1
|
Herlin B, Uszynski I, Chauvel M, Dupont S, Poupon C. Sex-related variability of white matter tracts in the whole HCP cohort. Brain Struct Funct 2024; 229:1713-1735. [PMID: 39012482 PMCID: PMC11374878 DOI: 10.1007/s00429-024-02833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024]
Abstract
Behavioral differences between men and women have been studied extensively, as have differences in brain anatomy. However, most studies have focused on differences in gray matter, while white matter has been much less studied. We conducted a comprehensive study of 77 deep white matter tracts to analyze their volumetric and microstructural variability between men and women in the full Human Connectome Project (HCP) cohort of 1065 healthy individuals aged 22-35 years. We found a significant difference in total brain volume between men and women (+ 12.6% in men), consistent with the literature. 16 tracts showed significant volumetric differences between men and women, one of which stood out due to a larger effect size: the corpus callosum genu, which was larger in women (+ 7.3% in women, p = 5.76 × 10-19). In addition, we found several differences in microstructural parameters between men and women, both using standard Diffusion Tensor Imaging (DTI) parameters and more complex microstructural parameters from the Neurite Orientation Dispersion and Density Imaging (NODDI) model, with the tracts showing the greatest differences belonging to motor (cortico-spinal tracts, cortico-cerebellar tracts) or limbic (cingulum, fornix, thalamo-temporal radiations) systems. These microstructural differences may be related to known behavioral differences between the sexes in timed motor performance, aggressiveness/impulsivity, and social cognition.
Collapse
Affiliation(s)
- B Herlin
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France.
- Rehabilitation Unit, AP-HP, Pitié-Salpêtrière Hospital, Paris, France.
- Université Paris Sorbonne, Paris, France.
| | - I Uszynski
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - M Chauvel
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - S Dupont
- Reference Center for Rare Epilepsies, Department of Neurology, Epileptology Unit, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Rehabilitation Unit, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Paris Brain Institute (ICM), Sorbonne-Université, Inserm U1127, CNRS 7225, Paris, France
- Université Paris Sorbonne, Paris, France
| | - C Poupon
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| |
Collapse
|
2
|
Jacquesson T, Djarouf I, Simon É, Haegelen C, Mertens P, Picart T, Fernandez-Miranda J. Educational stereoscopic representation of a step-by-step brain white fiber dissection according to Klingler's method. Surg Radiol Anat 2024; 46:303-311. [PMID: 38376527 DOI: 10.1007/s00276-024-03305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/14/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Understanding and teaching the three-dimensional architecture of the brain remains difficult because of the intricate arrangement of grey nuclei within white matter tracts. Although cortical area functions have been well studied, educational and three-dimensional descriptions of the organization of deep nuclei and white matter tracts are still missing. OBJECTIVE We propose herein a detailed step-by-step dissection of the lateral aspect of a left hemisphere using the Klingler method and provide high-quality stereoscopic views with the aim to help teach medical students or surgeons the three-dimensional anatomy of the brain. METHODS Three left hemispheres were extracted and prepared. Then, according to the Klingler method, dissections were carried out from the lateral aspect. Photographs were taken at each step and were modified to provide stereoscopic three-dimensional views. RESULTS Gray and white structures were described: cortex, claustrum, putamen, pallidum, caudate nucleus, amygdala; U-fibers, external and internal capsules, superior longitudinal fasciculus, frontal aslant fasciculus, uncinate fasciculus, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, corticospinal fasciculus, corona radiata, anterior commissure, and optic radiations. CONCLUSION This educational stereoscopic presentation of an expert dissection of brain white fibers and basal ganglia would be of value for theoretical or hands-on teaching of brain anatomy; labeling and stereoscopy could, moreover, improve the teaching, understanding, and memorizing of brain anatomy. In addition, this could be also used for the creation of a mental map by neurosurgeons for the preoperative planning of brain tumor surgery.
Collapse
Affiliation(s)
- Timothée Jacquesson
- Département de Neurochirurgie, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, 59 Bd Pinel, 69677, Lyon Cedex, France.
- Laboratoire d'Anatomie Rockefeller, Université de Lyon 1, 8 Avenue Rockefeller, 69003, Lyon, France.
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Idriss Djarouf
- Laboratoire d'Anatomie Rockefeller, Université de Lyon 1, 8 Avenue Rockefeller, 69003, Lyon, France
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Émile Simon
- Département de Neurochirurgie, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, 59 Bd Pinel, 69677, Lyon Cedex, France
- Laboratoire d'Anatomie Rockefeller, Université de Lyon 1, 8 Avenue Rockefeller, 69003, Lyon, France
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Claire Haegelen
- Département de Neurochirurgie, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, 59 Bd Pinel, 69677, Lyon Cedex, France
- Laboratoire d'Anatomie Rockefeller, Université de Lyon 1, 8 Avenue Rockefeller, 69003, Lyon, France
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Patrick Mertens
- Département de Neurochirurgie, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, 59 Bd Pinel, 69677, Lyon Cedex, France
- Laboratoire d'Anatomie Rockefeller, Université de Lyon 1, 8 Avenue Rockefeller, 69003, Lyon, France
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Thiébaud Picart
- Département de Neurochirurgie, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, 59 Bd Pinel, 69677, Lyon Cedex, France
| | | |
Collapse
|
3
|
Vavassori L, Venturini M, Zigiotto L, Annicchiarico L, Corsini F, Avesani P, Petit L, De Benedictis A, Sarubbo S. The arcuate fasciculus: Combining structure and function into surgical considerations. Brain Behav 2023; 13:e3107. [PMID: 37280786 PMCID: PMC10454270 DOI: 10.1002/brb3.3107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Two Centuries from today, Karl Friedrich Burdach attributed the nomenclature "arcuate fasciculus" to a white matter (WM) pathway connecting the frontal to the temporal cortices by arching around the Sylvian fissure. Although this label remained essentially unvaried, the concepts related to it and the characterization of the structural properties of this bundle evolved along with the methodological progress of the past years. Concurrently, the functional relevance of the arcuate fasciculus (AF) classically restricted to the linguistic domain has extended to further cognitive abilities. These features make it a relevant structure to consider in a large variety of neurosurgical procedures. OBJECTIVE Herein, we build on our previous review uncovering the connectivity provided by the Superior Longitudinal System, including the AF, and provide a handy representation of the structural organization of the AF by considering the frequency of defined reports in the literature. By adopting the same approach, we implement an account of which functions are mediated by this WM bundle. We highlight how this information can be transferred to the neurosurgical field by presenting four surgical cases of glioma resection requiring the evaluation of the relationship between the AF and the nearby structures, and the safest approaches to adopt. CONCLUSIONS Our cumulative overview reports the most common wiring patterns and functional implications to be expected when approaching the study of the AF, while still considering seldom descriptions as an account of interindividual variability. Given its extension and the variety of cortical territories it reaches, the AF is a pivotal structure for different cognitive functions, and thorough understanding of its structural wiring and the functions it mediates is necessary for preserving the patient's cognitive abilities during glioma resection.
Collapse
Affiliation(s)
- Laura Vavassori
- Department of NeurosurgeryAzienda Provinciale per i Servizi Sanitari (APSS), “S. Chiara” HospitalTrento Provincia Autonoma di TrentoItaly
- Center for Mind and Brain Sciences (CIMeC)University of TrentoTrento Provincia Autonoma di TrentoItaly
| | - Martina Venturini
- Department of NeurosurgeryAzienda Provinciale per i Servizi Sanitari (APSS), “S. Chiara” HospitalTrento Provincia Autonoma di TrentoItaly
| | - Luca Zigiotto
- Department of NeurosurgeryAzienda Provinciale per i Servizi Sanitari (APSS), “S. Chiara” HospitalTrento Provincia Autonoma di TrentoItaly
| | - Luciano Annicchiarico
- Department of NeurosurgeryAzienda Provinciale per i Servizi Sanitari (APSS), “S. Chiara” HospitalTrento Provincia Autonoma di TrentoItaly
| | - Francesco Corsini
- Department of NeurosurgeryAzienda Provinciale per i Servizi Sanitari (APSS), “S. Chiara” HospitalTrento Provincia Autonoma di TrentoItaly
| | - Paolo Avesani
- Center for Mind and Brain Sciences (CIMeC)University of TrentoTrento Provincia Autonoma di TrentoItaly
- Neuroinfrmatics Laboratory (NiLab)Bruno Kessler FoundationPovo Provincia Autonoma di TrentoItaly
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives (GIN‐IMN), UMR5293, CNRS, CEAUniversity of BordeauxBordeauxFrance
| | | | - Silvio Sarubbo
- Department of NeurosurgeryAzienda Provinciale per i Servizi Sanitari (APSS), “S. Chiara” HospitalTrento Provincia Autonoma di TrentoItaly
| |
Collapse
|
4
|
Smirnov M, Maldonado IL, Destrieux C. Using ex vivo arterial injection and dissection to assess white matter vascularization. Sci Rep 2023; 13:809. [PMID: 36646713 PMCID: PMC9842749 DOI: 10.1038/s41598-022-26227-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/12/2022] [Indexed: 01/18/2023] Open
Abstract
Advances in the techniques for assessing human cerebral white matter have recently contributed to greater attention to structural connectivity. Yet, little is known about the vascularization of most white matter fasciculi and the fascicular composition of the vascular territories. This paper presents an original method to label the arterial supply of macroscopic white matter fasciculi based on a standardized protocol for post-mortem injection of colored material into main cerebral arteries combined with a novel fiber dissection technique. Twelve whole human cerebral hemispheres obtained post-mortem were included. A detailed description of every step, from obtaining the specimen to image acquisition of its dissection, is provided. Injection and dissection were reproducible and manageable without any sophisticated equipment. They successfully showed the arterial supply of the dissected fasciculi. In addition, we discuss the challenges we faced and overcame during the development of the presented method, highlight its originality. Henceforth, this innovative method serves as a tool to provide a precise anatomical description of the vascularization of the main white matter tracts.
