1
|
Kim E, Yun SJ, Oh BM, Seo HG. Impact of Electric Field Magnitude in the Left Dorsolateral Prefrontal Cortex on Changes in Intrinsic Functional Connectivity Using Transcranial Direct Current Stimulation: A Randomized Crossover Study. J Neurosci Res 2024; 102:e25378. [PMID: 39225477 DOI: 10.1002/jnr.25378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
This study investigated whether the electric field magnitude (E-field) delivered to the left dorsolateral prefrontal cortex (L-DLPFC) changes resting-state brain activity and the L-DLPFC resting-state functional connectivity (rsFC), given the variability in tDCS response and lack of understanding of how rsFC changes. Twenty-one healthy participants received either 2 mA anodal or sham tDCS targeting the L-DLPFC for 10 min. Brain imaging was conducted before and after stimulation. The fractional amplitude of low-frequency fluctuation (fALFF), reflecting resting brain activity, and the L-DLPFC rsFC were analyzed to investigate the main effect of tDCS, main effect of time, and interaction effects. The E-field was estimated by modeling tDCS-induced individual electric fields and correlated with fALFF and L-DLPFC rsFC. Anodal tDCS increased fALFF in the left rostral middle frontal area and decreased fALFF in the midline frontal area (FWE p < 0.050), whereas sham induced no changes. Overall rsFC decreased after sham (positive and negative connectivity, p = 0.001 and 0.020, respectively), with modest and nonsignificant changes after anodal tDCS (p = 0.063 and 0.069, respectively). No significant differences in local rsFC were observed among the conditions. Correlations were observed between the E-field and rsFC changes in the L-DLPFC (r = 0.385, p = 0.115), left inferior parietal area (r = 0.495, p = 0.037), and right lateral visual area (r = 0.683, p = 0.002). Single-session tDCS induced resting brain activity changes and may help maintain overall rsFC. The E-field in the L-DLPFC is associated with rsFC changes in both proximal and distally connected brain regions to the L-DLPFC.
Collapse
Affiliation(s)
- Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seo Jung Yun
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Human Systems Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute on Aging, Seoul National University, Seoul, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Hirata A, Akazawa Y, Kodera S, Otsuru N, Laakso I. Electric field envelope focality in superficial brain areas with linear alignment montage in temporal interference stimulation. Comput Biol Med 2024; 178:108697. [PMID: 38850958 DOI: 10.1016/j.compbiomed.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Temporal interference stimulation (TIS) uses two pairs of conventional transcranial alternating current stimulation (tACS) electrodes, each with a different frequency, to generate a time-varying electric field (EF) envelope (EFE). The EFE focality in primary somatosensory and motor cortex areas of a standard human brain was computed using newly defined linear alignment montages. Sixty head volume conductor models constructed from magnetic resonance images were considered to evaluate interindividual variability. Six TIS and two tACS electrode montages were considered, including linear and rectangular alignments. EFEs were computed using the scalar-potential finite-difference method. The computed EFE was projected onto the standard brain space for each montage. Computational results showed that TIS and tACS generated different EFE and EF distributions in postcentral and precentral gyri regions. For TIS, the EFE amplitude in the target areas had lower variability than the EF strength of tACS. However, bipolar tACS montages showed higher focality in the superficial postcentral and precentral gyri regions than in TIS. TIS generated greater EFE penetration than bipolar tACS at depths <5-10 mm below the brain surface. From group-level analysis, tACS with a bipolar montage was preferred for targets <5-10 mm in depth (gyral crowns) and TIS for deeper targets. TIS with a linear alignment montage could be an effective method for deep structures and sulcal walls. These findings provide valuable insights into the choice of TIS and tACS for stimulating specific brain regions.
Collapse
Affiliation(s)
- Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan; Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan.
| | - Yusuke Akazawa
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan; Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| |
Collapse
|
3
|
Akil AM, Cserjési R, Nagy T, Demetrovics Z, Németh D, Logemann HNA. The relationship between frontal alpha asymmetry and behavioral and brain activity indices of reactive inhibitory control. J Neurophysiol 2024; 132:362-374. [PMID: 38863426 PMCID: PMC11302602 DOI: 10.1152/jn.00046.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
Reactive inhibitory control plays an important role in phenotype of different diseases/different phases of a disease. One candidate electrophysiological marker of inhibitory control is frontal alpha asymmetry (FAA). FAA reflects the relative difference in contralateral frontal brain activity. However, the relationship between FAA and potential behavioral/brain activity indices of reactive inhibitory control is not yet clear. We assessed the relationship between resting-state FAA and indicators of reactive inhibitory control. Additionally, we investigated the effect of modulation of FAA via transcranial direct current stimulation (tDCS). We implemented a randomized sham-controlled design with 65 healthy humans (Mage = 23.93, SDage = 6.08; 46 female). Before and after 2-mA anodal tDCS of the right frontal site (with the cathode at the contralateral site) for 20 min, we collected EEG data and reactive inhibitory performance in neutral and food-reward conditions, using the stop signal task (SST). There was no support for the effect of tDCS on FAA or any indices of reactive inhibitory control. Our correlation analysis revealed an association between inhibitory brain activity in the food-reward condition and (pre-tDCS) asymmetry. Higher right relative to left frontal brain activity was correlated with reduced early-onset inhibitory activity and, in contrast, linked with higher late-onset inhibitory control in the food-reward condition. Similarly, event-related potential analyses showed reduced early-onset and enhanced late-onset inhibitory brain activity over time, particularly in the food-reward condition. These results suggest that there can be a dissociation regarding the lateralization of frontal brain activity and early- and late-onset inhibitory brain activity.NEW & NOTEWORTHY This research reveals dissociation between baseline frontal alpha asymmetry and the timing of reactive inhibitory brain activities in food-reward contexts. Whereas inhibitory control performance decreases over time in a stop signal task, electrophysiological indices show reduced early- and heightened late-onset inhibitory brain activity, especially in the reward condition. Additionally, greater right frontal activity correlates with reduced early-onset and increased late-onset inhibitory brain activity.
Collapse
Affiliation(s)
- Atakan M Akil
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, Faculty of Humanities and Social Sciences, University of Pécs, Pécs, Hungary
| | - Renáta Cserjési
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tamás Nagy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsolt Demetrovics
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar
- College of Education, Psychology and Social Work, Flinders University, Adelaide, South Australia, Australia
| | - Dezső Németh
- INSERM, Université Claude Bernard Lyon 1, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
- NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - H N Alexander Logemann
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Clinical, Neuro and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Delucenay-Clarke R, Niérat MC, Frugière A, Similowski T, Cayetanot F, Bodineau L. Direct current stimulation as a non-invasive therapeutic alternative for treating autonomic or non-autonomic neurological disorders affecting breathing. Clin Auton Res 2024; 34:395-411. [PMID: 39133345 DOI: 10.1007/s10286-024-01055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Direct current stimulation (DCS) is a non-invasive approach to stimulate the nervous system that is now considered a powerful tool for treating neurological diseases such as those affecting cognitive or locomotor functions. DCS, as applied clinically today, is an approach built on early uses in antiquity and knowledge gained over time. Its current use makes use of specific devices and takes into account knowledge of the mechanisms by which this approach modulates functioning of the nervous system at the cellular level. Over the last 20 years, although there are few studies, it has been shown that DCS can also modulate the breathing autonomic function. In this narrative review, after briefly providing the historical perspective and describing the principles and the main cellular and molecular effects, we summarize the currently available data regarding the modulation of ventilation, and propose that DCS could be used to treat autonomic or non-autonomic neurological disorders affecting breathing.
Collapse
Affiliation(s)
- Roman Delucenay-Clarke
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France
| | - Marie-Cécile Niérat
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France
| | - Alain Frugière
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France
| | - Thomas Similowski
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France
| | - Florence Cayetanot
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France
| | - Laurence Bodineau
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France.
| |
Collapse
|
5
|
Ikarashi H, Otsuru N, Gomez-Tames J, Hirata A, Nagasaka K, Miyaguchi S, Sakurai N, Ohno K, Kodama N, Onishi H. Modulation of pain perception through transcranial alternating current stimulation and its nonlinear relationship with the simulated electric field magnitude. Eur J Pain 2024; 28:1018-1028. [PMID: 38318653 DOI: 10.1002/ejp.2249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Oscillatory activities observed in multiple regions are closely associated with the experience of pain. Specifically, oscillatory activities within the theta- and beta-frequency bands, observed in the left dorsolateral prefrontal cortex (DLPFC), have been implicated in pain perception among healthy individuals and those with chronic pain. However, their physiological significance remains unclear. METHODS We explored the modulation of pain perception in healthy individuals by theta- and beta-band transcranial alternating current stimulation (tACS) over the left DLPFC and examined the relationship between the modulation effect and magnitude of the electric field elicited by tACS in the left DLPFC using computational simulation. RESULTS Our findings revealed that both theta- and beta-tACS increased the heat pain threshold during and after stimulation. Notably, the simulated electric field magnitude in the left DLPFC exhibited an inverted U-shaped relationship with the pain modulation effect for theta-tACS. CONCLUSIONS Our study findings suggested that there would be an optimal electric field strength to produce a high analgesic effect for theta-tACS. SIGNIFICANCE The application of theta- and beta-tACS interventions targeting the left DLPFC might facilitate the treatment of chronic pain. Furthermore, the attainment of effective pain modulation via theta-tACS over the DLPFC warrants the use of optimal stimulus intensity.
Collapse
Affiliation(s)
- H Ikarashi
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
| | - N Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - J Gomez-Tames
- Department of Electromechanical Engineering, Nagoya Institute of Technology, Nagoya, Aichi, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - A Hirata
- Department of Electromechanical Engineering, Nagoya Institute of Technology, Nagoya, Aichi, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - K Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - S Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - N Sakurai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - K Ohno
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - N Kodama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - H Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
6
|
Sato T, Katagiri N, Suganuma S, Laakso I, Tanabe S, Osu R, Tanaka S, Yamaguchi T. Simulating tDCS electrode placement to stimulate both M1 and SMA enhances motor performance and modulates cortical excitability depending on current flow direction. Front Neurosci 2024; 18:1362607. [PMID: 39010941 PMCID: PMC11246916 DOI: 10.3389/fnins.2024.1362607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction The conventional method of placing transcranial direct current stimulation (tDCS) electrodes is just above the target brain area. However, this strategy for electrode placement often fails to improve motor function and modulate cortical excitability. We investigated the effects of optimized electrode placement to induce maximum electrical fields in the leg regions of both M1 and SMA, estimated by electric field simulations in the T1and T2-weighted MRI-based anatomical models, on motor performance and cortical excitability in healthy individuals. Methods A total of 36 healthy volunteers participated in this randomized, triple-blind, sham-controlled experiment. They were stratified by sex and were randomly assigned to one of three groups according to the stimulation paradigm, including tDCS with (1) anodal and cathodal electrodes positioned over FCz and POz, respectively, (A-P tDCS), (2) anodal and cathodal electrodes positioned over POz and FCz, respectively, (P-A tDCS), and (3) sham tDCS. The sit-to-stand training following tDCS (2 mA, 10 min) was conducted every 3 or 4 days over 3 weeks (5 sessions total). Results Compared to sham tDCS, A-P tDCS led to significant increases in the number of sit-to-stands after 3 weeks training, whereas P-A tDCS significantly increased knee flexor peak torques after 3 weeks training, and decreased short-interval intracortical inhibition (SICI) immediately after the first session of training and maintained it post-training. Discussion These results suggest that optimized electrode placement of the maximal EF estimated by electric field simulation enhances motor performance and modulates cortical excitability depending on the direction of current flow.
