1
|
Kadlec J, Walsh CR, Sadé U, Amir A, Rissman J, Ramot M. A measure of reliability convergence to select and optimize cognitive tasks for individual differences research. COMMUNICATIONS PSYCHOLOGY 2024; 2:64. [PMID: 39242856 PMCID: PMC11332135 DOI: 10.1038/s44271-024-00114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/18/2024] [Indexed: 09/09/2024]
Abstract
Surging interest in individual differences has faced setbacks in light of recent replication crises in psychology, for example in brain-wide association studies exploring brain-behavior correlations. A crucial component of replicability for individual differences studies, which is often assumed but not directly tested, is the reliability of the measures we use. Here, we evaluate the reliability of different cognitive tasks on a dataset with over 250 participants, who each completed a multi-day task battery. We show how reliability improves as a function of number of trials, and describe the convergence of the reliability curves for the different tasks, allowing us to score tasks according to their suitability for studies of individual differences. We further show the effect on reliability of measuring over multiple time points, with tasks assessing different cognitive domains being differentially affected. Data collected over more than one session may be required to achieve trait-like stability.
Collapse
Affiliation(s)
- Jan Kadlec
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Catherine R Walsh
- Department of Psychology, University of California, Los Angeles, CA, USA
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Uri Sadé
- Faculty of Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Ariel Amir
- Faculty of Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Jesse Rissman
- Department of Psychology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michal Ramot
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Volfart A, Rossion B. The neuropsychological evaluation of face identity recognition. Neuropsychologia 2024; 198:108865. [PMID: 38522782 DOI: 10.1016/j.neuropsychologia.2024.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Facial identity recognition (FIR) is arguably the ultimate form of recognition for the adult human brain. Even if the term prosopagnosia is reserved for exceptionally rare brain-damaged cases with a category-specific abrupt loss of FIR at adulthood, subjective and objective impairments or difficulties of FIR are common in the neuropsychological population. Here we provide a critical overview of the evaluation of FIR both for clinicians and researchers in neuropsychology. FIR impairments occur following many causes that should be identified objectively by both general and specific, behavioral and neural examinations. We refute the commonly used dissociation between perceptual and memory deficits/tests for FIR, since even a task involving the discrimination of unfamiliar face images presented side-by-side relies on cortical memories of faces in the right-lateralized ventral occipito-temporal cortex. Another frequently encountered confusion is between specific deficits of the FIR function and a more general impairment of semantic memory (of people), the latter being most often encountered following anterior temporal lobe damage. Many computerized tests aimed at evaluating FIR have appeared over the last two decades, as reviewed here. However, despite undeniable strengths, they often suffer from ecological limitations, difficulties of instruction, as well as a lack of consideration for processing speed and qualitative information. Taking into account these issues, a recently developed behavioral test with natural images manipulating face familiarity, stimulus inversion, and correct response times as a key variable appears promising. The measurement of electroencephalographic (EEG) activity in the frequency domain from fast periodic visual stimulation also appears as a particularly promising tool to complete and enhance the neuropsychological assessment of FIR.
Collapse
Affiliation(s)
- Angélique Volfart
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Australia.
| | - Bruno Rossion
- Centre for Biomedical Technologies, Queensland University of Technology, Australia; Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France.
| |
Collapse
|
3
|
Skalaban LJ, Chan I, Rapuano KM, Lin Q, Conley MI, Watts RR, Busch EL, Murty VP, Casey BJ. Representational Dissimilarity of Faces and Places during a Working Memory Task is Associated with Subsequent Recognition Memory during Development. J Cogn Neurosci 2024; 36:415-434. [PMID: 38060253 DOI: 10.1162/jocn_a_02094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Nearly 50 years of research has focused on faces as a special visual category, especially during development. Yet it remains unclear how spatial patterns of neural similarity of faces and places relate to how information processing supports subsequent recognition of items from these categories. The current study uses representational similarity analysis and functional imaging data from 9- and 10-year-old youth during an emotional n-back task from the Adolescent Brain and Cognitive Development Study 3.0 data release to relate spatial patterns of neural similarity during working memory to subsequent out-of-scanner performance on a recognition memory task. Specifically, we examine how similarities in representations within face categories (neutral, happy, and fearful faces) and representations between visual categories (faces and places) relate to subsequent recognition memory of these visual categories. Although working memory performance was higher for faces than places, subsequent recognition memory was greater for places than faces. Representational similarity analysis revealed category-specific patterns in face-and place-sensitive brain regions (fusiform gyrus, parahippocampal gyrus) compared with a nonsensitive visual region (pericalcarine cortex). Similarity within face categories and dissimilarity between face and place categories in the parahippocampus was related to better recognition of places from the n-back task. Conversely, in the fusiform, similarity within face categories and their relative dissimilarity from places was associated with better recognition of new faces, but not old faces. These findings highlight how the representational distinctiveness of visual categories influence what information is subsequently prioritized in recognition memory during development.