Collapse
Affiliation(s)
- Mykyta Smirnov
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | - Igor Lima Maldonado
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Tours, France
| | - Christophe Destrieux
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Tours, France
| |
Collapse
|
5
|
Axer M, Amunts K. Scale matters: The nested human connectome. Science 2022; 378:500-504. [DOI: 10.1126/science.abq2599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A comprehensive description of how neurons and entire brain regions are interconnected is fundamental for a mechanistic understanding of brain function and dysfunction. Neuroimaging has shaped the way to approaching the human brain’s connectivity on the basis of diffusion magnetic resonance imaging and tractography. At the same time, polarization, fluorescence, and electron microscopy became available, which pushed spatial resolution and sensitivity to the axonal or even to the synaptic level. New methods are mandatory to inform and constrain whole-brain tractography by regional, high-resolution connectivity data and local fiber geometry. Machine learning and simulation can provide predictions where experimental data are missing. Future interoperable atlases require new concepts, including high-resolution templates and directionality, to represent variants of tractography solutions and estimates of their accuracy.
Collapse
Affiliation(s)
- Markus Axer
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Physics, School of Mathematics and Natural Sciences, Bergische Universität Wuppertal, Wuppertal, Germany
| | - Katrin Amunts
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Yendiki A, Aggarwal M, Axer M, Howard AF, van Cappellen van Walsum AM, Haber SN. Post mortem mapping of connectional anatomy for the validation of diffusion MRI. Neuroimage 2022; 256:119146. [PMID: 35346838 PMCID: PMC9832921 DOI: 10.1016/j.neuroimage.2022.119146] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Diffusion MRI (dMRI) is a unique tool for the study of brain circuitry, as it allows us to image both the macroscopic trajectories and the microstructural properties of axon bundles in vivo. The Human Connectome Project ushered in an era of impressive advances in dMRI acquisition and analysis. As a result of these efforts, the quality of dMRI data that could be acquired in vivo improved substantially, and large collections of such data became widely available. Despite this progress, the main limitation of dMRI remains: it does not image axons directly, but only provides indirect measurements based on the diffusion of water molecules. Thus, it must be validated by methods that allow direct visualization of axons but that can only be performed in post mortem brain tissue. In this review, we discuss methods for validating the various features of connectional anatomy that are extracted from dMRI, both at the macro-scale (trajectories of axon bundles), and at micro-scale (axonal orientations and other microstructural properties). We present a range of validation tools, including anatomic tracer studies, Klingler's dissection, myelin stains, label-free optical imaging techniques, and others. We provide an overview of the basic principles of each technique, its limitations, and what it has taught us so far about the accuracy of different dMRI acquisition and analysis approaches.
Collapse
Affiliation(s)
- Anastasia Yendiki
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States,Corresponding author (A. Yendiki)
| | - Manisha Aggarwal
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Markus Axer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Jülich, Germany,Department of Physics, University of Wuppertal Germany
| | - Amy F.D. Howard
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Anne-Marie van Cappellen van Walsum
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Nijmegen, the Netherland,Cognition and Behaviour, Donders Institute for Brain, Nijmegen, the Netherland
| | - Suzanne N. Haber
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States,McLean Hospital, Belmont, MA, United States
| |
Collapse
|
7
|
Janelle F, Iorio-Morin C, D'amour S, Fortin D. Superior Longitudinal Fasciculus: A Review of the Anatomical Descriptions With Functional Correlates. Front Neurol 2022; 13:794618. [PMID: 35572948 PMCID: PMC9093186 DOI: 10.3389/fneur.2022.794618] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
The superior longitudinal fasciculus (SLF) is part of the longitudinal association fiber system, which lays connections between the frontal lobe and other areas of the ipsilateral hemisphere. As a dominant association fiber bundle, it should correspond to a well-defined structure with a clear anatomical definition. However, this is not the case, and a lot of confusion and overlap surrounds this entity. In this review/opinion study, we survey relevant current literature on the topic and try to clarify the definition of SLF in each hemisphere. After a comparison of postmortem dissections and data obtained from diffusion MRI studies, we discuss the specifics of this bundle regarding its anatomical landmarks, differences in lateralization, as well as individual variability. We also discuss the confusion regarding the arcuate fasciculus in relation to the SLF. Finally, we recommend a nomenclature based on the findings exposed in this review and finalize with a discussion on relevant functional correlates of the structure.
Collapse
|
8
|
Mahdy Ali K, Avesani P. The vertical superior longitudinal fascicle and the vertical occipital fascicle. J Neurosurg Sci 2022; 65:581-589. [PMID: 35128919 DOI: 10.23736/s0390-5616.21.05368-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Association fibers of the human brain have long been considered to exclusively follow an anterior-posterior direction. Using magnetic resonance imaging techniques that allow in-vivo fiber dissection, vertically oriented association fibers have been rediscovered or newly described. Aside from the frontal aslant tract (FAT) in the frontal lobe, the vertical occipital fascicle (VOF) and the vertical portion of the superior longitudinal fascicle system (vSLF) have been studied in recent years. The aim of this review was to give an overview on the current knowledge regarding these two fiber tracts. A review of the available literature in the Medline database was conducted to gather all available publications dealing with either the VOF or the vSLF. One thousand two hundred seventy-three articles were obtained from the literature search of which a total of 71 articles met the final inclusion criteria of this review. We describe the history of the discovery of the respective fiber tract, its anatomical course and its boundaries integrating blunt fiber dissection studies and functional MRI/tractography studies. We discuss the functional properties of the respective fiber tract and its relevance in neurosurgery. The VOF is a fiber tract that has been discovered in the late XIX century and long been forgotten before being rediscovered in the 1970's. It lies lateral to the fibers of the sagittal stratum and mainly connects the superior and inferior occipital lobe. It plays a major role in reading and visual word and language comprehension and is said to be the main link between dorsal and ventral visual streams. The vSLF has many synonyms and is part of the superior longitudinal fascicle system. Recent studies were able to provide more insight into this set of fiber tracts showing distinct connections running from the superior and inferior parietal lobule to the posterior part of the temporal lobe. Its functional role is still not completely cleared. It is said to play a role in visual and auditory semantic language comprehension. It lies directly lateral to the arcuate fascicle. The VOF and the vSLF are vertically oriented fiber tracts connecting the temporo-parieto-occipital region and play a major role in the communication of dorsal and ventral visual streams (VOF), reading (VOF, vSLF) and visual and auditory semantic language comprehension (vSLF). They can consistently be identified using ex vivo blunt dissection techniques and in-vivo fiber tractography. Because of their localization and orientation these two fiber tracts can be combined to a fiber bundle system called posterior transverse system (PTS).
Collapse
Affiliation(s)
- Kariem Mahdy Ali
- Department of Neurosurgery, Medical University of Graz, Graz, Austria -
| | - Paolo Avesani
- Center for Information Technology, Fondazione Bruno Kessler (FBK), Trento, Italy
| |
Collapse
|
9
|
Drobnjak I, Neher P, Poupon C, Sarwar T. Physical and digital phantoms for validating tractography and assessing artifacts. Neuroimage 2021; 245:118704. [PMID: 34748954 DOI: 10.1016/j.neuroimage.2021.118704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/01/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Fiber tractography is widely used to non-invasively map white-matter bundles in vivo using diffusion-weighted magnetic resonance imaging (dMRI). As it is the case for all scientific methods, proper validation is a key prerequisite for the successful application of fiber tractography, be it in the area of basic neuroscience or in a clinical setting. It is well-known that the indirect estimation of the fiber tracts from the local diffusion signal is highly ambiguous and extremely challenging. Furthermore, the validation of fiber tractography methods is hampered by the lack of a real ground truth, which is caused by the extremely complex brain microstructure that is not directly observable non-invasively and that is the basis of the huge network of long-range fiber connections in the brain that are the actual target of fiber tractography methods. As a substitute for in vivo data with a real ground truth that could be used for validation, a widely and successfully employed approach is the use of synthetic phantoms. In this work, we are providing an overview of the state-of-the-art in the area of physical and digital phantoms, answering the following guiding questions: "What are dMRI phantoms and what are they good for?", "What would the ideal phantom for validation fiber tractography look like?" and "What phantoms, phantom datasets and tools used for their creation are available to the research community?". We will further discuss the limitations and opportunities that come with the use of dMRI phantoms, and what future direction this field of research might take.
Collapse
Affiliation(s)
- Ivana Drobnjak
- Center for Medical Image Computing, Department of Computer Science, University College London, UK.
| | - Peter Neher
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cyril Poupon
- BAOBAB, NeuroSpin, Commissariat à l'Energie Atomique, Institut des Sciences du Vivant Frédéric Joliot, Gif-sur-Yvette, France
| | - Tabinda Sarwar
- School of Computing Technologies, RMIT University, Australia
| |
Collapse
|
10
|
Atar M, Kızmazoglu C, Kaya I, Cıngoz ID, Uzunoglu I, Kalemcı O, Eroglu A, Pusat S, Atabey C, Yuceer N. The importance of preoperative planning to perform safely temporal lobe surgery. J Clin Neurosci 2021; 93:61-69. [PMID: 34656263 DOI: 10.1016/j.jocn.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/11/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
Neurosurgeons should know the anatomy required for safe temporal lobe surgery approaches. The present study aimed to determine the angles and distances necessary to reach the temporal stem and temporal horn in surgical approaches for safe temporal lobe surgery by using a 3.0 T magnetic resonance imaging technique in post-mortem human brain hemispheres fixed by the Klingler method. In our study, 10 post-mortem human brain hemisphere specimens were fixed according to the Klingler method. Magnetic resonance images were obtained using a 3.0 T magnetic resonance imaging scanner after fixation. Surgical measurements were conducted for the temporal stem and temporal horn by magnetic resonance imaging, and dissection was then performed under a surgical microscope for the temporal stem. Each stage of dissection was achieved in high-quality three-dimensional images. The angles and distances to reach the temporal stem and temporal horn were measured in transcortical T1, trans-sulcal T1-2, transcortical T2, trans-sulcal T2-3, transcortical T3, and subtemporal trans-collateral sulcus approaches. The safe maximum posterior entry point for anterior temporal lobectomy was measured as 47.16 ± 5.00 mm. Major white-matter fibers in this region and their relations with each other are shown. The distances to the temporal stem and temporal horn, which are important in temporal lobe surgical interventions, were measured radiologically, and safe borders were determined. Surgical strategy and preoperative planning should consider the relationship of the lesion and white-matter pathways.
