1
|
Huang Q, Jiang X, Jin Y, Wu B, Vigotsky AD, Fan L, Gu P, Tu W, Huang L, Jiang S. Immersive virtual reality-based rehabilitation for subacute stroke: a randomized controlled trial. J Neurol 2024; 271:1256-1266. [PMID: 37947856 PMCID: PMC10896795 DOI: 10.1007/s00415-023-12060-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Few effective treatments improve upper extremity (UE) function after stroke. Immersive virtual reality (imVR) is a novel and promising strategy for stroke UE recovery. We assessed the extent to which imVR-based UE rehabilitation can augment conventional treatment and explored changes in brain functional connectivity (FC) that were related to the rehabilitation. METHODS An assessor-blinded, parallel-group randomized controlled trial was performed with 40 subjects randomly assigned to either imVR or Control group (1:1 allocation), each receiving rehabilitation 5 times per week for 3 weeks. Subjects in the imVR received both imVR and conventional rehabilitation, while those in the Control received conventional rehabilitation only. Our primary and secondary outcomes were the Fugl-Meyer assessment's upper extremity subscale (FMA-UE) and the Barthel Index (BI), respectively. Both intention-to-treat (ITT) and per-protocol (PP) analyses were performed to assess the effectiveness of the trial. For both the FMA-UE/BI, a one-way analysis of covariance (ANCOVA) model was used, with the FMA-UE/BI at post-intervention or at follow-up, respectively, as the dependent variable, the two groups as the independent variable, baseline FMA-UE/BI, age, sex, site, time since onset, hypertension and diabetes as covariates. RESULTS Both ITT and PP analyses demonstrated the effectiveness of imVR-based rehabilitation. The FMA-UE score was greater in the imVR compared with the Control at the post-intervention (mean difference: 9.1 (95% CI 1.6, 16.6); P = 0.019) and follow-up (mean difference:11.5 (95% CI 1.9, 21.0); P = 0.020). The results were consistent for BI scores. Moreover, brain FC analysis found that the motor function improvements were associated with a change in degree in ipsilesional premotor cortex and ipsilesional dorsolateral prefrontal cortex immediately following the intervention and in ipsilesional visual region and ipsilesional middle frontal gyrus after the 12-week follow-up. CONCLUSIONS ImVR-based rehabilitation is an effective tool that can improve the recovery of UE functional capabilities of subacute stroke patients when added to standard care. These improvements were associated with distinctive brain changes at two post-stroke timepoints. The study results will benefit future patients with stroke and provide evidence for a promising new method of stroke rehabilitation. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03086889.
Collapse
Affiliation(s)
- Qianqian Huang
- Department of Rehabilitation Medicine, Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xixi Jiang
- Department of Rehabilitation Medicine, Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yun Jin
- Department of Rehabilitation Medicine, Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Bo Wu
- Department of Information, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Andrew D Vigotsky
- Departments of Biomedical Engineering and Statistics, Northwestern University, Evanston, IL, 60208, USA
| | - Linyu Fan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Pengpeng Gu
- Department of Rehabilitation Medicine, Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Wenzhan Tu
- Department of Rehabilitation Medicine, Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Lejian Huang
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Songhe Jiang
- Department of Rehabilitation Medicine, Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
2
|
Yizhar O, Tal Z, Amedi A. Loss of action-related function and connectivity in the blind extrastriate body area. Front Neurosci 2023; 17:973525. [PMID: 36968509 PMCID: PMC10035577 DOI: 10.3389/fnins.2023.973525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
The Extrastriate Body Area (EBA) participates in the visual perception and motor actions of body parts. We recently showed that EBA’s perceptual function develops independently of visual experience, responding to stimuli with body-part information in a supramodal fashion. However, it is still unclear if the EBA similarly maintains its action-related function. Here, we used fMRI to study motor-evoked responses and connectivity patterns in the congenitally blind brain. We found that, unlike the case of perception, EBA does not develop an action-related response without visual experience. In addition, we show that congenital blindness alters EBA’s connectivity profile in a counterintuitive way—functional connectivity with sensorimotor cortices dramatically decreases, whereas connectivity with perception-related visual occipital cortices remains high. To the best of our knowledge, we show for the first time that action-related functions and connectivity in the visual cortex could be contingent on visuomotor experience. We further discuss the role of the EBA within the context of visuomotor control and predictive coding theory.
