1
|
Marchant JK, Ferris NG, Grass D, Allen MS, Gopalakrishnan V, Olchanyi M, Sehgal D, Sheft M, Strom A, Bilgic B, Edlow B, Hillman EMC, Juttukonda MR, Lewis L, Nasr S, Nummenmaa A, Polimeni JR, Tootell RBH, Wald LL, Wang H, Yendiki A, Huang SY, Rosen BR, Gollub RL. Mesoscale Brain Mapping: Bridging Scales and Modalities in Neuroimaging - A Symposium Review. Neuroinformatics 2024:10.1007/s12021-024-09686-2. [PMID: 39312131 DOI: 10.1007/s12021-024-09686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/20/2024]
Abstract
Advances in the spatiotemporal resolution and field-of-view of neuroimaging tools are driving mesoscale studies for translational neuroscience. On October 10, 2023, the Center for Mesoscale Mapping (CMM) at the Massachusetts General Hospital (MGH) Athinoula A. Martinos Center for Biomedical Imaging and the Massachusetts Institute of Technology (MIT) Health Sciences Technology based Neuroimaging Training Program (NTP) hosted a symposium exploring the state-of-the-art in this rapidly growing area of research. "Mesoscale Brain Mapping: Bridging Scales and Modalities in Neuroimaging" brought together researchers who use a broad range of imaging techniques to study brain structure and function at the convergence of the microscopic and macroscopic scales. The day-long event centered on areas in which the CMM has established expertise, including the development of emerging technologies and their application to clinical translational needs and basic neuroscience questions. The in-person symposium welcomed more than 150 attendees, including 57 faculty members, 61 postdoctoral fellows, 35 students, and four industry professionals, who represented institutions at the local, regional, and international levels. The symposium also served the training goals of both the CMM and the NTP. The event content, organization, and format were planned collaboratively by the faculty and trainees. Many CMM faculty presented or participated in a panel discussion, thus contributing to the dissemination of both the technologies they have developed under the auspices of the CMM and the findings they have obtained using those technologies. NTP trainees who benefited from the symposium included those who helped to organize the symposium and/or presented posters and gave "flash" oral presentations. In addition to gaining experience from presenting their work, they had opportunities throughout the day to engage in one-on-one discussions with visiting scientists and other faculty, potentially opening the door to future collaborations. The symposium presentations provided a deep exploration of the many technological advances enabling progress in structural and functional mesoscale brain imaging. Finally, students worked closely with the presenting faculty to develop this report summarizing the content of the symposium and putting it in the broader context of the current state of the field to share with the scientific community. We note that the references cited here include conference abstracts corresponding to the symposium poster presentations.
Collapse
Affiliation(s)
- Joshua K Marchant
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.
| | - Natalie G Ferris
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
- Harvard Biophysics Graduate Program, Cambridge, MA, USA.
| | - Diana Grass
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Magdelena S Allen
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Vivek Gopalakrishnan
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mark Olchanyi
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Devang Sehgal
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Maxina Sheft
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Amelia Strom
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Berkin Bilgic
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Brian Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth M C Hillman
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| | - Meher R Juttukonda
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Laura Lewis
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shahin Nasr
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jonathan R Polimeni
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Roger B H Tootell
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lawrence L Wald
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Anastasia Yendiki
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Bruce R Rosen
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Randy L Gollub
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Tian F, Zhang Y, Schriver KE, Hu JM, Roe AW. A novel interface for cortical columnar neuromodulation with multipoint infrared neural stimulation. Nat Commun 2024; 15:6528. [PMID: 39095351 PMCID: PMC11297274 DOI: 10.1038/s41467-024-50375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Cutting edge advances in electrical visual cortical prosthetics have evoked perception of shapes, motion, and letters in the blind. Here, we present an alternative optical approach using pulsed infrared neural stimulation. To interface with dense arrays of cortical columns with submillimeter spatial precision, both linear array and 100-fiber bundle array optical fiber interfaces were devised. We deliver infrared stimulation through these arrays in anesthetized cat visual cortex and monitor effects by optical imaging in contralateral visual cortex. Infrared neural stimulation modulation of response to ongoing visual oriented gratings produce enhanced responses in orientation-matched domains and suppressed responses in non-matched domains, consistent with a known higher order integration mediated by callosal inputs. Controls include dynamically applied speeds, directions and patterns of multipoint stimulation. This provides groundwork for a distinct type of prosthetic targeted to maps of visual cortical columns.
Collapse
Affiliation(s)
- Feiyan Tian
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, Hangzhou, 310029, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Ying Zhang
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, Hangzhou, 310029, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Kenneth E Schriver
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, Hangzhou, 310029, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Jia Ming Hu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, Hangzhou, 310029, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China.
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, Hangzhou, 310029, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China.
- National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Kim H, Jeong H, Lee J, Yei J, Suh M. The Effects of Acute Stress on Evoked-cortical Connectivity through Wide-field Optical Mapping of Neural and Hemodynamic Signals. Exp Neurobiol 2024; 33:140-151. [PMID: 38993081 PMCID: PMC11247281 DOI: 10.5607/en23009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
A single exposure to stress can induce functional changes in neurons, potentially leading to acute stress disorder or post-traumatic stress disorder. In this study, we used in vivo wide-field optical mapping to simultaneously measure neural calcium signals and hemodynamic responses over the whole cortical area. We found that cortical mapping to whisker stimuli was altered under acute stress conditions. In particular, callosal projections in the anterior cortex (primary/secondary motor, somatosensory forelimb cortex) relative to barrel field (S1BF) of somatosensory cortex were weakened. On the contrary, the projections in posterior cortex relative to S1BF were mostly unchanged or were only occasionally strengthened. In addition, changes in intra-cortical connection were opposite to those in inter-cortical connection. Thus, the S1BF connections to the anterior cortex were strengthened while those to the posterior cortex were weakened. This suggests that the well-known barrel cortex projection route was enhanced. In summary, our in vivo wide-field optical mapping study indicates that a single acute stress can impact whole-brain networks, affecting both neural and hemodynamic responses.
