1
|
Arenaza‐Urquijo EM, Boyle R, Casaletto K, Anstey KJ, Vila‐Castelar C, Colverson A, Palpatzis E, Eissman JM, Kheng Siang Ng T, Raghavan S, Akinci M, Vonk JMJ, Machado LS, Zanwar PP, Shrestha HL, Wagner M, Tamburin S, Sohrabi HR, Loi S, Bartrés‐Faz D, Dubal DB, Vemuri P, Okonkwo O, Hohman TJ, Ewers M, Buckley RF. Sex and gender differences in cognitive resilience to aging and Alzheimer's disease. Alzheimers Dement 2024; 20:5695-5719. [PMID: 38967222 PMCID: PMC11350140 DOI: 10.1002/alz.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 07/06/2024]
Abstract
Sex and gender-biological and social constructs-significantly impact the prevalence of protective and risk factors, influencing the burden of Alzheimer's disease (AD; amyloid beta and tau) and other pathologies (e.g., cerebrovascular disease) which ultimately shape cognitive trajectories. Understanding the interplay of these factors is central to understanding resilience and resistance mechanisms explaining maintained cognitive function and reduced pathology accumulation in aging and AD. In this narrative review, the ADDRESS! Special Interest Group (Alzheimer's Association) adopted a multidisciplinary approach to provide the foundations and recommendations for future research into sex- and gender-specific drivers of resilience, including a sex/gender-oriented review of risk factors, genetics, AD and non-AD pathologies, brain structure and function, and animal research. We urge the field to adopt a sex/gender-aware approach to resilience to advance our understanding of the intricate interplay of biological and social determinants and consider sex/gender-specific resilience throughout disease stages. HIGHLIGHTS: Sex differences in resilience to cognitive decline vary by age and cognitive status. Initial evidence supports sex-specific distinctions in brain pathology. Findings suggest sex differences in the impact of pathology on cognition. There is a sex-specific change in resilience in the transition to clinical stages. Gender and sex factors warrant study: modifiable, immune, inflammatory, and vascular.
Collapse
Affiliation(s)
- Eider M. Arenaza‐Urquijo
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Rory Boyle
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kaitlin Casaletto
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kaarin J. Anstey
- University of New South Wales Ageing Futures InstituteSydneyNew South WalesAustralia
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Psychology, University of New South WalesSidneyNew South WalesAustralia
| | | | - Aaron Colverson
- University of Florida Center for Arts in Medicine Interdisciplinary Research LabUniversity of Florida, Center of Arts in MedicineGainesvilleFloridaUSA
| | - Eleni Palpatzis
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Jaclyn M. Eissman
- Vanderbilt Memory and Alzheimer's Center, Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ted Kheng Siang Ng
- Rush Institute for Healthy Aging and Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | | | - Muge Akinci
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Jet M. J. Vonk
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Luiza S. Machado
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, FarroupilhaPorto AlegreBrazil
| | - Preeti P. Zanwar
- Jefferson College of Population Health, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- The Network on Life Course and Health Dynamics and Disparities, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Maude Wagner
- Rush Alzheimer's Disease Center, Rush University Medical CenterChicagoIllinoisUSA
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Hamid R. Sohrabi
- Centre for Healthy AgeingHealth Future InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Psychology, Murdoch UniversityMurdochWestern AustraliaAustralia
| | - Samantha Loi
- Neuropsychiatry Centre, Royal Melbourne HospitalParkvilleVictoriaAustralia
- Department of PsychiatryUniversity of MelbourneParkvilleVictoriaAustralia
| | - David Bartrés‐Faz
- Department of MedicineFaculty of Medicine and Health Sciences & Institut de NeurociènciesUniversity of BarcelonaBarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques (IDIBAPS)BarcelonaBarcelonaSpain
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de BarcelonaBadalonaBarcelonaSpain
| | - Dena B. Dubal
- Department of Neurology and Weill Institute of NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Biomedical and Neurosciences Graduate ProgramsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Ozioma Okonkwo
- Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's Center, Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Michael Ewers
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig Maximilians Universität (LMU)MunichGermany
- German Center for Neurodegenerative Diseases (DZNE, Munich)MunichGermany
| | - Rachel F. Buckley
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
2
|
Sakthivel R, Criado-Marrero M, Barroso D, Braga IM, Bolen M, Rubinovich U, Hery GP, Grudny MM, Koren J, Prokop S, Febo M, Abisambra JF. Fixed Time-Point Analysis Reveals Repetitive Mild Traumatic Brain Injury Effects on Resting State Functional Magnetic Resonance Imaging Connectivity and Neuro-Spatial Protein Profiles. J Neurotrauma 2023; 40:2037-2049. [PMID: 37051703 PMCID: PMC10541943 DOI: 10.1089/neu.2022.0464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Repetitive mild traumatic brain injuries (rmTBIs) are serious trauma events responsible for the development of numerous neurodegenerative disorders. A major challenge in developing diagnostics and treatments for the consequences of rmTBI is the fundamental knowledge gaps of the molecular mechanisms responsible for neurodegeneration. It is both critical and urgent to understand the neuropathological and functional consequences of rmTBI to develop effective therapeutic strategies. Using the Closed-Head Impact Model of Engineered Rotational Acceleration, or CHIMERA, we measured neural changes following injury, including brain volume, diffusion tensor imaging, and resting-state functional magnetic resonance imaging coupled with graph theory and functional connectivity analyses. We determined the effect of rmTBI on markers of gliosis and used NanoString-GeoMx to add a digital-spatial protein profiling analysis of neurodegenerative disease-associated proteins in gray and white matter regions. Our analyses revealed aberrant connectivity changes in the thalamus, independent of microstructural damage or neuroinflammation. We also identified distinct changes in the levels of proteins linked to various neurodegenerative processes including total and phospho-tau species and cell proliferation markers. Together, our data show that rmTBI significantly alters brain functional connectivity and causes distinct protein changes in morphologically intact brain areas.
Collapse
Affiliation(s)
- Ravi Sakthivel
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, USA
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Marangelie Criado-Marrero
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, USA
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Daylin Barroso
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, USA
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Isadora M. Braga
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Mackenzie Bolen
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Uriel Rubinovich
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Gabriela P. Hery
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, USA
- Department of Pathology, University of Florida, Gainesville, Florida, USA
| | - Matteo M. Grudny
- Department of Psychiatry, University of Florida, Gainesville, Florida, USA
| | - John Koren
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, USA
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, University of Florida, Gainesville, Florida, USA
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
| | - Marcelo Febo
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- Department of Psychiatry, University of Florida, Gainesville, Florida, USA
| | - Jose Francisco Abisambra
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, USA
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- Brain Injury Rehabilitation and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Li X, Salami A, Persson J. Hub architecture of the human structural connectome: Links to aging and processing speed. Neuroimage 2023; 278:120270. [PMID: 37423273 DOI: 10.1016/j.neuroimage.2023.120270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
The human structural brain network, or connectome, has a rich-club organization with a small number of brain regions showing high network connectivity, called hubs. Hubs are centrally located in the network, energy costly, and critical for human cognition. Aging has been associated with changes in brain structure, function, and cognitive decline, such as processing speed. At a molecular level, the aging process is a progressive accumulation of oxidative damage, which leads to subsequent energy depletion in the neuron and causes cell death. However, it is still unclear how age affects hub connections in the human connectome. The current study aims to address this research gap by constructing structural connectome using fiber bundle capacity (FBC). FBC is derived from Constrained Spherical Deconvolution (CSD) modeling of white-matter fiber bundles, which represents the capacity of a fiber bundle to transfer information. Compared to the raw number of streamlines, FBC is less bias for quantifying connection strength within biological pathways. We found that hubs exhibit longer-distance connections and higher metabolic rates compared to peripheral brain regions, suggesting that hubs are biologically costly. Although the landscape of structural hubs was relatively age-invariant, there were wide-spread age effects on FBC in the connectome. Critically, these age effects were larger in connections within hub compared to peripheral brain connections. These findings were supported by both a cross-sectional sample with wide age-range (N = 137) and a longitudinal sample across 5 years (N = 83). Moreover, our results demonstrated that associations between FBC and processing speed were more concentrated in hub connections than chance level, and FBC in hub connections mediated the age-effects on processing speed. Overall, our findings indicate that structural connections of hubs, which demonstrate greater energy demands, are particular vulnerable to aging. The vulnerability may contribute to age-related impairments in processing speed among older adults.
Collapse
Affiliation(s)
- Xin Li
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm 171 65, Sweden.
| | - Alireza Salami
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm 171 65, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå 901 87, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå 901 87, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå 901 87, Sweden
| | - Jonas Persson
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm 171 65, Sweden; Center for Lifespan Developmental Research (LEADER), School of Behavioral, Social and Legal Sciences, Örebro University, Örebro 701 82, Sweden
| |
Collapse
|
4
|
Sreenivasan K, Bayram E, Zhuang X, Longhurst J, Yang Z, Cordes D, Ritter A, Caldwell J, Cummings JL, Mari Z, Litvan I, Bluett B, Mishra VR. Topological reorganization of functional hubs in patients with Parkinson's disease with freezing of gait. J Neuroimaging 2023; 33:547-557. [PMID: 37080778 PMCID: PMC10523899 DOI: 10.1111/jon.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Resting-state functional MRI (rs-fMRI) studies in Parkinson's disease (PD) patients with freezing of gait (FOG) have implicated dysfunctional connectivity over multiple resting-state networks (RSNs). While these findings provided network-specific insights and information related to the aberrant or altered regional functional connectivity (FC), whether these alterations have any effect on topological reorganization in PD-FOG patients is incompletely understood. Understanding the higher order functional organization, which could be derived from the "hub" and the "rich-club" organization of the functional networks, could be crucial to identifying the distinct and unique pattern of the network connectivity associated with PD-FOG. METHODS In this study, we use rs-fMRI data and graph theoretical approaches to explore the reorganization of RSN topology in PD-FOG when compared to those without FOG. We also compared the higher order functional organization derived using the hub and rich-club measures in the FC networks of these PD-FOG patients to understand whether there is a topological reorganization of these hubs in PD-FOG. RESULTS We found that the PD-FOG patients showed a noticeable reorganization of hub regions. Regions that are part of the prefrontal cortex, primary somatosensory, motor, and visuomotor coordination areas were some of the regions exhibiting altered hub measures in PD-FOG patients. We also found a significantly altered feeder and local connectivity in PD-FOG. CONCLUSIONS Overall, our findings demonstrate a widespread topological reorganization and disrupted higher order functional network topology in PD-FOG that may further assist in improving our understanding of functional network disturbances associated with PD-FOG.