Collapse
Affiliation(s)
- Or Yizhar
- Department of Cognitive and Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Ivcher School of Psychology, The Institute for Brain, Mind and Technology, Reichman University, Herzliya, Israel
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human Development, Berlin, Germany
- *Correspondence: Or Yizhar,
| | - Zohar Tal
- Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Amir Amedi
- Ivcher School of Psychology, The Institute for Brain, Mind and Technology, Reichman University, Herzliya, Israel
- The Ruth & Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| |
Collapse
|
3
|
Huang Q, Lin D, Huang S, Cao Y, Jin Y, Wu B, Fan L, Tu W, Huang L, Jiang S. Brain Functional Topology Alteration in Right Lateral Occipital Cortex Is Associated With Upper Extremity Motor Recovery. Front Neurol 2022; 13:780966. [PMID: 35309550 PMCID: PMC8927543 DOI: 10.3389/fneur.2022.780966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Stroke is a chief cause of sudden brain damage that severely disrupts the whole-brain network. However, the potential mechanisms of motor recovery after stroke are uncertain and the prognosis of poststroke upper extremity recovery is still a challenge. This study investigated the global and local topological properties of the brain functional connectome in patients with subacute ischemic stroke and their associations with the clinical measurements. A total of 57 patients, consisting of 29 left-sided and 28 right-sided stroke patients, and 32 age- and gender-matched healthy controls (HCs) were recruited to undergo a resting-state functional magnetic resonance imaging (rs-fMRI) study; patients were also clinically evaluated with the Upper Extremity Fugl-Meyer Assessment (FMA_UE). The assessment was repeated at 15 weeks to assess upper extremity functional recovery for the patient remaining in the study (12 left- 20 right-sided stroke patients). Global graph topological disruption indices of stroke patients were significantly decreased compared with HCs but these indices were not significantly associated with FMA_UE. In addition, local brain network structure of stroke patients was altered, and the altered regions were dependent on the stroke site. Significant associations between local degree and motor performance and its recovery were observed in the right lateral occipital cortex (R LOC) in the right-sided stroke patients. Our findings suggested that brain functional topologies alterations in R LOC are promising as prognostic biomarkers for right-sided subacute stroke. This cortical area might be a potential target to be further validated for non-invasive brain stimulation treatment to improve poststroke upper extremity recovery.
Collapse
Affiliation(s)
- Qianqian Huang
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Dinghong Lin
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Shishi Huang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yungang Cao
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yun Jin
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Bo Wu
- Department of Information, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linyu Fan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenzhan Tu
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Lejian Huang
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Lejian Huang
| | - Songhe Jiang
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
- Songhe Jiang
| |
Collapse
|
4
|
Hofstetter S, Zuiderbaan W, Heimler B, Dumoulin SO, Amedi A. Topographic maps and neural tuning for sensory substitution dimensions learned in adulthood in a congenital blind subject. Neuroimage 2021; 235:118029. [PMID: 33836269 DOI: 10.1016/j.neuroimage.2021.118029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 01/28/2023] Open
Abstract
Topographic maps, a key principle of brain organization, emerge during development. It remains unclear, however, whether topographic maps can represent a new sensory experience learned in adulthood. MaMe, a congenitally blind individual, has been extensively trained in adulthood for perception of a 2D auditory-space (soundscape) where the y- and x-axes are represented by pitch and time, respectively. Using population receptive field mapping we found neural populations tuned topographically to pitch, not only in the auditory cortices but also in the parietal and occipito-temporal cortices. Topographic neural tuning to time was revealed in the parietal and occipito-temporal cortices. Some of these maps were found to represent both axes concurrently, enabling MaMe to represent unique locations in the soundscape space. This case study provides proof of concept for the existence of topographic maps tuned to the newly learned soundscape dimensions. These results suggest that topographic maps can be adapted or recycled in adulthood to represent novel sensory experiences.