Collapse
Affiliation(s)
- Murat Atar
- Sultan Abdulhamid Han Training and Research Hospital, Department of Neurosurgery , Istanbul, Turkey.
| | - Ceren Kızmazoglu
- Dokuz Eylul University School of Medicine, Department of Neurosurgery, Izmir, Turkey
| | - Ismail Kaya
- Usak University School of Medicine, Department of Neurosurgery, Usak, Turkey
| | - Ilker Deniz Cıngoz
- Usak University School of Medicine, Department of Neurosurgery, Usak, Turkey
| | - Inan Uzunoglu
- Izmir Katip Celebi University Ataturk Training and Research Hospital, Department of Neurosurgery, Izmir, Turkey
| | - Orhan Kalemcı
- Dokuz Eylul University School of Medicine, Department of Neurosurgery, Izmir, Turkey
| | - Ahmet Eroglu
- Sultan Abdulhamid Han Training and Research Hospital, Department of Neurosurgery , Istanbul, Turkey
| | - Serhat Pusat
- Sultan Abdulhamid Han Training and Research Hospital, Department of Neurosurgery , Istanbul, Turkey
| | - Cem Atabey
- Sultan Abdulhamid Han Training and Research Hospital, Department of Neurosurgery , Istanbul, Turkey
| | - Nurullah Yuceer
- Izmir Katip Celebi University Ataturk Training and Research Hospital, Department of Neurosurgery, Izmir, Turkey
| |
Collapse
|
11
|
Adil SM, Calabrese E, Charalambous LT, Cook JJ, Rahimpour S, Atik AF, Cofer GP, Parente BA, Johnson GA, Lad SP, White LE. A high-resolution interactive atlas of the human brainstem using magnetic resonance imaging. Neuroimage 2021; 237:118135. [PMID: 33951517 PMCID: PMC8480283 DOI: 10.1016/j.neuroimage.2021.118135] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
Conventional atlases of the human brainstem are limited by the inflexible, sparsely-sampled, two-dimensional nature of histology, or the low spatial resolution of conventional magnetic resonance imaging (MRI). Postmortem high-resolution MRI circumvents the challenges associated with both modalities. A single human brainstem specimen extending from the rostral diencephalon through the caudal medulla was prepared for imaging after the brain was removed from a 65-year-old male within 24 h of death. The specimen was formalin-fixed for two weeks, then rehydrated and placed in a custom-made MRI compatible tube and immersed in liquid fluorocarbon. MRI was performed in a 7-Tesla scanner with 120 unique diffusion directions. Acquisition time for anatomic and diffusion images were 14 h and 208 h, respectively. Segmentation was performed manually. Deterministic fiber tractography was done using strategically chosen regions of interest and avoidance, with manual editing using expert knowledge of human neuroanatomy. Anatomic and diffusion images were rendered with isotropic resolutions of 50 μm and 200 μm, respectively. Ninety different structures were segmented and labeled, and 11 different fiber bundles were rendered with tractography. The complete atlas is available online for interactive use at https://www.civmvoxport.vm.duke.edu/voxbase/login.php?return_url=%2Fvoxbase%2F. This atlas presents multiple contrasting datasets and selected tract reconstruction with unprecedented resolution for MR imaging of the human brainstem. There are immediate applications in neuroanatomical education, with the potential to serve future applications for neuroanatomical research and enhanced neurosurgical planning through "safe" zones of entry into the human brainstem.
Collapse
Affiliation(s)
- Syed M Adil
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States; Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States.
| | - Evan Calabrese
- University of California San Francisco, Department of Radiology & Biomedical Imaging, San Francisco, CA, United States.
| | - Lefko T Charalambous
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States; Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States.
| | - James J Cook
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States.
| | - Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.
| | - Ahmet F Atik
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, United States.
| | - Gary P Cofer
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States.
| | - Beth A Parente
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.
| | - G Allan Johnson
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States.
| | - Shivanand P Lad
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.
| | - Leonard E White
- Department of Neurology, Duke University Medical Center, Durham, NC, United States; Duke Institute for Brain Sciences, Duke University, Durham NC, United States.
| |
Collapse
|
12
|
Aversi-Ferreira TA, Malheiros Borges KC, Gonçalves-Mendes MT, Caixeta LF. Gross anatomy of the longitudinal fascicle of Sapajus sp. PLoS One 2021; 16:e0252178. [PMID: 34166386 PMCID: PMC8224874 DOI: 10.1371/journal.pone.0252178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/11/2021] [Indexed: 11/27/2022] Open
Abstract
Opposing genetic and cultural-social explanations for the origin of language are currently the focus of much discussion. One of the functions linked to the longitudinal fascicle is language, which links Wernicke’s area and Broca’s area in the brain, and its size should indicate the brain increase in the evolution. Sapajus is a New World primate genus with high cognition and advanced tool use similar to that of chimpanzees. A study of the gross anatomy of the longitudinal fascicle of Sapajus using Kingler’s method found it to differ from other studied primates, such as macaques and chimpanzees, mainly because its fibers join the cingulate fascicle. As in other non-human primates, the longitudinal fascicle of Sapajus does not reach the temporal lobe, which could indicate a way of separating these fascicles to increase white matter in relation to individual function. The study of anatomical structures seems very promising for understanding the basis of the origin of language. Indeed, socio-historical-cultural philosophy affirms the socio-cultural origin of speech, although considering the anatomical structures behind it working as a functional system.
Collapse
Affiliation(s)
- Tales Alexandre Aversi-Ferreira
- Department of Structural Biology, Laboratory of Biomathematics and Physical Anthropology, Institute of Biomedical Science, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
- * E-mail:
| | | | - Maria Tereza Gonçalves-Mendes
- Department of Structural Biology, Laboratory of Biomathematics and Physical Anthropology, Institute of Biomedical Science, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Leonardo Ferreira Caixeta
- Department of Behavioral Neurology, Clinical Hospital, Federal University of Goias, Goiânia, Goiás, Brazil
| |
Collapse
|
13
|
DE Benedictis A, Marras CE, Petit L, Sarubbo S. The inferior fronto-occipital fascicle: a century of controversies from anatomy theaters to operative neurosurgery. J Neurosurg Sci 2021; 65:605-615. [PMID: 33940782 DOI: 10.23736/s0390-5616.21.05360-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Since its first description in the early 19th century, the inferior frontooccipital fascicle (IFOF) and its anatomo-functional features were neglected in the neuroscientific literature for the last century. In the last decade, the rapid development of in vivo imaging for the reconstruction of white matter (WM) connectivity (i.e., tractography) and the consequent interest in more traditional ex vivo methods (postmortem dissection) have allowed a renewed debate about course, termination territories, anatomical relationships, and functional roles of this fascicle. EVIDENCE ACQUISITION We reviewed the main current knowledge concerning the structural and functional anatomy of the IFOF and possible implications in neurosurgical practice. EVIDENCE SYNTHESIS The IFOF connects the occipital cortex, the temporo-basal areas, the superior parietal lobule, and the pre-cuneus to the frontal lobe, passing through the ventral third of subinsular WM of the external capsule. This wide distribution of cortical terminations provides multimodal integration between several functional networks, including language, non-verbal semantic processing, object identification, visuo-spatial processing and planning, reading, facial expression recognition, memory and conceptualization, emotional and neuropsychological behavior. This anatomo-functional organization has important implication also in neurosurgical practice, especially when approaching the frontal, insular, temporo-parieto-occipital regions and the ventricular system. CONCLUSIONS The IFOF is the most extensive associative bundle of the human connectome. Its multi-layer organization reflects important implications in many aspects of brain functional processing. Accurate awareness of IFOF functional anatomy and integration between multimodal datasets coming from different sources has crucial implications for both neuroscientific knowledge and quality of neurosurgical treatments.
Collapse
Affiliation(s)
- Alessandro DE Benedictis
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy -
| | - Carlo E Marras
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives, UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity Lab, S. Chiara Hospital, Trento, Italy
| |
Collapse
|
14
|
Hodology of the superior longitudinal system of the human brain: a historical perspective, the current controversies, and a proposal. Brain Struct Funct 2021; 226:1363-1384. [PMID: 33881634 DOI: 10.1007/s00429-021-02265-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
The description of human white matter pathways experienced a tremendous improvement, thanks to the advancement of neuroimaging and dissection techniques. The downside of this progress is the production of redundant and conflicting literature, bound by specific studies' methods and aims. The Superior Longitudinal System (SLS), encompassing the arcuate (AF) and the superior longitudinal fasciculi (SLF), becomes an illustrative example of this fundamental issue, being one of the most studied white matter association pathways of the brain. Herein, we provide a complete illustration of this white matter fiber system's current definition, from its early descriptions in the nineteenth century to its most recent characterizations. We propose a review of both in vivo diffusion magnetic resonance imaging-based tractography and anatomical dissection studies, enclosing all the information available up to date. Based on these findings, we reconstruct the wiring diagram of the SLS, highlighting a substantial variability in the description of its cortical sites of termination and the taxonomy and partonomy that characterize the system. We aim to level up discrepancies in the literature by proposing a parallel across the various nomenclature. Consistent with the topographical arrangement already documented for commissural and projection pathways, we suggest approaching the SLS organization as an orderly and continuous wiring diagram, respecting a medio-lateral palisading topography between the different frontal, parietal, occipital, and temporal gyri rather than in terms of individualized fascicles. A better and complete description of the fine organization of white matter association pathways' connectivity is fundamental for a better understanding of brain function and their clinical and neurosurgical applications.