Collapse
Affiliation(s)
- Hayeon Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Haebin Jeong
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
- School of Medicine, CHA University, Seongnam 13488, Korea
| | - Jiyoung Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Jaeseung Yei
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
- Department of Intelligent Precision Healthcare Convergence (IPHC), Sungkyunkwan University, Suwon 16419, Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
- Department of Intelligent Precision Healthcare Convergence (IPHC), Sungkyunkwan University, Suwon 16419, Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon 16419, Korea
- KIST-SKKU Brain Research Center, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- IMNEWRUN Inc., Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
4
|
Sharma S, Kalyani N, Dutta T, Velázquez-González JS, Llamas-Garro I, Ung B, Bas J, Dubey R, Mishra SK. Optical Devices for the Diagnosis and Management of Spinal Cord Injuries: A Review. BIOSENSORS 2024; 14:296. [PMID: 38920599 PMCID: PMC11201428 DOI: 10.3390/bios14060296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
Throughout the central nervous system, the spinal cord plays a very important role, namely, transmitting sensory and motor information inwardly so that it can be processed by the brain. There are many different ways this structure can be damaged, such as through traumatic injury or surgery, such as scoliosis correction, for instance. Consequently, damage may be caused to the nervous system as a result of this. There is no doubt that optical devices such as microscopes and cameras can have a significant impact on research, diagnosis, and treatment planning for patients with spinal cord injuries (SCIs). Additionally, these technologies contribute a great deal to our understanding of these injuries, and they are also essential in enhancing the quality of life of individuals with spinal cord injuries. Through increasingly powerful, accurate, and minimally invasive technologies that have been developed over the last decade or so, several new optical devices have been introduced that are capable of improving the accuracy of SCI diagnosis and treatment and promoting a better quality of life after surgery. We aim in this paper to present a timely overview of the various research fields that have been conducted on optical devices that can be used to diagnose spinal cord injuries as well as to manage the associated health complications that affected individuals may experience.
Collapse
Affiliation(s)
- Sonika Sharma
- Department of Physics, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India;
| | - Neeti Kalyani
- Department of Biotechnology and Biomedicine, Denmark Technical University, 2800 Kongens Lyngby, Denmark;
| | - Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howarh 711103, West Bengal, India;
| | - Jesús Salvador Velázquez-González
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (J.S.V.-G.); (I.L.-G.)
| | - Ignacio Llamas-Garro
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (J.S.V.-G.); (I.L.-G.)
| | - Bora Ung
- Electrical Engineering Department, Ecole de Technologie Superieure, Montreal, QC H3C 1K3, Canada;
| | - Joan Bas
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| | - Rakesh Dubey
- Institute of Physics, University of Szczecin, 70-453 Szczecin, Poland;
| | - Satyendra K. Mishra
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| |
Collapse
|
5
|
Ali MU, Zafar A, Kallu KD, Yaqub MA, Masood H, Hong KS, Bhutta MR. An Isolated CNN Architecture for Classification of Finger-Tapping Tasks Using Initial Dip Images: A Functional Near-Infrared Spectroscopy Study. Bioengineering (Basel) 2023; 10:810. [PMID: 37508837 PMCID: PMC10376657 DOI: 10.3390/bioengineering10070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
This work investigates the classification of finger-tapping task images constructed for the initial dip duration of hemodynamics (HR) associated with the small brain area of the left motor cortex using functional near-infrared spectroscopy (fNIRS). Different layers (i.e., 16-layers, 19-layers, 22-layers, and 25-layers) of isolated convolutional neural network (CNN) designed from scratch are tested to classify the right-hand thumb and little finger-tapping tasks. Functional t-maps of finger-tapping tasks (thumb, little) were constructed for various durations (0.5 to 4 s with a uniform interval of 0.5 s) for the initial dip duration using a three gamma functions-based designed HR function. The results show that the 22-layered isolated CNN model yielded the highest classification accuracy of 89.2% with less complexity in classifying the functional t-maps of thumb and little fingers associated with the same small brain area using the initial dip. The results further demonstrated that the active brain area of the two tapping tasks from the same small brain area are highly different and well classified using functional t-maps of the initial dip (0.5 to 4 s) compared to functional t-maps generated for delayed HR (14 s). This study shows that the images constructed for initial dip duration can be helpful in the future for fNIRS-based diagnosis or cortical analysis of abnormal cerebral oxygen exchange in patients.
Collapse
Affiliation(s)
- Muhammad Umair Ali
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Amad Zafar
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Karam Dad Kallu
- Department of Robotics and Intelligent Machine Engineering (RIME), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - M Atif Yaqub
- ICFO-Institut de Ciències Fotòniques the Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Haris Masood
- Electrical Engineering Department, Wah Engineering College, University of Wah, Wah Cantt 47040, Pakistan
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea
- Institute for Future, School of Automation, Qingdao University, Qingdao 266071, China
| | - Muhammad Raheel Bhutta
- Department of Electrical and Computer Engineering, University of UTAH Asia Campus, Incheon 21985, Republic of Korea
| |
Collapse
|
6
|
Anaya D, Batra G, Bracewell P, Catoen R, Chakraborty D, Chevillet M, Damodara P, Dominguez A, Emms L, Jiang Z, Kim E, Klumb K, Lau F, Le R, Li J, Mateo B, Matloff L, Mehta A, Mugler EM, Murthy A, Nakagome S, Orendorff R, Saung EF, Schwarz R, Sethi R, Sevile R, Srivastava A, Sundberg J, Yang Y, Yin A. Scalable, modular continuous wave functional near-infrared spectroscopy system (Spotlight). JOURNAL OF BIOMEDICAL OPTICS 2023; 28:065003. [PMID: 37325190 PMCID: PMC10261976 DOI: 10.1117/1.jbo.28.6.065003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 06/17/2023]
Abstract
Significance We present a fiberless, portable, and modular continuous wave-functional near-infrared spectroscopy system, Spotlight, consisting of multiple palm-sized modules-each containing high-density light-emitting diode and silicon photomultiplier detector arrays embedded in a flexible membrane that facilitates optode coupling to scalp curvature. Aim Spotlight's goal is to be a more portable, accessible, and powerful functional near-infrared spectroscopy (fNIRS) device for neuroscience and brain-computer interface (BCI) applications. We hope that the Spotlight designs we share here can spur more advances in fNIRS technology and better enable future non-invasive neuroscience and BCI research. Approach We report sensor characteristics in system validation on phantoms and motor cortical hemodynamic responses in a human finger-tapping experiment, where subjects wore custom 3D-printed caps with two sensor modules. Results The task conditions can be decoded offline with a median accuracy of 69.6%, reaching 94.7% for the best subject, and at a comparable accuracy in real time for a subset of subjects. We quantified how well the custom caps fitted to each subject and observed that better fit leads to more observed task-dependent hemodynamic response and better decoding accuracy. Conclusions The advances presented here should serve to make fNIRS more accessible for BCI applications.