Collapse
Affiliation(s)
- Shir Hofstetter
- Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam, BK 1105 Netherlands.
| | - Wietske Zuiderbaan
- Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam, BK 1105 Netherlands
| | - Benedetta Heimler
- The Baruch Ivcher Institute for Brain, Mind & Technology, School of Psychology, Interdisciplinary Center (IDC) Herzliya, P.O. Box 167, Herzliya 46150, Israel; Center of Advanced Technologies in Rehabilitation (CATR), Sheba Medical Center, Ramat Gan, Israel
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam, BK 1105 Netherlands; Department of Experimental and Applied Psychology, VU University Amsterdam, Amsterdam, BT 1181, Netherlands; Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, CS 3584, Netherlands.
| | - Amir Amedi
- The Baruch Ivcher Institute for Brain, Mind & Technology, School of Psychology, Interdisciplinary Center (IDC) Herzliya, P.O. Box 167, Herzliya 46150, Israel.
| |
Collapse
|
5
|
Expert Tool Users Show Increased Differentiation between Visual Representations of Hands and Tools. J Neurosci 2021; 41:2980-2989. [PMID: 33563728 PMCID: PMC8018880 DOI: 10.1523/jneurosci.2489-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022] Open
Abstract
The idea that when we use a tool we incorporate it into the neural representation of our body (embodiment) has been a major inspiration for philosophy, science, and engineering. While theoretically appealing, there is little direct evidence for tool embodiment at the neural level. Using functional magnetic resonance imaging (fMRI) in male and female human subjects, we investigated whether expert tool users (London litter pickers: n = 7) represent their expert tool more like a hand (neural embodiment) or less like a hand (neural differentiation), as compared with a group of tool novices (n = 12). During fMRI scans, participants viewed first-person videos depicting grasps performed by either a hand, litter picker, or a non-expert grasping tool. Using representational similarity analysis (RSA), differences in the representational structure of hands and tools were measured within occipitotemporal cortex (OTC). Contrary to the neural embodiment theory, we find that the experts group represent their own tool less like a hand (not more) relative to novices. Using a case-study approach, we further replicated this effect, independently, in five of the seven individual expert litter pickers, as compared with the novices. An exploratory analysis in left parietal cortex, a region implicated in visuomotor representations of hands and tools, also indicated that experts do not visually represent their tool more similar to hands, compared with novices. Together, our findings suggest that extensive tool use leads to an increased neural differentiation between visual representations of hands and tools. This evidence provides an important alternative framework to the prominent tool embodiment theory.SIGNIFICANCE STATEMENT It is commonly thought that tool use leads to the assimilation of the tool into the neural representation of the body, a process referred to as embodiment. Here, we demonstrate that expert tool users (London litter pickers) neurally represent their own tool less like a hand (not more), compared with novices. Our findings advance our current understanding for how experience shapes functional organization in high-order visual cortex. Further, this evidence provides an alternative framework to the prominent tool embodiment theory, suggesting instead that experience with tools leads to more distinct, separable hand and tool representations.
