1
|
Sretavan K, Braun H, Liu Z, Bullock D, Palnitkar T, Patriat R, Chandrasekaran J, Brenny S, Johnson MD, Widge AS, Harel N, Heilbronner SR. A Reproducible Pipeline for Parcellation of the Anterior Limb of the Internal Capsule. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1249-1261. [PMID: 39053578 DOI: 10.1016/j.bpsc.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The anterior limb of the internal capsule (ALIC) is a white matter structure that connects the prefrontal cortex (PFC) to the brainstem, thalamus, and subthalamic nucleus. It is a target for deep brain stimulation for obsessive-compulsive disorder. There is strong interest in improving deep brain stimulation targeting by using diffusion tractography to reconstruct and target specific ALIC fiber pathways, but this methodology is susceptible to errors and lacks validation. To address these limitations, we developed a novel diffusion tractography pipeline that generates reliable and biologically validated ALIC white matter reconstructions. METHODS Following algorithm development and refinement, we analyzed 43 control participants, each with 2 sets of 3T magnetic resonance imaging data and a subset of 5 control participants with 7T data from the Human Connectome Project. We generated 22 segmented ALIC fiber bundles (11 per hemisphere) based on PFC regions of interest, and we analyzed the relationships among bundles. RESULTS We successfully reproduced the topographies established by previous anatomical work using images acquired at both 3T and 7T. Quantitative assessment demonstrated significantly smaller intraparticipant variability than interparticipant variability for both test and retest groups across all but one PFC region. We examined the overlap between fibers from different PFC regions and a response tract for obsessive-compulsive disorder deep brain stimulation, and we reconstructed the PFC hyperdirect pathway using a modified version of our pipeline. CONCLUSIONS Our diffusion magnetic resonance imaging algorithm reliably generates biologically validated ALIC white matter reconstructions, thereby allowing for more precise modeling of fibers for neuromodulation therapies.
Collapse
Affiliation(s)
- Karianne Sretavan
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Henry Braun
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Zoe Liu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Daniel Bullock
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Tara Palnitkar
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Remi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Jayashree Chandrasekaran
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Samuel Brenny
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Alik S Widge
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota; Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
2
|
Zhao G, Cheng Y, Li G, Li L, Li F, Wu Y, Du C, Yan J, Cong G, Zhao Q, Wang M, Feng K, Yin S. Unveiling the Dominant Factors in Subthalamic Stimulation for Improving Depression in Parkinson's Disease. Mov Disord Clin Pract 2024; 11:1478-1488. [PMID: 39262097 DOI: 10.1002/mdc3.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Currently, the conclusions of studies on subthalamic nucleus (STN) deep brain stimulation (DBS) for improving Parkinson's disease (PD) with depression are inconsistent, and the reasons for improvement or deterioration remain unclear. METHODS The aim was to investigate the prognosis of PD with depression after bilateral STN-DBS and the factors related to the improvement in depression. The local and network effects of DBS on depression in PD (DPD) were further explored based on the volume of tissue activation (VTA). The study analyzed 80 primary PD patients who had undergone bilateral STN-DBS, comprising 47 patients with improved depression and 33 patients without improvement. Two groups of clinical profiles and stimulation parameters were compared, and the network models for improving depression were constructed. RESULTS The improvement in depression was closely associated with improvement in anxiety (odd rate [OR] = 1.067, P = 0.006) and the standardized space left y-coordinate (OR = 0.253, P = 0.005). The VTA overlapping with the left motor STN subregion is most significantly associated with improvement in depression (RSpearman = 0.53, P < 0.001; RPearson = 0.43, P < 0.001). The y-coordinates in the improvement group were closer to the optimal stimulation site for improving motor symptoms. Finally, both the structural and functional network models indicate a positive correlation between depression improvement and the connectivity of the sensorimotor cortex. CONCLUSION The amelioration of DPD is primarily attributed to the stimulation of bilateral motor STN, particularly on the left. However, this stimulatory effect manifests as an indirect influence.