Collapse
Affiliation(s)
- Lena J Skalaban
- Yale University, New Haven, CT
- Temple University, Philadelphia, PA
| | | | | | - Qi Lin
- Yale University, New Haven, CT
| | | | | | | | | | - B J Casey
- Yale University, New Haven, CT
- Barnard College, Columbia University, New York, NY
| |
Collapse
|
4
|
Faghel-Soubeyrand S, Ramon M, Bamps E, Zoia M, Woodhams J, Richoz AR, Caldara R, Gosselin F, Charest I. Decoding face recognition abilities in the human brain. PNAS NEXUS 2024; 3:pgae095. [PMID: 38516275 PMCID: PMC10957238 DOI: 10.1093/pnasnexus/pgae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Why are some individuals better at recognizing faces? Uncovering the neural mechanisms supporting face recognition ability has proven elusive. To tackle this challenge, we used a multimodal data-driven approach combining neuroimaging, computational modeling, and behavioral tests. We recorded the high-density electroencephalographic brain activity of individuals with extraordinary face recognition abilities-super-recognizers-and typical recognizers in response to diverse visual stimuli. Using multivariate pattern analyses, we decoded face recognition abilities from 1 s of brain activity with up to 80% accuracy. To better understand the mechanisms subtending this decoding, we compared representations in the brains of our participants with those in artificial neural network models of vision and semantics, as well as with those involved in human judgments of shape and meaning similarity. Compared to typical recognizers, we found stronger associations between early brain representations of super-recognizers and midlevel representations of vision models as well as shape similarity judgments. Moreover, we found stronger associations between late brain representations of super-recognizers and representations of the artificial semantic model as well as meaning similarity judgments. Overall, these results indicate that important individual variations in brain processing, including neural computations extending beyond purely visual processes, support differences in face recognition abilities. They provide the first empirical evidence for an association between semantic computations and face recognition abilities. We believe that such multimodal data-driven approaches will likely play a critical role in further revealing the complex nature of idiosyncratic face recognition in the human brain.
Collapse
Affiliation(s)
- Simon Faghel-Soubeyrand
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Département de psychologie, Université de Montréal, Montréal, Québec H2V 2S9, Canada
| | - Meike Ramon
- Institute of Psychology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Eva Bamps
- Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven, Leuven ON5, Belgium
| | - Matteo Zoia
- Department for Biomedical Research, University of Bern, Bern 3008, Switzerland
| | - Jessica Woodhams
- Département de psychologie, Université de Montréal, Montréal, Québec H2V 2S9, Canada
- School of Psychology, University of Birmingham, Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, UK
| | | | - Roberto Caldara
- Département de Psychology, Université de Fribourg, Fribourg CH-1700, Switzerland
| | - Frédéric Gosselin
- Département de psychologie, Université de Montréal, Montréal, Québec H2V 2S9, Canada
| | - Ian Charest
- Département de psychologie, Université de Montréal, Montréal, Québec H2V 2S9, Canada
| |
Collapse
|
5
|
Dai J, Jorgensen NA, Duell N, Capella J, Maza MT, Kwon SJ, Prinstein MJ, Lindquist KA, Telzer EH. Neural tracking of social hierarchies in adolescents' real-world social networks. Soc Cogn Affect Neurosci 2023; 18:nsad064. [PMID: 37978845 PMCID: PMC10656574 DOI: 10.1093/scan/nsad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/01/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
In the current study, we combined sociometric nominations and neuroimaging techniques to examine adolescents' neural tracking of peers from their real-world social network that varied in social preferences and popularity. Adolescent participants from an entire school district (N = 873) completed peer sociometric nominations of their grade at school, and a subset of participants (N = 117, Mage = 13.59 years) completed a neuroimaging task in which they viewed peer faces from their social networks. We revealed two neural processes by which adolescents track social preference: (1) the fusiform face area, an important region for early visual perception and social categorization, simultaneously represented both peers high in social preference and low in social preference; (2) the dorsolateral prefrontal cortex (DLPFC), which was differentially engaged in tracking peers high and low in social preference. No regions specifically tracked peers high in popularity and only the inferior parietal lobe, temporoparietal junction, midcingulate cortex and insula were involved in tracking unpopular peers. This is the first study to examine the neural circuits that support adolescents' perception of peer-based social networks. These findings identify the neural processes that allow youths to spontaneously keep track of peers' social value within their social network.
Collapse
Affiliation(s)
- Junqiang Dai
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Nathan A Jorgensen
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Natasha Duell
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Jimmy Capella
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Maria T Maza
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Seh-Joo Kwon
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Mitchell J Prinstein
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Kristen A Lindquist
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Eva H Telzer
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| |
Collapse
|
6
|
Levakov G, Sporns O, Avidan G. Fine-scale dynamics of functional connectivity in the face-processing network during movie watching. Cell Rep 2023; 42:112585. [PMID: 37285265 DOI: 10.1016/j.celrep.2023.112585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Mapping the human face-processing network is typically done during rest or using isolated, static face images, overlooking widespread cortical interactions obtained in response to naturalistic face dynamics and context. To determine how inter-subject functional correlation (ISFC) relates to face recognition scores, we measure cortical connectivity patterns in response to a dynamic movie in typical adults (N = 517). We find a positive correlation with recognition scores in edges connecting the occipital visual and anterior temporal regions and a negative correlation in edges connecting the attentional dorsal, frontal default, and occipital visual regions. We measure the inter-subject stimulus-evoked response at a single TR resolution and demonstrate that co-fluctuations in face-selective edges are related to activity in core face-selective regions and that the ISFC patterns peak during boundaries between movie segments rather than during the presence of faces. Our approach demonstrates how face processing is linked to fine-scale dynamics in attentional, memory, and perceptual neural circuitry.
Collapse
Affiliation(s)
- Gidon Levakov
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Galia Avidan
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
7
|
Dunn JD, Towler A, Kemp RI, White D. Selecting police super-recognisers. PLoS One 2023; 18:e0283682. [PMID: 37195905 PMCID: PMC10191310 DOI: 10.1371/journal.pone.0283682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/14/2023] [Indexed: 05/19/2023] Open
Abstract
People vary in their ability to recognise faces. These individual differences are consistent over time, heritable and associated with brain anatomy. This implies that face identity processing can be improved in applied settings by selecting high performers-'super-recognisers' (SRs)-but these selection processes are rarely available for scientific scrutiny. Here we report an 'end-to-end' selection process used to establish an SR 'unit' in a large police force. Australian police officers (n = 1600) completed 3 standardised face identification tests and we recruited 38 SRs from this cohort to complete 10 follow-up tests. As a group, SRs were 20% better than controls in lab-based tests of face memory and matching, and equalled or surpassed accuracy of forensic specialists that currently perform face identification tasks for police. Individually, SR accuracy was variable but this problem was mitigated by adopting strict selection criteria. SRs' superior abilities transferred only partially to body identity decisions where the face was not visible, and they were no better than controls at deciding which visual scene that faces had initially been encountered in. Notwithstanding these important qualifications, we conclude that super-recognisers are an effective solution to improving face identity processing in applied settings.