Collapse
|
6
|
Eisenstein T, Yogev-Seligmann G, Ash E, Giladi N, Sharon H, Shapira-Lichter I, Nachman S, Hendler T, Lerner Y. Maximal aerobic capacity is associated with hippocampal cognitive reserve in older adults with amnestic mild cognitive impairment. Hippocampus 2020; 31:305-320. [PMID: 33314497 DOI: 10.1002/hipo.23290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/03/2020] [Accepted: 11/28/2020] [Indexed: 01/03/2023]
Abstract
Maximal aerobic capacity (MAC) has been associated with preserved neural tissue or brain maintenance (BM) in healthy older adults, including the hippocampus. Amnestic mild cognitive impairment (aMCI) is considered a prodromal stage of Alzheimer's disease. While aMCI is characterized by hippocampal deterioration, the MAC-hippocampal relationship in these patients is not well understood. In contrast to healthy individuals, neurocognitive protective effects in neurodegenerative populations have been associated with mechanisms of cognitive reserve (CR) altering the neuropathology-cognition relationship. We investigated the MAC-hippocampal relationship in aMCI (n = 29) from the perspectives of BM and CR mechanistic models with structural MRI and a memory fMRI paradigm using both group-level (higher-fit patients vs. lower-fit patients) and individual level (continuous correlation) approaches. While MAC was associated with smaller hippocampal volume, contradicting the BM model, higher-fit patients demonstrated statistically significant lower correlation between hippocampal volume and memory performance compared with the lower-fit patients, supporting the model of CR. In addition, while there was no difference in brain activity between the groups during low cognitive demand (encoding of familiar stimuli), higher MAC level was associated with increased cortical and sub-cortical activation during increased cognitive demand (encoding of novel stimuli) and also with bilateral hippocampal activity even when controlling for hippocampal volume, suggesting for an independent effect of MAC. Our results suggest that MAC may be associated with hippocampal-related cognitive reserve in aMCI through altering the relationship between hippocampal-related structural deterioration and cognitive function. In addition, MAC was found to be associated with increased capacity to recruit neural resources during increased cognitive demands.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Galit Yogev-Seligmann
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Elissa Ash
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Haggai Sharon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Pain Management & Neuromodulation Centre, Guy's & St Thomas' NHS Foundation Trust, London, UK.,Institute of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Irit Shapira-Lichter
- Functional MRI Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Shikma Nachman
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Talma Hendler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Lerner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Saadon-Grosman N, Arzy S, Loewenstein Y. Hierarchical cortical gradients in somatosensory processing. Neuroimage 2020; 222:117257. [PMID: 32822812 DOI: 10.1016/j.neuroimage.2020.117257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022] Open
Abstract
Sensory information is processed in the visual cortex in distinct streams of different anatomical and functional properties. A comparable organizational principle has also been proposed to underlie auditory processing. This raises the question of whether a similar principle characterize the somatosensory domain. One property of a cortical stream is a hierarchical organization of the neuronal response properties along an anatomically distinct pathway. Indeed, several hierarchies between specific somatosensory cortical regions have been identified, primarily using electrophysiology, in non-human primates. However, it has been unclear how these local hierarchies are organized throughout the cortex. Here we used phase-encoded bilateral full-body light touch stimulation in healthy humans under functional MRI to study the large-scale organization of hierarchies in the somatosensory domain. We quantified two measures of hierarchy of BOLD responses, selectivity and laterality. We measured how selectivity and laterality change as we move away from the central sulcus within four gross anatomically-distinct regions. We found that both selectivity and laterality decrease in three directions: parietal, posteriorly along the parietal lobe, frontal, anteriorly along the frontal lobe and medial, inferiorly-anteriorly along the medial wall. The decline of selectivity and laterality along these directions provides evidence for hierarchical gradients. In view of the anatomical segregation of these three directions, the multiplicity of body representations in each region and the hierarchical gradients in our findings, we propose that as in the visual and auditory domains, these directions are streams of somatosensory information processing.
Collapse
Affiliation(s)
- Noam Saadon-Grosman
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University, 9112001 Jerusalem, Israel.
| | - Shahar Arzy
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University, 9112001 Jerusalem, Israel; Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 9112001, Israel
| | - Yonatan Loewenstein
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, 919040 Jerusalem, Israel; The Alexander Silberman Institute of Life Sciences, The Hebrew University, 919040 Jerusalem, Israel; Department of Cognitive Sciences, The Hebrew University, 919040 Jerusalem, Israel; The Federmann Center for the Study of Rationality, The Hebrew University, 919040 Jerusalem, Israel
| |
Collapse
|
8
|
Maimon-Mor RO, Makin TR. Is an artificial limb embodied as a hand? Brain decoding in prosthetic limb users. PLoS Biol 2020; 18:e3000729. [PMID: 32511238 PMCID: PMC7302856 DOI: 10.1371/journal.pbio.3000729] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 06/18/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
The potential ability of the human brain to represent an artificial limb as a body part (embodiment) has been inspiring engineers, clinicians, and scientists as a means to optimise human-machine interfaces. Using functional MRI (fMRI), we studied whether neural embodiment actually occurs in prosthesis users' occipitotemporal cortex (OTC). Compared with controls, different prostheses types were visually represented more similarly to each other, relative to hands and tools, indicating the emergence of a dissociated prosthesis categorisation. Greater daily life prosthesis usage correlated positively with greater prosthesis categorisation. Moreover, when comparing prosthesis users' representation of their own prosthesis to controls' representation of a similar looking prosthesis, prosthesis users represented their own prosthesis more dissimilarly to hands, challenging current views of visual prosthesis embodiment. Our results reveal a use-dependent neural correlate for wearable technology adoption, demonstrating adaptive use-related plasticity within the OTC. Because these neural correlates were independent of the prostheses' appearance and control, our findings offer new opportunities for prosthesis design by lifting restrictions imposed by the embodiment theory for artificial limbs.