Collapse
Affiliation(s)
- Takatsugu Sato
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Narashino, Japan
| | - Natsuki Katagiri
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Narashino, Japan
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Saki Suganuma
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Rieko Osu
- Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo, Japan
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Gomez-Tames J, Fernández-Corazza M. Perspectives on Optimized Transcranial Electrical Stimulation Based on Spatial Electric Field Modeling in Humans. J Clin Med 2024; 13:3084. [PMID: 38892794 PMCID: PMC11172989 DOI: 10.3390/jcm13113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Transcranial electrical stimulation (tES) generates an electric field (or current density) in the brain through surface electrodes attached to the scalp. Clinical significance has been demonstrated, although with moderate and heterogeneous results partly due to a lack of control of the delivered electric currents. In the last decade, computational electric field analysis has allowed the estimation and optimization of the electric field using accurate anatomical head models. This review examines recent tES computational studies, providing a comprehensive background on the technical aspects of adopting computational electric field analysis as a standardized procedure in medical applications. Methods: Specific search strategies were designed to retrieve papers from the Web of Science database. The papers were initially screened based on the soundness of the title and abstract and then on their full contents, resulting in a total of 57 studies. Results: Recent trends were identified in individual- and population-level analysis of the electric field, including head models from non-neurotypical individuals. Advanced optimization techniques that allow a high degree of control with the required focality and direction of the electric field were also summarized. There is also growing evidence of a correlation between the computationally estimated electric field and the observed responses in real experiments. Conclusions: Computational pipelines and optimization algorithms have reached a degree of maturity that provides a rationale to improve tES experimental design and a posteriori analysis of the responses for supporting clinical studies.
Collapse
Affiliation(s)
- Jose Gomez-Tames
- Department of Medical Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan
| | - Mariano Fernández-Corazza
- LEICI Institute of Research in Electronics, Control and Signal Processing, National University of La Plata, La Plata 1900, Argentina
| |
Collapse
|
8
|
Yatsuda K, Yu W, Gomez-Tames J. Population-level insights into temporal interference for focused deep brain neuromodulation. Front Hum Neurosci 2024; 18:1308549. [PMID: 38708141 PMCID: PMC11066208 DOI: 10.3389/fnhum.2024.1308549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
The ability to stimulate deep brain regions in a focal manner brings new opportunities for treating brain disorders. Temporal interference (TI) stimulation has been suggested as a method to achieve focused stimulation in deep brain targets. Individual-level knowledge of the interferential currents has permitted personalizing TI montage via subject-specific digital human head models, facilitating the estimation of interferential electric currents in the brain. While this individual approach offers a high degree of personalization, the significant intra-and inter-individual variability among specific head models poses challenges when comparing electric-field doses. Furthermore, MRI acquisition to develop a personalized head model, followed by precise methods for placing the optimized electrode positions, is complex and not always available in various clinical settings. Instead, the registration of individual electric fields into brain templates has offered insights into population-level effects and enabled montage optimization using common scalp landmarks. However, population-level knowledge of the interferential currents remains scarce. This work aimed to investigate the effectiveness of targeting deep brain areas using TI in different populations. The results showed a trade-off between deep stimulation and unwanted cortical neuromodulation, which is target-dependent at the group level. A consistent modulated electric field appeared in the deep brain target when the same montage was applied in different populations. However, the performance in terms of focality and variability varied when the same montage was used among populations. Also, group-level TI exhibited greater focality than tACS, reducing unwanted neuromodulation volume in the cortical part by at least 1.5 times, albeit with higher variability. These results provide valuable population-level insights when considering TI montage selection.
Collapse
Affiliation(s)
- Kanata Yatsuda
- Department of Medical Engineering, Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Wenwei Yu
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Jose Gomez-Tames
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
Hirata A, Niitsu M, Phang CR, Kodera S, Kida T, Rashed EA, Fukunaga M, Sadato N, Wasaka T. High-resolution EEG source localization in personalized segmentation-free head model with multi-dipole fitting. Phys Med Biol 2024; 69:055013. [PMID: 38306964 DOI: 10.1088/1361-6560/ad25c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Objective. Electroencephalograms (EEGs) are often used to monitor brain activity. Several source localization methods have been proposed to estimate the location of brain activity corresponding to EEG readings. However, only a few studies evaluated source localization accuracy from measured EEG using personalized head models in a millimeter resolution. In this study, based on a volume conductor analysis of a high-resolution personalized human head model constructed from magnetic resonance images, a finite difference method was used to solve the forward problem and to reconstruct the field distribution.Approach. We used a personalized segmentation-free head model developed using machine learning techniques, in which the abrupt change of electrical conductivity occurred at the tissue interface is suppressed. Using this model, a smooth field distribution was obtained to address the forward problem. Next, multi-dipole fitting was conducted using EEG measurements for each subject (N= 10 male subjects, age: 22.5 ± 0.5), and the source location and electric field distribution were estimated.Main results.For measured somatosensory evoked potential for electrostimulation to the wrist, a multi-dipole model with lead field matrix computed with the volume conductor model was found to be superior than a single dipole model when using personalized segmentation-free models (6/10). The correlation coefficient between measured and estimated scalp potentials was 0.89 for segmentation-free head models and 0.71 for conventional segmented models. The proposed method is straightforward model development and comparable localization difference of the maximum electric field from the target wrist reported using fMR (i.e. 16.4 ± 5.2 mm) in previous study. For comparison, DUNEuro based on sLORETA was (EEG: 17.0 ± 4.0 mm). In addition, somatosensory evoked magnetic fields obtained by Magnetoencephalography was 25.3 ± 8.5 mm using three-layer sphere and sLORETA.Significance. For measured EEG signals, our procedures using personalized head models demonstrated that effective localization of the somatosensory cortex, which is located in a non-shallower cortex region. This method may be potentially applied for imaging brain activity located in other non-shallow regions.
Collapse
Affiliation(s)
- Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Masamune Niitsu
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Chun Ren Phang
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Tetsuo Kida
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Japan
| | - Essam A Rashed
- Graduate School of Information Science, University of Hyogo, Kobe 650-0047, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Toshiaki Wasaka
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
10
|
Laakso I, Tani K, Gomez-Tames J, Hirata A, Tanaka S. Small effects of electric field on motor cortical excitability following anodal tDCS. iScience 2024; 27:108967. [PMID: 38352229 PMCID: PMC10863330 DOI: 10.1016/j.isci.2024.108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
The dose-response characteristics of transcranial direct current stimulation (tDCS) remain uncertain but may be related to variability in brain electric fields due to individual anatomical factors. Here, we investigated whether the electric fields influence the responses to motor cortical tDCS. In a randomized cross-over design, 21 participants underwent 10 min of anodal tDCS with 0.5, 1.0, 1.5, or 2.0 mA or sham. Compared to sham, all active conditions increased the size of motor evoked potentials (MEP) normalized to the pre-tDCS baseline, irrespective of anterior or posterior magnetic test stimuli. The electric field calculated in the motor cortex of each participant had a nonlinear effect on the normalized MEP size, but its effects were small compared to those of other participant-specific factors. The findings support the efficacy of anodal tDCS in enhancing the MEP size but do not demonstrate any benefits of personalized electric field modeling in explaining tDCS response variability.
Collapse
Affiliation(s)
- Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
| | - Keisuke Tani
- Faculty of Psychology, Otemon Gakuin University, Ibaraki, Osaka 567-8502, Japan
| | - Jose Gomez-Tames
- Department of Medical Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3125, Japan
| |
Collapse
|
11
|
Wang M, Zhang L, Hong W, Luo Y, Li H, Feng Z. Optimizing intracranial electric field distribution through temperature-driven scalp conductivity adjustments in transcranial electrical stimulation. Phys Med Biol 2024; 69:03NT02. [PMID: 38170996 DOI: 10.1088/1361-6560/ad1a24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Transcranial electrical stimulation (TES) is a promising non-invasive neuromodulation technique. How to increase the current intensity entering the skull and reduce scalp shunting has become a key factor significantly influencing regulatory efficacy. In this study, we introduce a novel approach for optimizing TES by adjusting local scalp temperature to modulate scalp conductivity. We have developed simulation models for TES-induced electric fields and for temperature-induced alterations in scalp conductivity. Two common types of stimulation montage (M1-SO and 4 × 1 montage) were adopted for the evaluation of effectiveness. We observed that the modulation of scalp temperature has a significant impact on the distribution of the electric field within the brain during TES. As local scalp temperature decreases, there is an increase in the maximum electric field intensity within the target area, with the maximum change reaching 18.3%, when compared to the electric field distribution observed under normal scalp temperature conditions. Our study provide insights into the practical implementation challenges and future directions for this innovative methodology.
Collapse
Affiliation(s)
- Minmin Wang
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
- Binjiang Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Li Zhang
- Department of Neurology, Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - Wenjun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Yujia Luo
- Department of Pain Management, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Han Li
- Department of Pain Management, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zhiying Feng
- Department of Pain Management, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
12
|
Lee S, Park J, Lee C, Ahn J, Ryu J, Lee SH, Im CH. Determination of optimal injection current pattern for multichannel transcranial electrical stimulation without individual MRI using multiple head models. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107878. [PMID: 37890288 DOI: 10.1016/j.cmpb.2023.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Multichannel transcranial electrical stimulation (tES) is widely used to achieve improved stimulation focality. In the multichannel tES, the injection current pattern is generally determined through an optimization process with a finite element (FE) head model extracted from individual magnetic resonance images (MRIs). Although using an individual head model ensures the best outcome, acquiring MRIs of individual subjects in many practical applications is often difficult. Alternatively, a standard head model can be used to determine the optimal injection current pattern to stimulate a specific target; however, this may result in a relatively inaccurate delivery of stimulation current owing to the difference in individual anatomical structures. To address this issue, we propose a new approach for determining the injection current pattern using multiple head models, which can improve the stimulation focality compared to that achieved with a single standard head model. METHODS Twenty FE head models were used to optimize the injection current patterns to stimulate three cortical regions that are widely considered targets for tES. The individual injection current patterns were then averaged to obtain each target's mean injection current pattern. The stimulation focality for each target was then calculated by applying different current patterns (the mean current, individual current, and current from a standard model). RESULTS Our results showed that the stimulation focality obtained using the mean injection current pattern was significantly higher than that obtained using the injection current pattern from a standard head model. Additionally, our results demonstrated that a minimum of 13 head models are required to determine mean current pattern, allowing for a higher stimulation focality than when using the current from a standard head model. CONCLUSIONS Hence, using multiple head models can provide a viable solution for improving the stimulation efficacy of multichannel tES when individual MRIs are not available.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jimin Park
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chany Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jeongyeol Ahn
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Juhyoung Ryu
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Hun Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Philippen S, Hanert A, Schönfeld R, Granert O, Yilmaz R, Jensen-Kondering U, Splittgerber M, Moliadze V, Siniatchkin M, Berg D, Bartsch T. Transcranial direct current stimulation of the right temporoparietal junction facilitates hippocampal spatial learning in Alzheimer's disease and mild cognitive impairment. Clin Neurophysiol 2024; 157:48-60. [PMID: 38056370 DOI: 10.1016/j.clinph.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/11/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Spatial memory deficits are an early symptom in Alzheimer's disease (AD), reflecting the neurodegenerative processes in the neuronal navigation network such as in hippocampal and parietal cortical areas. As no effective treatment options are available, neuromodulatory interventions are increasingly evaluated. Against this backdrop, we investigated the neuromodulatory effect of anodal transcranial direct current stimulation (tDCS) on hippocampal place learning in patients with AD or mild cognitive impairment (MCI). METHODS In this randomized, double-blind, sham-controlled study with a cross-over design anodal tDCS of the right temporoparietal junction (2 mA for 20 min) was applied to 20 patients diagnosed with AD or MCI and in 22 healthy controls while they performed a virtual navigation paradigm testing hippocampal place learning. RESULTS We show an improved recall performance of hippocampal place learning after anodal tDCS in the patient group compared to sham stimulation but not in the control group. CONCLUSIONS These results suggest that tDCS can facilitate spatial memory consolidation via stimulating the parietal-hippocampal navigation network in AD and MCI patients. SIGNIFICANCE Our findings suggest that tDCS of the temporoparietal junction may restore spatial navigation and memory deficits in patients with AD and MCI.