Collapse
Affiliation(s)
- Guangrui Zhao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an, China
| | - Yifeng Cheng
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, China
| | - Guangfeng Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, China
| | - Lanxin Li
- Department of Neurology, Huanhu Hospital, Tianjin University, Tianjin, China
| | - Feng Li
- Department of Neurology, Drum Tower Clinical College, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yuzhang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Chuan Du
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jingtao Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Guangyan Cong
- Department of Neurology, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an, China
| | - Qiyuan Zhao
- Department of Neurology, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an, China
| | - Min Wang
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, China
| | - Keke Feng
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, China
| | - Shaoya Yin
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Cheyuo C, Germann J, Yamamoto K, Zibly Z, Krishna V, Sarica C, Borges YFF, Vetkas A, Kalia SK, Hodaie M, Fasano A, Schwartz ML, Elias WJ, Lozano AM. Probabilistic Refinement of Focused Ultrasound Thalamotomy Targeting for Parkinson's Disease Tremor. Mov Disord 2024; 39:2004-2013. [PMID: 39120112 DOI: 10.1002/mds.29965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND There remains high variability in clinical outcomes when the same magnetic resonance image-guided focused ultrasound (MRgFUS) thalamotomy target is used for both essential tremor (ET) and tremor-dominant Parkinson's disease (TDPD). OBJECTIVE Our goal is to refine the MRgFUS thalamotomy target for TDPD versus ET. METHODS We retrospectively performed voxel-wise efficacy and structural connectivity mapping using 3-12-month post-procedure hand tremor scores for a multicenter cohort of 32 TDPD patients and a previously published cohort of 79 ET patients, and 24-hour T1-weighted post-MRgFUS brain images. We validated our findings using Unified Parkinson's Disease Rating Scale part III scores for an independent cohort of nine TDPD patients. RESULTS The post-MRgFUS clinical improvements were 45.9% ± 35.9%, 55.5% ± 36%, and 46.1% ± 18.6% for ET, multicenter TDPD and validation TDPD cohorts, respectively. The TDPD and ET efficacy maps differed significantly (ppermute < 0.05), with peak TDPD improvement (87%) at x = -13.5; y = -15.0; z = 1.5, ~3.5 mm anterior and 3 mm dorsal to the ET target. Discriminative connectivity projections were to the motor and premotor regions in TDPD, and to the motor and somatosensory regions in ET. The disorder-specific voxel-wise efficacy map could be used to estimate outcome in TDPD patients with high accuracy (R = 0.8; R2 = 0.64; P < 0.0001). The model was validated using the independent cohort of nine TDPD patients (R = 0.73; R2 = 0.53; P = 0.025-voxel analysis). CONCLUSION We demonstrated that the most effective MRgFUS thalamotomy target in TDPD is in the ventral intermediate nucleus/ventralis oralis posterior border region. This finding offers new insights into the thalamic regions instrumental in tremor control, with pivotal implications for improving treatment outcomes. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Cletus Cheyuo
- Department of Neurosurgery, Lahey Hospital and Medical Center, Burlington, Massachusetts, USA
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Functional Neurosurgery Center, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Japan
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Zion Zibly
- Department of Neurosurgery, Sheba Medical Center, Ramat Gan, Israel
- Center of Neuromodulation, Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vibhor Krishna
- Department of Neurosurgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Can Sarica
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yuri Ferreira Felloni Borges
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Artur Vetkas
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Michael L Schwartz
- Division of Neurosurgery, Sunnybrook Health Sciences, Toronto, Ontario, Canada
| | - W Jeffrey Elias
- Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Starkweather CK, Sugrue LP, Cajigas I, Speidel B, Krystal AD, Scangos K, Chang EF. Stereoelectroencephalography Electrode Implantation for Inpatient Workup of Treatment-Resistant Depression. Neurosurgery 2024; 95:941-948. [PMID: 39283114 DOI: 10.1227/neu.0000000000002942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/06/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Treatment-resistant depression is a leading cause of disability. Our center's trial for neurosurgical intervention for treatment-resistant depression involves a staged workup for implantation of a personalized, closed-loop neuromodulation device for refractory depression. The first stage ("stage 1") of workup involves implantation of 10 stereoelectroencephalography (SEEG) electrodes bilaterally into 5 anatomically defined brain regions and involves a specialized preoperative imaging and planning workup and a frame-based operating protocol. METHODS We rely on diffusion tractography when planning stereotactic targets for 3 of 5 anatomic areas. We outline the rationale and fiber tracts that we focus on for targeting amygdala, ventral striatum and ventral capsule, and subgenual cingulate. We also outline frame-based stereotactic considerations for implantation of SEEG electrodes. EXPECTED OUTCOMES Our method has allowed us to safely target all 5 brain areas in 3 of 3 trial participants in this ongoing study, with adequate fiber bundle contact in each of the 3 areas targeted using tractography. Furthermore, we ultimately used tractography data from our stage 1 workup to guide targeting near relevant fiber bundles for stage 2 (implantation of a responsive neuromodulation device). On completion of our data set, we will determine the overlap between volume of tissue activated for all electrodes and areas of interest defined by anatomy and tractography. DISCUSSION Our protocol outlined for SEEG electrode implantation incorporates tractography and frame-based stereotaxy.
Collapse
Grants
- Ray and Dagmar Dolby Family Fund through the Department of Psychiatry at the University of California, San Francisco Dolby Family Ventures
- K23NS110962 NIH HHS
- P01AG019724, R01 HL142051-01, R01AG059794, R01DK117953, UH3 NS109556-01 and R01AG060477-01A1 NIH HHS
- U01NS098971, R01MH114860, R01MH111444, R01DC015504, R01DC01237, UH3 NS109556, UH3NS115631 and R01 NS105675 NIH HHS
- U24 DA041123 NIH HHS
- K12 NS129164 NINDS NIH HHS
Collapse
Affiliation(s)
- Clara Kwon Starkweather
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Current affiliation: Department of Neurological Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leo P Sugrue
- Department of Radiology, University of California San Francisco, San Francisco, California, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, California, USA
| | - Iahn Cajigas
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Current affiliation: Department of Neurological Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin Speidel
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Current affiliation: Department of Neurological Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew D Krystal
- Department of Psychiatry, University of California San Francisco, San Francisco, California, USA
| | - Katherine Scangos
- Department of Psychiatry, University of California San Francisco, San Francisco, California, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Current affiliation: Department of Neurological Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Caffi L, Romito LM, Palmisano C, Aloia V, Arlotti M, Rossi L, Marceglia S, Priori A, Eleopra R, Levi V, Mazzoni A, Isaias IU. Adaptive vs. Conventional Deep Brain Stimulation: One-Year Subthalamic Recordings and Clinical Monitoring in a Patient with Parkinson's Disease. Bioengineering (Basel) 2024; 11:990. [PMID: 39451366 PMCID: PMC11504236 DOI: 10.3390/bioengineering11100990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/26/2024] Open
Abstract
Conventional DBS (cDBS) for Parkinson's disease uses constant, predefined stimulation parameters, while the currently available adaptive DBS (aDBS) provides the possibility of adjusting current amplitude with respect to subthalamic activity in the beta band (13-30 Hz). This preliminary study on one patient aims to describe how these two stimulation modes affect basal ganglia dynamics and, thus, behavior in the long term. We collected clinical data (UPDRS-III and -IV) and subthalamic recordings of one patient with Parkinson's disease treated for one year with aDBS, alternated with short intervals of cDBS. Moreover, after nine months, the patient discontinued all dopaminergic drugs while keeping aDBS. Clinical benefits of aDBS were superior to those of cDBS, both with and without medications. This improvement was paralleled by larger daily fluctuations of subthalamic beta activity. Moreover, with aDBS, subthalamic beta activity decreased during asleep with respect to awake hours, while it remained stable in cDBS. These preliminary data suggest that aDBS might be more effective than cDBS in preserving the functional role of daily beta fluctuations, thus leading to superior clinical benefit. Our results open new perspectives for a restorative brain network effect of aDBS as a more physiological, bidirectional, brain-computer interface.