Collapse
Affiliation(s)
- Daniel Anaya
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Gautam Batra
- Meta Platforms, Inc., Menlo Park, California, United States
| | | | - Ryan Catoen
- Meta Platforms, Inc., Menlo Park, California, United States
| | | | - Mark Chevillet
- Meta Platforms, Inc., Menlo Park, California, United States
| | | | | | - Laurence Emms
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Zifan Jiang
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Ealgoo Kim
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Keith Klumb
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Frances Lau
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Rosemary Le
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Jamie Li
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Brett Mateo
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Laura Matloff
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Asha Mehta
- Meta Platforms, Inc., Menlo Park, California, United States
| | | | - Akansh Murthy
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Sho Nakagome
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Ryan Orendorff
- Meta Platforms, Inc., Menlo Park, California, United States
| | - E-Fann Saung
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Roland Schwarz
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Ruben Sethi
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Rudy Sevile
- Meta Platforms, Inc., Menlo Park, California, United States
| | | | - John Sundberg
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Ying Yang
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Allen Yin
- Meta Platforms, Inc., Menlo Park, California, United States
| |
Collapse
|
7
|
Cai X, Xu H, Han C, Li P, Wang J, Zhang R, Tang R, Fang C, Yan K, Song Q, Liang C, Lu HD. Mesoscale functional connectivity in macaque visual areas. Neuroimage 2023; 271:120019. [PMID: 36914108 DOI: 10.1016/j.neuroimage.2023.120019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Studies of resting-state functional connectivity (rsFC) have provided rich insights into the structures and functions of the human brain. However, most rsFC studies have focused on large-scale brain connectivity. To explore rsFC at a finer scale, we used intrinsic signal optical imaging to image the ongoing activity of the anesthetized macaque visual cortex. Differential signals from functional domains were used to quantify network-specific fluctuations. In 30-60 min resting-state imaging, a series of coherent activation patterns were observed in all three visual areas we examined (V1, V2, and V4). These patterns matched the known functional maps (ocular dominance, orientation, color) obtained in visual stimulation conditions. These functional connectivity (FC) networks fluctuated independently over time and exhibited similar temporal characteristics. Coherent fluctuations, however, were observed from orientation FC networks in different areas and even across two hemispheres. Thus, FC in the macaque visual cortex was fully mapped both on a fine scale and over a long range. Hemodynamic signals can be used to explore mesoscale rsFC in a submillimeter resolution.
Collapse
Affiliation(s)
- Xingya Cai
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China
| | - Haoran Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China
| | - Chao Han
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China
| | - Peichao Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China
| | - Jiayu Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China
| | - Rui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China
| | - Rendong Tang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China
| | - Chen Fang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China
| | - Kun Yan
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China
| | - Qianling Song
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China
| | - Chen Liang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China
| | - Haidong D Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China.
| |
Collapse
|
8
|
Pan L, Ping A, Schriver KE, Roe AW, Zhu J, Xu K. Infrared neural stimulation in human cerebral cortex. Brain Stimul 2023; 16:418-430. [PMID: 36731770 DOI: 10.1016/j.brs.2023.01.1678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Modulation of brain circuits by electrical stimulation has led to exciting and powerful therapies for diseases such as Parkinson's. Because human brain organization is based in mesoscale (millimeter-scale) functional nodes, having a method that can selectively target such nodes could enable more precise, functionally specific stimulation therapies. Infrared Neural Stimulation (INS) is an emerging stimulation technology that stimulates neural tissue via delivery of tiny heat pulses. In nonhuman primates, this optical method provides focal intensity-dependent stimulation of the brain without tissue damage. However, whether INS application to the human central nervous system (CNS) is similarly effective is unknown. OBJECTIVE To examine the effectiveness of INS on human cerebral cortex in intraoperative setting and to evaluate INS damage threshholds. METHODS Five epileptic subjects undergoing standard lobectomy for epilepsy consented to this study. Cortical response to INS was assessed by intrinsic signal optical imaging (OI, a method that detects changes in tissue reflectance due to neuronal activity). A custom integrated INS and OI system was developed specifically for short-duration INS and OI acquisition during surgical procedures. Single pulse trains of INS with intensities from 0.2 to 0.8 J/cm2 were delivered to the somatosensory cortex and responses were recorded via optical imaging. Following tissue resection, histological analysis was conducted to evaluate damage threshholds. RESULTS As assessed by OI, and similar to results in monkeys, INS induced responses in human cortex were highly focal (millimeter sized) and led to relative suppression of nearby cortical sites. Intensity dependence was observed at both stimulated and functionally connected sites. Histological analysis of INS-stimulated human cortical tissue provided damage threshold estimates. CONCLUSION This is the first study demonstrating application of INS to human CNS and shows feasibility for stimulating single cortical nodes and associated sites and provided INS damage threshold estimates for cortical tissue. Our results suggest that INS is a promising tool for stimulation of functionally selective mesoscale circuits in the human brain, and may lead to advances in the future of precision medicine.
Collapse
Affiliation(s)
- Li Pan
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China; Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.
| | - An Ping
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Kenneth E Schriver
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Anna Wang Roe
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Interdisciplinary Institute of Neuroscience and Technology (ZIINT), School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China.
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China.
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China; Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Zhu L, Wang M, Fu P, Liu Y, Zhang H, Roe AW, Xi W. Precision 1070 nm Ultrafast Laser-Induced Photothrombosis of Depth-Targeted Vessels In Vivo. SMALL METHODS 2023; 7:e2200917. [PMID: 36286988 DOI: 10.1002/smtd.202200917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The cerebrovasculature plays an essential role in neurovascular and homeostatic functions in health and disease conditions. Many efforts have been made for developing vascular thrombosis methods to study vascular dysfunction in vivo, while technical challenges remain, such as accuracy and depth-selectivity to target a single vessel in the cerebral cortex. Herein, this paper first demonstrates the evaluation and quantification of the feasibility and effects of Rose Bengal (RB)-induced photothrombosis with 720-1070 nm ultrafast lasers in a raster scan. A flexible and reproducible approach is then proposed to employ a 1070 nm ultrafast laser with a spiral scan for producing RB-induced occlusion, which is described as precision ultrafast laser-induced photothrombosis (PLP). Combine with two-photon microscopy imaging, this PLP displays highly precise and fast occlusion induction of various vessel types, sizes, and depths, which enhances the precision and power of the photothrombosis protocol. Overall, the PLP method provides a real-time, practical, precise, and depth-selected single-vessel photothrombosis technology in the cerebral cortex with commercially available optical equipment, which is crucial for exploring brain vascular function with high spatial-temporal resolution in the brain.