Collapse
Affiliation(s)
| | - Ece Bayram
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Xiaowei Zhuang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Jason Longhurst
- Department of Physical Therapy and Athletic Training, Saint Louis University, St. Louis, Missouri, USA
| | - Zhengshi Yang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
- Department of Radiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Jessica Caldwell
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Jeffrey L. Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Zoltan Mari
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Irene Litvan
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Brent Bluett
- Central California Movement Disorders, Pismo Beach, California, USA
| | - Virendra R. Mishra
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
- Department of Radiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
5
|
Petkoski S, Ritter P, Jirsa VK. White-matter degradation and dynamical compensation support age-related functional alterations in human brain. Cereb Cortex 2023; 33:6241-6256. [PMID: 36611231 PMCID: PMC10183745 DOI: 10.1093/cercor/bhac500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 01/09/2023] Open
Abstract
Structural connectivity of the brain at different ages is analyzed using diffusion-weighted magnetic resonance imaging (MRI) data. The largest decrease of streamlines is found in frontal regions and for long inter-hemispheric links. The average length of the tracts also decreases, but the clustering is unaffected. From functional MRI we identify age-related changes of dynamic functional connectivity (dFC) and spatial covariation features of functional connectivity (FC) links captured by metaconnectivity. They indicate more stable dFC, but wider range and variance of MC, whereas static features of FC did not show any significant differences with age. We implement individual connectivity in whole-brain models and test several hypotheses for the mechanisms of operation among underlying neural system. We demonstrate that age-related functional fingerprints are only supported if the model accounts for: (i) compensation of the individual brains for the overall loss of structural connectivity and (ii) decrease of propagation velocity due to the loss of myelination. We also show that with these 2 conditions, it is sufficient to decompose the time-delays as bimodal distribution that only distinguishes between intra- and inter-hemispheric delays, and that the same working point also captures the static FC the best, and produces the largest variability at slow time-scales.
Collapse
Affiliation(s)
- Spase Petkoski
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Bernstein Focus State Dependencies of Learning, Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Viktor K Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
6
|
Gallet C, Clavreul A, Bernard F, Menei P, Lemée JM. Frontal aslant tract in the non-dominant hemisphere: A systematic review of anatomy, functions, and surgical applications. Front Neuroanat 2022; 16:1025866. [DOI: 10.3389/fnana.2022.1025866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
Knowledge of both the spatial organization and functions of white-matter fiber tracts is steadily increasing. We report here the anatomy and functions of the frontal aslant tract (FAT) in the non-dominant hemisphere (usually the right hemisphere). Despite the structural symmetry between the right and left FAT, these two tracts seem to display functional asymmetry, with several brain functions in common, but others, such as visuospatial and social cognition, music processing, shifting attention or working memory, more exclusively associated with the right FAT. Further studies are required to determine whether damage to the right FAT causes permanent cognitive impairment. Such studies will constitute the best means of testing whether this tract is a critical pathway that must be taken into account during neurosurgical procedures and the essential tasks to be incorporated into intraoperative monitoring during awake craniotomy.
Collapse
|
7
|
Roberts G, Perry A, Ridgway K, Leung V, Campbell M, Lenroot R, Mitchell PB, Breakspear M. Longitudinal Changes in Structural Connectivity in Young People at High Genetic Risk for Bipolar Disorder. Am J Psychiatry 2022; 179:350-361. [PMID: 35343756 DOI: 10.1176/appi.ajp.21010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Recent studies of patients with bipolar disorder or at high genetic risk reveal structural dysconnections among key brain networks supporting cognitive and affective processes. Understanding the longitudinal trajectories of these networks across the peak age range of bipolar disorder onset could inform mechanisms of illness onset or resilience. METHODS Longitudinal diffusion-weighted MRI and phenotypic data were acquired at baseline and after 2 years in 183 individuals ages 12-30 years in two cohorts: 97 unaffected individuals with a first-degree relative with bipolar disorder (the high-risk group) and 86 individuals with no family history of mental illness (the control group). Whole-brain structural networks were derived using tractography, and longitudinal changes in these networks were studied using network-based statistics and mixed linear models. RESULTS Both groups showed widespread longitudinal changes, comprising both increases and decreases in structural connectivity, consistent with a shared neurodevelopmental process. On top of these shared changes, high-risk participants showed weakening of connectivity in a network encompassing the left inferior and middle frontal areas, left striatal and thalamic structures, the left fusiform, and right parietal and occipital regions. Connections among these regions strengthened in the control group, whereas they weakened in the high-risk group, shifting toward a cohort with established bipolar disorder. There was marginal evidence for even greater network weakening in those who had their first manic or hypomanic episode before follow-up. CONCLUSIONS Neurodevelopment from adolescence into early adulthood is associated with a substantial reorganization of structural brain networks. Differences in these maturational processes occur in a multisystem network in individuals at high genetic risk of bipolar disorder. This may represent a novel candidate to understand resilience and predict conversion to bipolar disorder.
Collapse
Affiliation(s)
- Gloria Roberts
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Alistair Perry
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Kate Ridgway
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Vivian Leung
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Megan Campbell
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Rhoshel Lenroot
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Michael Breakspear
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| |
Collapse
|
8
|
Kotlarz P, Nino JC, Febo M. Connectomic analysis of Alzheimer's disease using percolation theory. Netw Neurosci 2022; 6:213-233. [PMID: 36605889 PMCID: PMC9810282 DOI: 10.1162/netn_a_00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder that affects a growing worldwide elderly population. Identification of brain functional biomarkers is expected to help determine preclinical stages for targeted mechanistic studies and development of therapeutic interventions to deter disease progression. Connectomic analysis, a graph theory-based methodology used in the analysis of brain-derived connectivity matrices was used in conjunction with percolation theory targeted attack model to investigate the network effects of AD-related amyloid deposition. We used matrices derived from resting-state functional magnetic resonance imaging collected on mice with extracellular amyloidosis (TgCRND8 mice, n = 17) and control littermates (n = 17). Global, nodal, spatial, and percolation-based analysis was performed comparing AD and control mice. These data indicate a short-term compensatory response to neurodegeneration in the AD brain via a strongly connected core network with highly vulnerable or disconnected hubs. Targeted attacks demonstrated a greater vulnerability of AD brains to all types of attacks and identified progression models to mimic AD brain functional connectivity through betweenness centrality and collective influence metrics. Furthermore, both spatial analysis and percolation theory identified a key disconnect between the anterior brain of the AD mice to the rest of the brain network.
Collapse
Affiliation(s)
- Parker Kotlarz
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA,* Corresponding Author:
| | - Juan C. Nino
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
ADHD symptoms map onto noise-driven structure-function decoupling between hub and peripheral brain regions. Mol Psychiatry 2021; 26:4036-4045. [PMID: 31666679 DOI: 10.1038/s41380-019-0554-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/18/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Adults with childhood-onset attention-deficit hyperactivity disorder (ADHD) show altered whole-brain connectivity. However, the relationship between structural and functional brain abnormalities, the implications for the development of life-long debilitating symptoms, and the underlying mechanisms remain uncharted. We recruited a unique sample of 80 medication-naive adults with a clinical diagnosis of childhood-onset ADHD without psychiatric comorbidities, and 123 age-, sex-, and intelligence-matched healthy controls. Structural and functional connectivity matrices were derived from diffusion spectrum imaging and multi-echo resting-state functional MRI data. Hub, feeder, and local connections were defined using diffusion data. Individual-level measures of structural connectivity and structure-function coupling were used to contrast groups and link behavior to brain abnormalities. Computational modeling was used to test possible neural mechanisms underpinning observed group differences in the structure-function coupling. Structural connectivity did not significantly differ between groups but, relative to controls, ADHD showed a reduction in structure-function coupling in feeder connections linking hubs with peripheral regions. This abnormality involved connections linking fronto-parietal control systems with sensory networks. Crucially, lower structure-function coupling was associated with higher ADHD symptoms. Results from our computational model further suggest that the observed structure-function decoupling in ADHD is driven by heterogeneity in neural noise variability across brain regions. By highlighting a neural cause of a clinically meaningful breakdown in the structure-function relationship, our work provides novel information on the nature of chronic ADHD. The current results encourage future work assessing the genetic and neurobiological underpinnings of neural noise in ADHD, particularly in brain regions encompassed by fronto-parietal systems.
Collapse
|
10
|
Madole JW, Ritchie SJ, Cox SR, Buchanan CR, Hernández MV, Maniega SM, Wardlaw JM, Harris MA, Bastin ME, Deary IJ, Tucker-Drob EM. Aging-Sensitive Networks Within the Human Structural Connectome Are Implicated in Late-Life Cognitive Declines. Biol Psychiatry 2021; 89:795-806. [PMID: 32828527 PMCID: PMC7736316 DOI: 10.1016/j.biopsych.2020.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/20/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Aging-related cognitive decline is a primary risk factor for Alzheimer's disease and related dementias. More precise identification of the neurobiological bases of cognitive decline in aging populations may provide critical insights into the precursors of late-life dementias. METHODS Using structural and diffusion brain magnetic resonance imaging data from the UK Biobank (n = 8185; age range, 45-78 years), we examined aging of regional gray matter volumes (nodes) and white matter structural connectivity (edges) within 9 well-characterized networks of interest in the human brain connectome. In the independent Lothian Birth Cohort 1936 (n = 534; all 73 years of age), we tested whether aging-sensitive connectome elements are enriched for key domains of cognitive function before and after controlling for early-life cognitive ability. RESULTS In the UK Biobank, age differences in individual connectome elements corresponded closely with principal component loadings reflecting connectome-wide integrity (|rnodes| = .420; |redges| = .583), suggesting that connectome aging occurs on broad dimensions of variation in brain architecture. In the Lothian Birth Cohort 1936, composite indices of node integrity were predictive of all domains of cognitive function, whereas composite indices of edge integrity were associated specifically with processing speed. Elements within the central executive network were disproportionately predictive of late-life cognitive function relative to the network's small size. Associations with processing speed and visuospatial ability remained after controlling for childhood cognitive ability. CONCLUSIONS These results implicate global dimensions of variation in the human structural connectome in aging-related cognitive decline. The central executive network may demarcate a constellation of elements that are centrally important to age-related cognitive impairments.