Collapse
Affiliation(s)
- Roni O. Maimon-Mor
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Tamar R. Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
9
|
Chaudhuri JD. Stimulating Intrinsic Motivation in Millennial Students: A New Generation, a New Approach. ANATOMICAL SCIENCES EDUCATION 2020; 13:250-271. [PMID: 31021529 DOI: 10.1002/ase.1884] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
There has been a fundamental change in health care pedagogy to address the demands and challenges posed by the present generation of millennial students. There is also a growing recognition of the role of intrinsic motivation as a catalyst in a positive learning experience. The term intrinsic motivation refers to energizing behavior that comes from within an individual and develops due to an inherent interest in the activity at hand. However, stimulating intrinsic motivation in the present generation of millennial health care students is a daunting task, considering their diverse and disparate nature. In addition, the inherent generational differences between educators and students, and an increasing emphasis on technological tools have resulted in a dichotomy in the educational environment leading to the development of a greater incidence of burnouts among students. Hence, numerous innovative techniques have been introduced in health care education to enhance the levels of intrinsic motivation in these students. Unfortunately, most of these approaches have only been moderately successful due to their limited ability to address the unique educational expectations of millennial students. The cumulative evidence suggests that specific approaches to stimulate intrinsic motivation should aim at nurturing the learning efforts of students, bridging the generational barriers between educators and students, and ameliorating the stress associated with health care education. Hence, the specific aim of this narrative review is to suggest empirically proven curricular strategies and institutional reforms to enhance intrinsic motivation in health care students belonging to the Millennial Generation.
Collapse
Affiliation(s)
- Joydeep Dutta Chaudhuri
- School of Occupational Therapy, College of Health Sciences, Husson University, Bangor, Maine
| |
Collapse
|
10
|
Saadon-Grosman N, Loewenstein Y, Arzy S. The 'creatures' of the human cortical somatosensory system. Brain Commun 2020; 2:fcaa003. [PMID: 32954277 PMCID: PMC7425349 DOI: 10.1093/braincomms/fcaa003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022] Open
Abstract
Penfield’s description of the ‘homunculus’, a ‘grotesque creature’ with large lips and hands and small trunk and legs depicting the representation of body-parts within the primary somatosensory cortex (S1), is one of the most prominent contributions to the neurosciences. Since then, numerous studies have identified additional body-parts representations outside of S1. Nevertheless, it has been implicitly assumed that S1’s homunculus is representative of the entire somatosensory cortex. Therefore, the distribution of body-parts representations in other brain regions, the property that gave Penfield’s homunculus its famous ‘grotesque’ appearance, has been overlooked. We used whole-body somatosensory stimulation, functional MRI and a new cortical parcellation to quantify the organization of the cortical somatosensory representation. Our analysis showed first, an extensive somatosensory response over the cortex; and second, that the proportional representation of body parts differs substantially between major neuroanatomical regions and from S1, with, for instance, much larger trunk representation at higher brain regions, potentially in relation to the regions’ functional specialization. These results extend Penfield’s initial findings to the higher level of somatosensory processing and suggest a major role for somatosensation in human cognition.