Collapse
Affiliation(s)
- Liang Zhu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Mengqi Wang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Peng Fu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Yin Liu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Hequn Zhang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
10
|
Fekete Z, Zátonyi A, Kaszás A, Madarász M, Slézia A. Transparent neural interfaces: challenges and solutions of microengineered multimodal implants designed to measure intact neuronal populations using high-resolution electrophysiology and microscopy simultaneously. MICROSYSTEMS & NANOENGINEERING 2023; 9:66. [PMID: 37213820 PMCID: PMC10195795 DOI: 10.1038/s41378-023-00519-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 05/23/2023]
Abstract
The aim of this review is to present a comprehensive overview of the feasibility of using transparent neural interfaces in multimodal in vivo experiments on the central nervous system. Multimodal electrophysiological and neuroimaging approaches hold great potential for revealing the anatomical and functional connectivity of neuronal ensembles in the intact brain. Multimodal approaches are less time-consuming and require fewer experimental animals as researchers obtain denser, complex data during the combined experiments. Creating devices that provide high-resolution, artifact-free neural recordings while facilitating the interrogation or stimulation of underlying anatomical features is currently one of the greatest challenges in the field of neuroengineering. There are numerous articles highlighting the trade-offs between the design and development of transparent neural interfaces; however, a comprehensive overview of the efforts in material science and technology has not been reported. Our present work fills this gap in knowledge by introducing the latest micro- and nanoengineered solutions for fabricating substrate and conductive components. Here, the limitations and improvements in electrical, optical, and mechanical properties, the stability and longevity of the integrated features, and biocompatibility during in vivo use are discussed.
Collapse
Affiliation(s)
- Z. Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience & Psychology, Eotvos Lorand Research Network, Budapest, Hungary
| | - A. Zátonyi
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - A. Kaszás
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541 Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005 Marseille, France
| | - M. Madarász
- János Szentágothai PhD Program of Semmelweis University, Budapest, Hungary
- BrainVision Center, Budapest, Hungary
| | - A. Slézia
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
11
|
Zaraza D, Chernov MM, Yang Y, Rogers JA, Roe AW, Friedman RM. Head-mounted optical imaging and optogenetic stimulation system for use in behaving primates. CELL REPORTS METHODS 2022; 2:100351. [PMID: 36590689 PMCID: PMC9795332 DOI: 10.1016/j.crmeth.2022.100351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/25/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Advances in optical technology have revolutionized studies of brain function in freely behaving mice. Here, we describe an optical imaging and stimulation device for use in primates that easily attaches to an intracranial chamber. It consists of affordable commercially available or 3D-printed components: a monochromatic camera, a small standard lens, a wireless μLED stimulator powered by an induction coil, and an LED array for illumination. We show that the intrinsic imaging performance of this device is comparable to a standard benchtop system in revealing the functional organization of the visual cortex for awake macaques in a primate chair or under anesthesia. Imaging revealed neural modulatory effects of wireless focal optogenetic stimulation aimed at identified functional domains. With a 1 to 2 cm field of view, 100× larger than previously used in primates without head restraint, our device permits widefield optical imaging and optogenetic stimulation for ethological studies in primates.
Collapse
Affiliation(s)
- Derek Zaraza
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Mykyta M. Chernov
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Yiyuan Yang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John A. Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Anna W. Roe
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Robert M. Friedman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
12
|
Lee SG, Kim YJ, Son MY, Oh MS, Kim J, Ryu B, Kang KR, Baek J, Chung G, Woo DH, Kim CY, Chung HM. Generation of human iPSCs derived heart organoids structurally and functionally similar to heart. Biomaterials 2022; 290:121860. [DOI: 10.1016/j.biomaterials.2022.121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/02/2022]
|
13
|
Meyer-Baese L, Watters H, Keilholz S. Spatiotemporal patterns of spontaneous brain activity: a mini-review. NEUROPHOTONICS 2022; 9:032209. [PMID: 35434180 PMCID: PMC9005199 DOI: 10.1117/1.nph.9.3.032209] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The brain exists in a state of constant activity in the absence of any external sensory input. The spatiotemporal patterns of this spontaneous brain activity have been studied using various recording and imaging techniques. This has enabled considerable progress to be made in elucidating the cellular and network mechanisms that are involved in the observed spatiotemporal dynamics. This mini-review outlines different spatiotemporal dynamic patterns that have been identified in four commonly used modalities: electrophysiological recordings, optical imaging, functional magnetic resonance imaging, and electroencephalography. Signal sources for each modality, possible sources of the observed dynamics, and future directions are also discussed.
Collapse
Affiliation(s)
- Lisa Meyer-Baese
- Emory University, Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | | | - Shella Keilholz
- Emory University, Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| |
Collapse
|
14
|
Yeon C, Im JM, Kim M, Kim YR, Chung E. Cranial and Spinal Window Preparation for in vivo Optical Neuroimaging in Rodents and Related Experimental Techniques. Exp Neurobiol 2022; 31:131-146. [PMID: 35786637 PMCID: PMC9272117 DOI: 10.5607/en22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
Optical neuroimaging provides an effective neuroscience tool for multi-scale investigation of the neural structures and functions, ranging from molecular, cellular activities to the inter-regional connectivity assessment. Amongst experimental preparations, the implementation of an artificial window to the central nervous system (CNS) is primarily required for optical visualization of the CNS and associated brain activities through the opaque skin and bone. Either thinning down or removing portions of the skull or spine is necessary for unobstructed long-term in vivo observations, for which types of the cranial and spinal window and applied materials vary depending on the study objectives. As diversely useful, a window can be designed to accommodate other experimental methods such as electrophysiology or optogenetics. Moreover, auxiliary apparatuses would allow the recording in synchrony with behavior of large-scale brain connectivity signals across the CNS, such as olfactory bulb, cerebral cortex, cerebellum, and spinal cord. Such advancements in the cranial and spinal window have resulted in a paradigm shift in neuroscience, enabling in vivo investigation of the brain function and dysfunction at the microscopic, cellular level. This Review addresses the types and classifications of windows used in optical neuroimaging while describing how to perform in vivo studies using rodent models in combination with other experimental modalities during behavioral tests. The cranial and spinal window has enabled longitudinal examination of evolving neural mechanisms via in situ visualization of the brain. We expect transformable and multi-functional cranial and spinal windows to become commonplace in neuroscience laboratories, further facilitating advances in optical neuroimaging systems.
