1
|
Grogans SE, Hur J, Barstead MG, Anderson AS, Islam S, Kim HC, Kuhn M, Tillman RM, Fox AS, Smith JF, DeYoung KA, Shackman AJ. Neuroticism/Negative Emotionality Is Associated with Increased Reactivity to Uncertain Threat in the Bed Nucleus of the Stria Terminalis, Not the Amygdala. J Neurosci 2024; 44:e1868232024. [PMID: 39009438 PMCID: PMC11308352 DOI: 10.1523/jneurosci.1868-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Neuroticism/negative emotionality (N/NE)-the tendency to experience anxiety, fear, and other negative emotions-is a fundamental dimension of temperament with profound consequences for health, wealth, and well-being. Elevated N/NE is associated with a panoply of adverse outcomes, from reduced socioeconomic attainment to psychiatric illness. Animal research suggests that N/NE reflects heightened reactivity to uncertain threat in the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce), but the relevance of these discoveries to humans has remained unclear. Here we used a novel combination of psychometric, psychophysiological, and neuroimaging approaches to test this hypothesis in an ethnoracially diverse, sex-balanced sample of 220 emerging adults selectively recruited to encompass a broad spectrum of N/NE. Cross-validated robust-regression analyses demonstrated that N/NE is preferentially associated with heightened BST activation during the uncertain anticipation of a genuinely distressing threat (aversive multimodal stimulation), whereas N/NE was unrelated to BST activation during certain-threat anticipation, Ce activation during either type of threat anticipation, or BST/Ce reactivity to threat-related faces. It is often assumed that different threat paradigms are interchangeable assays of individual differences in brain function, yet this has rarely been tested. Our results revealed negligible associations between BST/Ce reactivity to the anticipation of threat and the presentation of threat-related faces, indicating that the two tasks are nonfungible. These observations provide a framework for conceptualizing emotional traits and disorders; for guiding the design and interpretation of biobank and other neuroimaging studies of psychiatric risk, disease, and treatment; and for refining mechanistic research.
Collapse
Affiliation(s)
- Shannon E Grogans
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Juyoen Hur
- Department of Psychology, Yonsei University, Seoul 03722, Republic of Korea
| | | | - Allegra S Anderson
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee 37240
| | - Samiha Islam
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hyung Cho Kim
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
| | - Manuel Kuhn
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478
| | | | - Andrew S Fox
- Department of Psychology, University of California, Davis, California 95616
- California National Primate Research Center, University of California, Davis, California 95616
| | - Jason F Smith
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Kathryn A DeYoung
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
- Maryland Neuroimaging Center, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
2
|
Grogans SE, Hur J, Barstead MG, Anderson AS, Islam S, Kim HC, Kuhn M, Tillman RM, Fox AS, Smith JF, DeYoung KA, Shackman AJ. Neuroticism/negative emotionality is associated with increased reactivity to uncertain threat in the bed nucleus of the stria terminalis, not the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.09.527767. [PMID: 36798350 PMCID: PMC9934698 DOI: 10.1101/2023.02.09.527767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Neuroticism/Negative Emotionality (N/NE)-the tendency to experience anxiety, fear, and other negative emotions-is a fundamental dimension of temperament with profound consequences for health, wealth, and wellbeing. Elevated N/NE is associated with a panoply of adverse outcomes, from reduced socioeconomic attainment to psychiatric illness. Animal research suggests that N/NE reflects heightened reactivity to uncertain threat in the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce), but the relevance of these discoveries to humans has remained unclear. Here we used a novel combination of psychometric, psychophysiological, and neuroimaging approaches to rigorously test this hypothesis in an ethnoracially diverse, sex-balanced sample of 220 emerging adults selectively recruited to encompass a broad spectrum of N/NE. Cross-validated robust-regression analyses demonstrated that N/NE is preferentially associated with heightened BST activation during the uncertain anticipation of a genuinely distressing threat (aversive multimodal stimulation), whereas N/NE was unrelated to BST activation during certain-threat anticipation, Ce activation during either type of threat anticipation, or BST/Ce reactivity to threat-related faces. It is often assumed that different threat paradigms are interchangeable assays of individual differences in brain function, yet this has rarely been tested. Our results revealed negligible associations between BST/Ce reactivity to the anticipation of threat and the presentation of threat-related faces, indicating that the two tasks are non-fungible. These observations provide a framework for conceptualizing emotional traits and disorders; for guiding the design and interpretation of biobank and other neuroimaging studies of psychiatric risk, disease, and treatment; and for informing mechanistic research.