Collapse
Affiliation(s)
- S Philippen
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - A Hanert
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - R Schönfeld
- Psychology Department, Halle University, Germany
| | - O Granert
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - R Yilmaz
- Dept. of Neurology, University of Ankara, Medical School, Ankara, Turkey
| | - U Jensen-Kondering
- Dept. of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany; Dept. of Neuroradiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - M Splittgerber
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany
| | - V Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany
| | - M Siniatchkin
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany; Clinic for Child and Adolescent Psychiatry and Psychotherapy, Medical Center Bethel, University Clinics OWL, Bielefeld University, Germany
| | - D Berg
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - T Bartsch
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
14
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. Outcome measures for electric field modeling in tES and TMS: A systematic review and large-scale modeling study. Neuroimage 2023; 281:120379. [PMID: 37716590 PMCID: PMC11008458 DOI: 10.1016/j.neuroimage.2023.120379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Electric field (E-field) modeling is a potent tool to estimate the amount of transcranial magnetic and electrical stimulation (TMS and tES, respectively) that reaches the cortex and to address the variable behavioral effects observed in the field. However, outcome measures used to quantify E-fields vary considerably and a thorough comparison is missing. OBJECTIVES This two-part study aimed to examine the different outcome measures used to report on tES and TMS induced E-fields, including volume- and surface-level gray matter, region of interest (ROI), whole brain, geometrical, structural, and percentile-based approaches. The study aimed to guide future research in informed selection of appropriate outcome measures. METHODS Three electronic databases were searched for tES and/or TMS studies quantifying E-fields. The identified outcome measures were compared across volume- and surface-level E-field data in ten tES and TMS modalities targeting two common targets in 100 healthy individuals. RESULTS In the systematic review, we extracted 308 outcome measures from 202 studies that adopted either a gray matter volume-level (n = 197) or surface-level (n = 111) approach. Volume-level results focused on E-field magnitude, while surface-level data encompassed E-field magnitude (n = 64) and normal/tangential E-field components (n = 47). E-fields were extracted in ROIs, such as brain structures and shapes (spheres, hexahedra and cylinders), or the whole brain. Percentiles or mean values were mostly used to quantify E-fields. Our modeling study, which involved 1,000 E-field models and > 1,000,000 extracted E-field values, revealed that different outcome measures yielded distinct E-field values, analyzed different brain regions, and did not always exhibit strong correlations in the same within-subject E-field model. CONCLUSIONS Outcome measure selection significantly impacts the locations and intensities of extracted E-field data in both tES and TMS E-field models. The suitability of different outcome measures depends on the target region, TMS/tES modality, individual anatomy, the analyzed E-field component and the research question. To enhance the quality, rigor, and reproducibility in the E-field modeling domain, we suggest standard reporting practices across studies and provide four recommendations.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Raf L J Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
15
|
Yamada Y, Narita Z, Inagawa T, Yokoi Y, Hirabayashi N, Shirama A, Sueyoshi K, Sumiyoshi T. Electrode montage for transcranial direct current stimulation governs its effect on symptoms and functionality in schizophrenia. Front Psychiatry 2023; 14:1243859. [PMID: 37860168 PMCID: PMC10582326 DOI: 10.3389/fpsyt.2023.1243859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023] Open
Abstract
Backgrounds Patients with schizophrenia suffer from cognitive impairment that worsens real-world functional outcomes. We previously reported that multi-session transcranial direct current stimulation (tDCS) delivered to the left dorsolateral prefrontal cortex (DLPFC) improved daily living skills, while stimulation on the left superior temporal sulcus (STS) enhanced performance on a test of social cognition in these patients. To examine the region-dependent influence of tDCS on daily-living skills, neurocognition, and psychotic symptoms, this study compared effects of anodal stimulation targeting either of these two brain areas in patients with schizophrenia. Methods Data were collected from open-label, single-arm trials with anodal electrodes placed over the left DLPFC (N = 28) or STS (N = 15). Daily-living skills, neurocognition, and psychotic symptoms were measured with the UCSD performance-based skills assessment-brief (UPSA-B), Brief Assessment of Cognition in Schizophrenia (BACS), and Positive and Negative Syndrome Scale (PANSS), respectively. After baseline evaluation, tDCS (2 mA × 20 min) were delivered two times per day for 5 consecutive days. One month after the final stimulation, clinical assessments were repeated. Results Performance on the UPSA-B was significantly improved in patients who received anodal tDCS at the left DLPFC (d = 0.70, p < 0.001), while this effect was absent in patients with anodal electrodes placed on the left STS (d = 0.02, p = 0.939). Significant improvement was also observed for scores on the BACS with anodal tDCS delivered to the DLPFC (d = 0.49, p < 0.001); however, such neurocognitive enhancement was absent when the STS was stimulated (d = 0.05, p = 0.646). Both methods of anodal stimulation showed a significant improvement of General Psychopathology scores on the PANSS (DLPFC, d = 0.50, p = 0.027; STS, d = 0.44, p = 0.001). Conclusion These results indicate the importance of selecting brain regions as a target for tDCS according to clinical features of individual patients. Anodal stimulation of the left DLPFC may be advantageous in improving higher level functional outcomes in patients with schizophrenia. Trial registration These studies were registered within the University hospital Medical Information Network Clinical Trials Registry [(24), UMIN000015953], and the Japan Registry of Clinical Trials [(28), jRCTs032180026].
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Zui Narita
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takuma Inagawa
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuma Yokoi
- Department of Educational Promotion, Clinical Research and Education Promotion Division, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naotsugu Hirabayashi
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Aya Shirama
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuki Sueyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
16
|
Cho JY, Van Hoornweder S, Sege CT, Antonucci MU, McTeague LM, Caulfield KA. Template MRI scans reliably approximate individual and group-level tES and TMS electric fields induced in motor and prefrontal circuits. Front Neural Circuits 2023; 17:1214959. [PMID: 37736398 PMCID: PMC10510202 DOI: 10.3389/fncir.2023.1214959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023] Open
Abstract
Background Electric field (E-field) modeling is a valuable method of elucidating the cortical target engagement from transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES), but it is typically dependent on individual MRI scans. In this study, we systematically tested whether E-field models in template MNI-152 and Ernie scans can reliably approximate group-level E-fields induced in N = 195 individuals across 5 diagnoses (healthy, alcohol use disorder, tobacco use disorder, anxiety, depression). Methods We computed 788 E-field models using the CHARM-SimNIBS 4.0.0 pipeline with 4 E-field models per participant (motor and prefrontal targets for TMS and tES). We additionally calculated permutation analyses to determine the point of stability of E-fields to assess whether the 152 brains represented in the MNI-152 template is sufficient. Results Group-level E-fields did not significantly differ between the individual vs. MNI-152 template and Ernie scans for any stimulation modality or location (p > 0.05). However, TMS-induced E-field magnitudes significantly varied by diagnosis; individuals with generalized anxiety had significantly higher prefrontal and motor E-field magnitudes than healthy controls and those with alcohol use disorder and depression (p < 0.001). The point of stability for group-level E-field magnitudes ranged from 42 (motor tES) to 52 participants (prefrontal TMS). Conclusion MNI-152 and Ernie models reliably estimate group-average TMS and tES-induced E-fields transdiagnostically. The MNI-152 template includes sufficient scans to control for interindividual anatomical differences (i.e., above the point of stability). Taken together, using the MNI-152 and Ernie brains to approximate group-level E-fields is a valid and reliable approach.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Sybren Van Hoornweder
- Faculty of Rehabilitation Sciences, REVAL–Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Christopher T. Sege
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Michael U. Antonucci
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States
| | - Lisa M. McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Kevin A. Caulfield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
17
|
Hunold A, Haueisen J, Nees F, Moliadze V. Review of individualized current flow modeling studies for transcranial electrical stimulation. J Neurosci Res 2023; 101:405-423. [PMID: 36537991 DOI: 10.1002/jnr.25154] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
There is substantial intersubject variability of behavioral and neurophysiological responses to transcranial electrical stimulation (tES), which represents one of the most important limitations of tES. Many tES protocols utilize a fixed experimental parameter set disregarding individual anatomical and physiological properties. This one-size-fits-all approach might be one reason for the observed interindividual response variability. Simulation of current flow applying head models based on available anatomical data can help to individualize stimulation parameters and contribute to the understanding of the causes of this response variability. Current flow modeling can be used to retrospectively investigate the characteristics of tES effectivity. Previous studies examined, for example, the impact of skull defects and lesions on the modulation of current flow and demonstrated effective stimulation intensities in different age groups. Furthermore, uncertainty analysis of electrical conductivities in current flow modeling indicated the most influential tissue compartments. Current flow modeling, when used in prospective study planning, can potentially guide stimulation configurations resulting in individually effective tES. Specifically, current flow modeling using individual or matched head models can be employed by clinicians and scientists to, for example, plan dosage in tES protocols for individuals or groups of participants. We review studies that show a relationship between the presence of behavioral/neurophysiological responses and features derived from individualized current flow models. We highlight the potential benefits of individualized current flow modeling.
Collapse
Affiliation(s)
- Alexander Hunold
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
18
|
Overman MJ, Sarrazin V, Browning M, O'Shea J. Stimulating human prefrontal cortex increases reward learning. Neuroimage 2023; 271:120029. [PMID: 36925089 DOI: 10.1016/j.neuroimage.2023.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Work in computational psychiatry suggests that mood disorders may stem from aberrant reinforcement learning processes. Specifically, it has been proposed that depressed individuals believe that negative events are more informative than positive events, resulting in higher learning rates from negative outcomes (Pulcu and Browning, 2019). In this proof-of-concept study, we investigated whether transcranial direct current stimulation (tDCS) applied to dorsolateral prefrontal cortex, as commonly used in depression treatment trials, might change learning rates for affective outcomes. Healthy adults completed an established reinforcement learning task (Pulcu and Browning, 2017) in which the information content of reward and loss outcomes was manipulated by varying the volatility of stimulus-outcome associations. Learning rates on the tasks were quantified using computational models. Stimulation over dorsolateral prefrontal cortex (DLPFC) but not motor cortex (M1) increased learning rates specifically for reward outcomes. The effects of prefrontal tDCS were cognitive state-dependent: tDCS applied during task performance increased learning rates for wins; tDCS applied before task performance decreased both win and loss learning rates. A replication study confirmed the key finding that tDCS to DLPFC during task performance increased learning rates specifically for rewards. Taken together, these findings demonstrate the potential of tDCS for modulating computational parameters of reinforcement learning that are relevant to mood disorders.
Collapse
Affiliation(s)
- Margot Juliëtte Overman
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, United Kingdom; Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, United Kingdom; Oxford Centre for Human Brain Activity (OHBA), University of Oxford, OX3 7JX, United Kingdom
| | - Verena Sarrazin
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, United Kingdom; Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, United Kingdom; Oxford Centre for Human Brain Activity (OHBA), University of Oxford, OX3 7JX, United Kingdom
| | - Michael Browning
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, United Kingdom
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, United Kingdom; Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, United Kingdom; Oxford Centre for Human Brain Activity (OHBA), University of Oxford, OX3 7JX, United Kingdom.
| |
Collapse
|
19
|
Hamajima H, Gomez-Tames J, Uehara S, Otaka Y, Tanaka S, Hirata A. Computation of group-level electric field in lower limb motor area for different tDCS montages. Clin Neurophysiol 2023; 150:69-78. [PMID: 37023635 DOI: 10.1016/j.clinph.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) injects a weak electric current into the brain via electrodes attached to the scalp to modulate cortical excitability. tDCS is used to rebalance brain activity between affected and unaffected hemispheres in rehabilitation. However, a systematic quantitative evaluation of tDCS montage is not reported for the lower limbs. In this study, we computationally investigated the generated electric field intensity, polarity, and co-stimulation of cortical areas for lower limb targeting using high-resolution head models. METHODS Volume conductor models have thus been employed to estimate the electric field in the brain. A total of 18 head models of healthy subjects were used to calculate the group-level electric fields generated from four montages of tDCS for modulation of lower limbs. RESULTS C1-C2 montage delivered higher electric field intensities while reaching deeper regions of the lower-limb motor area. It produced a uniform polarization on the same hemisphere target with comparable intensities between hemispheres but with higher variability. CONCLUSIONS Proper montage selection allows reaching deeper regions of the lower-limb motor area with uniform polarization. SIGNIFICANCE First systematic computational study providing support to tDCS experimental studies using montages for the lower limb while considering polarity factor for balancing brain activity.