Collapse
Affiliation(s)
- Chanmi Yeon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jeong Myo Im
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Minsung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Young Ro Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
15
|
Zeng C, Chen Z, Yang H, Fan Y, Fei L, Chen X, Zhang M. Advanced high resolution three-dimensional imaging to visualize the cerebral neurovascular network in stroke. Int J Biol Sci 2022; 18:552-571. [PMID: 35002509 PMCID: PMC8741851 DOI: 10.7150/ijbs.64373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/28/2021] [Indexed: 11/05/2022] Open
Abstract
As an important method to accurately and timely diagnose stroke and study physiological characteristics and pathological mechanism in it, imaging technology has gone through more than a century of iteration. The interaction of cells densely packed in the brain is three-dimensional (3D), but the flat images brought by traditional visualization methods show only a few cells and ignore connections outside the slices. The increased resolution allows for a more microscopic and underlying view. Today's intuitive 3D imagings of micron or even nanometer scale are showing its essentiality in stroke. In recent years, 3D imaging technology has gained rapid development. With the overhaul of imaging mediums and the innovation of imaging mode, the resolution has been significantly improved, endowing researchers with the capability of holistic observation of a large volume, real-time monitoring of tiny voxels, and quantitative measurement of spatial parameters. In this review, we will summarize the current methods of high-resolution 3D imaging applied in stroke.
Collapse
Affiliation(s)
- Chudai Zeng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Haojun Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Lujing Fei
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Xinghang Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| |
Collapse
|
16
|
Optimizing intact skull intrinsic signal imaging for subsequent targeted electrophysiology across mouse visual cortex. Sci Rep 2022; 12:2063. [PMID: 35136111 PMCID: PMC8826313 DOI: 10.1038/s41598-022-05932-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Understanding brain function requires repeatable measurements of neural activity across multiple scales and multiple brain areas. In mice, large scale cortical neural activity evokes hemodynamic changes readily observable with intrinsic signal imaging (ISI). Pairing ISI with visual stimulation allows identification of primary visual cortex (V1) and higher visual areas (HVAs), typically through cranial windows that thin or remove the skull. These procedures can diminish long-term mechanical and physiological stability required for delicate electrophysiological measurements made weeks to months after imaging (e.g., in subjects undergoing behavioral training). Here, we optimized and directly validated an intact skull ISI system in mice. We first assessed how imaging quality and duration affect reliability of retinotopic maps in V1 and HVAs. We then verified ISI map retinotopy in V1 and HVAs with targeted, multi-site electrophysiology several weeks after imaging. Reliable ISI maps of V1 and multiple HVAs emerged with ~ 60 trials of imaging (65 ± 6 min), and these showed strong correlation to local field potential (LFP) retinotopy in superficial cortical layers (r2 = 0.74–0.82). This system is thus well-suited for targeted, multi-area electrophysiology weeks to months after imaging. We provide detailed instructions and code for other researchers to implement this system.
Collapse
|
17
|
Wang HL, Chen JW, Yang SH, Lo YC, Pan HC, Liang YW, Wang CF, Yang Y, Kuo YT, Lin YC, Chou CY, Lin SH, Chen YY. Multimodal Optical Imaging to Investigate Spatiotemporal Changes in Cerebrovascular Function in AUDA Treatment of Acute Ischemic Stroke. Front Cell Neurosci 2021; 15:655305. [PMID: 34149359 PMCID: PMC8209306 DOI: 10.3389/fncel.2021.655305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
Administration of 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) has been demonstrated to alleviate infarction following ischemic stroke. Reportedly, the main effect of AUDA is exerting anti-inflammation and neovascularization via the inhibition of soluble epoxide hydrolase. However, the major contribution of this anti-inflammation and neovascularization effect in the acute phase of stroke is not completely elucidated. To investigate the neuroprotective effects of AUDA in acute ischemic stroke, we combined laser speckle contrast imaging and optical intrinsic signal imaging techniques with the implantation of a lab-designed cranial window. Forepaw stimulation was applied to assess the functional changes via measuring cerebral metabolic rate of oxygen (CMRO2) that accompany neural activity. The rats that received AUDA in the acute phase of photothrombotic ischemia stroke showed a 30.5 ± 8.1% reduction in the ischemic core, 42.3 ± 15.1% reduction in the ischemic penumbra (p < 0.05), and 42.1 ± 4.6% increase of CMRO2 in response to forepaw stimulation at post-stroke day 1 (p < 0.05) compared with the control group (N = 10 for each group). Moreover, at post-stroke day 3, increased functional vascular density was observed in AUDA-treated rats (35.9 ± 1.9% higher than that in the control group, p < 0.05). At post-stroke day 7, a 105.4% ± 16.4% increase of astrocytes (p < 0.01), 30.0 ± 10.9% increase of neurons (p < 0.01), and 65.5 ± 15.0% decrease of microglia (p < 0.01) were observed in the penumbra region in AUDA-treated rats (N = 5 for each group). These results suggested that AUDA affects the anti-inflammation at the beginning of ischemic injury and restores neuronal metabolic rate of O2 and tissue viability. The neovascularization triggered by AUDA restored CBF and may contribute to ischemic infarction reduction at post-stroke day 3. Moreover, for long-term neuroprotection, astrocytes in the penumbra region may play an important role in protecting neurons from apoptotic injury.
Collapse
Affiliation(s)
- Han-Lin Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Chi Pan
- National Laboratory Animal Center, Taipei, Taiwan
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Fu Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi Yang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Ting Kuo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chen Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Yu Chou
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Huang Lin
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
18
|
|
19
|
Wang Y, Xi L. Chronic cranial window for photoacoustic imaging: a mini review. Vis Comput Ind Biomed Art 2021; 4:15. [PMID: 34037873 PMCID: PMC8155166 DOI: 10.1186/s42492-021-00081-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/27/2021] [Indexed: 12/31/2022] Open
Abstract
Photoacoustic (PA) microscopy is being increasingly used to visualize the microcirculation of the brain cortex at the micron level in living rodents. By combining it with long-term cranial window techniques, vasculature can be monitored over a period of days extending to months through a field of view. To fulfill the requirements of long-term in vivo PA imaging, the cranial window must involve a simple and rapid surgical procedure, biological compatibility, and sufficient optical-acoustic transparency, which are major challenges. Recently, several cranial window techniques have been reported for longitudinal PA imaging. Here, the development of chronic cranial windows for PA imaging is reviewed and its technical details are discussed, including window installation, imaging quality, and longitudinal stability.