Collapse
Affiliation(s)
- James D. Dunn
- School of Psychology, UNSW Sydney, Sydney, Australia
| | - Alice Towler
- School of Psychology, UNSW Sydney, Sydney, Australia
- School of Psychology, University of Queensland, Brisbane, Australia
| | | | - David White
- School of Psychology, UNSW Sydney, Sydney, Australia
| |
Collapse
|
8
|
Dai J, Scherf KS. The Privileged Status of Peer Faces: Subordinate-level Neural Representations of Faces in Emerging Adults. J Cogn Neurosci 2023; 35:715-735. [PMID: 36638228 DOI: 10.1162/jocn_a_01966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Faces can be represented at a variety of different subordinate levels (e.g., race) that can become "privileged" for visual recognition in perceivers and is reflected as patterns of biases (e.g., own-race bias). The mechanisms encoding privileged status are likely varied, making it difficult to predict how neural systems represent subordinate-level biases in face processing. Here, we investigate the neural basis of subordinate-level representations of human faces in the ventral visual pathway, by leveraging recent behavioral findings indicating the privileged nature of peer faces in identity recognition for adolescents and emerging adults (i.e., ages 18-25 years). We tested 166 emerging adults in a face recognition paradigm and a subset of 31 of these participants in two fMRI task paradigms. We showed that emerging adults exhibit a peer bias in face recognition behavior, which indicates a privileged status for a subordinate-level category of faces that is not predicted based on experience alone. This privileged status of peer faces is supported by multiple neural mechanisms within the ventral visual pathway, including enhanced neural magnitude and neural size in the neural size in the fusiform area (FFA1), which is a critical part of the face-processing network that fundamentally supports the representations of subordinate-level categories of faces. These findings demonstrate organizational principles that the human ventral visual pathway uses to privilege relevant social information in face representations, which is essential for navigating human social interactions. It will be important to understand whether similar mechanisms support representations of other subordinate-level categories like race and gender.
Collapse
|
9
|
Mares I, Ewing L, Papasavva M, Ducrocq E, Smith FW, Smith ML. Face recognition ability is manifest in early dynamic decoding of face-orientation selectivity-Evidence from multi-variate pattern analysis of the neural response. Cortex 2023; 159:299-312. [PMID: 36669447 DOI: 10.1016/j.cortex.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
Although humans are considered to be face experts, there is a well-established reliable variation in the degree to which neurotypical individuals are able to learn and recognise faces. While many behavioural studies have characterised these differences, studies that seek to relate the neuronal response to standardised behavioural measures of ability remain relatively scarce, particularly so for the time-resolved approaches and the early response to face stimuli. In the present study we make use of a relatively recent methodological advance, multi-variate pattern analysis (MVPA), to decode the time course of the neural response to faces compared to other object categories (inverted faces, objects). Importantly, for the first time, we directly relate metrics of this decoding assessed at the individual level to gold-standard measures of behavioural face processing ability assessed in an independent task. Thirty-nine participants completed the behavioural Cambridge Face Memory Test (CFMT), then viewed images of faces and houses (presented upright and inverted) while their neural activity was measured via electroencephalography. Significant decoding of both face orientation and face category were observed in all individual participants. Decoding of face orientation, a marker of more advanced face processing, was earlier and stronger in participants with higher levels of face expertise, while decoding of face category information was earlier but not stronger for individuals with greater face expertise. Taken together these results provide a marker of significant differences in the early neuronal response to faces from around 100 ms post stimulus as a function of behavioural expertise with faces.
Collapse
Affiliation(s)
- Inês Mares
- School of Psychological Science, Birkbeck College, University of London, UK; William James Center for Research, Ispa - Instituto Universitário, Portugal.
| | - Louise Ewing
- School of Psychology, University of East Anglia, Norwich, UK
| | - Michael Papasavva
- School of Psychological Science, Birkbeck College, University of London, UK
| | - Emmanuel Ducrocq
- School of Psychological Science, Birkbeck College, University of London, UK
| | - Fraser W Smith
- School of Psychology, University of East Anglia, Norwich, UK
| | - Marie L Smith
- School of Psychological Science, Birkbeck College, University of London, UK; Centre for Brain and Cognitive Development, Birkbeck College, University of London, UK
| |
Collapse
|
10
|
Chen X, Liu X, Parker BJ, Zhen Z, Weiner KS. Functionally and structurally distinct fusiform face area(s) in over 1000 participants. Neuroimage 2023. [PMID: 36427753 DOI: 10.1101/2022.04.08.487562v1.full.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The fusiform face area (FFA) is a widely studied region causally involved in face perception. Even though cognitive neuroscientists have been studying the FFA for over two decades, answers to foundational questions regarding the function, architecture, and connectivity of the FFA from a large (N>1000) group of participants are still lacking. To fill this gap in knowledge, we quantified these multimodal features of fusiform face-selective regions in 1053 participants in the Human Connectome Project. After manually defining over 4,000 fusiform face-selective regions, we report five main findings. First, 68.76% of hemispheres have two cortically separate regions (pFus-faces/FFA-1 and mFus-faces/FFA-2). Second, in 26.69% of hemispheres, pFus-faces/FFA-1 and mFus-faces/FFA-2 are spatially contiguous, yet are distinct based on functional, architectural, and connectivity metrics. Third, pFus-faces/FFA-1 is more face-selective than mFus-faces/FFA-2, and the two regions have distinct functional connectivity fingerprints. Fourth, pFus-faces/FFA-1 is cortically thinner and more heavily myelinated than mFus-faces/FFA-2. Fifth, face-selective patterns and functional connectivity fingerprints of each region are more similar in monozygotic than dizygotic twins and more so than architectural gradients. As we share our areal definitions with the field, future studies can explore how structural and functional features of these regions will inform theories regarding how visual categories are represented in the brain.