Collapse
Affiliation(s)
- James W Madole
- Department of Psychology, University of Texas at Austin, Austin, Texas.
| | - Stuart J Ritchie
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, United Kingdom
| | - Simon R Cox
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom; Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom; Scottish Imaging Network: A Platform for Scientific Excellence Collaboration, Edinburgh, United Kingdom
| | - Colin R Buchanan
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom; Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom; Scottish Imaging Network: A Platform for Scientific Excellence Collaboration, Edinburgh, United Kingdom
| | - Maria Valdés Hernández
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; Scottish Imaging Network: A Platform for Scientific Excellence Collaboration, Edinburgh, United Kingdom
| | - Susana Muñoz Maniega
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; Scottish Imaging Network: A Platform for Scientific Excellence Collaboration, Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; Scottish Imaging Network: A Platform for Scientific Excellence Collaboration, Edinburgh, United Kingdom
| | - Mathew A Harris
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark E Bastin
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; Scottish Imaging Network: A Platform for Scientific Excellence Collaboration, Edinburgh, United Kingdom
| | - Ian J Deary
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom; Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Elliot M Tucker-Drob
- Department of Psychology, University of Texas at Austin, Austin, Texas; Population Research Center, University of Texas at Austin, Austin, Texas
| |
Collapse
|
11
|
Stefanovski L, Meier JM, Pai RK, Triebkorn P, Lett T, Martin L, Bülau K, Hofmann-Apitius M, Solodkin A, McIntosh AR, Ritter P. Bridging Scales in Alzheimer's Disease: Biological Framework for Brain Simulation With The Virtual Brain. Front Neuroinform 2021; 15:630172. [PMID: 33867964 PMCID: PMC8047422 DOI: 10.3389/fninf.2021.630172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the acceleration of knowledge and data accumulation in neuroscience over the last years, the highly prevalent neurodegenerative disease of AD remains a growing problem. Alzheimer's Disease (AD) is the most common cause of dementia and represents the most prevalent neurodegenerative disease. For AD, disease-modifying treatments are presently lacking, and the understanding of disease mechanisms continues to be incomplete. In the present review, we discuss candidate contributing factors leading to AD, and evaluate novel computational brain simulation methods to further disentangle their potential roles. We first present an overview of existing computational models for AD that aim to provide a mechanistic understanding of the disease. Next, we outline the potential to link molecular aspects of neurodegeneration in AD with large-scale brain network modeling using The Virtual Brain (www.thevirtualbrain.org), an open-source, multiscale, whole-brain simulation neuroinformatics platform. Finally, we discuss how this methodological approach may contribute to the understanding, improved diagnostics, and treatment optimization of AD.
Collapse
Affiliation(s)
- Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Jil Mona Meier
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Roopa Kalsank Pai
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Paul Triebkorn
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Tristram Lett
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Leon Martin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Konstantin Bülau
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany
| | - Ana Solodkin
- Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | | | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
12
|
Common Brain Structural Alterations Associated with Cardiovascular Disease Risk Factors and Alzheimer's Dementia: Future Directions and Implications. Neuropsychol Rev 2020; 30:546-557. [PMID: 33011894 DOI: 10.1007/s11065-020-09460-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
Recent reports suggest declines in the age-specific risk of Alzheimer's dementia in higher income Western countries. At the same time, investigators believe that worldwide trends of increasing mid-life modifiable risk factors [e.g., cardiovascular disease (CVD) risk factors] coupled with the growth of the world's oldest age groups may nonetheless lead to an increase in Alzheimer's dementia. Thus, understanding the overlap in neuroanatomical profiles associated with CVD risk factors and AD may offer more relevant targets for investigating ways to reduce the growing dementia epidemic than current targets specific to isolated AD-related neuropathology. We hypothesized that a core group of common brain structural alterations exist between CVD risk factors and Alzheimer's dementia. Two co-authors conducted independent literature reviews in PubMed using search terms for CVD risk factor burden (separate searches for 'cardiovascular disease risk factors', 'hypertension', and 'Type 2 diabetes') and 'aging' or 'Alzheimer's dementia' with either 'grey matter volumes' or 'white matter'. Of studies that reported regionally localized results, we found support for our hypothesis, determining 23 regions commonly associated with both CVD risk factors and Alzheimer's dementia. Within this context, we outline future directions for research as well as larger cerebrovascular implications for these commonalities. Overall, this review supports previous as well as more recent calls for the consideration that both vascular and neurodegenerative factors contribute to the pathogenesis of dementia.
Collapse
|
13
|
Jonkman LE, Steenwijk MD, Boesen N, Rozemuller AJM, Barkhof F, Geurts JJG, Douw L, van de Berg WDJ. Relationship between β-amyloid and structural network topology in decedents without dementia. Neurology 2020; 95:e532-e544. [PMID: 32661099 PMCID: PMC7455348 DOI: 10.1212/wnl.0000000000009910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/14/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To investigate the association between β-amyloid (Aβ) load and postmortem structural network topology in decedents without dementia. METHODS Fourteen decedents (mean age at death 72.6 ± 7.2 years) without known clinical diagnosis of neurodegenerative disease and meeting pathology criteria only for no or low Alzheimer disease (AD) pathologic change were selected from the Normal Aging Brain Collection Amsterdam database. In situ brain MRI included 3D T1-weighted images for anatomical registration and diffusion tensor imaging for probabilistic tractography with subsequent structural network construction. Network topologic measures of centrality (degree), integration (global efficiency), and segregation (clustering and local efficiency) were calculated. Tissue sections from 12 cortical regions were sampled and immunostained for Aβ and hyperphosphorylated tau (p-tau), and histopathologic burden was determined. Linear mixed effect models were used to assess the relationship between Aβ and p-tau load and network topologic measures. RESULTS Aβ was present in 79% of cases and predominantly consisted of diffuse plaques; p-tau was sparsely present. Linear mixed effect models showed independent negative associations between Aβ load and global efficiency (β = -0.83 × 10-3, p = 0.014), degree (β = -0.47, p = 0.034), and clustering (β = -0.55 × 10-2, p = 0.043). A positive association was present between Aβ load and local efficiency (β = 3.16 × 10-3, p = 0.035). Regionally, these results were significant in the posterior cingulate cortex (PCC) for degree (β = -2.22, p < 0.001) and local efficiency (β = 1.01 × 10-2, p = 0.014) and precuneus for clustering (β = -0.91 × 10-2, p = 0.017). There was no relationship between p-tau and network topology. CONCLUSION This study in deceased adults with AD-related pathologic change provides evidence for a relationship among early Aβ accumulation, predominantly of the diffuse type, and structural network topology, specifically of the PCC and precuneus.
Collapse
Affiliation(s)
- Laura E Jonkman
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK.
| | - Martijn D Steenwijk
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK
| | - Nicky Boesen
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK
| | - Annemieke J M Rozemuller
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK
| | - Frederik Barkhof
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK
| | - Jeroen J G Geurts
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK
| | - Linda Douw
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK
| | - Wilma D J van de Berg
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK
| |
Collapse
|
14
|
Kim DJ, Min BK. Rich-club in the brain's macrostructure: Insights from graph theoretical analysis. Comput Struct Biotechnol J 2020; 18:1761-1773. [PMID: 32695269 PMCID: PMC7355726 DOI: 10.1016/j.csbj.2020.06.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The brain is a complex network. Growing evidence supports the critical roles of a set of brain regions within the brain network, known as the brain’s cores or hubs. These regions require high energy cost but possess highly efficient neural information transfer in the brain’s network and are termed the rich-club. The rich-club of the brain network is essential as it directly regulates functional integration across multiple segregated regions and helps to optimize cognitive processes. Here, we review the recent advances in rich-club organization to address the fundamental roles of the rich-club in the brain and discuss how these core brain regions affect brain development and disorders. We describe the concepts of the rich-club behind network construction in the brain using graph theoretical analysis. We also highlight novel insights based on animal studies related to the rich-club and illustrate how human studies using neuroimaging techniques for brain development and psychiatric/neurological disorders may be relevant to the rich-club phenomenon in the brain network.
Collapse
Key Words
- AD, Alzheimer’s disease
- ADHD, attention deficit hyperactivity disorder
- ASD, autism spectrum disorder
- BD, bipolar disorder
- Brain connectivity
- Brain network
- DTI, diffusion tensor imaging
- EEG, electroencephalography
- Graph theory
- MDD, major depressive disorder
- MEG, magnetoencephalography
- MRI, magnetic resonance imaging
- Neuroimaging
- Rich-club
- TBI, traumatic brain injury
Collapse
Affiliation(s)
- Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
15
|
Sherman DS, Durbin KA, Ross DM. Meta-Analysis of Memory-Focused Training and Multidomain Interventions in Mild Cognitive Impairment. J Alzheimers Dis 2020; 76:399-421. [PMID: 32508325 DOI: 10.3233/jad-200261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Meta-analysis examining the efficacy of cognitive interventions on neuropsychological outcomes have suggested interventions that focus on memory may actually provide greater benefit against the cognitive declines associated with mild cognitive impairment (MCI). However, it remains unclear if memory-based training would be more effective at addressing the cognitive deficits associated with MCI than multidomain forms of intervention. OBJECTIVE A meta-analytic review and subgroup analysis was conducted to examine the effects of cognitive training in individuals diagnosed with MCI and to compare the efficacy of memory-based training with multidomain interventions. METHODS A total of 32 randomized controlled trials met inclusion criteria for the meta-analysis, which included 9 studies on memory-focused training and 17 studies on multidomain interventions. RESULTS We found significant, large effects for memory-focused training (Hedges' g observed = 0.947; 95% CI [-1.668, 3.562]; Z = 2.517; p = 0.012) and significant, moderate effects for multidomain interventions (Hedges' g observed = 0.420; 95% CI [-0.4491, 1.2891]; Z = 3.525; p < 0.001). A subgroup analysis found significant point estimates for memory-based forms of training and multidomain interventions, with memory-based forms of content yielding significantly greater summary effects than multidomain interventions (SMD Z = 2.162; p = 0.031, two-tailed; all outcomes). There was no difference between effect sizes when comparing outcomes limited to its respective domain. CONCLUSION Overall, these findings suggest that, while both interventions were beneficial, treatment interventions that were strictly memory-based were more effective at improving cognition in individuals diagnosed with MCI than interventions that targeted multiple cognitive domains.