Collapse
Affiliation(s)
- Yongchao Wang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
20
|
Decramer T, Premereur E, Caprara I, Theys T, Janssen P. Temporal dynamics of neural activity in macaque frontal cortex assessed with large-scale recordings. Neuroimage 2021; 236:118088. [PMID: 33915276 DOI: 10.1016/j.neuroimage.2021.118088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
The cortical network controlling the arm and hand when grasping objects consists of several areas in parietal and frontal cortex. Recently, more anterior prefrontal areas have also been implicated in object grasping, but their exact role is currently unclear. To investigate the neuronal encoding of objects during grasping in these prefrontal regions and their relation with other cortical areas of the grasping network, we performed large-scale recordings (more than 2000 responsive sites) in frontal cortex of monkeys during a saccade-reach-grasp task. When an object appeared in peripheral vision, the first burst of activity emerged in prearcuate areas (the FEF and area 45B), followed by dorsal and ventral premotor cortex, and a buildup of activity in primary motor cortex. After the saccade, prearcuate activity remained elevated while primary motor and premotor activity rose in anticipation of the upcoming arm and hand movement. Remarkably, a large number of premotor and prearcuate sites responded when the object appeared in peripheral vision and remained active when the object came into foveal vision. Thus, prearcuate and premotor areas continuously encode object information when directing gaze and grasping objects.
Collapse
Affiliation(s)
- Thomas Decramer
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, ON2, Herestraat 49, 3000 Leuven, Belgium; Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven and the Leuven Brain Institute, Belgium
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, ON2, Herestraat 49, 3000 Leuven, Belgium.
| | - Irene Caprara
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, ON2, Herestraat 49, 3000 Leuven, Belgium
| | - Tom Theys
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven and the Leuven Brain Institute, Belgium
| | - Peter Janssen
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, ON2, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Chernov MM, Friedman RM, Roe AW. Fiberoptic array for multiple channel infrared neural stimulation of the brain. NEUROPHOTONICS 2021; 8:025005. [PMID: 33898637 PMCID: PMC8062107 DOI: 10.1117/1.nph.8.2.025005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Significance: We present a new optical method for modulating cortical activity in multiple locations and across multiple time points with high spatial and temporal precision. Our method uses infrared light and does not require dyes or transgenic modifications. It is compatible with a number of other stimulation and recording techniques. Aim: Infrared neural stimulation (INS) has been largely confined to single point stimuli. In this study, we expand upon this approach and develop a rapidly switched fiber array capable of generation of stimulus patterns. Our prototype is capable of stimulating at nine separate locations but is easily scalable. Approach: Our device is made of commercially available components: a solid-state infrared laser, a piezoelectric fiber coupled optical switch, and 200 - μ m diameter optical fibers. We validate it using intrinsic optical signal imaging of INS responses in macaque and squirrel monkey sensory cortical areas. Results: We demonstrate that our switched array can consistently generate responses in primate cortex, consistent with earlier single channel INS investigations. Conclusions: Our device can successfully target the cortical surface, either at one specific region or multiple points spread out across different areas. It is compatible with a host of other imaging and stimulation modalities.
Collapse
Affiliation(s)
- Mykyta M. Chernov
- Oregon Health and Science University, Oregon National Primate Research Center, Division of Neuroscience, Beaverton, Oregon, United States
| | - Robert M. Friedman
- Oregon Health and Science University, Oregon National Primate Research Center, Division of Neuroscience, Beaverton, Oregon, United States
| | - Anna W. Roe
- Oregon Health and Science University, Oregon National Primate Research Center, Division of Neuroscience, Beaverton, Oregon, United States
| |
Collapse
|
22
|
Rakymzhan A, Li Y, Tang P, Wang RK. Optical microangiography reveals temporal and depth-resolved hemodynamic change in mouse barrel cortex during whisker stimulation. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200117RR. [PMID: 32945154 PMCID: PMC7495356 DOI: 10.1117/1.jbo.25.9.096005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/04/2020] [Indexed: 06/01/2023]
Abstract
SIGNIFICANCE Cerebral blood flow (CBF) regulation at neurovascular coupling (NVC) plays an important role in normal brain functioning to support oxygen delivery to activating neurons. Therefore, studying the mechanisms of CBF adjustment is crucial for the improved understanding of brain activity. AIM We investigated the temporal profile of hemodynamic signal change in mouse cortex caused by neural activation and its variation over cortical depth. APPROACH Following the cranial window surgery, intrinsic optical signal imaging (IOSI) was used to spatially locate the activated region in mouse cortex during whisker stimulation. Optical microangiography (OMAG), the functional extension of optical coherence tomography, was applied to image the activated and control regions identified by IOSI. Temporal profiles of hemodynamic response signals obtained by IOSI and OMAG were compared, and OMAG signal was analyzed over cortical layers. RESULTS Our results showed that the hemodynamic response to neural activity revealed by blood flow change signal signal through IOSI is slower than that observed by OMAG signal. OMAG also indicated the laminar variation of the response over cortical depth, showing the largest response in cortical layer IV. CONCLUSIONS Overall, we demonstrated the development and application of dual-modality imaging system composed of IOSI and OMAG, which may have potential to enable the future investigations of depth-resolved CBF and to provide the insights of hemodynamic events associated with the NVC.
Collapse
Affiliation(s)
- Adiya Rakymzhan
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Yuandong Li
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Peijun Tang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| |
Collapse
|
23
|
Hu JM, Qian MZ, Tanigawa H, Song XM, Roe AW. Focal Electrical Stimulation of Cortical Functional Networks. Cereb Cortex 2020; 30:5532-5543. [PMID: 32483588 DOI: 10.1093/cercor/bhaa136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/30/2020] [Accepted: 04/27/2020] [Indexed: 01/11/2023] Open
Abstract
Abstract
Traditional electrical stimulation of brain tissue typically affects relatively large volumes of tissue spanning multiple millimeters. This low spatial resolution stimulation results in nonspecific functional effects. In addition, a primary shortcoming of these designs was the failure to take advantage of inherent functional organization in the cerebral cortex. Here, we describe a new method to electrically stimulate the brain which achieves selective targeting of single feature-specific domains in visual cortex. We provide evidence that this paradigm achieves mesoscale, functional network-specificity, and intensity dependence in a way that mimics visual stimulation. Application of this approach to known feature domains (such as color, orientation, motion, and depth) in visual cortex may lead to important functional improvements in the specificity and sophistication of brain stimulation methods and has implications for visual cortical prosthetic design.