Collapse
Affiliation(s)
- Xiayu Chen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xingyu Liu
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Department of Psychology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
11
|
Chen X, Liu X, Parker BJ, Zhen Z, Weiner KS. Functionally and structurally distinct fusiform face area(s) in over 1000 participants. Neuroimage 2023; 265:119765. [PMID: 36427753 PMCID: PMC9889174 DOI: 10.1016/j.neuroimage.2022.119765] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The fusiform face area (FFA) is a widely studied region causally involved in face perception. Even though cognitive neuroscientists have been studying the FFA for over two decades, answers to foundational questions regarding the function, architecture, and connectivity of the FFA from a large (N>1000) group of participants are still lacking. To fill this gap in knowledge, we quantified these multimodal features of fusiform face-selective regions in 1053 participants in the Human Connectome Project. After manually defining over 4,000 fusiform face-selective regions, we report five main findings. First, 68.76% of hemispheres have two cortically separate regions (pFus-faces/FFA-1 and mFus-faces/FFA-2). Second, in 26.69% of hemispheres, pFus-faces/FFA-1 and mFus-faces/FFA-2 are spatially contiguous, yet are distinct based on functional, architectural, and connectivity metrics. Third, pFus-faces/FFA-1 is more face-selective than mFus-faces/FFA-2, and the two regions have distinct functional connectivity fingerprints. Fourth, pFus-faces/FFA-1 is cortically thinner and more heavily myelinated than mFus-faces/FFA-2. Fifth, face-selective patterns and functional connectivity fingerprints of each region are more similar in monozygotic than dizygotic twins and more so than architectural gradients. As we share our areal definitions with the field, future studies can explore how structural and functional features of these regions will inform theories regarding how visual categories are represented in the brain.
Collapse
Affiliation(s)
- Xiayu Chen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xingyu Liu
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Department of Psychology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
12
|
Abstract
The Cambridge Face Memory Test (CFMT) is one of the most used assessments of face recognition abilities in the science of face processing. The original task, using White male faces, has been empirically evaluated for psychometric properties (Duchaine & Nakayama, 2006), while the longer and more difficult version (CFMT+; Russell et al., 2009) has not. Critically, no version exists using female faces. Here, we present the Female Cambridge Face Memory Test - Long Form (F-CFMT+) and evaluate the psychometric properties of this task in comparison to the Male Cambridge Face Memory Test - Long Form (M-CFMT+). We tested typically developing emerging adults (18 to 25 years old) in both Cambridge face recognition tasks, an old-new face recognition task, and a car recognition task. Results indicate that the F-CFMT+ is a valid, internally consistent measure of unfamiliar face recognition that can be used alone or in tandem with the M-CFMT+ to assess recognition abilities for young adult White faces. When used together, performance on the F-CFMT+ and M-CFMT+ can be directly compared, adding to the ability to understand face recognition abilities for different kinds of faces. The two tasks have high convergent validity and relatively good divergent validity with car recognition in the same task paradigm. The F-CFMT+ will be useful to researchers interested in evaluating a broad range of questions about face recognition abilities in both typically developing individuals and those with atypical social information processing abilities.
Collapse
|
13
|
Levakov G, Sporns O, Avidan G. Modular community structure of the face network supports face recognition. Cereb Cortex 2021; 32:3945-3958. [PMID: 34974616 PMCID: PMC9476611 DOI: 10.1093/cercor/bhab458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
Face recognition is dependent on computations conducted in specialized brain regions and the communication among them, giving rise to the face-processing network. We examined whether modularity of this network may underlie the vast individual differences found in human face recognition abilities. Modular networks, characterized by strong within and weaker between-network connectivity, were previously suggested to promote efficacy and reduce interference among cognitive systems and also correlated with better cognitive abilities. The study was conducted in a large sample (n = 409) with diffusion-weighted imaging, resting-state fMRI, and a behavioral face recognition measure. We defined a network of face-selective regions and derived a novel measure of communication along with structural and functional connectivity among them. The modularity of this network was positively correlated with recognition abilities even when controlled for age. Furthermore, the results were specific to the face network when compared with the place network or to spatially permuted null networks. The relation to behavior was also preserved at the individual-edge level such that a larger correlation to behavior was found within hemispheres and particularly within the right hemisphere. This study provides the first evidence of modularity-behavior relationships in the domain of face processing and more generally in visual perception.
Collapse
Affiliation(s)
- Gidon Levakov
- Address correspondence to G. Levakov, Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel.