Collapse
|
15
|
Horgos B, Mecea M, Boer A, Szabo B, Buruiana A, Stamatian F, Mihu CM, Florian IŞ, Susman S, Pascalau R. White Matter Dissection of the Fetal Brain. Front Neuroanat 2020; 14:584266. [PMID: 33071763 PMCID: PMC7544931 DOI: 10.3389/fnana.2020.584266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroplasticity is a complex process of structural and functional reorganization of brain tissue. In the fetal period, neuroplasticity plays an important role in the emergence and development of white matter tracts. Here, we aimed to study the architecture of normal fetal brains by way of Klingler’s dissection. Ten normal brains were collected from in utero deceased fetuses aged between 13 and 35 gestational weeks (GW). During this period, we observed modifications in volume, shape, and sulci configuration. Our findings indicate that the major white matter tracts follow four waves of development. The first wave (13 GW) involves the corpus callosum, the fornix, the anterior commissure, and the uncinate fasciculus. In the second one (14 GW), the superior and inferior longitudinal fasciculi and the cingulum could be identified. The third wave (17 GW) concerns the internal capsule and in the fourth wave (20 GW) all the major tracts, including the inferior-occipital fasciculus, were depicted. Our results suggest an earlier development of the white matter tracts than estimated by DTI tractography studies. Correlating anatomical dissection with tractography data is of great interest for further research in the field of fetal brain mapping.
Collapse
Affiliation(s)
- Bianca Horgos
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Miruna Mecea
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Armand Boer
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bianca Szabo
- Department of Morphological Sciences - Anatomy and Embryology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Buruiana
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Florin Stamatian
- Department of Obstetrics and Gynecology, Imogen Research Center, Cluj-Napoca, Romania
| | - Carmen-Mihaela Mihu
- Department of Morphological Sciences - Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioan Ştefan Florian
- Department of Neurosurgery, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Neurosurgery, Emergency County Hospital, Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences - Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Pathology and Neuropathology, Imogen Research Center, Cluj-Napoca, Romania
| | - Raluca Pascalau
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Barany L, Meszaros C, Ganslandt O, Buchfelder M, Kurucz P. Neural and vascular architecture of the septum pellucidum: an anatomical study and considerations for safe endoscopic septum pellucidotomy. J Neurosurg 2020; 133:902-911. [PMID: 31374555 DOI: 10.3171/2019.5.jns19754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/01/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The septum pellucidum is a bilateral thin membranous structure representing the border between the frontal horns of the lateral ventricles. Its most examined components are the septal veins due to their surgical importance during endoscopic septum pellucidotomy (ESP), which is a well-accepted method for surgical treatment of unilateral hydrocephalus. It is widely accepted that the septum pellucidum contains nerve fibers as well, but interestingly, no anatomical study has been addressed to its neural components before. The aim of the present study was to identify these elements as well as their relations to the septal veins and to define major landmarks within the ventricular system for neurosurgical use. METHODS Nine formalin-fixed human cadaveric brains (18 septa pellucida) were involved in this study. A central block containing both septa pellucida was removed and frozen at -30°C for 2 weeks in 7 cases. The fibers of the septum pellucidum and the adjacent areas including the venous elements were dissected under magnification by using homemade wooden spatulas and microsurgical instruments. In 2 cases a histological technique was used to validate the findings of the dissections. The blocks were sliced, embedded in paraffin, cut in 7-µm-thick slices, and then stained as follows: 1) with H & E, 2) with Luxol fast blue combined with cresyl violet, and 3) with Luxol fast blue combined with Sirius red. RESULTS The septum pellucidum and the subjacent septum verum form the medial wall of the frontal horn of the lateral ventricle. Both structures contain nerve fibers that were organized in 3 groups: 1) the precommissural fibers of the fornix; 2) the inferior fascicle; and 3) the superior fascicle of the septum pellucidum. The area directly rostral to the postcommissural column of the fornix consisted of macroscopically identifiable gray matter corresponding to the septal nuclei. The histological examinations validated the findings of the authors' fiber dissections. CONCLUSIONS The nerve elements of the septum pellucidum as well as the subjacent septum verum were identified with fiber dissection and verified with histology for the first time. The septal nuclei located just anterior to the fornix and the precommissural fibers of the fornix should be preserved during ESP. Considering the venous anatomy as well as the neural architecture of the septum pellucidum, the fenestration should ideally be placed above the superior edge of the fornix and preferably dorsal to the interventricular foramen.
Collapse
Affiliation(s)
- Laszlo Barany
- 1Laboratory for Applied and Clinical Anatomy, Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Cintia Meszaros
- 1Laboratory for Applied and Clinical Anatomy, Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Oliver Ganslandt
- 2Department of Neurosurgery, Katharinenhospital, Klinikum Stuttgart, Germany; and
| | - Michael Buchfelder
- 3Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Peter Kurucz
- 2Department of Neurosurgery, Katharinenhospital, Klinikum Stuttgart, Germany; and
- 3Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
17
|
Liu X, Kinoshita M, Shinohara H, Hori O, Ozaki N, Hatta T, Honma S, Nakada M. Direct evidence of the relationship between brain metastatic adenocarcinoma and white matter fibers: A fiber dissection and diffusion tensor imaging tractography study. J Clin Neurosci 2020; 77:55-61. [PMID: 32409218 DOI: 10.1016/j.jocn.2020.05.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 01/28/2023]
Abstract
It is commonly known that brain metastases usually have clear boundaries in magnetic resonance imaging. However, little is known regarding the trajectory of white matter fibers around the tumors, especially using the fiber dissection technique. Here, we focused on the anatomical interaction between white matter fibers and the tumor, using the fiber dissection in a postmortem brain with metastatic tumor and compared the findings with those of diffusion tensor imaging (DTI) tractography. One postmortem human brain hemisphere with metastatic adenocarcinoma in the Broca's area was dissected using fiber dissection following the Klingler's method. In order to compare the in vitro and in vivo results, additional brains from 15 patients with metastatic adenocarcinomas, the volumes of which were comparable to that of the adenocarcinoma in the brain used for fiber dissection, were analyzed using DTI tractographic reconstruction. Morphological findings of white matter bundles running around the tumor were compared between the two techniques. In the fiber dissection technique, the superior longitudinal fascicle, arcuate fascicle, and frontal aslant tract could be dissected, and the white matter bundles were curved and retracted to avoid the tumor. In all the cases analyzed, white matter fibers or streamlines surrounding the tumor avoided the lesion. Using the fiber dissection technique, this is the first direct evidence to elucidate the anatomy of white matter fibers affected by a metastatic brain. This suggests that brain metastatic adenocarcinoma is an intra-axial neoplasm with extra-axial white matter structures.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Neurosurgery, Kanazawa University, Kanazawa, Ishikawa, Japan; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Masashi Kinoshita
- Department of Neurosurgery, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - Harumichi Shinohara
- Department of Functional Anatomy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Toshihisa Hatta
- Department of Anatomy I, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Satoru Honma
- Department of Anatomy II, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
18
|
Rushmore RJ, Bouix S, Kubicki M, Rathi Y, Yeterian EH, Makris N. How Human Is Human Connectional Neuroanatomy? Front Neuroanat 2020; 14:18. [PMID: 32351367 PMCID: PMC7176274 DOI: 10.3389/fnana.2020.00018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/23/2020] [Indexed: 01/16/2023] Open
Abstract
The structure of the human brain has been studied extensively. Despite all the knowledge accrued, direct information about connections, from origin to termination, in the human brain is extremely limited. Yet there is a widespread misperception that human connectional neuroanatomy is well-established and validated. In this article, we consider what is known directly about human structural and connectional neuroanatomy. Information on neuroanatomical connections in the human brain is derived largely from studies in non-human experimental models in which the entire connectional pathway, including origins, course, and terminations, is directly visualized. Techniques to examine structural connectivity in the human brain are progressing rapidly; nevertheless, our present understanding of such connectivity is limited largely to data derived from homological comparisons, particularly with non-human primates. We take the position that an in-depth and more precise understanding of human connectional neuroanatomy will be obtained by a systematic application of this homological approach.
Collapse
Affiliation(s)
- R. Jarrett Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Psychiatric Neuroimaging Laboratory, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylvain Bouix
- Psychiatric Neuroimaging Laboratory, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Marek Kubicki
- Psychiatric Neuroimaging Laboratory, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yogesh Rathi
- Psychiatric Neuroimaging Laboratory, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Edward H. Yeterian
- Psychiatric Neuroimaging Laboratory, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychology, Colby College, Waterville, ME, United States
| | - Nikos Makris
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Psychiatric Neuroimaging Laboratory, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Latini F, Ryttlefors M. Teaching Anatomy to Neuroscientific Health-Care Professionals: Are They Receiving the Best Anatomical Education? MEDICAL SCIENCE EDUCATOR 2020; 30:41-45. [PMID: 34457634 PMCID: PMC8368751 DOI: 10.1007/s40670-019-00838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
University neuroanatomical courses seldom teach the anatomical-functional connectivity of the brain. White matter dissection improves understanding of brain connectivity, but until now has been restricted to neurosurgeons and in some cases to medical students, never to health-care non-medical professionals. Our aim was to teach white matter anatomy to medical and non-medical students to evaluate this technique in groups with different education. A standardized lab demonstration of white matter anatomy was performed with high appreciation rate in both groups, suggesting a suboptimal neuroanatomical education provided by basic course. We encourage to include this technique of teaching brain anatomy into basic neuroanatomical courses to improve the level of comprehension and competence in all health-care staff within the field of neuroscience.