Collapse
Affiliation(s)
- Dale S Sherman
- Department of Physical Medicine & Rehabilitation, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Rossier School of Education, University of Southern California, Los Angeles, CA, USA
| | - Kelly A Durbin
- Department of Physical Medicine & Rehabilitation, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - David M Ross
- Department of Physical Medicine & Rehabilitation, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Psychology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
16
|
Genetic influence on ageing-related changes in resting-state brain functional networks in healthy adults: A systematic review. Neurosci Biobehav Rev 2020; 113:98-110. [PMID: 32169413 DOI: 10.1016/j.neubiorev.2020.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/08/2020] [Accepted: 03/09/2020] [Indexed: 11/21/2022]
Abstract
This systematic review examines the genetic and epigenetic factors associated with resting-state functional connectivity (RSFC) in healthy human adult brains across the lifespan, with a focus on genes associated with Alzheimer's disease (AD). There were 58 studies included. The key findings are: (i) genetic factors have a low to moderate contribution; (ii) the apolipoprotein E ε2/3/4 polymorphism was the most studied genetic variant, with the APOE-ε4 allele most consistently associated with deficits of the default mode network, but there were insufficient studies to determine the relationships with other AD candidate risk genes; (iii) a single genome-wide association study identified several variants related to RSFC; (iv) two epigenetic independent studies showed a positive relationship between blood DNA methylation of the SLC6A4 promoter and RSFC measures. Thus, there is emerging evidence that genetic and epigenetic variation influence the brain's functional organisation and connectivity over the adult lifespan. However, more studies are required to elucidate the roles genetic and epigenetic factors play in RSFC measures across the adult lifespan.
Collapse
|
17
|
Waites W, Davies JA. Emergence of structure in mouse embryos: Structural Entropy morphometry applied to digital models of embryonic anatomy. J Anat 2019; 235:706-715. [PMID: 31276197 PMCID: PMC6742931 DOI: 10.1111/joa.13031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
We apply an information-theoretic measure to anatomical models of the Edinburgh Mouse Atlas Project. Our goal is to quantify the anatomical complexity of the embryo and to understand how this quantity changes as the organism develops through time. Our measure, Structural Entropy, takes into account the geometrical character of the intermingling of tissue types in the embryo. It does this by a mathematical process that effectively imagines a point-like explorer that starts at an arbitrary place in the 3D structure of the embryo and takes a random path through the embryo, recording the sequence of tissues through which it passes. Consideration of a large number of such paths yields a probability distribution of paths making connections between specific tissue types, and Structural Entropy is calculated from this (mathematical details are given in the main text). We find that Structural Entropy generally decreases (order increases) almost linearly throughout developmental time (4-18 days). There is one `blip' of increased Structural Entropy across days 7-8: this corresponds to gastrulation. Our results highlight the potential for mathematical techniques to provide insight into the development of anatomical structure, and also the need for further sources of accurate 3D anatomical data to support analyses of this kind.
Collapse
Affiliation(s)
- William Waites
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Jamie A Davies
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Wang Y, Xu C, Park JH, Lee S, Stern Y, Yoo S, Kim JH, Kim HS, Cha J. Diagnosis and prognosis of Alzheimer's disease using brain morphometry and white matter connectomes. Neuroimage Clin 2019; 23:101859. [PMID: 31150957 PMCID: PMC6541902 DOI: 10.1016/j.nicl.2019.101859] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 05/02/2019] [Accepted: 05/11/2019] [Indexed: 01/05/2023]
Abstract
Accurate, reliable prediction of risk for Alzheimer's disease (AD) is essential for early, disease-modifying therapeutics. Multimodal MRI, such as structural and diffusion MRI, is likely to contain complementary information of neurodegenerative processes in AD. Here we tested the utility of the multimodal MRI (T1-weighted structure and diffusion MRI), combined with high-throughput brain phenotyping-morphometry and structural connectomics-and machine learning, as a diagnostic tool for AD. We used, firstly, a clinical cohort at a dementia clinic (National Health Insurance Service-Ilsan Hospital [NHIS-IH]; N = 211; 110 AD, 64 mild cognitive impairment [MCI], and 37 cognitively normal with subjective memory complaints [SMC]) to test the diagnostic models; and, secondly, Alzheimer's Disease Neuroimaging Initiative (ADNI)-2 to test the generalizability. Our machine learning models trained on the morphometric and connectome estimates (number of features = 34,646) showed optimal classification accuracy (AD/SMC: 97% accuracy, MCI/SMC: 83% accuracy; AD/MCI: 97% accuracy) in NHIS-IH cohort, outperforming a benchmark model (FLAIR-based white matter hyperintensity volumes). In ADNI-2 data, the combined connectome and morphometry model showed similar or superior accuracies (AD/HC: 96%; MCI/HC: 70%; AD/MCI: 75% accuracy) compared with the CSF biomarker model (t-tau, p-tau, and Amyloid β, and ratios). In predicting MCI to AD progression in a smaller cohort of ADNI-2 (n = 60), the morphometry model showed similar performance with 69% accuracy compared with CSF biomarker model with 70% accuracy. Our comparisons of the classifiers trained on structural MRI, diffusion MRI, FLAIR, and CSF biomarkers showed the promising utility of the white matter structural connectomes in classifying AD and MCI in addition to the widely used structural MRI-based morphometry, when combined with machine learning.
Collapse
Affiliation(s)
- Yun Wang
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Chenxiao Xu
- Department of Applied Mathematics, Stony Brook University, Stony Brook, NY, USA
| | - Ji-Hwan Park
- Department of Applied Mathematics, Stony Brook University, Stony Brook, NY, USA
| | - Seonjoo Lee
- Department of Biostatistics, School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Yaakov Stern
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Shinjae Yoo
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, USA
| | - Jong Hun Kim
- Department of Neurology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Hyoung Seop Kim
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea.
| | - Jiook Cha
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Data Science Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
19
|
Ferré P, Benhajali Y, Steffener J, Stern Y, Joanette Y, Bellec P. Resting-state and Vocabulary Tasks Distinctively Inform On Age-Related Differences in the Functional Brain Connectome. LANGUAGE, COGNITION AND NEUROSCIENCE 2019; 34:949-972. [PMID: 31457069 PMCID: PMC6711486 DOI: 10.1080/23273798.2019.1608072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/05/2019] [Indexed: 05/23/2023]
Abstract
Most of the current knowledge about age-related differences in brain neurofunctional organization stems from neuroimaging studies using either a "resting state" paradigm, or cognitive tasks for which performance decreases with age. However, it remains to be known if comparable age-related differences are found when participants engage in cognitive activities for which performance is maintained with age, such as vocabulary knowledge tasks. A functional connectivity analysis was performed on 286 adults ranging from 18 to 80 years old, based either on a resting state paradigm or when engaged in vocabulary tasks. Notable increases in connectivity of regions of the language network were observed during task completion. Conversely, only age-related decreases were observed across the whole connectome during resting-state. While vocabulary accuracy increased with age, no interaction was found between functional connectivity, age and task accuracy or proxies of cognitive reserve, suggesting that older individuals typically benefits from semantic knowledge accumulated throughout one's life trajectory, without the need for compensatory mechanisms.
Collapse
Affiliation(s)
- Perrine Ferré
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, 4545 Queen Mary Road, Montréal, Qc, H3W 1W3, CANADA
| | - Yassine Benhajali
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, 4545 Queen Mary Road, Montréal, Qc, H3W 1W3, CANADA
| | - Jason Steffener
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, 4545 Queen Mary Road, Montréal, Qc, H3W 1W3, CANADA
- PERFORM Center, Concordia University
- Interdisciplinary School of Health Sciences, University of Ottawa, 200 Lees, Lees Campus, Office # E-250C, Ottawa, Ontario. K1S 5S9, CANADA
| | - Yaakov Stern
- Cognitive Neuroscience Division, Columbia University, 710 W 168th St, New York, NY 10032, USA
| | - Yves Joanette
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, 4545 Queen Mary Road, Montréal, Qc, H3W 1W3, CANADA
| | - Pierre Bellec
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, 4545 Queen Mary Road, Montréal, Qc, H3W 1W3, CANADA
| |
Collapse
|
20
|
Roberts JA, Gollo LL, Abeysuriya RG, Roberts G, Mitchell PB, Woolrich MW, Breakspear M. Metastable brain waves. Nat Commun 2019; 10:1056. [PMID: 30837462 PMCID: PMC6401142 DOI: 10.1038/s41467-019-08999-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022] Open
Abstract
Traveling patterns of neuronal activity-brain waves-have been observed across a breadth of neuronal recordings, states of awareness, and species, but their emergence in the human brain lacks a firm understanding. Here we analyze the complex nonlinear dynamics that emerge from modeling large-scale spontaneous neural activity on a whole-brain network derived from human tractography. We find a rich array of three-dimensional wave patterns, including traveling waves, spiral waves, sources, and sinks. These patterns are metastable, such that multiple spatiotemporal wave patterns are visited in sequence. Transitions between states correspond to reconfigurations of underlying phase flows, characterized by nonlinear instabilities. These metastable dynamics accord with empirical data from multiple imaging modalities, including electrical waves in cortical tissue, sequential spatiotemporal patterns in resting-state MEG data, and large-scale waves in human electrocorticography. By moving the study of functional networks from a spatially static to an inherently dynamic (wave-like) frame, our work unifies apparently diverse phenomena across functional neuroimaging modalities and makes specific predictions for further experimentation.