Collapse
Affiliation(s)
- Shannon E. Grogans
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Juyoen Hur
- Department of Psychology, Yonsei University, Seoul 03722, Republic of Korea
| | | | - Allegra S. Anderson
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN 37240 USA
| | - Samiha Islam
- Department of Psychology, University of Pennsylvania, Philadelphia, PA USA
| | - Hyung Cho Kim
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
| | - Manuel Kuhn
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| | | | - Andrew S. Fox
- Department of Psychology, University of California, Davis, CA 95616 USA
- California National Primate Research Center, University of California, Davis, CA 95616 USA
| | - Jason F. Smith
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Kathryn A. DeYoung
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
- Department of Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
3
|
Reisch LM, Wegrzyn M, Mielke M, Mehlmann A, Woermann FG, Bien CG, Kissler J. Face processing and efficient recognition of facial expressions are impaired following right but not left anteromedial temporal lobe resections: Behavioral and fMRI evidence. Neuropsychologia 2022; 174:108335. [PMID: 35863496 DOI: 10.1016/j.neuropsychologia.2022.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
Anteromedial temporal lobe structures seem to support processing of faces and facial expressions. However, differential effects of unilateral left or right temporal lobe resections (TLR) on face processing, recognition of facial expressions, and on BOLD response to faces in intact brain areas are not yet fully understood. Therefore, we compared 39 patients with unilateral TLR (18 left, 21 right) and 20 healthy controls regarding recognition of facial identity and emotional facial expressions as well as BOLD response to fearful and neutral faces. We found impaired recognition of facial identity following right TLR, which was paralleled by reduced BOLD response to faces irrespective of expression in the right fusiform and lingual gyrus in postsurgical fMRI. Right TLR patients also exhibited subtle impairments of emotion recognition as they needed higher intensity of facial expressions for correct responses in a morphing task. Accuracy of emotion recognition and subjective appraisals of facial expressions did not differ between groups. There was no specific reduction of BOLD response to fearful versus neutral faces in either patient group. Our results underline the specific role of the right anteromedial temporal lobe in processing of faces and facial expressions by showing changes in face processing following right TLR in behavioral as well as imaging data.
Collapse
Affiliation(s)
- Lea Marie Reisch
- Department of Psychology, Bielefeld University, Bielefeld, Germany; Department of Epileptology (Krankenhaus Mara), Bielefeld University, Campus Bielefeld-Bethel, Bielefeld, Germany.
| | - Martin Wegrzyn
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| | - Malena Mielke
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| | | | - Friedrich G Woermann
- Department of Epileptology (Krankenhaus Mara), Bielefeld University, Campus Bielefeld-Bethel, Bielefeld, Germany
| | - Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Bielefeld University, Campus Bielefeld-Bethel, Bielefeld, Germany
| | - Johanna Kissler
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Reisch LM, Wegrzyn M, Mielke M, Mehlmann A, Woermann FG, Kissler J, Bien CG. Effects of left and right medial temporal lobe resections on hemodynamic correlates of negative and neutral scene processing. Hum Brain Mapp 2022; 43:3293-3305. [PMID: 35384132 PMCID: PMC9189037 DOI: 10.1002/hbm.25852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
Enhanced visual cortex activation by negative compared to neutral stimuli is often attributed to modulating feedback from the amygdala, but evidence from lesion studies is scarce, particularly regarding differential effects of left and right amygdala lesions. Therefore, we compared visual cortex activation by negative and neutral complex scenes in an event‐related fMRI study between 40 patients with unilateral temporal lobe resection (TLR; 19 left [lTLR], 21 right [rTLR]), including the amygdala, and 20 healthy controls. We found preserved hemodynamic emotion modulation of visual cortex in rTLR patients and only subtle reductions in lTLR patients. In contrast, rTLR patients showed a significant decrease in visual cortex activation irrespective of picture content. In line with this, healthy controls showed small emotional modulation of the left amygdala only, while their right amygdala was activated equally by negative and neutral pictures. Correlations of activation in amygdala and visual cortex were observed for both negative and neutral pictures in the controls. In both patient groups, this relationship was attenuated ipsilateral to the TLR. Our results support the notion of reentrant mechanisms between amygdala and visual cortex and suggest laterality differences in their emotion‐specificity. While right medial temporal lobe structures including the amygdala seem to influence visual processing in general, the left medial temporal lobe appears to contribute specifically to emotion processing. Still, effects of left TLR on visual emotion processing were relatively subtle. Therefore, hemodynamic correlates of visual emotion processing are likely supported by a distributed cerebral network, challenging an amygdalocentric view of emotion processing.