Collapse
Affiliation(s)
- Laura Caffi
- Parkinson Institute of Milan, ASST G.Pini-CTO, 20126 Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, 97070 Würzburg, Germany
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, 56025 Pisa, Italy
| | - Luigi M. Romito
- Parkinson and Movement Disorders Unit, Foundation IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Chiara Palmisano
- Parkinson Institute of Milan, ASST G.Pini-CTO, 20126 Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, 97070 Würzburg, Germany
| | | | | | | | - Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
- Department of Health Sciences, Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, University of Milan, 20122 Milano, Italy
| | - Alberto Priori
- Department of Health Sciences, Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, University of Milan, 20122 Milano, Italy
| | - Roberto Eleopra
- Parkinson and Movement Disorders Unit, Foundation IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Vincenzo Levi
- Functional Neurosurgery Unit, Foundation IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, 56025 Pisa, Italy
- Department of Excellence in Robotics and AI, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Ioannis U. Isaias
- Parkinson Institute of Milan, ASST G.Pini-CTO, 20126 Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
6
|
Skandalakis GP, Neudorfer C, Payne CA, Bond E, Tavakkoli AD, Barrios-Martinez J, Trutti AC, Koutsarnakis C, Coenen VA, Komaitis S, Hadjipanayis CG, Stranjalis G, Yeh FC, Banihashemi L, Hong J, Lozano AM, Kogan M, Horn A, Evans LT, Kalyvas A. Establishing connectivity through microdissections of midbrain stimulation-related neural circuits. Brain 2024; 147:3083-3098. [PMID: 38808482 PMCID: PMC11370807 DOI: 10.1093/brain/awae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomofunctional mechanisms governing human behaviour, in addition to the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. Although the ventral tegmental area has been targeted successfully with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region is not fully understood. Here, using fibre microdissections in human cadaveric hemispheres, population-based high-definition fibre tractography and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches and aggressive behaviours.
Collapse
Affiliation(s)
- Georgios P Skandalakis
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Caitlin A Payne
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Evalina Bond
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Armin D Tavakkoli
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | - Anne C Trutti
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam 15926, The Netherlands
| | - Christos Koutsarnakis
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg 79106, Germany
- Medical Faculty of the University of Freiburg, Freiburg 79110, Germany
- Center for Deep Brain Stimulation, Medical Center of the University of Freiburg, Freiburg 79106, Germany
| | - Spyridon Komaitis
- Queens Medical Center, Nottingham University Hospitals NHS Foundation Trust, Nottingham NG7 2UH, UK
| | | | - George Stranjalis
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer Hong
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Andres M Lozano
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Michael Kogan
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Linton T Evans
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Aristotelis Kalyvas
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
7
|
Márquez-Franco R, Concha L, García-Gomar MG, Carrillo-Ruíz JD, Loução R, Barbe MT, Brandt GA, Visser-Vandewalle V, Andrade P, Velasco-Campos F. Validation of Tenths Stereotactic Coordinates Method Using Probabilistic Tractography of the Ansa Lenticularis in Parkinson's Disease Patients. World Neurosurg 2024:S1878-8750(24)01468-2. [PMID: 39209255 DOI: 10.1016/j.wneu.2024.08.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To evaluate the accuracy of stereotactic coordinates to target the ansa lenticularis (AL) using 2 surgical planning methods, the conventional millimeter method (MM) and the normalized Tenths method (TM), assessed through individualized probabilistic tractography. METHODS Stereotactic targeting of the AL was assessed in 2 groups: 16 patients with Parkinson's disease and 16 healthy controls from Group 1, and 39 Parkinson's disease patients from Group 2. Structural and diffusion magnetic resonance imaging probabilistic tractography identified the AL based on the Schaltenbrand-Wahren Atlas. The MM defined stereotactic coordinates in millimeters, while the TM refined the planning by dividing the intercommissural line (AC-PC) distance into 10 equal parts, normalizing the "X," "Y," and "Z" coordinates