Collapse
Affiliation(s)
- Noam Saadon-Grosman
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University, Jerusalem 9112001, Israel
| | - Yonatan Loewenstein
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, 9190401, Israel.,The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, 9190401, Israel.,Department of Cognitive Sciences, The Hebrew University, Jerusalem 9190401, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University, Jerusalem 9190401, Israel
| | - Shahar Arzy
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University, Jerusalem 9112001, Israel.,Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 9112001, Israel
| |
Collapse
|
11
|
Predictive coding of action intentions in dorsal and ventral visual stream is based on visual anticipations, memory-based information and motor preparation. Brain Struct Funct 2019; 224:3291-3308. [PMID: 31673774 DOI: 10.1007/s00429-019-01970-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Predictions of upcoming movements are based on several types of neural signals that span the visual, somatosensory, motor and cognitive system. Thus far, pre-movement signals have been investigated while participants viewed the object to be acted upon. Here, we studied the contribution of information other than vision to the classification of preparatory signals for action, even in the absence of online visual information. We used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) to test whether the neural signals evoked by visual, memory-based and somato-motor information can be reliably used to predict upcoming actions in areas of the dorsal and ventral visual stream during the preparatory phase preceding the action, while participants were lying still. Nineteen human participants (nine women) performed one of two actions towards an object with their eyes open or closed. Despite the well-known role of ventral stream areas in visual recognition tasks and the specialization of dorsal stream areas in somato-motor processes, we decoded action intention in areas of both streams based on visual, memory-based and somato-motor signals. Interestingly, we could reliably decode action intention in absence of visual information based on neural activity evoked when visual information was available and vice versa. Our results show a similar visual, memory and somato-motor representation of action planning in dorsal and ventral visual stream areas that allows predicting action intention across domains, regardless of the availability of visual information.
Collapse
|
12
|
Bola Ł, Matuszewski J, Szczepanik M, Droździel D, Sliwinska MW, Paplińska M, Jednoróg K, Szwed M, Marchewka A. Functional hierarchy for tactile processing in the visual cortex of sighted adults. Neuroimage 2019; 202:116084. [PMID: 31400530 DOI: 10.1016/j.neuroimage.2019.116084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/07/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Perception via different sensory modalities was traditionally believed to be supported by largely separate brain systems. However, a growing number of studies demonstrate that the visual cortices of typical, sighted adults are involved in tactile and auditory perceptual processing. Here, we investigated the spatiotemporal dynamics of the visual cortex's involvement in a complex tactile task: Braille letter recognition. Sighted subjects underwent Braille training and then participated in a transcranial magnetic stimulation (TMS) study in which they tactually identified single Braille letters. During this task, TMS was applied to their left early visual cortex, visual word form area (VWFA), and left early somatosensory cortex at five time windows from 20 to 520 ms following the Braille letter presentation's onset. The subjects' response accuracy decreased when TMS was applied to the early visual cortex at the 120-220 ms time window and when TMS was applied to the VWFA at the 320-420 ms time window. Stimulation of the early somatosensory cortex did not have a time-specific effect on the accuracy of the subjects' Braille letter recognition, but rather caused a general slowdown during this task. Our results indicate that the involvement of sighted people's visual cortices in tactile perception respects the canonical visual hierarchy-the early tactile processing stages involve the early visual cortex, whereas more advanced tactile computations involve high-level visual areas. Our findings are compatible with the metamodal account of brain organization and suggest that the whole visual cortex may potentially support spatial perception in a task-specific, sensory-independent manner.
Collapse
Affiliation(s)
- Łukasz Bola
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland; Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060, Krakow, Poland.
| | - Jacek Matuszewski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland
| | - Michał Szczepanik
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland
| | - Dawid Droździel
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland
| | | | - Małgorzata Paplińska
- The Maria Grzegorzewska University, 40 Szczęśliwicka Street, 02-353, Warsaw, Poland
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060, Krakow, Poland.
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland.