Collapse
Affiliation(s)
- Lea Marie Reisch
- Department of Psychology, Bielefeld University, Bielefeld, Germany.,Department of Epileptology (Krankenhaus Mara), Bielefeld University, Bielefeld, Germany
| | - Martin Wegrzyn
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| | - Malena Mielke
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| | | | - Friedrich G Woermann
- Department of Epileptology (Krankenhaus Mara), Bielefeld University, Bielefeld, Germany
| | - Johanna Kissler
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| | - Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
5
|
Hartling C, Metz S, Pehrs C, Scheidegger M, Gruzman R, Keicher C, Wunder A, Weigand A, Grimm S. Comparison of Four fMRI Paradigms Probing Emotion Processing. Brain Sci 2021; 11:525. [PMID: 33919024 PMCID: PMC8142995 DOI: 10.3390/brainsci11050525] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/17/2021] [Accepted: 04/17/2021] [Indexed: 11/27/2022] Open
Abstract
Previous fMRI research has applied a variety of tasks to examine brain activity underlying emotion processing. While task characteristics are known to have a substantial influence on the elicited activations, direct comparisons of tasks that could guide study planning are scarce. We aimed to provide a comparison of four common emotion processing tasks based on the same analysis pipeline to suggest tasks best suited for the study of certain target brain regions. We studied an n-back task using emotional words (EMOBACK) as well as passive viewing tasks of emotional faces (FACES) and emotional scenes (OASIS and IAPS). We compared the activation patterns elicited by these tasks in four regions of interest (the amygdala, anterior insula, dorsolateral prefrontal cortex (dlPFC) and pregenual anterior cingulate cortex (pgACC)) in three samples of healthy adults (N = 45). The EMOBACK task elicited activation in the right dlPFC and bilateral anterior insula and deactivation in the pgACC while the FACES task recruited the bilateral amygdala. The IAPS and OASIS tasks showed similar activation patterns recruiting the bilateral amygdala and anterior insula. We conclude that these tasks can be used to study different regions involved in emotion processing and that the information provided is valuable for future research and the development of fMRI biomarkers.
Collapse
Affiliation(s)
- Corinna Hartling
- Department of Psychiatry and Psychotherapy, CBF, Charité Universitätsmedizin Berlin, 12203 Berlin, Germany; (S.M.); (R.G.); (S.G.)
| | - Sophie Metz
- Department of Psychiatry and Psychotherapy, CBF, Charité Universitätsmedizin Berlin, 12203 Berlin, Germany; (S.M.); (R.G.); (S.G.)
| | - Corinna Pehrs
- Bernstein Center for Computational Neuroscience, Humboldt-University Berlin, 10115 Berlin, Germany;
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, 8032 Zurich, Switzerland;
| | - Rebecca Gruzman
- Department of Psychiatry and Psychotherapy, CBF, Charité Universitätsmedizin Berlin, 12203 Berlin, Germany; (S.M.); (R.G.); (S.G.)
| | | | - Andreas Wunder
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH and Co. KG, 52216 Ingelheim am Rhein, Germany;
| | - Anne Weigand
- Department of Psychology, Medical School Berlin, 14197 Berlin, Germany;
| | - Simone Grimm
- Department of Psychiatry and Psychotherapy, CBF, Charité Universitätsmedizin Berlin, 12203 Berlin, Germany; (S.M.); (R.G.); (S.G.)
- Department of Psychology, Medical School Berlin, 14197 Berlin, Germany;
| |
Collapse
|
6
|
Reisch LM, Wegrzyn M, Woermann FG, Bien CG, Kissler J. Negative content enhances stimulus-specific cerebral activity during free viewing of pictures, faces, and words. Hum Brain Mapp 2020; 41:4332-4354. [PMID: 32633448 PMCID: PMC7502837 DOI: 10.1002/hbm.25128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 01/25/2023] Open
Abstract
Negative visual stimuli have been found to elicit stronger brain activation than do neutral stimuli. Such emotion effects have been shown for pictures, faces, and words alike, but the literature suggests stimulus-specific differences regarding locus and lateralization of the activity. In the current functional magnetic resonance imaging study, we directly compared brain responses to passively viewed negative and neutral pictures of complex scenes, faces, and words (nouns) in 43 healthy participants (21 males) varying in age and demographic background. Both negative pictures and faces activated the extrastriate visual cortices of both hemispheres more strongly than neutral ones, but effects were larger and extended more dorsally for pictures, whereas negative faces additionally activated the superior temporal sulci. Negative words differentially activated typical higher-level language processing areas such as the left inferior frontal and angular gyrus. There were small emotion effects in the amygdala for faces and words, which were both lateralized to the left hemisphere. Although pictures elicited overall the strongest amygdala activity, amygdala response to negative pictures was not significantly stronger than to neutral ones. Across stimulus types, emotion effects converged in the left anterior insula. No gender effects were apparent, but age had a small, stimulus-specific impact on emotion processing. Our study specifies similarities and differences in effects of negative emotional content on the processing of different types of stimuli, indicating that brain response to negative stimuli is specifically enhanced in areas involved in processing of the respective stimulus type in general and converges across stimuli in the left anterior insula.