Collapse
|
20
|
Balboa-Bandeira Y, Zubiaurre-Elorza L, García-Guerrero MA, Ibarretxe-Bilbao N, Ojeda N, Peña J. Effects of transcranial electrical stimulation techniques on foreign vocabulary learning. Behav Brain Res 2023; 438:114165. [PMID: 36270464 DOI: 10.1016/j.bbr.2022.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/12/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
Although the use of transcranial electrical stimulation (tES) techniques on healthy population has been linked to facilitating language learning, studies on their effects on foreign language learning processes are scarce and results remain unclear. The objective of this study was to analyze whether tES enhances foreign language learning processes. Sixty-four healthy native Spanish-speaking participants were randomly assigned to four groups (transcranial direct current, transcranial random noise, tDCS-tRNS stimulation, or sham). They completed two intervention sessions with a two-week gap in between. During the first session the participants received stimulation (1.5 mA) while learning new English words and then performed recall and recognition tasks. Learning was assessed at follow-up, two weeks later. No differences in learning between groups were observed in the first session (F(1,61)= .86; p = .36). At follow-up, significantly higher learning accuracy was observed after tRNS compared to sham (p = .037). These results suggest that tRNS could be helpful in improving the processes involved in foreign language vocabulary learning.
Collapse
Affiliation(s)
- Yolanda Balboa-Bandeira
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - M Acebo García-Guerrero
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain.
| |
Collapse
|
21
|
Atilgan H, Koi JXJ, Wong E, Laakso I, Matilainen N, Pasqualotto A, Tanaka S, Chen SHA, Kitada R. Functional relevance of the extrastriate body area for visual and haptic object recognition: a preregistered fMRI-guided TMS study. Cereb Cortex Commun 2023; 4:tgad005. [PMID: 37188067 PMCID: PMC10176024 DOI: 10.1093/texcom/tgad005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
The extrastriate body area (EBA) is a region in the lateral occipito-temporal cortex (LOTC), which is sensitive to perceived body parts. Neuroimaging studies suggested that EBA is related to body and tool processing, regardless of the sensory modalities. However, how essential this region is for visual tool processing and nonvisual object processing remains a matter of controversy. In this preregistered fMRI-guided repetitive transcranial magnetic stimulation (rTMS) study, we examined the causal involvement of EBA in multisensory body and tool recognition. Participants used either vision or haptics to identify 3 object categories: hands, teapots (tools), and cars (control objects). Continuous theta-burst stimulation (cTBS) was applied over left EBA, right EBA, or vertex (control site). Performance for visually perceived hands and teapots (relative to cars) was more strongly disrupted by cTBS over left EBA than over the vertex, whereas no such object-specific effect was observed in haptics. The simulation of the induced electric fields confirmed that the cTBS affected regions including EBA. These results indicate that the LOTC is functionally relevant for visual hand and tool processing, whereas the rTMS over EBA may differently affect object recognition between the 2 sensory modalities.
Collapse
Affiliation(s)
- Hicret Atilgan
- Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, Singapore 639818, Singapore
| | - J X Janice Koi
- Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, Singapore 639818, Singapore
| | - Ern Wong
- IMT School for Advanced Studies Lucca, Piazza S. Francesco, 19, 55100 Lucca LU, Italy
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Otakaari 3, 02150 Espoo, Finland
| | - Noora Matilainen
- Department of Electrical Engineering and Automation, Aalto University, Otakaari 3, 02150 Espoo, Finland
| | - Achille Pasqualotto
- Faculty of Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Satoshi Tanaka
- Department of Psychology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka 431-3192, Japan
| | - S H Annabel Chen
- Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, Singapore 639818, Singapore
- Centre for Research and Development in Learning, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Ryo Kitada
- Corresponding author: Graduate School of Intercultural Studies, Kobe University, 12-1 Tsurukabuto, Nada Ward, Kobe, Hyogo 657-0013, Japan.
| |
Collapse
|
22
|
Optimized APPS-tDCS electrode position, size, and distance doubles the on-target stimulation magnitude in 3000 electric field models. Sci Rep 2022; 12:20116. [PMID: 36418438 PMCID: PMC9684449 DOI: 10.1038/s41598-022-24618-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a widely used noninvasive brain stimulation technique with mixed results to date. A potential solution is to apply more efficient stimulation to ensure that each participant receives sufficient cortical activation. In this four-part study, we used electric field (E-field) modeling to systematically investigate the cortical effects of conventional and novel tDCS electrode montages, with the goal of creating a new easily adoptable form of tDCS that induces higher and more focal E-fields. We computed 3000 anatomically accurate, MRI-based E-field models using 2 mA tDCS to target the left primary motor cortex in 200 Human Connectome Project (HCP) participants and tested the effects of: 1. Novel Electrode Position, 2. Electrode Size, and 3. Inter-Electrode Distance on E-field magnitude and focality. In particular, we examined the effects of placing electrodes surrounding the corticomotor target in the anterior and posterior direction (anterior posterior pad surround tDCS; APPS-tDCS). We found that electrode position, electrode size, and inter-electrode distance all significantly impact the cortical E-field magnitude and focality of stimulation (all p < 0.0001). At the same 2 mA scalp stimulation intensity, APPS-tDCS with smaller than conventional 1 × 1 cm electrodes surrounding the neural target deliver more than double the on-target cortical E-field (APPS-tDCS: average of 0.55 V/m from 2 mA; M1-SO and bilateral M1: both 0.27 V/m from 2 mA) while stimulating only a fraction of the off-target brain regions; 2 mA optimized APPS-tDCS produces 4.08 mA-like cortical E-fields. In sum, this new optimized APPS-tDCS method produces much stronger cortical stimulation intensities at the same 2 mA scalp intensity. APPS-tDCS also more focally stimulates the cortex at the intended target, using simple EEG coordinate locations and without MRI scans. This APPS-tDCS method is adoptable to any existing, commercially available tDCS device and can be used to ensure sufficient cortical activation in each person. Future directions include testing whether APPS-tDCS produces larger and more consistent therapeutic tDCS effects.
Collapse
|
23
|
Siew-Pin Leuk J, Yow KE, Zi-Xin Tan C, Hendy AM, Kar-Wing Tan M, Hock-Beng Ng T, Teo WP. A meta-analytical review of transcranial direct current stimulation parameters on upper limb motor learning in healthy older adults and people with Parkinson's disease. Rev Neurosci 2022; 34:325-348. [PMID: 36138560 DOI: 10.1515/revneuro-2022-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022]
Abstract
Current literature lacks consolidated evidence for the impact of stimulation parameters on the effects of transcranial direct current stimulation (tDCS) in enhancing upper limb motor learning. Hence, we aim to synthesise available methodologies and results to guide future research on the usage of tDCS on upper limb motor learning, specifically in older adults and Parkinson's disease (PD). Thirty-two studies (Healthy older adults, N = 526, M = 67.25, SD = 4.30 years; PD, N = 216, M = 66.62, SD = 6.25 years) were included in the meta-analysis. All included studies consisted of active and sham protocols. Random effect meta-analyses were conducted for (i) subjects (healthy older adults and PD); (ii) intensity (1.0, 1.5, 2 mA); (iii) electrode montage (unilateral anodal, bilateral anodal, unilateral cathodal); (iv) stimulation site (cerebellum, frontal, motor, premotor, SMA, somatosensory); (v) protocol (online, offline). Significant tDCS effect on motor learning was reported for both populations, intensity 1.0 and 2.0 mA, unilateral anodal and cathodal stimulation, stimulation site of the motor and premotor cortex, and both online and offline protocols. Regression showed no significant relationship between tDCS effects and density. The efficacy of tDCS is also not affected by the number of sessions. However, studies that reported only single session tDCS found significant negative association between duration with motor learning outcomes. Our findings suggest that different stimulation parameters enhanced upper limb motor learning in older adults and PD. Future research should combine tDCS with neuroimaging techniques to help with optimisation of the stimulation parameters, considering the type of task and population.
Collapse
Affiliation(s)
- Jessie Siew-Pin Leuk
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Kai-En Yow
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Clenyce Zi-Xin Tan
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Ashlee M Hendy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences (SENS), Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Mika Kar-Wing Tan
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Tommy Hock-Beng Ng
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Wei-Peng Teo
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| |
Collapse
|
24
|
Lee S, Park J, Choi DS, Lee C, Im CH. Multipair transcranial temporal interference stimulation for improved focalized stimulation of deep brain regions: A simulation study. Comput Biol Med 2022; 143:105337. [PMID: 35220075 DOI: 10.1016/j.compbiomed.2022.105337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Temporal interference stimulation (TIS) has been proved to be effective in stimulating deep brain regions while avoiding the stimulation of neocortical regions in animal experiments. In the traditional TIS, two alternating currents are injected with different frequencies via two electrode pairs attached to the scalp. In the human brain, however, it is difficult to achieve a focal stimulation of deep brain structures due to the high complexity of human brain structures. In this study, we hypothesized that the use of multiple electrode pairs may contribute to the more focalized delivery of temporal interference (TI) currents to the target site in the deep area of the brain. Based on this hypothesis, we proposed a novel multipair TIS method that employs more than two electrode pairs for improved focalized stimulation of the deep brain region (in this study, the head of the right hippocampus). Three realistic finite element models were used to validate the feasibility of the proposed multipair TIS. Additional electrode pairs were sequentially added to the conventional two-electrode pairs with the aim of maximizing the delivery of TI currents to the target while minimizing TI currents in the neocortical regions. The results confirmed that the multipair TIS provides better focalized stimulation than the conventional two-pair TIS for all three head models. It is expected that the proposed multipair TIS can be used to enhance the effectiveness of noninvasive deep brain stimulation.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea; Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jimin Park
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Da Som Choi
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chany Lee
- Department of Structure & Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea; Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Han YMY, Chan MMY, Shea CKS, Lai OLH, Krishnamurthy K, Cheung MC, Chan AS. Neurophysiological and behavioral effects of multisession prefrontal tDCS and concurrent cognitive remediation training in patients with autism spectrum disorder (ASD): A double-blind, randomized controlled fNIRS study. Brain Stimul 2022; 15:414-425. [PMID: 35181532 DOI: 10.1016/j.brs.2022.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The clinical effects and neurophysiological mechanisms of prefrontal tDCS and concurrent cognitive remediation training in individuals with autism spectrum disorder (ASD) remain unclear. OBJECTIVE This two-armed, double-blind, randomized, sham-controlled trial aimed to investigate the beneficial effects of tDCS combined with concurrent cognitive remediation training on adolescents and young adults with ASD. METHODS Participants were randomly assigned to either active or sham tDCS groups and received 1.5 mA prefrontal tDCS with left dorsolateral prefrontal cortex cathode placement and right supraorbital region anode placement for 20 min over two consecutive weeks. tDCS was delivered concurrently with a computerized cognitive remediation training program. Social functioning and its underlying cognitive processes, as well as prefrontal resting-state functional connectivity (rsFC), were measured. RESULTS The results from 41 participants indicated that multisession prefrontal tDCS, compared to sham tDCS, significantly enhanced the social functioning of ASD individuals [F(1,39) = 4.75, p = .035, ηp2 = 0.11]. This improvement was associated with enhanced emotion recognition [F(1,39) = 8.34, p = .006, ηp2 = 0.18] and cognitive flexibility [F(1,39) = 4.91, p = .033, ηp2 = 0.11]. Specifically, this tDCS protocol optimized information processing efficiency [F(1,39) = 4.43, p = .042, ηp2 = 0.10], and the optimization showed a trend to be associated with enhanced rsFC in the right medial prefrontal cortex (ρ = 0.339, pFDR = .083). CONCLUSION Multisession tDCS with left dlPFC cathode placement and right supraorbital region anode placement paired with concurrent cognitive remediation training promoted social functioning in individuals with ASD. This appeared to be associated with the enhancement of the functional connectivity of the right medial PFC, a major hub for flexible social information processing, allowing these individuals to process information more efficiently in response to different social situations. TRIAL REGISTRATION ClinicalTrials.gov (ID: NCT03814083).