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, 107 S Indiana Ave, Bloomington, IN 47405, USA,Program in Neuroscience, Indiana University, 107 S Indiana Ave, Bloomington, IN 47405, USA
| | - Galia Avidan
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel,Department of Psychology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
14
|
Jia YC, Ding FY, Cheng G, Liu Y, Yu W, Zou Y, Zhang DJ. Infants' neutral facial expressions elicit the strongest initial attentional bias in adults: Behavioral and electrophysiological evidence. Psychophysiology 2021; 59:e13944. [PMID: 34553377 DOI: 10.1111/psyp.13944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/24/2021] [Accepted: 09/02/2021] [Indexed: 02/02/2023]
Abstract
Recent studies that used adult faces as the baseline have revealed that attentional bias toward infant faces is the strongest for neutral expressions than for happy and sad expressions. However, the time course of the strongest attentional bias toward infant neutral expressions is unclear. To clarify this time course, we combined a behavioral dot-probe task with electrophysiological event-related potentials (ERPs) to measure adults' responses to infant and adult faces with happy, neutral, and sad expressions derived from the same face. The results indicated that compared with the corresponding expressions in adult faces, attentional bias toward infant faces with various expressions resulted in different patterns during rapid and prolonged attention stages. In particular, first, neutral expressions in infant faces elicited greater behavioral attentional bias and P1 responses than happy and sad ones did. Second, sad expressions in infant faces elicited greater N170 responses than neutral and happy ones did; notably, sad expressions elicited greater N170 responses in the left hemisphere in women than in men. Third, late positive potential (LPP) responses were greater for infant faces than for adult faces under each expression condition. Thus, we propose a three-stage model of attentional allocation patterns that reveals the time course of attentional bias toward infant faces with various expressions. This model highlights the prominent role of neutral facial expressions in the attentional bias toward infant faces.
Collapse
Affiliation(s)
- Yun Cheng Jia
- School of Psychology, Guizhou Normal University, Guiyang, China.,Faculty of Psychology, Southwest University, Chongqing, China.,Center for Rural Children and Adolescents Mental Health Education, Guizhou Normal University, Guiyang, China
| | - Fang Yuan Ding
- School of Psychology, Guizhou Normal University, Guiyang, China.,Faculty of Psychology, Southwest University, Chongqing, China.,Center for Rural Children and Adolescents Mental Health Education, Guizhou Normal University, Guiyang, China
| | - Gang Cheng
- School of Psychology, Guizhou Normal University, Guiyang, China.,Center for Rural Children and Adolescents Mental Health Education, Guizhou Normal University, Guiyang, China
| | - Yong Liu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Wei Yu
- School of Psychology, Guizhou Normal University, Guiyang, China.,Center for Rural Children and Adolescents Mental Health Education, Guizhou Normal University, Guiyang, China
| | - Yan Zou
- School of Psychology, Guizhou Normal University, Guiyang, China.,Center for Rural Children and Adolescents Mental Health Education, Guizhou Normal University, Guiyang, China
| | - Da Jun Zhang
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Elbich DB, Webb CE, Dennis NA. The influence of item familiarization on neural discriminability during associative memory encoding and retrieval. Brain Cogn 2021; 152:105760. [PMID: 34126588 DOI: 10.1016/j.bandc.2021.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/13/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Associative memory requires one to encode and form memory representations not just for individual items, but for the association or link between those items. Past work has suggested that associative memory is facilitated when individual items are familiar rather than simultaneously learning the items and their associative link. The current study employed multivoxel pattern analyses (MVPA) to investigate whether item familiarization prior to associative encoding affects the distinctiveness of neural patterns, and whether that distinctiveness is also present during associative retrieval. Our results suggest that prior exposure to item stimuli impacts the representations of their shared association compared to stimuli that are novel at the time of associative encoding throughout most of the associative memory network. While this distinction was also present at retrieval, the overall extent of the difference was diminished. Overall the results suggest that stimulus familiarity influences the representation of associative pairings during memory encoding and retrieval, and the pair-specific representation is maintained across memory phases irrespective of this distinction.
Collapse
Affiliation(s)
- Daniel B Elbich
- Department of Neurology, The Pennsylvania State University, Hershey, PA, United States; Department of Psychology, The Pennsylvania State University, University Park, PA, United States
| | - Christina E Webb
- Department of Psychology, The Pennsylvania State University, University Park, PA, United States; Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, United States
| | - Nancy A Dennis
- Department of Psychology, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
16
|
Quinones Sanchez JF, Liu X, Zhou C, Hildebrandt A. Nature and nurture shape structural connectivity in the face processing brain network. Neuroimage 2021; 229:117736. [PMID: 33486123 DOI: 10.1016/j.neuroimage.2021.117736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 01/12/2023] Open
Abstract
Face processing is a key ability facilitating social cognition. Only a few studies explored how nature and nurture shape face processing ontogeny at the behavioral and neural level. Also, very little is known about the contributions of nature and nurture to the establishment of white matter fibers supporting this specific human ability. The main purpose of this study was to assess genetic and environmental influences on white matter bundles connecting atlas-defined and functionally-defined face-responsive areas in the brain. Diffusion weighted images from 408 twins (monozygotic = 264, dizygotic = 144) were obtained from the WU-Minn Human Connectome Project. Fractional anisotropy - a widely used measure of fiber quality - of seven white matter tracts in the face network and ten global white matter tracts was analyzed by means of Structural Equation Modeling for twin data. Results revealed small and moderate genetic effects on face network fiber quality in addition to their shared variance with global brain white matter integrity. Furthermore, a theoretically expected common latent factor accounted for limited genetic and larger environmental variance in multiple face network fibers. The findings suggest that both genetic and environmental factors explain individual differences in fiber quality within the face network, as compared with much larger genetic effects on global brain white matter quality. In addition to heritability, individual-specific environmental influences on the face processing brain network are large, a finding that suggests to connect nature and nurture views on this remarkably specific human ability.