Collapse
Affiliation(s)
- Lea Marie Reisch
- Department of Psychology, University of Bielefeld, Bielefeld, Germany.,Epilepsy Centre Bethel, Krankenhaus Mara, Bielefeld, Germany
| | - Martin Wegrzyn
- Department of Psychology, University of Bielefeld, Bielefeld, Germany
| | | | | | - Johanna Kissler
- Department of Psychology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
7
|
Borgelt L, Strakowski SM, DelBello MP, Weber W, Eliassen JC, Komoroski RA, Chu WJ, Welge JA, Blom TJ, Rummelhoff E, Tallman M, Lee JH, Adler CM. Neurophysiological effects of multiple mood episodes in bipolar disorder. Bipolar Disord 2019; 21:503-513. [PMID: 31025452 DOI: 10.1111/bdi.12782] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Bipolar disorder is marked by progressive symptomatic changes, which have been linked with episode-related structural findings-particularly in the prefrontal cortex. However, few studies have examined neurofunctional and neurochemical effects of disease burden. In this study, we compared first- and multi-episode bipolar individuals. We hypothesized that the latter would demonstrate evidence of neurophysiological differences consistent with a model of progressive functional degradation of these networks. METHODS First- and multi-episode manic bipolar subjects participated in functional magnetic resonance imaging (fMRI) including a continuous performance task with emotional distractors, and in single-voxel (1 H) magnetic resonance spectroscopy (MRS). A priori fMRI regions-of-interest (ROI) included structures comprising prefrontal-striatal-amygdala networks; (1 H)MRS voxels were placed within bilateral ventrolateral prefrontal (VLPFC) and anterior cingulate cortex (ACC). Both ROI and voxel-based brain activation in response to emotional stimuli, and neurochemical concentrations derived from (1 H)MRS were compared across bipolar groups. RESULTS Multi-episode bipolar subjects showed relatively lower regional activation across prefrontal-striatal-amygdala networks, including bilateral VLPFC, orbitofrontal cortex, ACC, putamen, caudate, and amygdala. Exploratory whole-brain, voxel-based analysis suggested additional areas of lower activation extending into Brodmann area 22, posterior parietal regions, and right thalamus. Glutamate and N-acetylaspartate (NAA) concentrations were also relatively lower in the ACC of multi-episode subjects. CONCLUSIONS Disease burden, exemplified by multiple affective episodes is associated with evidence of widespread decrements in affective network activity. Lower ACC NAA concentration is similarly consistent with a model of progressive functional deficits. These findings support the functional significance of previously observed progressive structural changes throughout these regions.
Collapse
Affiliation(s)
- Logan Borgelt
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stephen M Strakowski
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Psychiatry, Dell Medical School of The University of Texas at Austin, Austin, Texas
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wade Weber
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James C Eliassen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Richard A Komoroski
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wen-Jang Chu
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Jeffrey A Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Thomas J Blom
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Emily Rummelhoff
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Maxwell Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jing-Huei Lee
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
8
|
Acute alcohol administration dampens central extended amygdala reactivity. Sci Rep 2018; 8:16702. [PMID: 30420682 PMCID: PMC6232084 DOI: 10.1038/s41598-018-34987-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022] Open
Abstract
Alcohol use is common, imposes a staggering burden on public health, and often resists treatment. The central extended amygdala (EAc)—including the bed nucleus of the stria terminalis (BST) and the central nucleus of the amygdala (Ce)—plays a key role in prominent neuroscientific models of alcohol drinking, but the relevance of these regions to acute alcohol consumption in humans remains poorly understood. Using a single-blind, randomized-groups design, multiband fMRI data were acquired from 49 social drinkers while they performed a well-established emotional faces paradigm after consuming either alcohol or placebo. Relative to placebo, alcohol significantly dampened reactivity to emotional faces in the BST. To rigorously assess potential regional differences in activation, data were extracted from unbiased, anatomically predefined regions of interest. Analyses revealed similar levels of dampening in the BST and Ce. In short, alcohol transiently reduces reactivity to emotional faces and it does so similarly across the two major divisions of the human EAc. These observations reinforce the translational relevance of addiction models derived from preclinical work in rodents and provide new insights into the neural systems most relevant to the consumption of alcohol and to the initial development of alcohol abuse in humans.
Collapse
|