Collapse
Affiliation(s)
- Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, China.
| | - Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Caroline K S Shea
- Alice Ho Miu Ling Nethersole Hospital, Hospital Authority, Hong Kong, China; Department of Psychiatry, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Oscar Long-Hin Lai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | | | - Mei-Chun Cheung
- Department of Social Work, Chinese University of Hong Kong, Hong Kong, China
| | - Agnes S Chan
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Suzuki M, Tanaka S, Gomez-Tames J, Okabe T, Cho K, Iso N, Hirata A. Nonequivalent After-Effects of Alternating Current Stimulation on Motor Cortex Oscillation and Inhibition: Simulation and Experimental Study. Brain Sci 2022; 12:brainsci12020195. [PMID: 35203958 PMCID: PMC8870173 DOI: 10.3390/brainsci12020195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
The effects of transcranial alternating current stimulation (tACS) frequency on brain oscillations and cortical excitability are still controversial. Therefore, this study investigated how different tACS frequencies differentially modulate cortical oscillation and inhibition. To do so, we first determined the optimal positioning of tACS electrodes through an electric field simulation constructed from magnetic resonance images. Seven electrode configurations were tested on the electric field of the precentral gyrus (hand motor area). We determined that the Cz-CP1 configuration was optimal, as it resulted in higher electric field values and minimized the intra-individual differences in the electric field. Therefore, tACS was delivered to the hand motor area through this arrangement at a fixed frequency of 10 Hz (alpha-tACS) or 20 Hz (beta-tACS) with a peak-to-peak amplitude of 0.6 mA for 20 min. We found that alpha- and beta-tACS resulted in larger alpha and beta oscillations, respectively, compared with the oscillations observed after sham-tACS. In addition, alpha- and beta-tACS decreased the amplitudes of conditioned motor evoked potentials and increased alpha and beta activity, respectively. Correspondingly, alpha- and beta-tACSs enhanced cortical inhibition. These results show that tACS frequency differentially affects motor cortex oscillation and inhibition.
Collapse
Affiliation(s)
- Makoto Suzuki
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
- Correspondence: ; Tel.: +81-42-955-6074
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Jose Gomez-Tames
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan; (J.G.-T.); (A.H.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan
| | - Takuhiro Okabe
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
| | - Kilchoon Cho
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
| | - Naoki Iso
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan; (J.G.-T.); (A.H.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan
| |
Collapse
|
27
|
da Silva Machado CB, da Silva LM, Gonçalves AF, Andrade PRD, Mendes CKTT, de Assis TJCF, Godeiro Júnior CDO, Andrade SM. Multisite non-invasive brain stimulation in Parkinson's disease: A scoping review. NeuroRehabilitation 2021; 49:515-531. [PMID: 34776426 PMCID: PMC8764602 DOI: 10.3233/nre-210190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND: Parkinson’s disease (PD) is a progressive neurodegenerative disorder, characterized by cardinal motor symptoms in addition to cognitive impairment. New insights concerning multisite non-invasive brain stimulation effects have been gained, which can now be used to develop innovative treatment approaches. OBJECTIVE: Map the researchs involving multisite non-invasive brain stimulation in PD, synthesize the available evidence and discuss future directions. METHODS: The databases PubMed, PsycINFO, CINAHL, LILACS and The Cochrane Library were searched from inception until April 2020, without restrictions on the date of publication or the language in which it was published. The reviewers worked in pairs and sequentially evaluated the titles, abstracts and then the full text of all publications identified as potentially relevant. RESULTS: Twelve articles met the inclusion criteria. The target brain regions included mainly the combination of a motor and a frontal area, such as stimulation of the primary motor córtex associated with the dorsolateral prefrontal cortex. Most of the trials showed that this modality was only more effective for the motor component, or for the cognitive and/or non-motor, separately. CONCLUSIONS: Despite the results being encouraging for the use of the multisite aproach, the indication for PD management should be carried out with caution and deserves scientific deepening.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Clécio de Oliveira Godeiro Júnior
- Division of Neurology, CHU of Grenoble, Grenoble Alpes University, La Tronche, Grenoble, France.,Division of Neurology, Hospital Universitario Onofre Lopes, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
28
|
Multichannel anodal tDCS over the left dorsolateral prefrontal cortex in a paediatric population. Sci Rep 2021; 11:21512. [PMID: 34728684 PMCID: PMC8563927 DOI: 10.1038/s41598-021-00933-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Methodological studies investigating transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (lDLPFC) in paediatric populations are limited. Therefore, we investigated in a paediatric population whether stimulation success of multichannel tDCS over the lDLPFC depends on concurrent task performance and individual head anatomy. In a randomised, sham-controlled, double-blind crossover study 22 healthy participants (10–17 years) received 2 mA multichannel anodal tDCS (atDCS) over the lDLPFC with and without a 2-back working memory (WM) task. After stimulation, the 2-back task and a Flanker task were performed. Resting state and task-related EEG were recorded. In 16 participants we calculated the individual electric field (E-field) distribution. Performance and neurophysiological activity in the 2-back task were not affected by atDCS. atDCS reduced reaction times in the Flanker task, independent of whether atDCS had been combined with the 2-back task. Flanker task related beta oscillation increased following stimulation without 2-back task performance. atDCS effects were not correlated with the E-field. We found no effect of multichannel atDCS over the lDLPFC on WM in children/adolescents but a transfer effect on interference control. While this effect on behaviour was independent of concurrent task performance, neurophysiological activity might be more sensitive to cognitive activation during stimulation. However, our results are limited by the small sample size, the lack of an active control group and variations in WM performance.
Collapse
|
29
|
Wischnewski M, Mantell KE, Opitz A. Identifying regions in prefrontal cortex related to working memory improvement: A novel meta-analytic method using electric field modeling. Neurosci Biobehav Rev 2021; 130:147-161. [PMID: 34418436 DOI: 10.1016/j.neubiorev.2021.08.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 08/15/2021] [Indexed: 12/17/2022]
Abstract
Altering cortical activity using transcranial direct current stimulation (tDCS) has been shown to improve working memory (WM) performance. Due to large inter-experimental variability in the tDCS montage configuration and strength of induced electric fields, results have been mixed. Here, we present a novel meta-analytic method relating behavioral effect sizes to electric field strength to identify brain regions underlying largest tDCS-induced WM improvement. Simulations on 69 studies targeting left prefrontal cortex showed that tDCS electric field strength in lower dorsolateral prefrontal cortex (Brodmann area 45/47) relates most strongly to improved WM performance. This region explained 7.8 % of variance, equaling a medium effect. A similar region was identified when correlating WM performance and electric field strength of right prefrontal tDCS studies (n = 18). Maximum electric field strength of five previously used tDCS configurations were outside of this location. We thus propose a new tDCS montage which maximizes the tDCS electric field strength in that brain region. Our findings can benefit future tDCS studies that aim to affect WM function.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States.
| | - Kathleen E Mantell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
30
|
A 50 Hz magnetic field affects hemodynamics, ECG and vascular endothelial function in healthy adults: A pilot randomized controlled trial. PLoS One 2021; 16:e0255242. [PMID: 34351946 PMCID: PMC8341886 DOI: 10.1371/journal.pone.0255242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/20/2021] [Indexed: 11/19/2022] Open
Abstract
Application of exposure to 50/60 Hz magnetic fields (MFs) has been conducted in the treatment of muscle pain and fatigue mainly in Japan. However, whether MFs could increase blood flow leading to muscle fatigue recovery has not been sufficiently tested. We investigated the acute effects of a 50 Hz sinusoidal MF at Bmax 180 mT on hemodynamics, electrocardiogram, and vascular endothelial function in healthy young men. Three types of regional exposures to a 50 Hz MF, i.e., forearm, upper arm, or neck exposure to MF were performed. Participants who received three types of real MF exposures had significantly increased ulnar arterial blood flow velocity compared to the sham exposures. Furthermore, after muscle loading exercise, MF exposure recovered hemoglobin oxygenation index values faster and higher than sham exposure from the loading condition. Moreover, participants who received real MF exposure in the neck region had significantly increased parasympathetic high-frequency activity relative to the sham exposure. The MF exposure in the upper arm region significantly increased the brachial artery flow-mediated dilation compared to the sham exposure. Computer simulations of induced in situ electric fields indicated that the order-of-magnitude estimates of the peak values were 100-500 mV/m, depending on the exposure conditions. This study provides the first evidence that a 50 Hz MF can activate parasympathetic activity and thereby lead to increase vasodilation and blood flow via a nitric oxide-dependent mechanism. Trial registration: UMIN Clinical Trial Registry (CTR) UMIN000038834. The authors confirm that all ongoing and related trials for this drug/intervention are registered.
Collapse
|
31
|
Rudroff T, Workman CD. Transcranial Direct Current Stimulation as a Treatment Tool for Mild Traumatic Brain Injury. Brain Sci 2021; 11:brainsci11060806. [PMID: 34207004 PMCID: PMC8235194 DOI: 10.3390/brainsci11060806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Mild traumatic brain injury (mTBI) has been defined as a transient (<24 h) condition of confusion and/or loss of consciousness for less than 30 min after brain injury and can result in short- and long-term motor and cognitive impairments. Recent studies have documented the therapeutic potential of non-invasive neuromodulation techniques for the enhancement of cognitive and motor function in mTBI. Alongside repetitive transcranial magnetic stimulation (rTMS), the main technique used for this purpose is transcranial direct current stimulation (tDCS). The focus of this review was to provide a detailed, comprehensive (i.e., both cognitive and motor impairment) overview of the literature regarding therapeutic tDCS paradigms after mTBI. A publication search of the PubMed, Scopus, CINAHL, and PsycINFO databases was performed to identify records that applied tDCS in mTBI. The publication search yielded 14,422 records from all of the databases, however, only three met the inclusion criteria and were included in the final review. Based on the review, there is limited evidence of tDCS improving cognitive and motor performance. Surprisingly, there were only three studies that used tDCS in mTBI, which highlights an urgent need for more research to provide additional insights into ideal therapeutic brain targets and optimized stimulation parameters.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Neurology, University of Iowa Health Clinics, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-319-467-0363
| | - Craig D. Workman
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
32
|
Wu L, Liu T, Wang J. Improving the Effect of Transcranial Alternating Current Stimulation (tACS): A Systematic Review. Front Hum Neurosci 2021; 15:652393. [PMID: 34163340 PMCID: PMC8215166 DOI: 10.3389/fnhum.2021.652393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022] Open
Abstract
With the development of electrical stimulation technology, traditional transcranial alternating current stimulation (tACS) technology has been found to have the drawback of not targeting a specific area accurately. Studies have shown that optimizing the number and position of electrodes during electrical stimulation has a very good effect on enhancing brain stimulation accuracy. At present, an increasing number of laboratories have begun to optimize tACS. However, there has been no study summarizing the optimization methods of tACS. Determining whether different optimization methods are effective and the optimization approach could provide information that could guide future tACS research. We describe the results of recent research on tACS optimization and integrate the optimization approaches of tACS in recent research. Optimization approaches can be classified into two groups: high-definition electrical stimulation and interference modulation electrical stimulation. The optimization methods can be divided into five categories: high-definition tACS, phase-shifted tACS, amplitude-modulated tACS, the temporally interfering (TI) method, and the intersectional short pulse (ISP) method. Finally, we summarize the latest research on hardware useful for tACS improvement and outline future directions.