Collapse
Affiliation(s)
| | - Xinyang Liu
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Germany; Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong; Department of Physics, Zhejiang University, Hangzhou, China
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany.
| |
Collapse
|
17
|
Grady CL, Rieck JR, Nichol D, Garrett DD. Functional Connectivity within and beyond the Face Network Is Related to Reduced Discrimination of Degraded Faces in Young and Older Adults. Cereb Cortex 2020; 30:6206-6223. [DOI: 10.1093/cercor/bhaa179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Degrading face stimuli reduces face discrimination in both young and older adults, but the brain correlates of this decline in performance are not fully understood. We used functional magnetic resonance imaging to examine the effects of degraded face stimuli on face and nonface brain networks and tested whether these changes would predict the linear declines seen in performance. We found decreased activity in the face network (FN) and a decrease in the similarity of functional connectivity (FC) in the FN across conditions as degradation increased but no effect of age. FC in whole-brain networks also changed with increasing degradation, including increasing FC between the visual network and cognitive control networks. Older adults showed reduced modulation of this whole-brain FC pattern. The strongest predictors of within-participant decline in accuracy were changes in whole-brain network FC and FC similarity of the FN. There was no influence of age on these brain-behavior relations. These results suggest that a systems-level approach beyond the FN is required to understand the brain correlates of performance decline when faces are obscured with noise. In addition, the association between brain and behavior changes was maintained into older age, despite the dampened FC response to face degradation seen in older adults.
Collapse
Affiliation(s)
- Cheryl L Grady
- Rotman Research Institute, Baycrest, Toronto, ON M6A2E1, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, ON, Canada
| | - Jenny R Rieck
- Rotman Research Institute, Baycrest, Toronto, ON M6A2E1, Canada
| | - Daniel Nichol
- Rotman Research Institute, Baycrest, Toronto, ON M6A2E1, Canada
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
18
|
McGugin RW, Newton AT, Tamber-Rosenau B, Tomarken A, Gauthier I. Thickness of Deep Layers in the Fusiform Face Area Predicts Face Recognition. J Cogn Neurosci 2020; 32:1316-1329. [PMID: 32083519 DOI: 10.1162/jocn_a_01551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
People with superior face recognition have relatively thin cortex in face-selective brain areas, whereas those with superior vehicle recognition have relatively thick cortex in the same areas. We suggest that these opposite correlations reflect distinct mechanisms influencing cortical thickness (CT) as abilities are acquired at different points in development. We explore a new prediction regarding the specificity of these effects through the depth of the cortex: that face recognition selectively and negatively correlates with thickness of the deepest laminar subdivision in face-selective areas. With ultrahigh resolution MRI at 7T, we estimated the thickness of three laminar subdivisions, which we term "MR layers," in the right fusiform face area (FFA) in 14 adult male humans. Face recognition was negatively associated with the thickness of deep MR layers, whereas vehicle recognition was positively related to the thickness of all layers. Regression model comparisons provided overwhelming support for a model specifying that the magnitude of the association between face recognition and CT differs across MR layers (deep vs. superficial/middle) whereas the magnitude of the association between vehicle recognition and CT is invariant across layers. The total CT of right FFA accounted for 69% of the variance in face recognition, and thickness of the deep layer alone accounted for 84% of this variance. Our findings demonstrate the functional validity of MR laminar estimates in FFA. Studying the structural basis of individual differences for multiple abilities in the same cortical area can reveal effects of distinct mechanisms that are not apparent when studying average variation or development.
Collapse
Affiliation(s)
| | - Allen T Newton
- Vanderbilt University Medical Center.,Vanderbilt University Institute of Imaging Science.,Monroe Carell Jr. Children's Hospital at Vanderbilt
| | | | | | | |
Collapse
|
19
|
|
20
|
Multifaceted Integration: Memory for Faces Is Subserved by Widespread Connections between Visual, Memory, Auditory, and Social Networks. J Neurosci 2019; 39:4976-4985. [PMID: 31036762 DOI: 10.1523/jneurosci.0217-19.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 01/07/2023] Open
Abstract
Our ability to recognize others by their facial features is at the core of human social interaction, yet this ability varies widely within the general population, ranging from developmental prosopagnosia to "super-recognizers". Previous work has focused mainly on the contribution of neural activity within the well described face network to this variance. However, given the nature of face memory in everyday life, and the social context in which it takes place, we were interested in exploring how the collaboration between different networks outside the face network in humans (measured through resting state connectivity) affects face memory performance. Fifty participants (men and women) were scanned with fMRI. Our data revealed that although the nodes of the face-processing network were tightly coupled at rest, the strength of these connections did not predict face memory performance. Instead, face recognition memory was dependent on multiple connections between these face patches and regions of the medial temporal lobe memory system (including the hippocampus), and the social processing system. Moreover, this network was selective for memory for faces, and did not predict memory for other visual objects (cars). These findings suggest that in the general population, variability in face memory is dependent on how well the face processing system interacts with other processing networks, with interaction among the face patches themselves accounting for little of the variance in memory ability.SIGNIFICANCE STATEMENT Our ability to recognize and remember faces is one of the pillars of human social interaction. Face recognition however is a very complex skill, requiring specialized neural resources in visual cortex, as well as memory, identity, and social processing, all of which are inherent in our real-world experience of faces. Yet in the general population, people vary greatly in their face memory abilities. Here we show that in the neural domain this variability is underpinned by the integration of visual, memory and social circuits, with the strength of the connections between these circuits directly linked to face recognition ability.