Collapse
Affiliation(s)
- Francesco Latini
- Department of Neuroscience, Neurosurgery, Uppsala University, S-751 85 Uppsala, Sweden
| | - Mats Ryttlefors
- Department of Neuroscience, Neurosurgery, Uppsala University, S-751 85 Uppsala, Sweden
| |
Collapse
|
20
|
Bernard F, Zemmoura I, Ter Minassian A, Lemée JM, Menei P. Anatomical variability of the arcuate fasciculus: a systematical review. Surg Radiol Anat 2019; 41:889-900. [PMID: 31028450 DOI: 10.1007/s00276-019-02244-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/17/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE The arcuate fasciculus (AF) is a white matter fibers tract that links the lateral temporal with the frontal cortex. The AF can be divided into three components: two superficial indirect short tracts (anterior and posterior) and one deep direct long tract. Both DTI and white matter dissections studies find differences regarding the anatomy of the AF, especially its cortical connections. This paper aims at providing a comprehensive anatomical classification of the AF, using the terminologia anatomica. METHODS Articles (n = 478) were obtained from a systematical PRISMA review. Studies which focused on primates, unhealthy subjects, as well as studies without cortical termination description and review articles were excluded from the analysis. One hundred and ten articles were retained for full-text examination, of which 19 finally fulfilled our criteria to be included in this review. RESULTS We classified main descriptions and variations of each segment of the AF according to fiber orientation and cortical connections. Three types of connections were depicted for each segment of the AF. Concerning the anterior segment, most of the frontal fibers (59.35%) ran from the ventral portion of the precentral gyrus and the posterior part of the pars opercularis, to the supramarginal gyrus (85.0%). Main fibers of the posterior segment of the AF ran from the posterior portion of the middle temporal gyrus (100%) to the angular gyrus (92.0%). In main descriptions of the long segment of the AF, fibers ran from both the ventral portion of the precentral gyrus and posterior part of the pars opercularis (63.9%) to the middle and inferior temporal gyrus (60.3%). Minor subtypes were described in detail in the article. CONCLUSION We provide a comprehensive classification of the anatomy of the AF, regarding the orientation and cortical connections of its fibers. Although fiber orientation is very consistent, cortical endings of the AF may be different from one study to another, or from one individual to another which is a key element to understand the anatomical basis of current models of language or to guide intraoperative stimulation during awake surgery.
Collapse
Affiliation(s)
- Florian Bernard
- , Department of Neurosurgery, Teaching Hospital, 49100, Angers, France. .,Laboratory of Anatomy, Medical Faculty, 28 rue Roger Amsler, 49100, Angers, France.
| | - Ilyess Zemmoura
- Department of Neurosurgery, CHRU de Tours, Tours, France.,UMR1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Aram Ter Minassian
- Department of Reanimation, Teaching Hospital, 49100, Angers, France.,INSERM, 1066 Department and EA7315 Team, Angers, France
| | - Jean-Michel Lemée
- , Department of Neurosurgery, Teaching Hospital, 49100, Angers, France.,CRCINA, UMR 1232 INSERM/CNRS and EA7315 Team, Angers, France
| | - Philippe Menei
- , Department of Neurosurgery, Teaching Hospital, 49100, Angers, France.,CRCINA, UMR 1232 INSERM/CNRS and EA7315 Team, Angers, France
| |
Collapse
|
21
|
Sotiropoulos SN, Zalesky A. Building connectomes using diffusion MRI: why, how and but. NMR IN BIOMEDICINE 2019; 32:e3752. [PMID: 28654718 PMCID: PMC6491971 DOI: 10.1002/nbm.3752] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 04/05/2017] [Accepted: 05/03/2017] [Indexed: 05/14/2023]
Abstract
Why has diffusion MRI become a principal modality for mapping connectomes in vivo? How do different image acquisition parameters, fiber tracking algorithms and other methodological choices affect connectome estimation? What are the main factors that dictate the success and failure of connectome reconstruction? These are some of the key questions that we aim to address in this review. We provide an overview of the key methods that can be used to estimate the nodes and edges of macroscale connectomes, and we discuss open problems and inherent limitations. We argue that diffusion MRI-based connectome mapping methods are still in their infancy and caution against blind application of deep white matter tractography due to the challenges inherent to connectome reconstruction. We review a number of studies that provide evidence of useful microstructural and network properties that can be extracted in various independent and biologically relevant contexts. Finally, we highlight some of the key deficiencies of current macroscale connectome mapping methodologies and motivate future developments.
Collapse
Affiliation(s)
- Stamatios N. Sotiropoulos
- Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Sir Peter Mansfield Imaging Centre, School of MedicineUniversity of NottinghamNottinghamUK
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Melbourne School of EngineeringUniversity of MelbourneVictoriaAustralia
| |
Collapse
|
22
|
Sarubbo S, Petit L, De Benedictis A, Chioffi F, Ptito M, Dyrby TB. Uncovering the inferior fronto-occipital fascicle and its topological organization in non-human primates: the missing connection for language evolution. Brain Struct Funct 2019; 224:1553-1567. [PMID: 30847641 DOI: 10.1007/s00429-019-01856-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/27/2019] [Indexed: 01/19/2023]
Abstract
Whether brain networks underlying the multimodal processing of language in humans are present in non-human primates is an unresolved question in primate evolution. Conceptual awareness in humans, which is the backbone of verbal and non-verbal semantic elaboration, involves intracerebral connectivity via the inferior fronto-occipital fascicle (IFOF). While non-human primates can communicate through visual information channels, there has been no formal demonstration that they possess a functional homologue of the human IFOF. Therefore, we undertook a post-mortem diffusion MRI tractography study in conjunction with Klingler micro-dissection to search for IFOF fiber tracts in brain of Old-World (vervet) monkeys. We found clear and concordant evidence from both techniques for the existence of bilateral fiber tracts connecting the frontal and occipital lobes. These tracts closely resembled the human IFOF with respect to trajectory, topological organization, and cortical terminal fields. Moreover, these fibers are clearly distinct from other bundles previously described in this region of monkey brain, i.e., the inferior longitudinal and uncinate fascicles, and the external and extreme capsules. This demonstration of an IFOF in brain of a species that diverged from the human lineage some 22 millions years ago enhances our comprehension about the evolution of language and social behavior.
Collapse
Affiliation(s)
- Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), 38122, Trento, Italy.
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Franco Chioffi
- Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), 38122, Trento, Italy
| | - Maurice Ptito
- École d'optométrie, Université de Montréal, Montreal, QC, Canada
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
23
|
Güngör A, Baydın ŞS, Holanda VM, Middlebrooks EH, Isler C, Tugcu B, Foote K, Tanriover N. Microsurgical anatomy of the subthalamic nucleus: correlating fiber dissection results with 3-T magnetic resonance imaging using neuronavigation. J Neurosurg 2019; 130:716-732. [PMID: 29726781 DOI: 10.3171/2017.10.jns171513] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/18/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Despite the extensive use of the subthalamic nucleus (STN) as a deep brain stimulation (DBS) target, unveiling the extensive functional connectivity of the nucleus, relating its structural connectivity to the stimulation-induced adverse effects, and thus optimizing the STN targeting still remain challenging. Mastering the 3D anatomy of the STN region should be the fundamental goal to achieve ideal surgical results, due to the deep-seated and obscure position of the nucleus, variable shape and relatively small size, oblique orientation, and extensive structural connectivity. In the present study, the authors aimed to delineate the 3D anatomy of the STN and unveil the complex relationship between the anatomical structures within the STN region using fiber dissection technique, 3D reconstructions of high-resolution MRI, and fiber tracking using diffusion tractography utilizing a generalized q-sampling imaging (GQI) model. METHODS Fiber dissection was performed in 20 hemispheres and 3 cadaveric heads using the Klingler method. Fiber dissections of the brain were performed from all orientations in a stepwise manner to reveal the 3D anatomy of the STN. In addition, 3 brains were cut into 5-mm coronal, axial, and sagittal slices to show the sectional anatomy. GQI data were also used to elucidate the connections among hubs within the STN region. RESULTS The study correlated the results of STN fiber dissection with those of 3D MRI reconstruction and tractography using neuronavigation. A 3D terrain model of the subthalamic area encircling the STN was built to clarify its anatomical relations with the putamen, globus pallidus internus, globus pallidus externus, internal capsule, caudate nucleus laterally, substantia nigra inferiorly, zona incerta superiorly, and red nucleus medially. The authors also describe the relationship of the medial lemniscus, oculomotor nerve fibers, and the medial forebrain bundle with the STN using tractography with a 3D STN model. CONCLUSIONS This study examines the complex 3D anatomy of the STN and peri-subthalamic area. In comparison with previous clinical data on STN targeting, the results of this study promise further understanding of the structural connections of the STN, the exact location of the fiber compositions within the region, and clinical applications such as stimulation-induced adverse effects during DBS targeting.