for each patient. We subsequently compared the percentage of structural connectivity (%conn) of the AL with predefined regions of interest (ROIs), including the frontopontine-corticothalamic tracts, globus pallidus internus-ventral oral anterior, and ventral oral posterior, and quantified the streamlines in 142 brain hemispheres using the MM and TM coordinates. RESULTS Despite anatomical variations in intercommissural (AC-PC) line lengths between both groups (22.5 ± 2.09 mm and 24.4 ± 2.56 mm, respectively; P = 0.002), as well as differences in magnetic resonance imaging acquisition parameters, we found that the TM significantly enhanced streamline identification and %conn compared to the MM. These enhancements were noted across ROIs: frontopontine-corticothalamic and globus pallidus internus-ventral oral anterior in both hemispheres, and globus pallidus internus-ventral oral posterior in the left (P < 0.001) and right hemispheres (P = 0.03). CONCLUSIONS TM surpasses MM in identifying the structural connectivity between the AL and predefined ROIs, underscoring the advantages of coordinate normalization. However, variations in AC-PC line lengths and Euclidean distances between methods could lead to inaccuracies in the coordinate settings, potentially affecting the precision of structural connectivity and the efficacy of therapeutic outcomes.
Collapse
Affiliation(s)
- René Márquez-Franco
- Service of Functional Neurosurgery and Stereotaxy, General Hospital of Mexico, Mexico City, Mexico; Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, México
| | - María Guadalupe García-Gomar
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - José Damián Carrillo-Ruíz
- Service of Functional Neurosurgery and Stereotaxy, General Hospital of Mexico, Mexico City, Mexico; Neuroscience Coordination, Psychology Faculty, Anahuac University, Mexico City, Mexico
| | - Ricardo Loução
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael T Barbe
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gregor A Brandt
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Pablo Andrade
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Francisco Velasco-Campos
- Service of Functional Neurosurgery and Stereotaxy, General Hospital of Mexico, Mexico City, Mexico.
| |
Collapse
|
8
|
Remore LG, Tolossa M, Wei W, Karnib M, Tsolaki E, Rifi Z, Bari AA. Deep Brain Stimulation of the Medial Forebrain Bundle for Treatment-Resistant Depression: A Systematic Review Focused on the Long-Term Antidepressive Effect. Neuromodulation 2024; 27:690-700. [PMID: 37115122 DOI: 10.1016/j.neurom.2023.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVE Major depression affects millions of people worldwide and has important social and economic consequences. Since up to 30% of patients do not respond to several lines of antidepressive drugs, deep brain stimulation (DBS) has been evaluated for the management of treatment-resistant depression (TRD). The superolateral branch of the medial forebrain bundle (slMFB) appears as a "hypothesis-driven target" because of its role in the reward-seeking system, which is dysfunctional in depression. Although initial results of slMFB-DBS from open-label studies were promising and characterized by a rapid clinical response, long-term outcomes of neurostimulation for TRD deserve particular attention. Therefore, we performed a systematic review focused on the long-term outcome of slMFB-DBS. MATERIALS AND METHODS A literature search using Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria was conducted to identify all studies reporting changes in depression scores after one-year follow-up and beyond. Patient, disease, surgical, and outcome data were extracted for statistical analysis. The Montgomery-Åsberg Depression Rating Scale (ΔMADRS) was used as the clinical outcome, defined as percentage reduction from baseline to follow-up evaluation. Responders' and remitters' rates were also calculated. RESULTS From 56 studies screened for review, six studies comprising 34 patients met the inclusion criteria and were analyzed. After one year of active stimulation, ΔMADRS was 60.7% ± 4%; responders' and remitters' rates were 83.8% and 61.5%, respectively. At the last follow-up, four to five years after the implantation, ΔMADRS reached 74.7% ± 4.6%. The most common side effects were stimulation related and reversible with parameter adjustments. CONCLUSIONS slMFB-DBS appears to have a strong antidepressive effect that increases over the years. Nevertheless, to date, the overall number of patients receiving implantations is limited, and the slMFB-DBS surgical technique seems to have an important impact on the clinical outcome. Further multicentric studies in a larger population are needed to confirm slMFB-DBS clinical outcomes.