Collapse
Affiliation(s)
- James A Roberts
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
- Centre for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
| | - Leonardo L Gollo
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- Centre for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Romesh G Abeysuriya
- Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative NeuroImaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
- Black Dog Institute, Prince of Wales Hospital, Hospital Road, Randwick, NSW, 2031, Australia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
- Black Dog Institute, Prince of Wales Hospital, Hospital Road, Randwick, NSW, 2031, Australia
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative NeuroImaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- Centre for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- Metro North Mental Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, 2305, Australia
| |
Collapse
|
21
|
Civier O, Smith RE, Yeh CH, Connelly A, Calamante F. Is removal of weak connections necessary for graph-theoretical analysis of dense weighted structural connectomes from diffusion MRI? Neuroimage 2019; 194:68-81. [PMID: 30844506 DOI: 10.1016/j.neuroimage.2019.02.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 02/05/2023] Open
Abstract
Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain organization. However, these efforts are hampered by the lack of consensus on how to extract topological measures from the resulting graphs. Here we evaluate the common practice of removing the graphs' weak connections, which is primarily intended to eliminate spurious connections and emphasize strong connections. Because this processing step requires arbitrary or heuristic-based choices (e.g., setting a threshold level below which connections are removed), and such choices might complicate statistical analysis and inter-study comparisons, in this work we test whether removing weak connections is indeed necessary. To this end, we systematically evaluated the effect of removing weak connections on a range of popular graph-theoretical metrics. Specifically, we investigated if (and at what extent) removal of weak connections introduces a statistically significant difference between two otherwise equal groups of healthy subjects when only applied to one of the groups. Using data from the Human Connectome Project, we found that removal of weak connections had no statistical effect even when removing the weakest ∼70-90% connections. Removing yet a larger extent of weak connections, thus reducing connectivity density even further, did produce a predictably significant effect. However, metric values became sensitive to the exact connectivity density, which has ramifications regarding the stability of the statistical analysis. This pattern persisted whether connections were removed by connection strength threshold or connectivity density, and for connectomes generated using parcellations at different resolutions. Finally, we showed that the same pattern also applies for data from a clinical-grade MRI scanner. In conclusion, our analysis revealed that removing weak connections is not necessary for graph-theoretical analysis of dense weighted connectomes. Because removal of weak connections provides no practical utility to offset the undesirable requirement for arbitrary or heuristic-based choices, we recommend that this step is avoided in future studies.
Collapse
Affiliation(s)
- Oren Civier
- The University of Sydney, School of Aerospace, Mechanical and Mechatronic Engineering, J07 University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Robert Elton Smith
- Florey Institute of Neuroscience and Mental Health, Melbourne, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia
| | - Chun-Hung Yeh
- Florey Institute of Neuroscience and Mental Health, Melbourne, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia
| | - Alan Connelly
- Florey Institute of Neuroscience and Mental Health, Melbourne, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia
| | - Fernando Calamante
- The University of Sydney, School of Aerospace, Mechanical and Mechatronic Engineering, J07 University of Sydney, Camperdown, NSW, 2006, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia; The University of Sydney, Sydney Imaging, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| |
Collapse
|
22
|
Shen K, Goulas A, Grayson DS, Eusebio J, Gati JS, Menon RS, McIntosh AR, Everling S. Exploring the limits of network topology estimation using diffusion-based tractography and tracer studies in the macaque cortex. Neuroimage 2019; 191:81-92. [PMID: 30739059 DOI: 10.1016/j.neuroimage.2019.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Reconstructing the anatomical pathways of the brain to study the human connectome has become an important endeavour for understanding brain function and dynamics. Reconstruction of the cortico-cortical connectivity matrix in vivo often relies on noninvasive diffusion-weighted imaging (DWI) techniques but the extent to which they can accurately represent the topological characteristics of structural connectomes remains unknown. We addressed this question by constructing connectomes using DWI data collected from macaque monkeys in vivo and with data from published invasive tracer studies. We found the strength of fiber tracts was well estimated from DWI and topological properties like degree and modularity were captured by tractography-based connectomes. Rich-club/core-periphery type architecture could also be detected but the classification of hubs using betweenness centrality, participation coefficient and core-periphery identification techniques was inaccurate. Our findings indicate that certain aspects of cortical topology can be faithfully represented in noninvasively-obtained connectomes while other network analytic measures warrant cautionary interpretations.
Collapse
Affiliation(s)
- Kelly Shen
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.
| | - Alexandros Goulas
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | | | - John Eusebio
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Joseph S Gati
- The Centre for Functional and Metabolic Mapping, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Ravi S Menon
- The Centre for Functional and Metabolic Mapping, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Anthony R McIntosh
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Stefan Everling
- The Centre for Functional and Metabolic Mapping, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
23
|
Perry A, Roberts G, Mitchell PB, Breakspear M. Connectomics of bipolar disorder: a critical review, and evidence for dynamic instabilities within interoceptive networks. Mol Psychiatry 2019; 24:1296-1318. [PMID: 30279458 PMCID: PMC6756092 DOI: 10.1038/s41380-018-0267-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022]
Abstract
The notion that specific cognitive and emotional processes arise from functionally distinct brain regions has lately shifted toward a connectivity-based approach that emphasizes the role of network-mediated integration across regions. The clinical neurosciences have likewise shifted from a predominantly lesion-based approach to a connectomic paradigm-framing disorders as diverse as stroke, schizophrenia (SCZ), and dementia as "dysconnection syndromes". Here we position bipolar disorder (BD) within this paradigm. We first summarise the disruptions in structural, functional and effective connectivity that have been documented in BD. Not surprisingly, these disturbances show a preferential impact on circuits that support emotional processes, cognitive control and executive functions. Those at high risk (HR) for BD also show patterns of connectivity that differ from both matched control populations and those with BD, and which may thus speak to neurobiological markers of both risk and resilience. We highlight research fields that aim to link brain network disturbances to the phenotype of BD, including the study of large-scale brain dynamics, the principles of network stability and control, and the study of interoception (the perception of physiological states). Together, these findings suggest that the affective dysregulation of BD arises from dynamic instabilities in interoceptive circuits which subsequently impact on fear circuitry and cognitive control systems. We describe the resulting disturbance as a "psychosis of interoception".
Collapse
Affiliation(s)
- Alistair Perry
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin/London, Germany. .,Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| | - Gloria Roberts
- 0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Randwick, NSW Australia ,grid.415193.bBlack Dog Institute, Prince of Wales Hospital, Randwick, NSW Australia
| | - Philip B. Mitchell
- 0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Randwick, NSW Australia ,grid.415193.bBlack Dog Institute, Prince of Wales Hospital, Randwick, NSW Australia
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,Metro North Mental Health Service, Brisbane, QLD, Australia.
| |
Collapse
|
24
|
Garrett DD, Epp SM, Perry A, Lindenberger U. Local temporal variability reflects functional integration in the human brain. Neuroimage 2018; 183:776-787. [DOI: 10.1016/j.neuroimage.2018.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/27/2018] [Accepted: 08/10/2018] [Indexed: 12/28/2022] Open
|
25
|
Gollo LL, Roberts JA, Cropley VL, Di Biase MA, Pantelis C, Zalesky A, Breakspear M. Fragility and volatility of structural hubs in the human connectome. Nat Neurosci 2018; 21:1107-1116. [PMID: 30038275 DOI: 10.1038/s41593-018-0188-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/30/2018] [Indexed: 11/09/2022]
Abstract
Brain structure reflects the influence of evolutionary processes that pit the costs of its anatomical wiring against the computational advantages conferred by its complexity. We show that cost-neutral 'mutations' of the human connectome almost inevitably degrade its complexity and disconnect high-strength connections to prefrontal network hubs. Conversely, restoring the peripheral location and strong connectivity of empirically observed hubs confers a wiring cost that the brain appears to minimize. Progressive cost-neutral randomization yields daughter networks that differ substantially from one another and results in a topologically unstable phenomenon consistent with a phase transition in complex systems. The fragility of hubs to disconnection shows a significant association with the acceleration of gray matter loss in schizophrenia. Together with effects on wiring cost, we suggest that fragile prefrontal hub connections and topological volatility act as evolutionary influences on brain networks whose optimal set point may be perturbed in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Leonardo L Gollo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Centre of Excellence for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James A Roberts
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Centre of Excellence for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
| | - Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, MA, USA
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.,Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.,Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. .,Centre of Excellence for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. .,Metro North Mental Health Service, Brisbane, Queensland, Australia.
| |
Collapse
|
26
|
Zimmermann J, Perry A, Breakspear M, Schirner M, Sachdev P, Wen W, Kochan NA, Mapstone M, Ritter P, McIntosh AR, Solodkin A. Differentiation of Alzheimer's disease based on local and global parameters in personalized Virtual Brain models. NEUROIMAGE-CLINICAL 2018; 19:240-251. [PMID: 30035018 PMCID: PMC6051478 DOI: 10.1016/j.nicl.2018.04.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/05/2018] [Accepted: 04/14/2018] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is marked by cognitive dysfunction emerging from neuropathological processes impacting brain function. AD affects brain dynamics at the local level, such as changes in the balance of inhibitory and excitatory neuronal populations, as well as long-range changes to the global network. Individual differences in these changes as they relate to behaviour are poorly understood. Here, we use a multi-scale neurophysiological model, “The Virtual Brain (TVB)”, based on empirical multi-modal neuroimaging data, to study how local and global dynamics correlate with individual differences in cognition. In particular, we modeled individual resting-state functional activity of 124 individuals across the behavioural spectrum from healthy aging, to amnesic Mild Cognitive Impairment (MCI), to AD. The model parameters required to accurately simulate empirical functional brain imaging data correlated significantly with cognition, and exceeded the predictive capacity of empirical connectomes. Modeled local and global dynamics correlate with individual cognition in Alzheimer's. Proof of concept of The Virtual Brain to characterize individual dynamics Brain-behaviour relations depend on the network modeled (whole brain or limbic). Model parameters predict cognition better than metrics of neuroimaging data.