Collapse
Affiliation(s)
- Abuzer Güngör
- 1Department of Neurosurgery, Acıbadem University
- 2Department of Neurosurgery, Bakirkoy Research & Training Hospital for Psychiatry, Neurology, and Neurosurgery
| | - Şevki Serhat Baydın
- 3Department of Neurosurgery, Kanuni Sultan Süleyman Research & Training Hospital
| | - Vanessa M Holanda
- 4Department of Neurosurgery, University of Florida, Gainesville, Florida; and
| | | | - Cihan Isler
- 6Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Bekir Tugcu
- 2Department of Neurosurgery, Bakirkoy Research & Training Hospital for Psychiatry, Neurology, and Neurosurgery
| | - Kelly Foote
- 4Department of Neurosurgery, University of Florida, Gainesville, Florida; and
| | - Necmettin Tanriover
- 6Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
24
|
Bertolini G, La Corte E, Aquino D, Greco E, Rossini Z, Cardia A, Nicolosi F, Bauer D, Bruzzone MG, Ferroli P, Serrao G. Real-Time Ex-Vivo Magnetic Resonance Image-Guided Dissection of Human Brain White Matter: A Proof-of-Principle Study. World Neurosurg 2019; 125:198-206. [PMID: 30743041 DOI: 10.1016/j.wneu.2019.01.196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Modern neuroanatomic education should be based on interdisciplinary methods that allow an understanding of the cerebral circuitry, which is at the base of the structural connectivity. Ex-vivo MRI-guided dissection is an essential method for developing and refining the knowledge of complex 3-dimensional brain anatomy and the mutual relationships between structures and architecture of the white matter bundles. The aim of this technical note is to present a new and innovative method of studying human brain white matter. METHODS Four adult human cerebral hemispheres were prepared according to the Klinger's method. T1-weighted and T2-weighted and fluid attenuated inversion recovery images were obtained with a 3T magnetic resonance machine. The dissection was performed in a dedicated neurosurgical laboratory equipped with a microscope and an electromagnetic neuronavigation system that guided the whole white matter dissection. RESULTS Gyri and sulci morphology were studied in detail. The relations between superficial and inner structures were observed before and after the dissection. Gray matter was carefully removed with blunt dissectors, and the U-fibers were exposed. Afterwards, deeper association and projection fibers, such as the arcuate fasciculus, superior and inferior longitudinal fasciculus, corona radiata, extreme and external capsule, claustrum, anterior commissure, and internal capsule were visualized under high magnification. The neuronavigation system was crucial for continuously checking the whole dissection procedure to avoid any accidental excision of fibers. CONCLUSION Image-guided neuronavigated dissection can significantly improve the quality of white matter dissection and represents a valid tool for learning the 3-dimensional anatomy of the human brain tracts.
Collapse
Affiliation(s)
- Giacomo Bertolini
- Department of Health Sciences, University of Milan, Milan, Italy; Department of Neurosurgery, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy.
| | - Emanuele La Corte
- Department of Health Sciences, University of Milan, Milan, Italy; Department of Neurosurgery, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Domenico Aquino
- Department of Neuroradiology, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Elena Greco
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Zefferino Rossini
- Department of Neurosurgery, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Andrea Cardia
- Department of Neurosurgery, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Federico Nicolosi
- Department of Neurosurgery, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Dario Bauer
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Maria Grazia Bruzzone
- Department of Neuroradiology, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Graziano Serrao
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
25
|
Alkemade A, Groot JM, Forstmann BU. Do We Need a Human post mortem Whole-Brain Anatomical Ground Truth in in vivo Magnetic Resonance Imaging? Front Neuroanat 2018; 12:110. [PMID: 30568580 PMCID: PMC6290065 DOI: 10.3389/fnana.2018.00110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/23/2018] [Indexed: 01/06/2023] Open
Abstract
Non-invasive in vivo neuroimaging techniques provide a wide array of possibilities to study human brain function. A number of approaches are available that improve our understanding of the anatomical location of brain activation patterns, including the development of probabilistic conversion tools to register individual in vivo data to population based neuroanatomical templates. Two elegant examples were published by Horn et al. (2017) in which a method was described to warp DBS electrode coordinates, and histological data to MNI-space (Ewert et al., 2017). The conversion of individual brain scans to a standard space is done assuming that individual anatomical scans provide a reliable image of the underlying neuroanatomy. It is unclear to what extent spatial distortions related to tissue properties, or MRI artifacts exist in these scans. Therefore, the question rises whether the anatomical information from the individual scans can be considered a real ground truth. To accommodate the knowledge-gap as a result of limited anatomical information, generative brain models have been developed circumventing these challenges through the application of assumption sets without recourse to any ground truth. We would like to argue that, although these efforts are valuable, the definition of an anatomical ground truth is preferred. Its definition requires a system in which non-invasive approaches can be validated using invasive methods of investigation. We argue that the application of post mortem MRI studies in combination with microscopy analyses brings an anatomical ground truth for the human brain within reach, which is of importance for all research within the human in vivo neuroimaging field.
Collapse
Affiliation(s)
- Anneke Alkemade
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
| | - Josephine M Groot
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
| | - Birte U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
Schilling KG, Gao Y, Stepniewska I, Janve V, Landman BA, Anderson AW. Anatomical accuracy of standard-practice tractography algorithms in the motor system - A histological validation in the squirrel monkey brain. Magn Reson Imaging 2018; 55:7-25. [PMID: 30213755 DOI: 10.1016/j.mri.2018.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 01/15/2023]
Abstract
For two decades diffusion fiber tractography has been used to probe both the spatial extent of white matter pathways and the region to region connectivity of the brain. In both cases, anatomical accuracy of tractography is critical for sound scientific conclusions. Here we assess and validate the algorithms and tractography implementations that have been most widely used - often because of ease of use, algorithm simplicity, or availability offered in open source software. Comparing forty tractography results to a ground truth defined by histological tracers in the primary motor cortex on the same squirrel monkey brains, we assess tract fidelity on the scale of voxels as well as over larger spatial domains or regional connectivity. No algorithms are successful in all metrics, and, in fact, some implementations fail to reconstruct large portions of pathways or identify major points of connectivity. The accuracy is most dependent on reconstruction method and tracking algorithm, as well as the seed region and how this region is utilized. We also note a tremendous variability in the results, even though the same MR images act as inputs to all algorithms. In addition, anatomical accuracy is significantly decreased at increased distances from the seed. An analysis of the spatial errors in tractography reveals that many techniques have trouble properly leaving the gray matter, and many only reveal connectivity to adjacent regions of interest. These results show that the most commonly implemented algorithms have several shortcomings and limitations, and choices in implementations lead to very different results. This study should provide guidance for algorithm choices based on study requirements for sensitivity, specificity, or the need to identify particular connections, and should serve as a heuristic for future developments in tractography.
Collapse
Affiliation(s)
- Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Vaibhav Janve
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
27
|
Stereoscopic visual area connectivity: a diffusion tensor imaging study. Surg Radiol Anat 2018; 40:1197-1208. [PMID: 30088052 DOI: 10.1007/s00276-018-2076-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE To study the white matter tracts connecting the different stereoscopic visual areas of the brain by diffusion tensor imaging. METHODS In a previous study, we identified the cortical activations to a visual 3D stimulation in 12 subjects using functional MRI (fMRI). These areas of cortical activations [V5, V6, lateral occipital complex (LOC) and intra parietal sulcus areas (IPS)] in addition to the lateral geniculate nucleus (LGN) and the primary visual area V1 were chosen as regions of interest (ROIs). We studied by deterministic tractography the connections existing between these ROIs. RESULTS Found connections were divided into three groups. The first group entails the geniculo-extrastriate connections. LGN was connected to V5, V6, IPS and LOC. These fibers course in the inferior longitudinal fascicule. The second group comprises the associative fibers. V1 was connected to V5 and LOC through the transverse occipital fascicule on one hand, and, to V6 and IPS through the stratum proprium cuni on the other hand. Connections between V5 and LOC, and V6 and IPS course within the vertical occipital fascicule. The third group contains commissural fibers. Forceps major entailed the connections between both V1, both V6, both IPS and IPS and contralateral V6. LGN was connected to contralateral LGN, V1, V6, IPS and LOC. CONCLUSIONS We have elucidated numerous connections between the visual areas and the LGN. Generalization of these results to the remainder of the population must remain prudent due to the limited number of subjects in this study.
Collapse
|
28
|
De Benedictis A, Nocerino E, Menna F, Remondino F, Barbareschi M, Rozzanigo U, Corsini F, Olivetti E, Marras CE, Chioffi F, Avesani P, Sarubbo S. Photogrammetry of the Human Brain: A Novel Method for Three-Dimensional Quantitative Exploration of the Structural Connectivity in Neurosurgery and Neurosciences. World Neurosurg 2018; 115:e279-e291. [PMID: 29660551 DOI: 10.1016/j.wneu.2018.04.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/05/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Anatomic awareness of the structural connectivity of the brain is mandatory for neurosurgeons, to select the most effective approaches for brain resections. Although standard microdissection is a validated technique to investigate the different white matter (WM) pathways and to verify the results of tractography, the possibility of interactive exploration of the specimens and reliable acquisition of quantitative information has not been described. Photogrammetry is a well-established technique allowing an accurate metrology on highly defined three-dimensional (3D) models. The aim of this work is to propose the application of the photogrammetric technique for supporting the 3D exploration and the quantitative analysis on the cerebral WM connectivity. METHODS The main perisylvian pathways, including the superior longitudinal fascicle and the arcuate fascicle were exposed using the Klingler technique. The photogrammetric acquisition followed each dissection step. The point clouds were registered to a reference magnetic resonance image of the specimen. All the acquisitions were coregistered into an open-source model. RESULTS We analyzed 5 steps, including the cortical surface, the short intergyral fibers, the indirect posterior and anterior superior longitudinal fascicle, and the arcuate fascicle. The coregistration between the magnetic resonance imaging mesh and the point clouds models was highly accurate. Multiple measures of distances between specific cortical landmarks and WM tracts were collected on the photogrammetric model. CONCLUSIONS Photogrammetry allows an accurate 3D reproduction of WM anatomy and the acquisition of unlimited quantitative data directly on the real specimen during the postdissection analysis. These results open many new promising neuroscientific and educational perspectives and also optimize the quality of neurosurgical treatments.