Collapse
Affiliation(s)
- Jia Ming Hu
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Mei Zhen Qian
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Hisashi Tanigawa
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Xue Mei Song
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Anna Wang Roe
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Hangzhou 310029, China
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
| |
Collapse
|
24
|
He Y, Shi J, Maslov KI, Cao R, Wang LV. Wave of single-impulse-stimulated fast initial dip in single vessels of mouse brains imaged by high-speed functional photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-11. [PMID: 32529816 PMCID: PMC7289453 DOI: 10.1117/1.jbo.25.6.066501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/28/2020] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE The initial dip in hemoglobin-oxygenation response to stimulations is a spatially confined endogenous indicator that is faster than the blood flow response, making it a desired label-free contrast to map the neural activity. A fundamental question is whether a single-impulse stimulus, much shorter than the response delay, could produce an observable initial dip without repeated stimulation. AIM To answer this question, we report high-speed functional photoacoustic (PA) microscopy to investigate the initial dip in mouse brains. APPROACH We developed a Raman-laser-based dual-wavelength functional PA microscope that can image capillary-level blood oxygenation at a 1-MHz one-dimensional imaging rate. This technology was applied to monitor the hemodynamics of mouse cerebral vasculature after applying an impulse stimulus to the forepaw. RESULTS We observed a transient initial dip in cerebral microvessels starting as early as 0.13 s after the onset of the stimulus. The initial dip and the subsequent overshoot manifested a wave pattern propagating across different microvascular compartments. CONCLUSIONS We quantified both spatially and temporally the single-impulse-stimulated microvascular hemodynamics in mouse brains at single-vessel resolution. Fast label-free imaging of single-impulse response holds promise for real-time brain-computer interfaces.
Collapse
Affiliation(s)
- Yun He
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Junhui Shi
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Konstantin I. Maslov
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Rui Cao
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Lihong V. Wang
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
- Address all correspondence to Lihong V. Wang, E-mail:
| |
Collapse
|
25
|
Caredda C, Mahieu-Williame L, Sablong R, Sdika M, Alston L, Guyotat J, Montcel B. Intraoperative quantitative functional brain mapping using an RGB camera. NEUROPHOTONICS 2019; 6:045015. [PMID: 31890745 PMCID: PMC6929684 DOI: 10.1117/1.nph.6.4.045015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Intraoperative optical imaging is a localization technique for the functional areas of the human brain cortex during neurosurgical procedures. However, it still lacks robustness to be used as a clinical standard. In particular, new biomarkers of brain functionality with improved sensitivity and specificity are needed. We present a method for the computation of hemodynamics-based functional brain maps using an RGB camera and a white light source. We measure the quantitative oxy and deoxyhemoglobin concentration changes in the human brain cortex with the modified Beer-Lambert law and Monte Carlo simulations. A functional model has been implemented to evaluate the functional brain areas following neuronal activation by physiological stimuli. The results show a good correlation between the computed quantitative functional maps and the brain areas localized by electrical brain stimulation (EBS). We demonstrate that an RGB camera combined with a quantitative modeling of brain hemodynamics biomarkers can evaluate in a robust way the functional areas during neurosurgery and serve as a tool of choice to complement EBS.
Collapse
Affiliation(s)
- Charly Caredda
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| | - Laurent Mahieu-Williame
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| | - Raphaël Sablong
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| | - Michaël Sdika
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| | - Laure Alston
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| | - Jacques Guyotat
- Hospices Civils de Lyon, Service de Neurochirurgie D, Lyon, France
| | - Bruno Montcel
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| |
Collapse
|
26
|
Mendez A, Rindone AN, Batra N, Abbasnia P, Senarathna J, Gil S, Hadjiabadi D, Grayson WL, Pathak AP. Phenotyping the Microvasculature in Critical-Sized Calvarial Defects via Multimodal Optical Imaging. Tissue Eng Part C Methods 2019; 24:430-440. [PMID: 29901424 DOI: 10.1089/ten.tec.2018.0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tissue-engineered scaffolds are a powerful means of healing craniofacial bone defects arising from trauma or disease. Murine models of critical-sized bone defects are especially useful in understanding the role of microenvironmental factors such as vascularization on bone regeneration. Here, we demonstrate the capability of a novel multimodality imaging platform capable of acquiring in vivo images of microvascular architecture, microvascular blood flow, and tracer/cell tracking via intrinsic optical signaling (IOS), laser speckle contrast (LSC), and fluorescence (FL) imaging, respectively, in a critical-sized calvarial defect model. Defects that were 4 mm in diameter were made in the calvarial regions of mice followed by the implantation of osteoconductive scaffolds loaded with human adipose-derived stem cells embedded in fibrin gel. Using IOS imaging, we were able to visualize microvascular angiogenesis at the graft site and extracted morphological information such as vessel radius, length, and tortuosity two weeks after scaffold implantation. FL imaging allowed us to assess functional characteristics of the angiogenic vessel bed, such as time-to-peak of a fluorescent tracer, and also allowed us to track the distribution of fluorescently tagged human umbilical vein endothelial cells. Finally, we used LSC to characterize the in vivo hemodynamic response and maturity of the remodeled microvessels in the scaffold microenvironment. In this study, we provide a methodical framework for imaging tissue-engineered scaffolds, processing the images to extract key microenvironmental parameters, and visualizing these data in a manner that enables the characterization of the vascular phenotype and its effect on bone regeneration. Such multimodality imaging platforms can inform optimization and design of tissue-engineered scaffolds and elucidate the factors that promote enhanced vascularization and bone formation.