Collapse
|
21
|
Rice GE, Hoffman P, Binney RJ, Lambon Ralph MA. Concrete versus abstract forms of social concept: an fMRI comparison of knowledge about people versus social terms. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0136. [PMID: 29915004 PMCID: PMC6015823 DOI: 10.1098/rstb.2017.0136] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
The anterior temporal lobes (ATLs) play a key role in conceptual knowledge representation. The hub-and-spoke theory suggests that the contribution of the ATLs to semantic representation is (a) transmodal, i.e. integrating information from multiple sensorimotor and verbal modalities, and (b) pan-categorical, representing concepts from all categories. Another literature, however, suggests that this region's responses are modality- and category-selective; prominent examples include category selectivity for socially relevant concepts and face recognition. The predictions of each approach have never been directly compared. We used data from three studies to compare category-selective responses within the ATLs. Study 1 compared ATL responses to famous people versus another conceptual category (landmarks) from visual versus auditory inputs. Study 2 compared ATL responses to famous people from pictorial and written word inputs. Study 3 compared ATL responses to a different kind of socially relevant stimuli, namely abstract non-person-related words, in order to ascertain whether ATL subregions are engaged for social concepts more generally or only for person-related knowledge. Across all three studies a dominant bilateral ventral ATL cluster responded to all categories in all modalities. Anterior to this ‘pan-category’ transmodal region, a second cluster responded more weakly overall yet selectively for people, but did so equally for spoken names and faces (Study 1). A third region in the anterior superior temporal gyrus responded selectively to abstract socially relevant words (Study 3), but did not respond to concrete socially relevant words (i.e. written names; Study 2). These findings can be accommodated by the graded hub-and-spoke model of concept representation. On this view, the ventral ATL is the centre point of a bilateral ATL hub, which contributes to conceptual representation through transmodal distillation of information arising from multiple modality-specific association cortices. Partial specialization occurs across the graded ATL hub as a consequence of gradedly differential connectivity across the region. This article is part of the theme issue ‘Varieties of abstract concepts: development, use and representation in the brain’.
Collapse
Affiliation(s)
- Grace E Rice
- Neuroscience and Aphasia Research Unit (NARU), University of Manchester, Manchester, UK
| | - Paul Hoffman
- Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
22
|
Stacchi L, Liu-Shuang J, Ramon M, Caldara R. Reliability of individual differences in neural face identity discrimination. Neuroimage 2019; 189:468-475. [DOI: 10.1016/j.neuroimage.2019.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 11/27/2022] Open
|
23
|
Elbich DB, Molenaar PCM, Scherf KS. Evaluating the organizational structure and specificity of network topology within the face processing system. Hum Brain Mapp 2019; 40:2581-2595. [PMID: 30779256 DOI: 10.1002/hbm.24546] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/03/2018] [Accepted: 02/04/2019] [Indexed: 01/20/2023] Open
Abstract
There is increasing appreciation that network-level interactions among regions produce components of face processing previously ascribed to individual regions. Our goals were to use an exhaustive data-driven approach to derive and quantify the topology of directed functional connections within a priori defined nodes of the face processing network and evaluate whether the topology is category-specific. Young adults were scanned with fMRI as they viewed movies of faces, objects, and scenes. We employed GIMME to model effective connectivity among core and extended face processing regions, which allowed us to evaluate all possible directional connections, under each viewing condition (face, object, place). During face processing, we observed directional connections from the right posterior superior temporal sulcus to both the right occipital face area and right fusiform face area (FFA), which does not reflect the topology reported in prior studies. We observed connectivity between core and extended regions during face processing, but this limited to a feed-forward connection from the FFA to the amygdala. Finally, the topology of connections was unique to face processing. These findings suggest that the pattern of directed functional connections within the face processing network, particularly in the right core regions, may not be as hierarchical and feed-forward as described previously. Our findings support the notion that topologies of network connections are specialized, emergent, and dynamically responsive to task demands.
Collapse
Affiliation(s)
- Daniel B Elbich
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania
| | - Peter C M Molenaar
- Department of Health & Human Development, The Pennsylvania State University, University Park, Pennsylvania
| | - K Suzanne Scherf
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
24
|
Ramon M. The power of how-lessons learned from neuropsychology and face processing. Cogn Neuropsychol 2019; 35:83-86. [PMID: 29658421 DOI: 10.1080/02643294.2017.1414777] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Meike Ramon
- a Visual and Social Neuroscience, Department of Psychology , University of Fribourg , Faucigny 2, 1700 Fribourg , Switzerland
| |
Collapse
|
25
|
Schroer R, Schroer JW. Putting psychology before metaphysics in moral responsibility: Reactive attitudes and a “gut feeling” that can trigger and justify them. PHILOSOPHICAL PSYCHOLOGY 2018. [DOI: 10.1080/09515089.2018.1555800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Robert Schroer
- Department of Philosophy, University of Minnesota Duluth, Duluth, MN, USA
| | | |
Collapse
|
26
|
Royer J, Blais C, Charbonneau I, Déry K, Tardif J, Duchaine B, Gosselin F, Fiset D. Greater reliance on the eye region predicts better face recognition ability. Cognition 2018; 181:12-20. [PMID: 30103033 DOI: 10.1016/j.cognition.2018.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/17/2023]
Abstract
Interest in using individual differences in face recognition ability to better understand the perceptual and cognitive mechanisms supporting face processing has grown substantially in recent years. The goal of this study was to determine how varying levels of face recognition ability are linked to changes in visual information extraction strategies in an identity recognition task. To address this question, fifty participants completed six tasks measuring face and object processing abilities. Using the Bubbles method (Gosselin & Schyns, 2001), we also measured each individual's use of visual information in face recognition. At the group level, our results replicate previous findings demonstrating the importance of the eye region for face identification. More importantly, we show that face processing ability is related to a systematic increase in the use of the eye area, especially the left eye from the observer's perspective. Indeed, our results suggest that the use of this region accounts for approximately 20% of the variance in face processing ability. These results support the idea that individual differences in face processing are at least partially related to the perceptual extraction strategy used during face identification.