Collapse
Affiliation(s)
- J Zimmermann
- Baycrest Health Sciences, Rotman Research Institute, 3560 Bathurst St, Toronto, Ontario M6A 2E1, Canada.
| | - A Perry
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Program of Mental Health Research, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - M Breakspear
- Program of Mental Health Research, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia; Metro North Mental Health Service, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - M Schirner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Dept. of Neurology, Chariteplatz 1, Berlin 13353, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - P Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - W Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - N A Kochan
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - M Mapstone
- UC Irvine Health School of Medicine, Irvine Hall, 1001 Health Sciences Road, Irvine, CA 92697-3950, USA
| | - P Ritter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Dept. of Neurology, Chariteplatz 1, Berlin 13353, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - A R McIntosh
- Baycrest Health Sciences, Rotman Research Institute, 3560 Bathurst St, Toronto, Ontario M6A 2E1, Canada
| | - A Solodkin
- UC Irvine Health School of Medicine, Irvine Hall, 1001 Health Sciences Road, Irvine, CA 92697-3950, USA
| |
Collapse
|
27
|
Jeganathan J, Perry A, Bassett DS, Roberts G, Mitchell PB, Breakspear M. Fronto-limbic dysconnectivity leads to impaired brain network controllability in young people with bipolar disorder and those at high genetic risk. NEUROIMAGE-CLINICAL 2018; 19:71-81. [PMID: 30035004 PMCID: PMC6051310 DOI: 10.1016/j.nicl.2018.03.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/20/2018] [Accepted: 03/25/2018] [Indexed: 01/19/2023]
Abstract
Recent investigations have used diffusion-weighted imaging to reveal disturbances in the neurocircuitry that underlie cognitive-emotional control in bipolar disorder (BD) and in unaffected siblings or children at high genetic risk (HR). It has been difficult to quantify the mechanism by which structural changes disrupt the superimposed brain dynamics, leading to the emotional lability that is characteristic of BD. Average controllability is a concept from network control theory that extends structural connectivity data to estimate the manner in which local neuronal fluctuations spread from a node or subnetwork to alter the state of the rest of the brain. We used this theory to ask whether structural connectivity deficits previously observed in HR individuals (n = 84, mean age 22.4), patients with BD (n = 38, mean age 23.9), and age- and gender-matched controls (n = 96, mean age 22.6) translate to differences in the ability of brain systems to be manipulated between states. Localized impairments in network controllability were seen in the left parahippocampal, left middle occipital, left superior frontal, right inferior frontal, and right precentral gyri in BD and HR groups. Subjects with BD had distributed deficits in a subnetwork containing the left superior and inferior frontal gyri, postcentral gyrus, and insula (p = 0.004). HR participants had controllability deficits in a right-lateralized subnetwork involving connections between the dorsomedial and ventrolateral prefrontal cortex, the superior temporal pole, putamen, and caudate nucleus (p = 0.008). Between-group controllability differences were attenuated after removal of topological factors by network randomization. Some previously reported differences in network connectivity were not associated with controllability-differences, likely reflecting the contribution of more complex brain network properties. These analyses highlight the potential functional consequences of altered brain networks in BD, and may guide future clinical interventions. Control theory estimates how neuronal fluctuations spread from local networks. We compare brain controllability in bipolar disorder and their high-risk relatives. These groups have impaired controllability in networks supporting cognitive and emotional control. Weaker connectivity as well as topological alterations contribute to these changes.
Collapse
Affiliation(s)
- Jayson Jeganathan
- Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Alistair Perry
- Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Psychiatry, University of New South Wales, Randwick, NSW, Australia; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia; Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia; Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Michael Breakspear
- Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Metro North Mental Health Service, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Roberts G, Perry A, Lord A, Frankland A, Leung V, Holmes-Preston E, Levy F, Lenroot RK, Mitchell PB, Breakspear M. Structural dysconnectivity of key cognitive and emotional hubs in young people at high genetic risk for bipolar disorder. Mol Psychiatry 2018; 23:413-421. [PMID: 27994220 PMCID: PMC5794888 DOI: 10.1038/mp.2016.216] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023]
Abstract
Emerging evidence suggests that psychiatric disorders are associated with disturbances in structural brain networks. Little is known, however, about brain networks in those at high risk (HR) of bipolar disorder (BD), with such disturbances carrying substantial predictive and etiological value. Whole-brain tractography was performed on diffusion-weighted images acquired from 84 unaffected HR individuals with at least one first-degree relative with BD, 38 young patients with BD and 96 matched controls (CNs) with no family history of mental illness. We studied structural connectivity differences between these groups, with a focus on highly connected hubs and networks involving emotional centres. HR participants showed lower structural connectivity in two lateralised sub-networks centred on bilateral inferior frontal gyri and left insular cortex, as well as increased connectivity in a right lateralised limbic sub-network compared with CN subjects. BD was associated with weaker connectivity in a small right-sided sub-network involving connections between fronto-temporal and temporal areas. Although these sub-networks preferentially involved structural hubs, the integrity of the highly connected structural backbone was preserved in both groups. Weaker structural brain networks involving key emotional centres occur in young people at genetic risk of BD and those with established BD. In contrast to other psychiatric disorders such as schizophrenia, the structural core of the brain remains intact, despite the local involvement of network hubs. These results add to our understanding of the neurobiological correlates of BD and provide predictions for outcomes in young people at high genetic risk for BD.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - A Perry
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Metro North Mental Health Service, Brisbane, QLD, Australia,Centre for Healthy Brain Ageing, Randwick, NSW, Australia
| | - A Lord
- Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - A Frankland
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - V Leung
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - E Holmes-Preston
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - F Levy
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Prince of Wales Hospital, Randwick, NSW, Australia
| | - R K Lenroot
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Neuroscience Research Australia, Randwick, NSW, Australia
| | - P B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia,Prince of Wales Hospital, Randwick, NSW, Australia
| | - M Breakspear
- Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Metro North Mental Health Service, Brisbane, QLD, Australia,Systems Neuroscience Group, QIMR Berghofer Institute of Medical Research, 300 Herston Road, Herston, QLD, Australia. E-mail:
| |
Collapse
|
29
|
Melie-Garcia L, Slater D, Ruef A, Sanabria-Diaz G, Preisig M, Kherif F, Draganski B, Lutti A. Networks of myelin covariance. Hum Brain Mapp 2017; 39:1532-1554. [PMID: 29271053 PMCID: PMC5873432 DOI: 10.1002/hbm.23929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/02/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023] Open
Abstract
Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, ). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these "networks of myelin covariance" (Myelin-Nets). The Myelin-Nets were built from quantitative Magnetization Transfer data-an in-vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin-Nets. We therefore selected two age groups: Young-Age (20-31 years old) and Old-Age (60-71 years old) and a pool of participants from 48 to 87 years old for a Myelin-Nets aging trajectory study. We found that the topological organization of the Myelin-Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin-Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging.
Collapse
Affiliation(s)
- Lester Melie-Garcia
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Switzerland
| | - David Slater
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Switzerland
| | - Anne Ruef
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Switzerland
| | - Gretel Sanabria-Diaz
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Switzerland
| | - Martin Preisig
- Department of Psychiatry, Lausanne University Hospital (CHUV), Switzerland
| | - Ferath Kherif
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Switzerland
| | - Bogdan Draganski
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Switzerland.,Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Antoine Lutti
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Switzerland
| |
Collapse
|
30
|
Dimitriadis SI, Drakesmith M, Bells S, Parker GD, Linden DE, Jones DK. Improving the Reliability of Network Metrics in Structural Brain Networks by Integrating Different Network Weighting Strategies into a Single Graph. Front Neurosci 2017; 11:694. [PMID: 29311775 PMCID: PMC5742099 DOI: 10.3389/fnins.2017.00694] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/27/2017] [Indexed: 11/21/2022] Open
Abstract
Structural brain networks estimated from diffusion MRI (dMRI) via tractography have been widely studied in healthy controls and patients with neurological and psychiatric diseases. However, few studies have addressed the reliability of derived network metrics both node-specific and network-wide. Different network weighting strategies (NWS) can be adopted to weight the strength of connection between two nodes yielding structural brain networks that are almost fully-weighted. Here, we scanned five healthy participants five times each, using a diffusion-weighted MRI protocol and computed edges between 90 regions of interest (ROI) from the Automated Anatomical Labeling (AAL) template. The edges were weighted according to nine different methods. We propose a linear combination of these nine NWS into a single graph using an appropriate diffusion distance metric. We refer to the resulting weighted graph as an Integrated Weighted Structural Brain Network (ISWBN). Additionally, we consider a topological filtering scheme that maximizes the information flow in the brain network under the constraint of the overall cost of the surviving connections. We compared each of the nine NWS and the ISWBN based on the improvement of: (a) intra-class correlation coefficient (ICC) of well-known network metrics, both node-wise and per network level; and (b) the recognition accuracy of each subject compared to the remainder of the cohort, as an attempt to access the uniqueness of the structural brain network for each subject, after first applying our proposed topological filtering scheme. Based on a threshold where the network level ICC should be >0.90, our findings revealed that six out of nine NWS lead to unreliable results at the network level, while all nine NWS were unreliable at the node level. In comparison, our proposed ISWBN performed as well as the best performing individual NWS at the network level, and the ICC was higher compared to all individual NWS at the node level. Importantly, both network and node-wise ICCs of network metrics derived from the topologically filtered ISBWN (ISWBNTF), were further improved compared to the non-filtered ISWBN. Finally, in the recognition accuracy tests, we assigned each single ISWBNTF to the correct subject. We also applied our methodology to a second dataset of diffusion-weighted MRI in healthy controls and individuals with psychotic experience. Following a binary classification scheme, the classification performance based on ISWBNTF outperformed the nine different weighting strategies and the ISWBN. Overall, these findings suggest that the proposed methodology results in improved characterization of genuine between-subject differences in connectivity leading to the possibility of network-based structural phenotyping.