Collapse
Affiliation(s)
- Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy.
| | - Erica Nocerino
- Theoretical Physics ETH Zürich, Zurich, Switzerland; LSIS Laboratory-Laboratoire des Sciences de l'Information et des Systèmes, I&M Team, Images & Models AMU, Aix-Marseille Université POLYTECH, Marseille, France
| | - Fabio Menna
- 3D Optical Metrology (3DOM) Unit, Bruno Kessler Foundation (FBK), Trento, Italy
| | - Fabio Remondino
- 3D Optical Metrology (3DOM) Unit, Bruno Kessler Foundation (FBK), Trento, Italy
| | | | - Umberto Rozzanigo
- Department of Radiology, Neuroradiology Unit, "S. Chiara" Hospital, Trento APSS, Italy
| | - Francesco Corsini
- Division of Neurosurgery, Structural and Functional Connectivity (SFC) Lab Project, "S. Chiara" Hospital, Trento APSS, Italy
| | - Emanuele Olivetti
- Neuroinformatics Laboratory (NILab), Bruno Kessler Foundation, Trento, Italy; Center for Mind/Brain Science (CIMeC), University of Trento, Mattarello (TN), Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Franco Chioffi
- Division of Neurosurgery, Structural and Functional Connectivity (SFC) Lab Project, "S. Chiara" Hospital, Trento APSS, Italy
| | - Paolo Avesani
- Neuroinformatics Laboratory (NILab), Bruno Kessler Foundation, Trento, Italy; Center for Mind/Brain Science (CIMeC), University of Trento, Mattarello (TN), Italy
| | - Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity (SFC) Lab Project, "S. Chiara" Hospital, Trento APSS, Italy
| |
Collapse
|
29
|
Maier-Hein KH, Neher PF, Houde JC, Côté MA, Garyfallidis E, Zhong J, Chamberland M, Yeh FC, Lin YC, Ji Q, Reddick WE, Glass JO, Chen DQ, Feng Y, Gao C, Wu Y, Ma J, He R, Li Q, Westin CF, Deslauriers-Gauthier S, González JOO, Paquette M, St-Jean S, Girard G, Rheault F, Sidhu J, Tax CMW, Guo F, Mesri HY, Dávid S, Froeling M, Heemskerk AM, Leemans A, Boré A, Pinsard B, Bedetti C, Desrosiers M, Brambati S, Doyon J, Sarica A, Vasta R, Cerasa A, Quattrone A, Yeatman J, Khan AR, Hodges W, Alexander S, Romascano D, Barakovic M, Auría A, Esteban O, Lemkaddem A, Thiran JP, Cetingul HE, Odry BL, Mailhe B, Nadar MS, Pizzagalli F, Prasad G, Villalon-Reina JE, Galvis J, Thompson PM, Requejo FDS, Laguna PL, Lacerda LM, Barrett R, Dell'Acqua F, Catani M, Petit L, Caruyer E, Daducci A, Dyrby TB, Holland-Letz T, Hilgetag CC, Stieltjes B, Descoteaux M. The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 2017; 8:1349. [PMID: 29116093 PMCID: PMC5677006 DOI: 10.1038/s41467-017-01285-x] [Citation(s) in RCA: 755] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 09/01/2017] [Indexed: 01/14/2023] Open
Abstract
Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. Here, we report the encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent). However, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups. Taken together, our results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction based on orientation information alone, which need to be considered when interpreting tractography and connectivity results. Our approach provides a novel framework for estimating reliability of tractography and encourages innovation to address its current limitations. Though tractography is widely used, it has not been systematically validated. Here, authors report results from 20 groups showing that many tractography algorithms produce both valid and invalid bundles.
Collapse
Affiliation(s)
- Klaus H Maier-Hein
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
| | - Peter F Neher
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Jean-Christophe Houde
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Marc-Alexandre Côté
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Eleftherios Garyfallidis
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada.,Department of Intelligent Systems Engineering, School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA
| | - Jidan Zhong
- Krembil Research Institute, University Health Network, Toronto, Canada, M5G 2C4
| | - Maxime Chamberland
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ying-Chia Lin
- IMT-Institute for Advanced Studies, Lucca, 55100, Italy
| | - Qing Ji
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wilburn E Reddick
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John O Glass
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Qixiang Chen
- University of Toronto Institute of Medical Science, Toronto, Canada, M5S 1A8
| | - Yuanjing Feng
- Institute of Information Processing and Automation, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Chengfeng Gao
- Institute of Information Processing and Automation, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Ye Wu
- Institute of Information Processing and Automation, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Jieyan Ma
- United Imaging Healthcare Co., Shanghai, 201807, China
| | - Renjie He
- United Imaging Healthcare Co., Shanghai, 201807, China
| | - Qiang Li
- United Imaging Healthcare Co., Shanghai, 201807, China.,Shanghai Advanced Research Institute, Shanghai, 201210, China
| | - Carl-Fredrik Westin
- Laboratory of Mathematics in Imaging, Harvard Medical School, Boston, MA, 02215, USA
| | | | | | - Michael Paquette
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Samuel St-Jean
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Gabriel Girard
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Jasmeen Sidhu
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Chantal M W Tax
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands.,Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Fenghua Guo
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Hamed Y Mesri
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Szabolcs Dávid
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Anneriet M Heemskerk
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Alexander Leemans
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Arnaud Boré
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5
| | - Basile Pinsard
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), 75013, Paris, France
| | - Christophe Bedetti
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5.,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada, H4J 1C5
| | - Matthieu Desrosiers
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5
| | - Simona Brambati
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5
| | - Julien Doyon
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5
| | - Alessia Sarica
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council (CNR), Policlinico Magna Graecia, Germaneto, 88100, CZ, Italy
| | - Roberta Vasta
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council (CNR), Policlinico Magna Graecia, Germaneto, 88100, CZ, Italy
| | - Antonio Cerasa
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council (CNR), Policlinico Magna Graecia, Germaneto, 88100, CZ, Italy
| | - Aldo Quattrone
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council (CNR), Policlinico Magna Graecia, Germaneto, 88100, CZ, Italy.,Institute of Neurology, University Magna Graecia, Germaneto, 88100, CZ, Italy
| | - Jason Yeatman
- Institute for Learning & Brain Sciences and Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Ali R Khan
- Departments of Medical Biophysics & Medical Imaging, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St N, London, ON, Canada, N6A 5C1
| | - Wes Hodges
- Synaptive Medical Inc., MaRS Discovery District, 101 College Street, Suite 200, Toronto, ON, Canada, M5V 3B1
| | - Simon Alexander
- Synaptive Medical Inc., MaRS Discovery District, 101 College Street, Suite 200, Toronto, ON, Canada, M5V 3B1
| | - David Romascano
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Muhamed Barakovic
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Anna Auría
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Oscar Esteban
- Biomedical Image Technologies (BIT), ETSI Telecom., U. Politécnica de Madrid and CIBER-BBN, Madrid, 28040, Spain
| | - Alia Lemkaddem
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland.,Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland
| | - H Ertan Cetingul
- Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ, 08540, USA
| | - Benjamin L Odry
- Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ, 08540, USA
| | - Boris Mailhe
- Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ, 08540, USA
| | - Mariappan S Nadar
- Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ, 08540, USA
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Stevens Neuro Imaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90033, USA
| | - Gautam Prasad
- Imaging Genetics Center, Stevens Neuro Imaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90033, USA
| | - Julio E Villalon-Reina
- Imaging Genetics Center, Stevens Neuro Imaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90033, USA
| | - Justin Galvis
- Imaging Genetics Center, Stevens Neuro Imaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90033, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuro Imaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90033, USA
| | | | - Pedro Luque Laguna
- NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Luis Miguel Lacerda
- NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Rachel Barrett
- NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Flavio Dell'Acqua
- NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Marco Catani
- NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Laurent Petit
- Groupe d'imagerie Neurofonctionnelle-Institut des Maladies Neurodégénératives (GIN-IMN), UMR5293 CNRS, CEA, University of Bordeaux, Bordeaux, 33000, France
| | - Emmanuel Caruyer
- Centre national de la recherche scientifique (CNRS), Institute for Research in IT and Random Systems (IRISA), UMR 6074 VISAGES Project-Team, Rennes, 35042, France
| | - Alessandro Daducci
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland.,Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, 2650, Denmark.,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Claus C Hilgetag
- Department of Computational Neuroscience, University Medical Center Eppendorf, Hamburg, 20246, Germany
| | - Bram Stieltjes
- University Hospital Basel, Radiology & Nuclear Medicine Clinic, Basel, 4031, Switzerland
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada.
| |
Collapse
|
30
|
Latini F, Mårtensson J, Larsson EM, Fredrikson M, Åhs F, Hjortberg M, Aldskogius H, Ryttlefors M. Segmentation of the inferior longitudinal fasciculus in the human brain: A white matter dissection and diffusion tensor tractography study. Brain Res 2017; 1675:102-115. [PMID: 28899757 DOI: 10.1016/j.brainres.2017.09.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/08/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
The inferior longitudinal fascicle (ILF) is one of the major occipital-temporal association pathways. Several studies have mapped its hierarchical segmentation to specific functions. There is, however, no consensus regarding a detailed description of ILF fibre organisation. The aim of this study was to establish whether the ILF has a constant number of subcomponents. A secondary aim was to determine the quantitative diffusion proprieties of each subcomponent and assess their anatomical trajectories and connectivity patterns. A white matter dissection of 14 post-mortem normal human hemispheres was conducted to define the course of the ILF and its subcomponents. These anatomical results were then investigated in 24 right-handed, healthy volunteers using in vivo diffusion tensor imaging (DTI) and streamline tractography. Fractional anisotropy (FA), volume, fibre length and the symmetry coefficient of each fibre group were analysed. In order to show the connectivity pattern of the ILF, we also conducted an analysis of the cortical terminations of each segment. We confirmed that the main structure of the ILF is composed of three constant components reflecting the occipital terminations: the fusiform, the lingual and the dorsolateral-occipital. ILF volume was significantly lateralised to the right. The examined indices of ILF subcomponents did not show any significant difference in lateralisation. The connectivity pattern and the quantitative distribution of ILF subcomponents suggest a pivotal role for this bundle in integrating information from highly specialised modular visual areas with activity in anterior temporal territory, which has been previously shown to be important for memory and emotions.