Collapse
Affiliation(s)
- Jessica Royer
- Département de Psychoéducation et de Psychologie, Université du Québec en Outaouais, Canada
| | - Caroline Blais
- Département de Psychoéducation et de Psychologie, Université du Québec en Outaouais, Canada
| | - Isabelle Charbonneau
- Département de Psychoéducation et de Psychologie, Université du Québec en Outaouais, Canada
| | - Karine Déry
- Département de Psychoéducation et de Psychologie, Université du Québec en Outaouais, Canada
| | - Jessica Tardif
- Département de Psychologie, Université de Montréal, Canada
| | - Brad Duchaine
- Department of Psychological and Brain Sciences, Dartmouth College, United States
| | | | - Daniel Fiset
- Département de Psychoéducation et de Psychologie, Université du Québec en Outaouais, Canada.
| |
Collapse
|
27
|
Adamson K, Troiani V. Distinct and overlapping fusiform activation to faces and food. Neuroimage 2018; 174:393-406. [DOI: 10.1016/j.neuroimage.2018.02.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 11/29/2022] Open
|
28
|
Ross DA, Tamber-Rosenau BJ, Palmeri TJ, Zhang J, Xu Y, Gauthier I. High-resolution Functional Magnetic Resonance Imaging Reveals Configural Processing of Cars in Right Anterior Fusiform Face Area of Car Experts. J Cogn Neurosci 2018; 30:973-984. [DOI: 10.1162/jocn_a_01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Visual object expertise correlates with neural selectivity in the fusiform face area (FFA). Although behavioral studies suggest that visual expertise is associated with increased use of holistic and configural information, little is known about the nature of the supporting neural representations. Using high-resolution 7-T functional magnetic resonance imaging, we recorded the multivoxel activation patterns elicited by whole cars, configurally disrupted cars, and car parts in individuals with a wide range of car expertise. A probabilistic support vector machine classifier was trained to differentiate activation patterns elicited by whole car images from activation patterns elicited by misconfigured car images. The classifier was then used to classify new combined activation patterns that were created by averaging activation patterns elicited by individually presented top and bottom car parts. In line with the idea that the configuration of parts is critical to expert visual perception, car expertise was negatively associated with the probability of a combined activation pattern being classified as a whole car in the right anterior FFA, a region critical to vision for categories of expertise. Thus, just as found for faces in normal observers, the neural representation of cars in right anterior FFA is more holistic for car experts than car novices, consistent with common mechanisms of neural selectivity for faces and other objects of expertise in this area.
Collapse
|
29
|
Age-related increase of image-invariance in the fusiform face area. Dev Cogn Neurosci 2018; 31:46-57. [PMID: 29738921 PMCID: PMC6969195 DOI: 10.1016/j.dcn.2018.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 11/23/2022] Open
Abstract
Image invariance in the FFA increases from age seven to adulthood. These results are confirmed by two independent ROI analyses. Adaptation in the FFA relates to the ability to recognize a face in multiple images.
Face recognition undergoes prolonged development from childhood to adulthood, thereby raising the question which neural underpinnings are driving this development. Here, we address the development of the neural foundation of the ability to recognize a face across naturally varying images. Fourteen children (ages, 7–10) and 14 adults (ages, 20–23) watched images of either the same or different faces in a functional magnetic resonance imaging adaptation paradigm. The same face was either presented in exact image repetitions or in varying images. Additionally, a subset of participants completed a behavioral task, in which they decided if the face in consecutively presented images belonged to the same person. Results revealed age-related increases in neural sensitivity to face identity in the fusiform face area. Importantly, ventral temporal face-selective regions exhibited more image-invariance – as indicated by stronger adaptation for different images of the same person – in adults compared to children. Crucially, the amount of adaptation to face identity across varying images was correlated with the ability to recognize individual faces in different images. These results suggest that the increase of image-invariance in face-selective regions might be related to the development of face recognition skills.
Collapse
|
30
|
Investigating the Influence of Biological Sex on the Behavioral and Neural Basis of Face Recognition. eNeuro 2017; 4:eN-NWR-0104-17. [PMID: 28497111 PMCID: PMC5423736 DOI: 10.1523/eneuro.0104-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 11/21/2022] Open
Abstract
There is interest in understanding the influence of biological factors, like sex, on the organization of brain function. We investigated the influence of biological sex on the behavioral and neural basis of face recognition in healthy, young adults. In behavior, there were no sex differences on the male Cambridge Face Memory Test (CFMT)+ or the female CFMT+ (that we created) and no own-gender bias (OGB) in either group. We evaluated the functional topography of ventral stream organization by measuring the magnitude and functional neural size of 16 individually defined face-, two object-, and two place-related regions bilaterally. There were no sex differences in any of these measures of neural function in any of the regions of interest (ROIs) or in group level comparisons. These findings reveal that men and women have similar category-selective topographic organization in the ventral visual pathway. Next, in a separate task, we measured activation within the 16 face-processing ROIs specifically during recognition of target male and female faces. There were no sex differences in the magnitude of the neural responses in any face-processing region. Furthermore, there was no OGB in the neural responses of either the male or female participants. Our findings suggest that face recognition behavior, including the OGB, is not inherently sexually dimorphic. Face recognition is an essential skill for navigating human social interactions, which is reflected equally in the behavior and neural architecture of men and women.
Collapse
|
31
|
McGugin RW, Ryan KF, Tamber-Rosenau BJ, Gauthier I. The Role of Experience in the Face-Selective Response in Right FFA. Cereb Cortex 2017; 28:2071-2084. [DOI: 10.1093/cercor/bhx113] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 01/12/2023] Open
Affiliation(s)
- Rankin W McGugin
- Department of Psychology, Vanderbilt University, Wilson Hall, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA
| | - Katie F Ryan
- Department of Psychology, Vanderbilt University, Wilson Hall, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA
| | - Benjamin J Tamber-Rosenau
- Department of Psychology, Vanderbilt University, Wilson Hall, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA
- Department of Psychology, University of Houston, 126 Heyne Building, 3695 Cullen Blvd, Houston, TX 77204, USA
| | - Isabel Gauthier
- Department of Psychology, Vanderbilt University, Wilson Hall, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA
| |
Collapse
|