| |
Collapse
|
13
|
van den Heiligenberg FMZ, Orlov T, Macdonald SN, Duff EP, Henderson Slater D, Beckmann CF, Johansen-Berg H, Culham JC, Makin TR. Artificial limb representation in amputees. Brain 2019. [PMID: 29534154 PMCID: PMC5917779 DOI: 10.1093/brain/awy054] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The human brain contains multiple hand-selective areas, in both the sensorimotor and visual systems. Could our brain repurpose neural resources, originally developed for supporting hand function, to represent and control artificial limbs? We studied individuals with congenital or acquired hand-loss (hereafter one-handers) using functional MRI. We show that the more one-handers use an artificial limb (prosthesis) in their everyday life, the stronger visual hand-selective areas in the lateral occipitotemporal cortex respond to prosthesis images. This was found even when one-handers were presented with images of active prostheses that share the functionality of the hand but not necessarily its visual features (e.g. a ‘hook’ prosthesis). Further, we show that daily prosthesis usage determines large-scale inter-network communication across hand-selective areas. This was demonstrated by increased resting state functional connectivity between visual and sensorimotor hand-selective areas, proportional to the intensiveness of everyday prosthesis usage. Further analysis revealed a 3-fold coupling between prosthesis activity, visuomotor connectivity and usage, suggesting a possible role for the motor system in shaping use-dependent representation in visual hand-selective areas, and/or vice versa. Moreover, able-bodied control participants who routinely observe prosthesis usage (albeit less intensively than the prosthesis users) showed significantly weaker associations between degree of prosthesis observation and visual cortex activity or connectivity. Together, our findings suggest that altered daily motor behaviour facilitates prosthesis-related visual processing and shapes communication across hand-selective areas. This neurophysiological substrate for prosthesis embodiment may inspire rehabilitation approaches to improve usage of existing substitutionary devices and aid implementation of future assistive and augmentative technologies.
Collapse
Affiliation(s)
- Fiona M Z van den Heiligenberg
- Institute of Cognitive Neuroscience, University College London, London, UK.,FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tanya Orlov
- Neurobiology Department, Life Sciences Institute, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Scott N Macdonald
- Brain and Mind Institute, Department of Psychology, University of Western Ontario, Canada
| | - Eugene P Duff
- FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - David Henderson Slater
- FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK.,Oxford Centre for Enablement, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Heidi Johansen-Berg
- FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Jody C Culham
- Brain and Mind Institute, Department of Psychology, University of Western Ontario, Canada
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, UK.,FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
14
|
Altered functional connectivity differs in stroke survivors with impaired touch sensation following left and right hemisphere lesions. NEUROIMAGE-CLINICAL 2018; 18:342-355. [PMID: 29487791 PMCID: PMC5814381 DOI: 10.1016/j.nicl.2018.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/18/2018] [Accepted: 02/07/2018] [Indexed: 12/15/2022]
Abstract
One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC) data was extracted from four seed regions, i.e. primary (S1) and secondary (S2) somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI) were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2), and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group) and contra-lesional S2 (both groups). We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other networks in stroke survivors with impaired touch sensation. Hemisphere of lesion was associated with different patterns of altered functional connectivity within the somatosensory network and with related function was associated with different patterns of altered functional connectivity within the somatosensory network and with related functional networks. Examined somatosensory resting functional connectivity (RSFC) in left/right lesion stroke patients and/healthy controls. Seed based voxel wise (SB) and laterality index (LI) analyses were used. Left lesion SB results showed decreased RSFC in somatosensory and attention regions vs. controls/right lesion patients. Right lesion patients showed increased RSFC compared to controls and left lesion patients to inferior parietal areas. LI results showed increased laterality in both left and right lesion groups between the somatosensory seeds. This suggests RSFC may differ depending on laterality of lesion damage, with altered connectivity profiles between networks.
Collapse
|
15
|
Brain circuit-gene expression relationships and neuroplasticity of multisensory cortices in blind children. Proc Natl Acad Sci U S A 2017; 114:6830-6835. [PMID: 28607055 DOI: 10.1073/pnas.1619121114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensory deprivation reorganizes neurocircuits in the human brain. The biological basis of such neuroplastic adaptations remains elusive. In this study, we applied two complementary graph theory-based functional connectivity analyses, one to evaluate whole-brain functional connectivity relationships and the second to specifically delineate distributed network connectivity profiles downstream of primary sensory cortices, to investigate neural reorganization in blind children compared with sighted controls. We also examined the relationship between connectivity changes and neuroplasticity-related gene expression profiles in the cerebral cortex. We observed that multisensory integration areas exhibited enhanced functional connectivity in blind children and that this reorganization was spatially associated with the transcription levels of specific members of the cAMP Response Element Binding protein gene family. Using systems-level analyses, this study advances our understanding of human neuroplasticity and its genetic underpinnings following sensory deprivation.