Collapse
Affiliation(s)
- Stavros I Dimitriadis
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom.,School of Psychology, Cardiff University, Cardiff, United Kingdom.,Neuroinformatics Group, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Mark Drakesmith
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Sonya Bells
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom.,School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Greg D Parker
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom.,School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - David E Linden
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
31
|
Perry A, Wen W, Kochan NA, Thalamuthu A, Sachdev PS, Breakspear M. The independent influences of age and education on functional brain networks and cognition in healthy older adults. Hum Brain Mapp 2017; 38:5094-5114. [PMID: 28685910 PMCID: PMC6866868 DOI: 10.1002/hbm.23717] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 12/26/2022] Open
Abstract
Healthy aging is accompanied by a constellation of changes in cognitive processes and alterations in functional brain networks. The relationships between brain networks and cognition during aging in later life are moderated by demographic and environmental factors, such as prior education, in a poorly understood manner. Using multivariate analyses, we identified three latent patterns (or modes) linking resting-state functional connectivity to demographic and cognitive measures in 101 cognitively normal elders. The first mode (P = 0.00043) captures an opposing association between age and core cognitive processes such as attention and processing speed on functional connectivity patterns. The functional subnetwork expressed by this mode links bilateral sensorimotor and visual regions through key areas such as the parietal operculum. A strong, independent association between years of education and functional connectivity loads onto a second mode (P = 0.012), characterized by the involvement of key hub regions. A third mode (P = 0.041) captures weak, residual brain-behavior relations. Our findings suggest that circuits supporting lower level cognitive processes are most sensitive to the influence of age in healthy older adults. Education, and to a lesser extent, executive functions, load independently onto functional networks-suggesting that the moderating effect of education acts upon networks distinct from those vulnerable with aging. This has important implications in understanding the contribution of education to cognitive reserve during healthy aging. Hum Brain Mapp 38:5094-5114, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alistair Perry
- Centre for Healthy Brain Ageing (CHeBA), School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
- School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
- Program of Mental Health Research, QIMR Berghofer Medical Research InstituteHerstonQueensland4006Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
- School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Nicole A. Kochan
- Centre for Healthy Brain Ageing (CHeBA), School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
- School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
- School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
- School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Michael Breakspear
- Program of Mental Health Research, QIMR Berghofer Medical Research InstituteHerstonQueensland4006Australia
- Metro North Mental Health Service, Royal Brisbane and Women's HospitalHerstonQueensland4029Australia
| |
Collapse
|
32
|
Jin C, Chao YP, Lin L, Fu Z, Zhang B, Wu S. The Study of Graph Measurements for Hub Identification in Multiple Parcellated Brain Networks of Healthy Older Adult. J Med Biol Eng 2017. [DOI: 10.1007/s40846-017-0259-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Metastability in Senescence. Trends Cogn Sci 2017; 21:509-521. [DOI: 10.1016/j.tics.2017.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 02/01/2023]
|
34
|
Ball G, Beare R, Seal ML. Network component analysis reveals developmental trajectories of structural connectivity and specific alterations in autism spectrum disorder. Hum Brain Mapp 2017; 38:4169-4184. [PMID: 28560746 DOI: 10.1002/hbm.23656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 11/06/2022] Open
Abstract
The structural organization of the brain can be characterized as a hierarchical ensemble of segregated modules linked by densely interconnected hub regions that facilitate distributed functional interactions. Disturbances to this network may be an important marker of abnormal development. Recently, several neurodevelopmental disorders, including autism spectrum disorder (ASD), have been framed as disorders of connectivity but the full nature and timing of these disturbances remain unclear. In this study, we use non-negative matrix factorization, a data-driven, multivariate approach, to model the structural network architecture of the brain as a set of superposed subnetworks, or network components. In an openly available dataset of 196 subjects scanned between 5 and 85 years we identify a set of robust and reliable subnetworks that develop in tandem with age and reflect both anatomically local and long-range, network hub connections. In a second experiment, we compare network components in a cohort of 51 high-functioning ASD adolescents to a group of age-matched controls. We identify a specific subnetwork representing an increase in local connection strength in the cingulate cortex in ASD (t = 3.44, P < 0.001). This work highlights possible long-term implications of alterations to the developmental trajectories of specific cortical subnetworks. Hum Brain Mapp 38:4169-4184, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Richard Beare
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Marc L Seal
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Hillary FG, Grafman JH. Injured Brains and Adaptive Networks: The Benefits and Costs of Hyperconnectivity. Trends Cogn Sci 2017; 21:385-401. [PMID: 28372878 PMCID: PMC6664441 DOI: 10.1016/j.tics.2017.03.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 01/15/2023]
Abstract
A common finding in human functional brain-imaging studies is that damage to neural systems paradoxically results in enhanced functional connectivity between network regions, a phenomenon commonly referred to as 'hyperconnectivity'. Here, we describe the various ways that hyperconnectivity operates to benefit a neural network following injury while simultaneously negotiating the trade-off between metabolic cost and communication efficiency. Hyperconnectivity may be optimally expressed by increasing connections through the most central and metabolically efficient regions (i.e., hubs). While adaptive in the short term, we propose that chronic hyperconnectivity may leave network hubs vulnerable to secondary pathological processes over the life span due to chronically elevated metabolic stress. We conclude by offering novel, testable hypotheses for advancing our understanding of the role of hyperconnectivity in systems-level brain plasticity in neurological disorders.
Collapse
Affiliation(s)
- Frank G Hillary
- Pennsylvania State University, University Park, PA, USA; Social Life and Engineering Sciences Imaging Center, University Park, PA, USA; Department of Neurology, Hershey Medical Center, Hershey, PA, USA.
| | - Jordan H Grafman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
36
|
Roberts JA, Perry A, Roberts G, Mitchell PB, Breakspear M. Consistency-based thresholding of the human connectome. Neuroimage 2016; 145:118-129. [PMID: 27666386 DOI: 10.1016/j.neuroimage.2016.09.053] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 12/25/2022] Open
Abstract
Densely seeded probabilistic tractography yields weighted networks that are nearly fully connected, hence containing many spurious fibers. It is thus necessary to prune spurious connections from probabilistically-derived networks to obtain a more reliable overall estimate of the connectivity. A standard method is to threshold by weight, keeping only the strongest edges. Here, by measuring the consistency of edge weights across subjects, we propose a new thresholding method that aims to reduce the rate of false-positives in group-averaged connectivity matrices. Close inspection of the relationship between consistency, weight, and distance suggests that the most consistent edges are in fact those that are strong for their length, rather than simply strong overall. Hence retaining the most consistent edges preserves more long-distance connections than traditional weight-based thresholding, which penalizes long connections for being weak regardless of anatomy. By comparing our thresholded networks to mouse and macaque tracer data, we also show that consistency-based thresholding exhibits the species-invariant exponential decay of connection weights with distance, while weight-based thresholding does not. We also show that consistency-based thresholding can be used to identify highly consistent and highly inconsistent subnetworks across subjects, enabling more nuanced analyses of group-level connectivity than just the mean connectivity.
Collapse
Affiliation(s)
- James A Roberts
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; Centre for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia.
| | - Alistair Perry
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia
| | - Michael Breakspear
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; Centre for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; Metro North Mental Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
37
|
Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation. J Neurosci 2016; 36:3115-26. [PMID: 26985024 PMCID: PMC4792930 DOI: 10.1523/jneurosci.2733-15.2016] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The maintenance of wellbeing across the lifespan depends on the preservation of cognitive function. We propose that successful cognitive aging is determined by interactions both within and between large-scale functional brain networks. Such connectivity can be estimated from task-free functional magnetic resonance imaging (fMRI), also known as resting-state fMRI (rs-fMRI). However, common correlational methods are confounded by age-related changes in the neurovascular signaling. To estimate network interactions at the neuronal rather than vascular level, we used generative models that specified both the neural interactions and a flexible neurovascular forward model. The networks' parameters were optimized to explain the spectral dynamics of rs-fMRI data in 602 healthy human adults from population-based cohorts who were approximately uniformly distributed between 18 and 88 years (www.cam-can.com). We assessed directed connectivity within and between three key large-scale networks: the salience network, dorsal attention network, and default mode network. We found that age influences connectivity both within and between these networks, over and above the effects on neurovascular coupling. Canonical correlation analysis revealed that the relationship between network connectivity and cognitive function was age-dependent: cognitive performance relied on neural dynamics more strongly in older adults. These effects were driven partly by reduced stability of neural activity within all networks, as expressed by an accelerated decay of neural information. Our findings suggest that the balance of excitatory connectivity between networks, and the stability of intrinsic neural representations within networks, changes with age. The cognitive function of older adults becomes increasingly dependent on these factors. SIGNIFICANCE STATEMENT Maintaining cognitive function is critical to successful aging. To study the neural basis of cognitive function across the lifespan, we studied a large population-based cohort (n = 602, 18–88 years), separating neural connectivity from vascular components of fMRI signals. Cognitive ability was influenced by the strength of connection within and between functional brain networks, and this positive relationship increased with age. In older adults, there was more rapid decay of intrinsic neuronal activity in multiple regions of the brain networks, which related to cognitive performance. Our data demonstrate increased reliance on network flexibility to maintain cognitive function, in the presence of more rapid decay of neural activity. These insights will facilitate the development of new strategies to maintain cognitive ability.
Collapse
|
38
|
Hamson DK, Roes MM, Galea LAM. Sex Hormones and Cognition: Neuroendocrine Influences on Memory and Learning. Compr Physiol 2016; 6:1295-337. [DOI: 10.1002/cphy.c150031] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Wirsich J, Perry A, Ridley B, Proix T, Golos M, Bénar C, Ranjeva JP, Bartolomei F, Breakspear M, Jirsa V, Guye M. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy. NEUROIMAGE-CLINICAL 2016; 11:707-718. [PMID: 27330970 PMCID: PMC4909094 DOI: 10.1016/j.nicl.2016.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/15/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022]
Abstract
The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.