Collapse
Affiliation(s)
- Linyan Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, China
| |
Collapse
|
33
|
Bhalerao GV, Sreeraj VS, Bose A, Narayanaswamy JC, Venkatasubramanian G. Comparison of electric field modeling pipelines for transcranial direct current stimulation. Neurophysiol Clin 2021; 51:303-318. [PMID: 34023189 DOI: 10.1016/j.neucli.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Electric field modeling utilizes structural brain magnetic resonance images (MRI) to model the electric field induced by non-invasive transcranial direct current stimulation (tDCS) in a given individual. Electric field modeling is being integrated with clinical outcomes to improve understanding of inter-individual variability in tDCS effects and to optimize tDCS parameters, thereby enhancing the predictability of clinical effects. The successful integration of modeling in clinical use will primarily be driven by choice of tools and procedures implemented in computational modeling. Thus, the electric field predictions from different modeling pipelines need to be investigated to ensure the validity and reproducibility of tDCS modeling results across clinical or translational studies. METHODS We used T1w structural MRI from 32 healthy volunteer subjects and modeled the electric field distribution for a fronto-temporal tDCS montage. For five different computational modeling pipelines, we quantitatively compared brain tissue segmentation and electric field predicted in whole-brain, brain tissues and target brain regions between the modeling pipelines. RESULTS Our comparisons at various levels did not reveal any systematic trend with regards to similarity or dissimilarity of electric field predicted in brain tissues and target brain regions. The inconsistent trends in the predicted electric field indicate variation in the procedures, routines and algorithms used within and across the modeling pipelines. CONCLUSION Our results suggest that studies integrating electric field modeling and clinical outcomes of tDCS will highly depend upon the choice of the modeling pipelines and procedures. We propose that using these pipelines for further research and clinical applications should be subject to careful consideration, and indicate general recommendations.
Collapse
Affiliation(s)
- Gaurav V Bhalerao
- Department of Psychiatry, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru 560029, India.
| | - Vanteemar S Sreeraj
- Department of Psychiatry, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru 560029, India
| | - Anushree Bose
- Department of Psychiatry, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru 560029, India
| | - Janardhanan C Narayanaswamy
- Department of Psychiatry, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru 560029, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru 560029, India
| |
Collapse
|
34
|
Shinde AB, Lerud KD, Munsch F, Alsop DC, Schlaug G. Effects of tDCS dose and electrode montage on regional cerebral blood flow and motor behavior. Neuroimage 2021; 237:118144. [PMID: 33991697 PMCID: PMC8653867 DOI: 10.1016/j.neuroimage.2021.118144] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/04/2022] Open
Abstract
We used three dose levels (Sham, 2 mA, and 4 mA) and two different electrode montages (unihemispheric and bihemispheric) to examine DOSE and MONTAGE effects on regional cerebral blood flow (rCBF) as a surrogate marker of neural activity, and on a finger sequence task, as a surrogate behavioral measure drawing on brain regions targeted by transcranial direct current stimulation (tDCS). We placed the anodal electrode over the right motor region (C4) while the cathodal or return electrode was placed either over a left supraorbital region (unihemispheric montage) or over the left motor region (C3 in the bihemispheric montage). Performance changes in the finger sequence task for both hands (left hand: p = 0.0026, and right hand: p = 0.0002) showed a linear tDCS dose response but no montage effect. rCBF in the right hemispheric perirolandic area increased with dose under the anodal electrode (p = 0.027). In contrast, in the perirolandic ROI in the left hemisphere, rCBF showed a trend to increase with dose (p = 0.053) and a significant effect of montage (p = 0.00004). The bihemispheric montage showed additional rCBF increases in frontomesial regions in the 4mA condition but not in the 2 mA condition. Furthermore, we found strong correlations between simulated current density in the left and right perirolandic region and improvements in the finger sequence task performance (FSP) for the contralateral hand. Our data support not only a strong direct tDCS dose effect for rCBF and FSP as surrogate measures of targeted brain regions but also indirect effects on rCBF in functionally connected regions (e.g., frontomesial regions), particularly in the higher dose condition and on FSP of the ipsilateral hand (to the anodal electrode). At a higher dose and irrespective of polarity, a wider network of sensorimotor regions is positively affected by tDCS.
Collapse
Affiliation(s)
- Anant B Shinde
- Department of Neurology, Baystate Medical Center - UMass Medical School, Springfield, MA 01107, USA; Department of Biomedical Engineering and Institute of Applied Life Sciences, UMass Amherst, Amherst, MA 01003, USA.
| | - Karl D Lerud
- Department of Neurology, Baystate Medical Center - UMass Medical School, Springfield, MA 01107, USA
| | - Fanny Munsch
- Department of Radiology, MRI Research, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA 02215, USA
| | - David C Alsop
- Department of Radiology, MRI Research, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA 02215, USA
| | - Gottfried Schlaug
- Department of Neurology, Baystate Medical Center - UMass Medical School, Springfield, MA 01107, USA; Department of Biomedical Engineering and Institute of Applied Life Sciences, UMass Amherst, Amherst, MA 01003, USA; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA 02215, USA
| |
Collapse
|
35
|
Chan MMY, Yau SSY, Han YMY. The neurobiology of prefrontal transcranial direct current stimulation (tDCS) in promoting brain plasticity: A systematic review and meta-analyses of human and rodent studies. Neurosci Biobehav Rev 2021; 125:392-416. [PMID: 33662444 DOI: 10.1016/j.neubiorev.2021.02.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
The neurobiological mechanisms underlying prefrontal transcranial direct current stimulation (tDCS) remain elusive. Randomized, sham-controlled trials in humans and rodents applying in vivo prefrontal tDCS were included to explore whether prefrontal tDCS modulates resting-state and event-related functional connectivity, neural oscillation and synaptic plasticity. Fifty studies were included in the systematic review and 32 in the meta-analyses. Neuroimaging meta-analysis indicated anodal prefrontal tDCS significantly enhanced bilateral median cingulate activity [familywise error (FWE)-corrected p < .005]; meta-regression revealed a positive relationship between changes in median cingulate activity after tDCS and current density (FWE-corrected p < .005) as well as electric current strength (FWE-corrected p < .05). Meta-analyses of electroencephalography and magnetoencephalography data revealed nonsignificant changes (ps > .1) in both resting-state and event-related oscillatory power across all frequency bands. Applying anodal tDCS over the rodent hippocampus/prefrontal cortex enhanced long-term potentiation and brain-derived neurotrophic factor expression in the stimulated brain regions (ps <.005). Evidence supporting prefrontal tDCS administration is preliminary; more methodologically consistent studies evaluating its effects on cognitive function that include brain activity measurements are needed.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sonata S Y Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
36
|
Callejón A, Miranda PC. A comprehensive analysis of the impact of head model extent on electric field predictions in transcranial current stimulation. J Neural Eng 2021; 18. [PMID: 33647895 DOI: 10.1088/1741-2552/abeab7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE MRI-based head models are used to predict the electric field (E-field) in the brain in Transcranial Current Stimulation (tCS). The standard field of view (FOV) of clinical MRI often only covers the head down to the skull base, which has usually lead to models truncated at the nose. Although recent pipelines can artificially extend the head model to the neck, the need for implementing full head models preserving skull holes such as the foramen magnum remains controversial. The objective is to analyze the impact of head model extent on E-field accuracy, with emphasis on specific electrode montages. APPROACH A full head model containing an open foramen magnum and a cut head model with closed skull were compared in terms of predicted E-field. Several electrode montages, including fronto-occipital montages used in validation studies, were simulated. Local and global metrics were used to evaluate the error for both E-field magnitude and distribution, along with tangential and normal components over different cortical areas. The percentage of current flowing through the truncation level was also computed. RESULTS Regarding E-field magnitude, small relative differences below 7% were found in gray matter for classical montages. Although considerably higher relative differences near 50% were found for fronto-occipital montages, absolute errors of 0.1 V/m were only found in non-targeted regions such as the cerebellum. Differences in tangential and normal E-fields were similar and followed the trend observed for E-field magnitude. Our results also showed a high correlation between the percentage of current shunted through the truncation level and the absolute E-field differences. SIGNIFICANCE The influence of head model extent on E-field accuracy depends on electrode montage. Standard cut head models provide sufficiently accurate predictions for both E-field magnitude and distribution in targeted brain areas. Fronto-occipital montages exhibited larger errors, which might be considered in further validation studies.
Collapse
Affiliation(s)
- Amparo Callejón
- Teoría de la Señal y Comunicaciones, Biomedical Engineering Group, Avda. de los Descubrimientos s/n, Seville, 41092, SPAIN
| | - Pedro C Miranda
- Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal, Campo Grande, 1749-016, Lisboa, Portugal, Lisbon, 1749-016, PORTUGAL
| |
Collapse
|
37
|
Schommartz I, Dix A, Passow S, Li SC. Functional Effects of Bilateral Dorsolateral Prefrontal Cortex Modulation During Sequential Decision-Making: A Functional Near-Infrared Spectroscopy Study With Offline Transcranial Direct Current Stimulation. Front Hum Neurosci 2021; 14:605190. [PMID: 33613203 PMCID: PMC7886709 DOI: 10.3389/fnhum.2020.605190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
The ability to learn sequential contingencies of actions for predicting future outcomes is indispensable for flexible behavior in many daily decision-making contexts. It remains open whether such ability may be enhanced by transcranial direct current stimulation (tDCS). The present study combined tDCS with functional near-infrared spectroscopy (fNIRS) to investigate potential tDCS-induced effects on sequential decision-making and the neural mechanisms underlying such modulations. Offline tDCS and sham stimulation were applied over the left and right dorsolateral prefrontal cortex (dlPFC) in young male adults (N = 29, mean age = 23.4 years, SD = 3.2) in a double-blind between-subject design using a three-state Markov decision task. The results showed (i) an enhanced dlPFC hemodynamic response during the acquisition of sequential state transitions that is consistent with the findings from a previous functional magnetic resonance imaging (fMRI) study; (ii) a tDCS-induced increase of the hemodynamic response in the dlPFC, but without accompanying performance-enhancing effects at the behavioral level; and (iii) a greater tDCS-induced upregulation of hemodynamic responses in the delayed reward condition that seems to be associated with faster decision speed. Taken together, these findings provide empirical evidence for fNIRS as a suitable method for investigating hemodynamic correlates of sequential decision-making as well as functional brain correlates underlying tDCS-induced modulation. Future research with larger sample sizes for carrying out subgroup analysis is necessary in order to decipher interindividual differences in tDCS-induced effects on sequential decision-making process at the behavioral and brain levels.
