou
- Beijing Key Lab of Learning and Cognition, Department of Psychology, Capital Normal UniversityBeijing, China; Beijing Advanced Innovation Center for Imaging Technology, Capital Normal UniversityBeijing, China; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
| | - Xiaojuan Wang
- School of Psychology, Shaanxi Normal University Xi'an, China
| | - Zhichao Xia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| | - Ping Li
- Department of Psychology and Center for Brain, Behavior and Cognition, Pennsylvania State University, University Park PA, USA
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| |
Collapse
|
17
|
Facing competition: Neural mechanisms underlying parallel programming of antisaccades and prosaccades. Brain Cogn 2016; 107:37-47. [DOI: 10.1016/j.bandc.2016.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/31/2016] [Indexed: 11/22/2022]
|
18
|
Cieslik EC, Seidler I, Laird AR, Fox PT, Eickhoff SB. Different involvement of subregions within dorsal premotor and medial frontal cortex for pro- and antisaccades. Neurosci Biobehav Rev 2016; 68:256-269. [PMID: 27211526 DOI: 10.1016/j.neubiorev.2016.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/01/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
Abstract
The antisaccade task has been widely used to investigate cognitive action control. While the general network for saccadic eye movements is well defined, the exact location of eye fields within the frontal cortex strongly varies between studies. It is unknown whether this inconsistency reflects spatial uncertainty or is the result of different involvement of subregions for specific aspects of eye movement control. The aim of the present study was to examine functional differentiations within the frontal cortex by integrating results from neuroimaging studies analyzing pro- and antisaccade behavior using meta-analyses. The results provide evidence for a differential functional specialization of neighboring oculomotor frontal regions, with lateral frontal eye fields (FEF) and supplementary eye field (SEF) more often involved in prosaccades while medial FEF and anterior midcingulate cortex (aMCC) revealed consistent stronger involvement for antisaccades. This dissociation was furthermore mirrored by functional connectivity analyses showing that the lateral FEF and SEF are embedded in a motor output network, while medial FEF and aMCC are integrated in a multiple demand network.
Collapse
Affiliation(s)
- Edna C Cieslik
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1) Research Centre Jülich, Jülich, Germany.
| | - Isabelle Seidler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center San Antonio, TX, USA; Research Service, South Texas Veterans Administration Medical Center, San Antonio, TX, USA; State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1) Research Centre Jülich, Jülich, Germany
| |
Collapse
|
19
|
Meyhöfer I, Bertsch K, Esser M, Ettinger U. Variance in saccadic eye movements reflects stable traits. Psychophysiology 2015; 53:566-78. [DOI: 10.1111/psyp.12592] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/09/2015] [Accepted: 11/03/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Inga Meyhöfer
- Department of Psychology; University of Bonn; Bonn Germany
| | - Katja Bertsch
- Department of General Psychiatry; Center for Psychosocial Medicine, Heidelberg University Hospital; Heidelberg Germany
| | - Moritz Esser
- Department of Psychology; University of Bonn; Bonn Germany
| | | |
Collapse
|
20
|
Pierce JE, McDowell JE. Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI. J Neurophysiol 2015; 115:763-72. [PMID: 26609113 DOI: 10.1152/jn.00776.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/19/2015] [Indexed: 11/22/2022] Open
Abstract
Cognitive control supports flexible behavior adapted to meet current goals and can be modeled through investigation of saccade tasks with varying cognitive demands. Basic prosaccades (rapid glances toward a newly appearing stimulus) are supported by neural circuitry, including occipital and posterior parietal cortex, frontal and supplementary eye fields, and basal ganglia. These trials can be contrasted with complex antisaccades (glances toward the mirror image location of a stimulus), which are characterized by greater functional magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signal in the aforementioned regions and recruitment of additional regions such as dorsolateral prefrontal cortex. The current study manipulated the cognitive demands of these saccade tasks by presenting three rapid event-related runs of mixed saccades with a varying probability of antisaccade vs. prosaccade trials (25, 50, or 75%). Behavioral results showed an effect of trial-type probability on reaction time, with slower responses in runs with a high antisaccade probability. Imaging results exhibited an effect of probability in bilateral pre- and postcentral gyrus, bilateral superior temporal gyrus, and medial frontal gyrus. Additionally, the interaction between saccade trial type and probability revealed a strong probability effect for prosaccade trials, showing a linear increase in activation parallel to antisaccade probability in bilateral temporal/occipital, posterior parietal, medial frontal, and lateral prefrontal cortex. In contrast, antisaccade trials showed elevated activation across all runs. Overall, this study demonstrated that improbable performance of a typically simple prosaccade task led to augmented BOLD signal to support changing cognitive control demands, resulting in activation levels similar to the more complex antisaccade task.
Collapse
Affiliation(s)
- Jordan E Pierce
- Department of Psychology, University of Georgia, Athens, Georgia
| | | |
Collapse
|
21
|
Heath M, Hassall CD, MacLean S, Krigolson OE. Event-related brain potentials during the visuomotor mental rotation task: The contingent negative variation scales to angle of rotation. Neuroscience 2015; 311:153-65. [PMID: 26477986 DOI: 10.1016/j.neuroscience.2015.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 11/16/2022]
Abstract
Perceptual judgments about the angular disparity of a character from its standard upright (i.e., mental rotation task) result in a concurrent increase in reaction time (RT) and modulation of the amplitude of the P300 event-related brain potential (ERP). It has therefore been proposed that the P300 represents the neural processes associated with a visual rotation. In turn, the visuomotor mental rotation (VMR) task requires reaching to a location that deviates from a target by a predetermined angle. Although the VMR task exhibits a linear increase in RT with increasing oblique angles of rotation, work has not examined whether the task is supported via a visual rotation analogous to its mental rotation task counterpart. This represents a notable issue because seminal work involving non-human primates has ascribed VMR performance to the motor-related rotation of directionally tuned neurons in the primary motor cortex. Here we examined the concurrent behavioral and ERP characteristics of a standard reaching task and VMR tasks of 35°, 70°, and 105° of rotation. Results showed that the P300 amplitude was larger for the standard compared to each VMR task--an effect independent of the angle of rotation. In turn, the amplitude of the contingent negative variation (CNV)--an ERP related to cognitive and visuomotor integration for movement preparation--was systematically modulated with angle of rotation. Thus, we propose that the CNV represents an ERP correlate related to the cognitive and/or visuomotor transformation demands of increasing the angular separation between a stimulus and a movement goal.
Collapse
Affiliation(s)
- M Heath
- School of Kinesiology, University of Western Ontario, London, ON, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada.
| | - C D Hassall
- Faculty of Education, University of Victoria, Victoria, BC, Canada
| | - S MacLean
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - O E Krigolson
- Faculty of Education, University of Victoria, Victoria, BC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|