Collapse
Affiliation(s)
- Adam Mendez
- 1 Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering , Baltimore, Maryland
| | - Alexandra N Rindone
- 2 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Translational Tissue Engineering Center, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Namrata Batra
- 1 Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering , Baltimore, Maryland
| | - Pegah Abbasnia
- 2 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Translational Tissue Engineering Center, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Janaka Senarathna
- 4 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Stacy Gil
- 4 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Darian Hadjiabadi
- 4 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Warren L Grayson
- 2 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Translational Tissue Engineering Center, Johns Hopkins University School of Medicine , Baltimore, Maryland.,5 Department of Materials Science and Engineering, Johns Hopkins University , Baltimore, Maryland.,6 Institute for NanoBioTechnology, Johns Hopkins University , Baltimore, Maryland
| | - Arvind P Pathak
- 2 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,6 Institute for NanoBioTechnology, Johns Hopkins University , Baltimore, Maryland.,7 Department of Oncology, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
27
|
In vivo imaging for neurovascular disease research. Arch Pharm Res 2019; 42:263-273. [PMID: 30756309 DOI: 10.1007/s12272-019-01128-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023]
Abstract
Connections between various cell types in the brain enable cognitive function. The neurovascular unit is a structure composed of different cell types that regulate neurovascular coupling, blood-brain barrier permeability, and other interactions with peripheral systems. The relationship among the components of the neurovascular unit is complex and difficult to study without the use of in vivo neurovascular disease imaging. In this review, we introduce principles and examples of various in vivo optical imaging techniques including laser Doppler flowmetry, laser speckle contrast imaging, intrinsic optical signal imaging, optical coherence tomography, and two-photon microscopy. Furthermore, we introduce recent advances of in vivo imaging and future directions for promoting neurovascular disease research.
Collapse
|
28
|
Hong KS, Zafar A. Existence of Initial Dip for BCI: An Illusion or Reality. Front Neurorobot 2018; 12:69. [PMID: 30416440 PMCID: PMC6212489 DOI: 10.3389/fnbot.2018.00069] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
A tight coupling between the neuronal activity and the cerebral blood flow (CBF) is the motivation of many hemodynamic response (HR)-based neuroimaging modalities. The increase in neuronal activity causes the increase in CBF that is indirectly measured by HR modalities. Upon functional stimulation, the HR is mainly categorized in three durations: (i) initial dip, (ii) conventional HR (i.e., positive increase in HR caused by an increase in the CBF), and (iii) undershoot. The initial dip is a change in oxygenation prior to any subsequent increase in CBF and spatially more specific to the site of neuronal activity. Despite additional evidence from various HR modalities on the presence of initial dip in human and animal species (i.e., cat, rat, and monkey); the existence/occurrence of an initial dip in HR is still under debate. This article reviews the existence and elusive nature of the initial dip duration of HR in intrinsic signal optical imaging (ISOI), functional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS). The advent of initial dip and its elusiveness factors in ISOI and fMRI studies are briefly discussed. Furthermore, the detection of initial dip and its role in brain-computer interface using fNIRS is examined in detail. The best possible application for the initial dip utilization and its future implications using fNIRS are provided.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Amad Zafar
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
29
|
Gratton G, Chiarelli AM, Fabiani M. From brain to blood vessels and back: a noninvasive optical imaging approach. NEUROPHOTONICS 2017; 4:031208. [PMID: 28413807 PMCID: PMC5384652 DOI: 10.1117/1.nph.4.3.031208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/10/2017] [Indexed: 06/01/2023]
Abstract
The seminal work of Grinvald et al. has paved the way for the use of intrinsic optical signals measured with reflection methods for the analysis of brain function. Although this work has focused on the absorption signal associated with deoxygenation, due to its detailed mapping ability and good signal-to-noise ratio, Grinvald's group has also described other intrinsic signals related to increased blood flow, scattering effects directly related to neural activation, and pulsation effects related to arterial function. These intrinsic optical signals can also be measured using noninvasive diffuse optical topographic and tomographic imaging (DOT) methods that can be applied to humans. Here we compare the reflection and DOT methods and the evidence for each type of intrinsic signal in these two domains, with particular attention to work that has been conducted in our laboratory. This work reveals the refined two-way relationship that exists between vascular and neural phenomena in the brain: arterial health is related to normal brain structure and function, both across individuals and across brain regions within an individual, and neural function influences blood flow to specific cortical regions. DOT methods can provide quantitative tools for investigating these relationships in normal human subjects.
Collapse
Affiliation(s)
- Gabriele Gratton
- University of Illinois at Urbana Champaign, Psychology Department, Champaign, Illinois, United States
- University of Illinois at Urbana Champaign, Beckman Institute, Urbana, Illinois, United States
| | - Antonio M. Chiarelli
- University of Illinois at Urbana Champaign, Beckman Institute, Urbana, Illinois, United States
| | - Monica Fabiani
- University of Illinois at Urbana Champaign, Psychology Department, Champaign, Illinois, United States
- University of Illinois at Urbana Champaign, Beckman Institute, Urbana, Illinois, United States
| |
Collapse
|
30
|
Frostig RD, Chen-Bee CH, Johnson BA, Jacobs NS. Imaging Cajal's neuronal avalanche: how wide-field optical imaging of the point-spread advanced the understanding of neocortical structure-function relationship. NEUROPHOTONICS 2017; 4:031217. [PMID: 28630879 PMCID: PMC5467767 DOI: 10.1117/1.nph.4.3.031217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/12/2017] [Indexed: 06/17/2023]
Abstract
This review brings together a collection of studies that specifically use wide-field high-resolution mesoscopic level imaging techniques (intrinsic signal optical imaging; voltage-sensitive dye optical imaging) to image the cortical point spread (PS): the total spread of cortical activation comprising a large neuronal ensemble evoked by spatially restricted (point) stimulation of the sensory periphery (e.g., whisker, pure tone, point visual stimulation). The collective imaging findings, combined with supporting anatomical and electrophysiological findings, revealed some key aspects about the PS including its very large (radius of several mm) and relatively symmetrical spatial extent capable of crossing cytoarchitectural borders and trespassing into other cortical areas; its relationship with underlying evoked subthreshold activity and underlying anatomical system of long-range horizontal projections within gray matter, both also crossing borders; its contextual modulation and plasticity; the ability of its relative spatiotemporal profile to remain invariant to major changes in stimulation parameters; its potential role as a building block for integrative cortical activity; and its ubiquitous presence across various cortical areas and across mammalian species. Together, these findings advance our understanding about the neocortex at the mesoscopic level by underscoring that the cortical PS constitutes a fundamental motif of neocortical structure-function relationship.
Collapse
Affiliation(s)
- Ron D. Frostig
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
- University of California Irvine, Department of Biomedical Engineering, Irvine, California, United States
- University of California Irvine, Center for the Neurobiology of Learning and Memory, Irvine, California, United States
| | - Cynthia H. Chen-Bee
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
| | - Brett A. Johnson
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
| | - Nathan S. Jacobs
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
- University of California Irvine, Center for the Neurobiology of Learning and Memory, Irvine, California, United States
| |
Collapse
|