Collapse
Affiliation(s)
- Iryna Schommartz
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Department of Developmental Psychology, Institute of Psychology, Goethe University Frankfurt, Frankfurt, Germany
| | - Annika Dix
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| | - Susanne Passow
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
38
|
Soleimani G, Saviz M, Bikson M, Towhidkhah F, Kuplicki R, Paulus MP, Ekhtiari H. Group and individual level variations between symmetric and asymmetric DLPFC montages for tDCS over large scale brain network nodes. Sci Rep 2021; 11:1271. [PMID: 33446802 PMCID: PMC7809198 DOI: 10.1038/s41598-020-80279-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Two challenges to optimizing transcranial direct current stimulation (tDCS) are selecting between, often similar, electrode montages and accounting for inter-individual differences in response. These two factors are related by how tDCS montage determines current flow through the brain considered across or within individuals. MRI-based computational head models (CHMs) predict how brain anatomy determines electric field (EF) patterns for a given tDCS montage. Because conventional tDCS produces diffuse brain current flow, stimulation outcomes may be understood as modulation of global networks. Therefore, we developed a network-led, rather than region-led, approach. We specifically considered two common "frontal" tDCS montages that nominally target the dorsolateral prefrontal cortex; asymmetric "unilateral" (anode/cathode: F4/Fp1) and symmetric "bilateral" (F4/F3) electrode montages. CHMs of 66 participants were constructed. We showed that cathode location significantly affects EFs in the limbic network. Furthermore, using a finer parcellation of large-scale networks, we found significant differences in some of the main nodes within a network, even if there is no difference at the network level. This study generally demonstrates a methodology for considering the components of large-scale networks in CHMs instead of targeting a single region and specifically provides insight into how symmetric vs asymmetric frontal tDCS may differentially modulate networks across a population.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehrdad Saviz
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York of CUNY, New York, NY, USA
| | - Farzad Towhidkhah
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Rayus Kuplicki
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA
| | - Hamed Ekhtiari
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA
| |
Collapse
|
39
|
El-Hagrassy M, Duarte D, Lu J, Uygur-Kucukseymen E, Münger M, Thibaut A, Lv P, Morales-Quezada L, Fregni F. EEG modulation by different transcranial direct current stimulation (tDCS) montages: a randomized double-blind sham-control mechanistic pilot trial in healthy participants. Expert Rev Med Devices 2020; 18:107-120. [PMID: 33305643 DOI: 10.1080/17434440.2021.1860018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Based on our Phantom study on transcranial direct current stimulation (tDCS), we hypothesized that EEG band power and field confinement would be greater following left dorsolateral prefrontal cortex (DLPFC - F3) tDCS using circular vs. rectangular electrodes.Methods: Double-blind-randomized trial comparing tDCS with anode over left DLPFC (groups: rectangular electrodes, circular electrodes, sham) and 2 active subgroup references (right shoulder vs. right DLPFC).Results: Twenty-four randomized participants were assessed. We indeed found higher average EEG power spectral density (PSD) across bands for circular vs. rectangular electrodes, largely confined to F3 and there was a significant increase at AF3 for low alpha (p = 0.037). Significant differences included: increased PSD in low beta (p = 0.024) and theta bands (p = 0.021) at F3, and in theta (p = 0.036) at FC5 for the right DLPFC vs. shoulder with no coherence changes. We found PSD differences between active vs. sham tDCS at Fz for alpha (p = 0.043), delta (p = 0.036), high delta (p = 0.030); and at FC1 for alpha (p = 0.031), with coherence differences for F3-Fz in beta (p = 0.044), theta (p = 0.044), delta (p = 0.037) and high delta (p = 0.009).Conclusion: This pilot study despite low statistical power given its small sample size shows that active left DLPFC tDCS modulates EEG frontocentrally and suggests that electrode shapes/reference locations affect its neurophysiological effects, such as increased low alpha power at AF3 using circular vs. rectangular electrodes. Further research with more participants is warranted.
Collapse
Affiliation(s)
- Mirret El-Hagrassy
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,UMass Memorial Medical Center, Neurology Department, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dante Duarte
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jerry Lu
- Charter School of Wilmington, Wilmington, DE, USA
| | - Elif Uygur-Kucukseymen
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
| | - Marionna Münger
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,Division of Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland
| | - Aurore Thibaut
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,University and University Hospital of Liège, Liège, Belgium
| | | | - Leon Morales-Quezada
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
Chan MMY, Han YMY. The Effect of Transcranial Direct Current Stimulation in Changing Resting-State Functional Connectivity in Patients With Neurological Disorders: A Systematic Review. J Cent Nerv Syst Dis 2020; 12:1179573520976832. [PMID: 33402860 PMCID: PMC7745554 DOI: 10.1177/1179573520976832] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND People with neurological disorders are found to have abnormal resting-state functional connectivity (rsFC), which is associated with the persistent functional impairment found in these patients. Recently, transcranial direct current stimulation (tDCS) has been shown to improve rsFC, although the results are inconsistent. OBJECTIVE We hope to explore whether tDCS induces rsFC changes among patients with neurological disorders, whether rsFC is clinically relevant and how different tDCS parameters affect rsFC outcome among these individuals. METHODS A systematic review was conducted according to PRISMA guidelines (systematic review registration number: CRD42020168654). Randomized controlled trials that studied the tDCS effects on rsFC between the experimental and sham-controlled groups using either electrophysiological or neuroimaging methods were included. RESULTS Active tDCS can induce changes in both localized (ie, brain regions under the transcranial electrodes) and diffused (ie, brain regions not directly influenced by the transcranial electrodes) rsFC. Interestingly, fMRI studies showed that the default mode network was enhanced regardless of patients' diagnoses, the stimulation paradigms used or the rsFC analytical methods employed. Second, stimulation intensity, but not total stimulation time, appeared to positively influence the effect of tDCS on rsFC. LIMITATIONS AND CONCLUSION Due to the inherent heterogeneity in rsFC analytical methods and tDCS protocols, meta-analysis was not conducted. We recommend that future studies may investigate the effect of tDCS on rsFC for repeated cathodal stimulation. For clinicians, we suggest anodal stimulation at a higher stimulation intensity within the safety limit may maximize tDCS effects in modulating aberrant functional connectivity of patients with neurological disorders.
Collapse
Affiliation(s)
- Melody MY Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yvonne MY Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
41
|
Soldati M, Murakami T, Laakso I. Inter-individual variations in electric fields induced in the brain by exposure to uniform magnetic fields at 50 Hz. Phys Med Biol 2020; 65:215006. [PMID: 32615544 DOI: 10.1088/1361-6560/aba21e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines and the Institute of Electrical and Electronics Engineers (IEEE) standard establish safety limits for human exposure to electromagnetic fields. At low frequencies, only a limited number of computational body models or simplified geometrical shapes are used to relate the internal induced electric fields and the external magnetic fields. As a consequence, both standard/guidelines derive the exposure reference levels for the external magnetic field without considering the variability between individuals. Here we provide quantitative data on the variation of the maximum electric field strengths induced in the brain of 118 individuals when exposed to uniform magnetic fields at 50 Hz. We found that individual characteristics, such as age and skull volume, as well as incident magnetic field direction, have a systematic effect on the peak electric field values. Older individuals show higher induced electric field strengths, possibly due to age-related anatomical changes in brain. Peak electric field strengths are found to increase for larger skull volumes, as well as for incident magnetic fields directed along the lateral direction. Moreover, the maximum electric fields provided by the anatomical models used by ICNIRP for deriving exposure limits are considerably higher than those obtained here. On the contrary, the IEEE elliptical exposure model produces a weaker peak electric field strength. Our findings are useful for the revision and harmonization of the current exposure standard and guidelines. The present investigation reduces the dosimetric uncertainty of the induced electric field among different anatomical induction models. The obtained results can be used as a basis for the selection of appropriate reduction factors when deriving exposure reference levels for human protection to low-frequency electromagnetic exposure.
Collapse
Affiliation(s)
- Marco Soldati
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | | | | |
Collapse
|
42
|
Kashyap R, Bhattacharjee S, Arumugam R, Oishi K, Desmond JE, Chen SHA. i-SATA: A MATLAB based toolbox to estimate current density generated by transcranial direct current stimulation in an individual brain. J Neural Eng 2020; 17:056034. [PMID: 32674087 DOI: 10.1088/1741-2552/aba6dc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Transcranial Direct Current Stimulation (tDCS) is a technique where a weak current is passed through the electrodes placed on the scalp. The distribution of the electric current induced in the brain due to tDCS is provided by simulation toolbox like Realistic volumetric Approach based Simulator for Transcranial electric stimulation (ROAST). However, the procedure to estimate the total current density induced at the target and the intermediary region of the cortex is complex. The Systematic-Approach-for-tDCS-Analysis (SATA) was developed to overcome this problem. However, SATA is limited to standardized (MNI152) headspace only. Here we develop individual-SATA (i-SATA) to extend it to individual head. APPROACH T1-weighted images of 15 subjects were taken from two Magnetic Resonance Imaging scanners of different strengths. Across the subjects, the montages were simulated in ROAST. i-SATA converts the ROAST output to Talairach space. The x, y and z coordinates of the anterior commissure (AC), posterior commissure (PC), and Mid-Sagittal (MS) points are necessary for the conversion. AC and PC are detected using the acpcdetect toolbox. We developed a method to determine the MS in the image and cross-verified its location manually using BrainSight®. MAIN RESULTS Determination of points with i-SATA is fast and accurate. The i-SATA provided estimates of the current-density induced across an individual's cortical lobes and gyri as tested on images from two different scanners. SIGNIFICANCE Researchers can use i-SATA for customizing tDCS-montages. With i-SATA it is also easier to compute the inter-individual variation in current-density across the target and intermediary regions of the brain. The software is publicly available.
Collapse
Affiliation(s)
- Rajan Kashyap
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore. Equal Contribution
| | | | | | | | | | | |
Collapse
|
43
|
Boudewyn MA, Scangos K, Ranganath C, Carter CS. Using prefrontal transcranial direct current stimulation (tDCS) to enhance proactive cognitive control in schizophrenia. Neuropsychopharmacology 2020; 45:1877-1883. [PMID: 32604401 PMCID: PMC7608454 DOI: 10.1038/s41386-020-0750-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/09/2022]
Abstract
The goal of this study was to use transcranial direct current stimulation (tDCS) to examine the role of the prefrontal cortex (PFC) in neural oscillatory activity associated with proactive cognitive control in schizophrenia. To do so, we tested the impact of PFC-targeted tDCS on behavioral and electrophysiological markers of proactive cognitive control engagement in individuals with schizophrenia. Using a within-participants, double-blinded, sham-controlled crossover design, we recorded EEG while participants with schizophrenia completed a proactive cognitive control task (the Dot Pattern Expectancy (DPX) Task), after receiving 20 min of active prefrontal stimulation at 2 mA or sham stimulation. We hypothesized that active stimulation would enhance proactive cognitive control, leading to changes in behavioral performance on the DPX task and in activity in the gamma frequency band during key periods of the task designed to tax proactive cognitive control. The results showed significant changes in the pattern of error rates and increases in EEG gamma power as a function of tDCS condition (active or sham), that were indicative of enhanced proactive cognitive control. These findings, considered alongside our previous work in healthy adults, provides novel support for the role gamma oscillations in proactive cognitive control and they suggest that frontal tDCS may be a promising approach to enhance proactive cognitive control in schizophrenia.
Collapse
Affiliation(s)
- Megan A. Boudewyn
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, CA USA
| | - Katherine Scangos
- grid.266102.10000 0001 2297 6811University of California, San Francisco, CA USA
| | - Charan Ranganath
- grid.27860.3b0000 0004 1936 9684University of California, Davis, CA USA
| | - Cameron S. Carter
- grid.27860.3b0000 0004 1936 9684University of California, Davis, CA USA
| |
Collapse
|
44
|
Splittgerber M, Salvador R, Brauer H, Breitling-Ziegler C, Prehn-Kristensen A, Krauel K, Nowak R, Ruffini G, Moliadze V, Siniatchkin M. Individual Baseline Performance and Electrode Montage Impact on the Effects of Anodal tDCS Over the Left Dorsolateral Prefrontal Cortex. Front Hum Neurosci 2020; 14:349. [PMID: 33100989 PMCID: PMC7506510 DOI: 10.3389/fnhum.2020.00349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/04/2020] [Indexed: 11/15/2022] Open
Abstract
Anodal transcranial direct current stimulation (tDCS), applied over the left dorsolateral prefrontal cortex (lDLPFC), can produce significant effects on working memory (WM) performance and associated neurophysiological activity. However, results from previous studies are inconsistent and occasionally contradictory. This inconsistency may be attributed to methodological and individual differences during experiments. This study therefore investigated two hypotheses: (1) A multichannel-optimized montage was expected to be more effective than a classical bipolar montage, because of increased focality. (2) The subjects were expected to benefit differently from the stimulation depending on their initial task performance. In a sham-controlled crossover study, 24 healthy participants received bipolar, multichannel, and sham stimulation for 20 min in randomized order, targeting the lDLPFC while performing a 2-back WM task. After stimulation, electroencephalography (EEG) was recorded at rest and during 2-back and nontarget continuous performance task (CPT) performance. Bipolar and multichannel stimulations were both well tolerated and effectively blinded. We found no effect of stimulation on behavioral performance or neuronal oscillations comparing the classical bipolar or multichannel montage with sham stimulation. We did, however, find an interaction between stimulation and initial task performance. For multichannel stimulation, initially low-performing participants tended to improve their WM performance while initially high-performing participants tended to worsen their performance compared to sham stimulation. Both tDCS montages induced changes in neural oscillatory power, which correlated with baseline performance. The worse the participants’ initial WM performance was, the more task-related theta power was induced by multichannel and bipolar stimulation. The same effect was observed for alpha power in the nontarget task following multichannel stimulation. Notably, we were not able to show a superiority of multichannel stimulation compared to bipolar stimulation. Still, comparing both montages with sham stimulation, multichannel stimulation led to stronger effects than bipolar stimulation. The current study highlights the importance of investigating different parameters with potential influence on tDCS effects in combination. Our results demonstrate how individual differences in cognitive performance and electrode montages influence effects of tDCS on neuropsychological performance. These findings support the idea of an individualized and optimized stimulation setting, potentially leading to increased tDCS effects.