Collapse
Affiliation(s)
- Francesco Latini
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden.
| | - Johanna Mårtensson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Mats Fredrikson
- Department of Psychology, Uppsala University, Uppsala, Sweden; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Fredrik Åhs
- Department of Psychology, Uppsala University, Uppsala, Sweden; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Mats Hjortberg
- Department of Medical Cell Biology, Education, Uppsala University, Uppsala, Sweden
| | - Håkan Aldskogius
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University, Uppsala, Sweden
| | - Mats Ryttlefors
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Gangolli M, Holleran L, Hee Kim J, Stein TD, Alvarez V, McKee AC, Brody DL. Quantitative validation of a nonlinear histology-MRI coregistration method using generalized Q-sampling imaging in complex human cortical white matter. Neuroimage 2017; 153:152-167. [PMID: 28365421 DOI: 10.1016/j.neuroimage.2017.03.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022] Open
Abstract
Advanced diffusion MRI methods have recently been proposed for detection of pathologies such as traumatic axonal injury and chronic traumatic encephalopathy which commonly affect complex cortical brain regions. However, radiological-pathological correlations in human brain tissue that detail the relationship between the multi-component diffusion signal and underlying pathology are lacking. We present a nonlinear voxel based two dimensional coregistration method that is useful for matching diffusion signals to quantitative metrics of high resolution histological images. When validated in ex vivo human cortical tissue at a 250×250×500 μm spatial resolution, the method proved robust in correlations between generalized q-sampling imaging and histologically based white matter fiber orientations, with r=0.94 for the primary fiber direction and r=0.88 for secondary fiber direction in each voxel. Importantly, however, the correlation was substantially worse with reduced spatial resolution or with fiber orientations derived using a diffusion tensor model. Furthermore, we have detailed a quantitative histological metric of white matter fiber integrity termed power coherence capable of distinguishing architecturally complex but intact white matter from disrupted white matter regions. These methods may allow for more sensitive and specific radiological-pathological correlations of neurodegenerative diseases affecting complex gray and white matter.
Collapse
Affiliation(s)
- Mihika Gangolli
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | - Laurena Holleran
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joong Hee Kim
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA
| | - Victor Alvarez
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA
| | - David L Brody
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
32
|
Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography. Neuroimage 2016; 147:703-725. [PMID: 28034765 DOI: 10.1016/j.neuroimage.2016.11.066] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/23/2016] [Accepted: 11/26/2016] [Indexed: 11/21/2022] Open
Abstract
Human brain connection map is far from being complete. In particular the study of the superficial white matter (SWM) is an unachieved task. Its description is essential for the understanding of human brain function and the study of pathogenesis triggered by abnormal connectivity. In this work we automatically created a multi-subject atlas of SWM diffusion-based bundles of the whole brain. For each subject, the complete cortico-cortical tractogram is first split into sub-tractograms connecting pairs of gyri. Then intra-subject shape-based fiber clustering performs compression of each sub-tractogram into a set of bundles. Proceeding further with shape-based clustering provides a match of the bundles across subjects. Bundles found in most of the subjects are instantiated in the atlas. To increase robustness, this procedure was performed with two independent groups of subjects, in order to discard bundles without match across the two independent atlases. Finally, the resulting intersection atlas was projected on a third independent group of subjects in order to filter out bundles without reproducible and reliable projection. The final multi-subject diffusion-based U-fiber atlas is composed of 100 bundles in total, 50 per hemisphere, from which 35 are common to both hemispheres.
Collapse
|
33
|
Abstract
This brief history of topographical anatomy begins with Egyptian medical papyri and the works known collectively as the Greco-Arabian canon, the time line then moves on to the excitement of discovery that characterised the Renaissance, the increasing regulatory and legislative frameworks introduced in the 18th and 19th centuries, and ends with a consideration of the impact of technology that epitomises the period from the late 19th century to the present day. This paper is based on a lecture I gave at the Winter Meeting of the Anatomical Society in Cambridge in December 2015, when I was awarded the Anatomical Society Medal.
Collapse
|
34
|
Abstract
The implementation of fiber tracking or tractography modules in commercial navigation systems resulted in a broad availability of visualization possibilities for major white matter tracts in the neurosurgical community. Unfortunately the implemented algorithms and tracking approaches do not represent the state of the art of tractography strategies and may lead to false tracking results. The application of advanced tractography techniques for neurosurgical procedures poses even additional challenges that relate to effects of the individual anatomy that might be altered by edema and tumor, to stereotactic inaccuracies due to image distortion, as well as to registration inaccuracies and brain shift.
Collapse
Affiliation(s)
- Christopher Nimsky
- Department of Neurosurgery, University Marburg, Baldingerstrasse, Marburg, 35033, Germany.
| | - Miriam Bauer
- Department of Neurosurgery, University Marburg, Baldingerstrasse, Marburg, 35033, Germany
| | - Barbara Carl
- Department of Neurosurgery, University Marburg, Baldingerstrasse, Marburg, 35033, Germany
| |
Collapse
|
35
|
Zemmoura I. Comment on: "The role of white matter dissection technique in modern neuroimaging: can neuroradiologists benefit from its use?". Surg Radiol Anat 2015; 38:517-8. [PMID: 26470870 DOI: 10.1007/s00276-015-1567-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022]
Affiliation(s)
- Ilyess Zemmoura
- Service de Neurochirurgie, CHRU de Tours, Tours, France. .,Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau, UMR U930, Tours, France.
| |
Collapse
|
36
|
Latini F, Hjortberg M, Aldskogius H, Ryttlefors M. The use of a cerebral perfusion and immersion-fixation process for subsequent white matter dissection. J Neurosci Methods 2015; 253:161-9. [PMID: 26149289 DOI: 10.1016/j.jneumeth.2015.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/15/2015] [Accepted: 06/26/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND The Klingler's method for white matter dissection revolutionized the study of deep cerebral anatomy. Although this technique made white matter dissection more feasible and widely used, it still presents some intrinsic limitations. NEW METHOD We evaluated the quality of different methods for specimen preparation based on an intra-carotidal formalin perfusion fixation process. Ten post-mortem human hemispheres were prepared with this method and dissected in a stepwise manner. RESULTS The homogeneous and rapid fixation of the brain allowed documentation of several fine additional anatomical details. Intra-cortical white matter terminations were described during the first stage of dissection on each specimen. No limitations were encountered during dissection of the major associative bundles. On the contrary, the quality of the fixation of the specimens made it possible to isolate them en bloc. One of the most complex and deep bundles (accumbo-frontal fasciculus) was dissected without technical limitations. Deep vascular structures were very well preserved and dissected within the white matter until their sub-millimetric terminations. COMPARISON WITH EXISTING METHOD Short time for preparation, a more homogeneous fixation, no technical limitation for a detailed description of superficial and deep white matter anatomy, the possibility to dissect with a single technique the fibre organization and the white matter vascular architecture are the advantages reported with the perfusion fixation. CONCLUSION These results provide encouraging data about the possibility to use a perfusion fixation process, which may help in improving the quality of white matter dissection for research, didactic purposes and surgical training.
Collapse
Affiliation(s)
- Francesco Latini
- Department of Neuroscience, Neurosurgery, Uppsala University, Akademiska sjukhuset, 75185 Uppsala, Sweden.
| | - Mats Hjortberg
- Department of Medical Cell Biology, Education, Uppsala University, Box 571, 75123 Uppsala, Sweden
| | - Håkan Aldskogius
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University, Box 593, 75124 Uppsala, Sweden
| | - Mats Ryttlefors
- Department of Neuroscience, Neurosurgery, Uppsala University, Akademiska sjukhuset, 75185 Uppsala, Sweden
| |
Collapse
|
37
|
How Klingler's dissection permits exploration of brain structural connectivity? An electron microscopy study of human white matter. Brain Struct Funct 2015; 221:2477-86. [PMID: 25905864 DOI: 10.1007/s00429-015-1050-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022]
Abstract
The objective of this study is to explore histological and ultrastructural changes induced by Klingler's method. Five human brains were prepared. First, the effects of freezing-defrosting on white matter were explored with optical microscopy on corpus callosum samples of two brains; one prepared in accordance with the description of Klingler (1956) and the other without freezing-defrosting. Then, the combined effect of formalin fixation and freezing-defrosting was explored with transmission electron microscopy (EM) on samples of cingulum from one brain: samples from one hemisphere were fixed in paraformaldehyde-glutaraldehyde (para/gluta), other samples from the other hemisphere were fixed in formalin; once fixed, half of the samples were frozen-defrosted. Finally, the effect of dissection was explored from three formalin-fixed brains: one hemisphere of each brain was frozen-defrosted; samples of the corpus callosum were dissected before preparation for scanning EM. Optical microscopy showed enlarged extracellular space on frozen samples. Transmission EM showed no significant alteration of white matter ultrastructure after formalin or para/gluta fixation. Freezing-defrosting created extra-axonal lacunas, larger on formalin-fixed than on para/gluta-fixed samples. In all cases, myelin sheaths were preserved, allowing maintenance of axonal integrity. Scanning EM showed the destruction of most of the extra-axonal structures after freezing-defrosting and the preservation of most of the axons after dissection. Our results are the first to highlight the effects of Klingler's preparation and dissection on white matter ultrastructure. Preservation of myelinated axons is a strong argument to support the reliability of Klingler's dissection to explore the structure of human white matter.
Collapse
|