Collapse
Key Words
- CSD, constrained spherical deconvolution
- CSF, cerebrospinal fluid
- FA, fractional anisotropy
- FCA, analytic functional connectivity
- FCD, functional connectivity dynamics
- FOD, fiber orientation distribution
- Functional connectivity
- NBS, network based statistics
- Network based statistics
- Network communication
- Rich club
- Structural connectivity
- Temporal lobe epilepsy
- dMRI, diffusion magnetic resonance imaging
- rTLE, right temporal lobe epilepsy
- rsfMRI, resting state functional magnetic resonance imaging
Collapse
Affiliation(s)
- Jonathan Wirsich
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385 Marseille, France; APHM, Hôpitaux de la Timone, Pôle d'imagerie Médicale, CEMEREM, 13005 Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France.
| | - Alistair Perry
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia; Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia.
| | - Ben Ridley
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385 Marseille, France; APHM, Hôpitaux de la Timone, Pôle d'imagerie Médicale, CEMEREM, 13005 Marseille, France.
| | - Timothée Proix
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France.
| | - Mathieu Golos
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France.
| | - Christian Bénar
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France.
| | - Jean-Philippe Ranjeva
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385 Marseille, France; APHM, Hôpitaux de la Timone, Pôle d'imagerie Médicale, CEMEREM, 13005 Marseille, France.
| | - Fabrice Bartolomei
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France; APHM, Hôpitaux de la Timone, Pôle de Neurosciences Cliniques, Service de Neurophysiologie Clinique, 13005 Marseille, France.
| | - Michael Breakspear
- School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia; Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia; Metro North Mental Health Services, Brisbane, QLD 4006, Australia.
| | - Viktor Jirsa
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France.
| | - Maxime Guye
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385 Marseille, France; APHM, Hôpitaux de la Timone, Pôle d'imagerie Médicale, CEMEREM, 13005 Marseille, France.
| |
Collapse
|
40
|
Hoyau E, Cousin E, Jaillard A, Baciu M. Modulation of the inter-hemispheric processing of semantic information during normal aging. A divided visual field experiment. Neuropsychologia 2016; 93:425-436. [PMID: 26724229 DOI: 10.1016/j.neuropsychologia.2015.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 11/12/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
Abstract
We evaluated the effect of normal aging on the inter-hemispheric processing of semantic information by using the divided visual field (DVF) method, with words and pictures. Two main theoretical models have been considered, (a) the HAROLD model which posits that aging is associated with supplementary recruitment of the right hemisphere (RH) and decreased hemispheric specialization, and (b) the RH decline theory, which assumes that the RH becomes less efficient with aging, associated with increased LH specialization. Two groups of subjects were examined, a Young Group (YG) and an Old Group (OG), while participants performed a semantic categorization task (living vs. non-living) in words and pictures. The DVF was realized in two steps: (a) unilateral DVF presentation with stimuli presented separately in each visual field, left or right, allowing for their initial processing by only one hemisphere, right or left, respectively; (b) bilateral DVF presentation (BVF) with stimuli presented simultaneously in both visual fields, followed by their processing by both hemispheres. These two types of presentation permitted the evaluation of two main characteristics of the inter-hemispheric processing of information, the hemispheric specialization (HS) and the inter-hemispheric cooperation (IHC). Moreover, the BVF allowed determining the driver-hemisphere for processing information presented in BVF. Results obtained in OG indicated that: (a) semantic categorization was performed as accurately as YG, even if more slowly, (b) a non-semantic RH decline was observed, and (c) the LH controls the semantic processing during the BVF, suggesting an increased role of the LH in aging. However, despite the stronger involvement of the LH in OG, the RH is not completely devoid of semantic abilities. As discussed in the paper, neither the HAROLD nor the RH decline does fully explain this pattern of results. We rather suggest that the effect of aging on the hemispheric specialization and inter-hemispheric cooperation during semantic processing is explained not by only one model, but by an interaction between several complementary mechanisms and models.
Collapse
Affiliation(s)
- E Hoyau
- University Grenoble Alpes, LPNC, F-38040 Grenoble, France; CNRS, LPNC UMR 5105, F-38040 Grenoble, France
| | - E Cousin
- University Grenoble Alpes, LPNC, F-38040 Grenoble, France; CNRS, LPNC UMR 5105, F-38040 Grenoble, France; UMS IRMaGe, IRM 3T, CHU Grenoble, University Grenoble Alpes, F-38043 Grenoble, France
| | - A Jaillard
- UMS IRMaGe, IRM 3T, CHU Grenoble, University Grenoble Alpes, F-38043 Grenoble, France
| | - M Baciu
- University Grenoble Alpes, LPNC, F-38040 Grenoble, France; CNRS, LPNC UMR 5105, F-38040 Grenoble, France.
| |
Collapse
|
41
|
The contribution of geometry to the human connectome. Neuroimage 2016; 124:379-393. [DOI: 10.1016/j.neuroimage.2015.09.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 12/13/2022] Open
|
42
|
Contreras JA, Goñi J, Risacher SL, Sporns O, Saykin AJ. The Structural and Functional Connectome and Prediction of Risk for Cognitive Impairment in Older Adults. Curr Behav Neurosci Rep 2015; 2:234-245. [PMID: 27034914 PMCID: PMC4809258 DOI: 10.1007/s40473-015-0056-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human connectome refers to a comprehensive description of the brain's structural and functional connections in terms of brain networks. As the field of brain connectomics has developed, data acquisition, subsequent processing and modeling, and ultimately the representation of the connectome have become better defined and integrated with network science approaches. In this way, the human connectome has provided a way to elucidate key features of not only the healthy brain but also diseased brains. The field has quickly evolved, offering insights into network disruptions that are characteristic for specific neurodegenerative disorders. In this paper, we provide a brief review of the field of brain connectomics, as well as a more in-depth survey of recent studies that have provided new insights into brain network pathologies, including those found in Alzheimer's disease (AD), patients with mild cognitive impairment (MCI), and finally in people classified as being "at risk". Until the emergence of brain connectomics, most previous studies had assessed neurodegenerative diseases mainly by focusing on specific and dispersed locales in the brain. Connectomics-based approaches allow us to model the brain as a network, which allows for inferences about how dynamic changes in brain function would be affected in relation to structural changes. In fact, looking at diseases using network theory gives rise to new hypotheses on mechanisms of pathophysiology and clinical symptoms. Finally, we discuss the future of this field and how understanding both the functional and structural connectome can aid in gaining sharper insight into changes in biological brain networks associated with cognitive impairment and dementia.
Collapse
Affiliation(s)
- Joey A. Contreras
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Program, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Indiana University, Indianapolis, IN, USA
| | - Joaquín Goñi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Program, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Indiana University, Indianapolis, IN, USA
| | - Shannon L. Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Program, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Indiana University, Indianapolis, IN, USA
| | - Olaf Sporns
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Indiana University, Indianapolis, IN, USA
- Department of Psychology and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Program, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
43
|
Turner GR, Spreng RN. Prefrontal Engagement and Reduced Default Network Suppression Co-occur and Are Dynamically Coupled in Older Adults: The Default-Executive Coupling Hypothesis of Aging. J Cogn Neurosci 2015; 27:2462-76. [PMID: 26351864 DOI: 10.1162/jocn_a_00869] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Reduced executive control is a hallmark of neurocognitive aging. Poor modulation of lateral pFC activity in the context of increasing task challenge in old adults and a "failure to deactivate" the default network during cognitive control tasks have been observed. Whether these two patterns represent discrete mechanisms of neurocognitive aging or interact into older adulthood remains unknown. We examined whether altered pFC and default network dynamics co-occur during goal-directed planning over increasing levels of difficulty during performance on the Tower of London task. We used fMRI to investigate task- and age-related changes in brain activation and functional connectivity across four levels of task challenge. Frontoparietal executive control regions were activated and default network regions were suppressed during planning relative to counting performance in both groups. Older adults, unlike young, failed to modulate brain activity in executive control and default regions as planning demands increased. Critically, functional connectivity analyses revealed bilateral dorsolateral pFC coupling in young adults and dorsolateral pFC to default coupling in older adults with increased planning complexity. We propose a default-executive coupling hypothesis of aging. First, this hypothesis suggests that failure to modulate control and default network activity in response to increasing task challenge are linked in older adulthood. Second, functional brain changes involve greater coupling of lateral pFC and the default network as cognitive control demands increase in older adults. We speculate that these changes reflect an adaptive shift in cognitive approach as older adults come to rely more upon stored representations to support goal-directed task performance.
Collapse
|
44
|
Gollo LL, Zalesky A, Hutchison RM, van den Heuvel M, Breakspear M. Dwelling quietly in the rich club: brain network determinants of slow cortical fluctuations. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140165. [PMID: 25823864 PMCID: PMC4387508 DOI: 10.1098/rstb.2014.0165] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2015] [Indexed: 11/12/2022] Open
Abstract
For more than a century, cerebral cartography has been driven by investigations of structural and morphological properties of the brain across spatial scales and the temporal/functional phenomena that emerge from these underlying features. The next era of brain mapping will be driven by studies that consider both of these components of brain organization simultaneously--elucidating their interactions and dependencies. Using this guiding principle, we explored the origin of slowly fluctuating patterns of synchronization within the topological core of brain regions known as the rich club, implicated in the regulation of mood and introspection. We find that a constellation of densely interconnected regions that constitute the rich club (including the anterior insula, amygdala and precuneus) play a central role in promoting a stable, dynamical core of spontaneous activity in the primate cortex. The slow timescales are well matched to the regulation of internal visceral states, corresponding to the somatic correlates of mood and anxiety. In contrast, the topology of the surrounding 'feeder' cortical regions shows unstable, rapidly fluctuating dynamics likely to be crucial for fast perceptual processes. We discuss these findings in relation to psychiatric disorders and the future of connectomics.
Collapse
Affiliation(s)
- Leonardo L Gollo
- Systems Neuroscience Group, QIMR Berghofer, Brisbane, Queensland, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Melbourne Health, The University of Melbourne, Parkville, Victoria, Australia Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | - Michael Breakspear
- Systems Neuroscience Group, QIMR Berghofer, Brisbane, Queensland, Australia Metro North Mental Health Service, Herston, Queensland, Australia
| |
Collapse
|