Collapse
Affiliation(s)
- Maike Splittgerber
- Institute of Medical Psychology and Medical Sociology, University Medical Center-Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Hannah Brauer
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Carolin Breitling-Ziegler
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Prehn-Kristensen
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Kerstin Krauel
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | | | | | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center-Schleswig Holstein, Kiel University, Kiel, Germany
| | - Michael Siniatchkin
- Institute of Medical Psychology and Medical Sociology, University Medical Center-Schleswig Holstein, Kiel University, Kiel, Germany.,Clinic for Child and Adolescent Psychiatry and Psychotherapy, Medical Center Bethel, Bielefeld, Germany
| |
Collapse
|
45
|
Lu H, Chan SSM, Lam LCW. Localized Analysis of Normalized Distance from Scalp to Cortex and Personalized Evaluation (LANDSCAPE): Focusing on Age- and Dementia-Specific Changes. J Alzheimers Dis 2020; 67:1331-1341. [PMID: 30689573 DOI: 10.3233/jad-180732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Scalp to cortex distance (SCD), as a key technological parameter, has been highlighted in the guidelines of non-invasive brain stimulation. However, in the context of age-related brain changes, the region-specific SCD and its impact on stimulation-induced electric field remain unclear. OBJECTIVE This study aimed to investigate the region-specific SCD and its relationship with morphometric features and cognitive function in age- and disease-specific populations. METHODS We analyzed the SCD and cortical thickness (CT) of left primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) in 214 cognitively normal adults and 43 dementia patients. CT-adjusted SCD was used to control the influence of CT on SCD. Head model was developed to simulate the impact of SCD on the electric field induced by transcranial electrical stimulation. RESULTS We found age-related increased SCD in the left DLPFC (p < 0.001), but not M1 (p = 0.134), and dementia-related increased SCD in both left DLPFC (p < 0.001) and M1 (p < 0.001). CT-adjusted SCD showed greater region-specific impact on left DLPFC rather than M1. The electric field induced by stimulation was consequently decreased with the increased SCD across normal aging and dementia groups. CONCLUSIONS Age and dementia have differential impacts on the SCDs of left DLPFC and M1. The findings suggest that it is important to be aware of region-specific distance measures when conducting neuromodulation in individuals with old age and dementia.
Collapse
Affiliation(s)
- Hanna Lu
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.,The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sandra S M Chan
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Linda C W Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
46
|
Esmaeilpour Z, Shereen AD, Ghobadi‐Azbari P, Datta A, Woods AJ, Ironside M, O'Shea J, Kirk U, Bikson M, Ekhtiari H. Methodology for tDCS integration with fMRI. Hum Brain Mapp 2020; 41:1950-1967. [PMID: 31872943 PMCID: PMC7267907 DOI: 10.1002/hbm.24908] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/09/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
Understanding and reducing variability of response to transcranial direct current stimulation (tDCS) requires measuring what factors predetermine sensitivity to tDCS and tracking individual response to tDCS. Human trials, animal models, and computational models suggest structural traits and functional states of neural systems are the major sources of this variance. There are 118 published tDCS studies (up to October 1, 2018) that used fMRI as a proxy measure of neural activation to answer mechanistic, predictive, and localization questions about how brain activity is modulated by tDCS. FMRI can potentially contribute as: a measure of cognitive state-level variance in baseline brain activation before tDCS; inform the design of stimulation montages that aim to target functional networks during specific tasks; and act as an outcome measure of functional response to tDCS. In this systematic review, we explore methodological parameter space of tDCS integration with fMRI spanning: (a) fMRI timing relative to tDCS (pre, post, concurrent); (b) study design (parallel, crossover); (c) control condition (sham, active control); (d) number of tDCS sessions; (e) number of follow up scans; (f) stimulation dose and combination with task; (g) functional imaging sequence (BOLD, ASL, resting); and (h) additional behavioral (cognitive, clinical) or quantitative (neurophysiological, biomarker) measurements. Existing tDCS-fMRI literature shows little replication across these permutations; few studies used comparable study designs. Here, we use a representative sample study with both task and resting state fMRI before and after tDCS in a crossover design to discuss methodological confounds. We further outline how computational models of current flow should be combined with imaging data to understand sources of variability. Through the representative sample study, we demonstrate how modeling and imaging methodology can be integrated for individualized analysis. Finally, we discuss the importance of conducting tDCS-fMRI with stimulation equipment certified as safe to use inside the MR scanner, and of correcting for image artifacts caused by tDCS. tDCS-fMRI can address important questions on the functional mechanisms of tDCS action (e.g., target engagement) and has the potential to support enhancement of behavioral interventions, provided studies are designed rationally.
Collapse
Affiliation(s)
- Zeinab Esmaeilpour
- Neural Engineering Laboratory, Department of Biomedical EngineeringThe City College of the City University of New York, City College Center for Discovery and InnovationNew YorkNew York
| | - A. Duke Shereen
- Advanced Science Research Center, The Graduate CenterCity University of New YorkNew YorkNew York
| | | | | | - Adam J. Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health PsychologyUniversity of FloridaGainesvilleFlorida
| | - Maria Ironside
- Center for Depression, Anxiety and Stress Research, McLean HospitalBelmontMassachusetts
- Department of PsychiatryHarvard Medical SchoolBostonMassachusetts
| | - Jacinta O'Shea
- Nuffield Department of Clinical Neuroscience, Medical Science DivisionUniversity of OxfordOxfordEnglandUK
| | - Ulrich Kirk
- Department of PsychologyUniversity of Southern DenmarkOdenseDenmark
| | - Marom Bikson
- Neural Engineering Laboratory, Department of Biomedical EngineeringThe City College of the City University of New York, City College Center for Discovery and InnovationNew YorkNew York
| | | |
Collapse
|
47
|
Rashed EA, Gomez-Tames J, Hirata A. End-to-end semantic segmentation of personalized deep brain structures for non-invasive brain stimulation. Neural Netw 2020; 125:233-244. [DOI: 10.1016/j.neunet.2020.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/16/2020] [Accepted: 02/13/2020] [Indexed: 01/08/2023]
|
48
|
Imaging Transcranial Direct Current Stimulation (tDCS) with Positron Emission Tomography (PET). Brain Sci 2020; 10:brainsci10040236. [PMID: 32326515 PMCID: PMC7226010 DOI: 10.3390/brainsci10040236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a form of non-invasive neuromodulation that is increasingly being utilized to examine and modify several cognitive and motor functions. Although tDCS holds great potential, it is difficult to determine optimal treatment procedures to accommodate configurations, the complex shapes, and dramatic conductivity differences among various tissues. Furthermore, recent demonstrations showed that up to 75% of the tDCS current applied to rodents and human cadavers was shunted by the scalp, subcutaneous tissue, and muscle, bringing the effects of tDCS on the cortex into question. Consequently, it is essential to combine tDCS with human neuroimaging to complement animal and cadaver studies and clarify if and how tDCS can affect neural function. One viable approach is positron emission tomography (PET) imaging. PET has unique potential for examining the effects of tDCS within the central nervous system in vivo, including cerebral metabolism, neuroreceptor occupancy, and neurotransmitter activity/binding. The focus of this review is the emerging role of PET and potential PET radiotracers for studying tDCS-induced functional changes in the human brain.
Collapse
|
49
|
Kenville R, Maudrich T, Maudrich D, Villringer A, Ragert P. Cerebellar Transcranial Direct Current Stimulation Improves Maximum Isometric Force Production during Isometric Barbell Squats. Brain Sci 2020; 10:brainsci10040235. [PMID: 32295234 PMCID: PMC7226563 DOI: 10.3390/brainsci10040235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/11/2022] Open
Abstract
Maximum contraction force (MVC) is an important predictor of athletic performance as well as physical fitness throughout life. Many everyday life activities involve multi-joint or whole-body movements that are determined in part through optimized muscle strength. Transcranial direct current stimulation (tDCS) has been reported to enhance muscle strength parameters in single-joint movements after its application to motor cortical areas, although tDCS effects on MIVC in compound movements remain to be investigated. Here, we tested whether anodal tDCS and/or sham stimulation over primary motor cortex (M1) and cerebellum (CB) improves maximum isometric contraction force (MIVC) during isometric barbell squats (iBS). Our results provide novel evidence that CB stimulation enhances MIVC during iBS. Although this indicates that parameters relating to muscle strength can be modulated through anodal tDCS of the cerebellum, our results serve as an initial reference point and need to be extended. Therefore, further studies are necessary to expand knowledge in this area of research through the inclusion of different tDCS paradigms, for example investigating dynamic barbell squats, as well as testing other whole-body movements.
Collapse
Affiliation(s)
- Rouven Kenville
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, D-04109 Leipzig, Germany; (T.M.); (P.R.)
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany; (D.M.); (A.V.)
- Correspondence: ; Tel.: +49-341-9940-2407
| | - Tom Maudrich
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, D-04109 Leipzig, Germany; (T.M.); (P.R.)
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany; (D.M.); (A.V.)
| | - Dennis Maudrich
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany; (D.M.); (A.V.)
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany; (D.M.); (A.V.)
- Clinic for Cognitive Neurology, University of Leipzig, 04103 Leipzig, Germany
- MindBrainBody Institute at Berlin School of Mind and Brain, Charité-Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, D-04109 Leipzig, Germany; (T.M.); (P.R.)
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany; (D.M.); (A.V.)
| |
Collapse
|
50
|
Yamamoto S, Ishii D, Ichiba N, Yozu A, Kohno Y. Cathodal tDCS on the motor area decreases the tactile threshold of the distal pulp of the hallux. Neurosci Lett 2020; 719:133887. [PMID: 30339919 DOI: 10.1016/j.neulet.2018.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/12/2018] [Accepted: 10/15/2018] [Indexed: 11/28/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been reported to modulate cortical excitability. Most studies on this topic addressed the modulation effects of tDCS on the upper extremities. Foot-sole tactile sensation is essential to gait, but little is known about the effect of tDCS on sensory function in the foot area. Here we administered tDCS to 10 healthy adults, and we observed that the modulation effects of cathodal tDCS on the left motor area led to a decrease in the tactile threshold of the left center of the distal pulp of the hallux. This effect was not observed in the sham condition. In addition, the subjects' vigilance levels were not changed between before and after the tDCS. These results suggest that sensation on the sole of the left foot could be modulated by cathodal tDCS on the left motor area.
Collapse
Affiliation(s)
- Satoshi Yamamoto
- Department of Physical Therapy, School of Healthcare, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan.
| | - Daisuke Ishii
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan; Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, Chiba, 260-8670, Japan
| | - Nao Ichiba
- Department of Physical Therapy, School of Healthcare, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan
| | - Arito Yozu
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan
| |
Collapse
|