Collapse
|
16
|
Task Selectivity as a Comprehensive Principle for Brain Organization. Trends Cogn Sci 2017; 21:307-310. [PMID: 28385460 DOI: 10.1016/j.tics.2017.03.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 11/24/2022]
Abstract
How do the anatomically consistent functional selectivities of the brain emerge? A new study by Bola and colleagues reveals task selectivity in auditory rhythm-selective areas in congenitally deaf adults perceiving visual rhythm sequences. Here, we contextualize this result with accumulating evidence from animal and human studies supporting sensory-independent task specializations as a comprehensive principle shaping brain (re)organization.
Collapse
|
17
|
Sabbah N, Sanda N, Authié CN, Mohand-Saïd S, Sahel JA, Habas C, Amedi A, Safran AB. Reorganization of early visual cortex functional connectivity following selective peripheral and central visual loss. Sci Rep 2017; 7:43223. [PMID: 28233790 PMCID: PMC5324137 DOI: 10.1038/srep43223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/20/2017] [Indexed: 12/27/2022] Open
Abstract
Behavioral alterations emerging after central or peripheral vision loss suggest that cerebral reorganization occurs for both the afferented and deafferented early visual cortex (EVC). We explored the functional reorganization of the central and peripheral EVC following visual field defects specifically affecting central or peripheral vision. Compared to normally sighted, afferented central and peripheral EVC enhance their functional connectivity with areas involved in visual processing, whereas deafferented central and peripheral EVC increase their functional connectivity with more remote regions. The connectivity pattern of afferented EVC suggests adaptive changes that might enhance the visual processing capacity whereas the connectivity pattern of deafferented EVC may reflect the involvement of these regions in high-order mechanisms. Characterizing and understanding the plastic changes induced by these visual defects is essential for any attempt to develop efficient rehabilitation strategies.
Collapse
Affiliation(s)
- Norman Sabbah
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, F-75012, France
| | - Nicolae Sanda
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, F-75012, France.,Service de neurologie, Hôpital Foch, Suresnes, France
| | - Colas N Authié
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, F-75012, France
| | - Saddek Mohand-Saïd
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, F-75012, France
| | - José-Alain Sahel
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, F-75012, France.,Institute of Ophthalmology, University College of London, United Kingdom.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, US
| | - Christophe Habas
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Centre de neuroimagerie, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, F-75012, France
| | - Amir Amedi
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel.,The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91220, Israel.,The Cognitive Science Program, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | - Avinoam B Safran
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, Paris, F-75012, France.,INSERM, U968, Institut de la Vision, Paris, F-75012, France.,CNRS, UMR 7210, Institut de la Vision, Paris, F-75012, France.,Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, F-75012, France.,Department of Clinical Neurosciences, Geneva University School of Medicine, Geneva, Switzerland
| |
Collapse
|
18
|
Murray MM, Lewkowicz DJ, Amedi A, Wallace MT. Multisensory Processes: A Balancing Act across the Lifespan. Trends Neurosci 2016; 39:567-579. [PMID: 27282408 PMCID: PMC4967384 DOI: 10.1016/j.tins.2016.05.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/13/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022]
Abstract
Multisensory processes are fundamental in scaffolding perception, cognition, learning, and behavior. How and when stimuli from different sensory modalities are integrated rather than treated as separate entities is poorly understood. We review how the relative reliance on stimulus characteristics versus learned associations dynamically shapes multisensory processes. We illustrate the dynamism in multisensory function across two timescales: one long term that operates across the lifespan and one short term that operates during the learning of new multisensory relations. In addition, we highlight the importance of task contingencies. We conclude that these highly dynamic multisensory processes, based on the relative weighting of stimulus characteristics and learned associations, provide both stability and flexibility to brain functions over a wide range of temporal scales.
Collapse
Affiliation(s)
- Micah M Murray
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Clinical Neurosciences and Department of Radiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland; Electroencephalography Brain Mapping Core, Centre for Biomedical Imaging (CIBM), Lausanne, Switzerland; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Lausanne, Switzerland; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Lewkowicz
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, USA
| | - Amir Amedi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel; Interdisciplinary and Cognitive Science Program, The Edmond & Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|