Collapse
Affiliation(s)
- Luigi Gianmaria Remore
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA; University of Milan "La Statale," Milan, Italy.
| | - Meskerem Tolossa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Wexin Wei
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Evangelia Tsolaki
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Ziad Rifi
- University of California Los Angeles, Los Angeles, CA, USA
| | - Ausaf Ahmad Bari
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
9
|
Wu Y, Li Y, Li H, Wang T, Huang P, Wu Y, Sun B, Pan Y, Li D. Prediction of subthalamic stimulation efficacy on isolated dystonia via support vector regression. Heliyon 2024; 10:e31475. [PMID: 38818146 PMCID: PMC11137530 DOI: 10.1016/j.heliyon.2024.e31475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Deep brain stimulation (DBS) of subthalamic nucleus (STN) has been well-established and increasingly applied in patients with isolated dystonia. Nevertheless, the surgical efficacy varies among patients. This study aims to explore the factors affecting clinical outcomes of STN-DBS on isolated dystonia and establish a well-performed prediction model. Methods In this prospective study, thirty-two dystonia patients were recruited and received bilateral STN-DBS at our center. Their baseline characteristics and up to one-year follow-up outcomes were assessed. Implanted electrodes of each subject were reconstructed with their contact coordinates and activated volumes calculated. We explored correlations between distinct clinical characteristics and surgical efficacy. Those features were then trained for the model in outcome prediction via support vector regression (SVR) algorithm and testified through cross-validation. Results Patients demonstrated an average clinical improvement of 56 ± 25 % after STN-DBS, significantly affected by distinct symptom forms and activated volumes. The optimal targets and activated volumes were concentratedly located at the dorsal posterior region to STN. Most patients had a rapid response to STN-DBS, and their motor score improvement within one week was highly associated with long-term outcomes. The trained SVR model, contributed by distinct weights of features, could reach a maximum prediction accuracy with mean errors of 11 ± 7 %. Conclusion STN-DBS demonstrated significant and rapid therapeutic effects in patients with isolated dystonia, by possibly affecting the pallidofugal fibers. Early improvement highly indicates the ultimate outcomes. SVR proves valid in outcome prediction. Patients with predominant phasic and generalized symptoms, shorter disease duration, and younger onset age may be more favorable to STN-DBS in the long run.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxia Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Hermann MG, Schröter N, Rau A, Reisert M, Jarc N, Rijntjes M, Hosp JA, Reinacher PC, Jost WH, Urbach H, Weiller C, Coenen VA, Sajonz BEA. The connection of motor improvement after deep brain stimulation in Parkinson's disease and microstructural integrity of the substantia nigra and subthalamic nucleus. Neuroimage Clin 2024; 42:103607. [PMID: 38643635 PMCID: PMC11046219 DOI: 10.1016/j.nicl.2024.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Nigrostriatal microstructural integrity has been suggested as a biomarker for levodopa response in Parkinson's disease (PD), which is a strong predictor for motor response to deep brain stimulation (DBS) of the subthalamic nucleus (STN). This study aimed to explore the impact of microstructural integrity of the substantia nigra (SN), STN, and putamen on motor response to STN-DBS using diffusion microstructure imaging. METHODS Data was collected from 23 PD patients (mean age 63 ± 7, 6 females) who underwent STN-DBS, had preoperative 3 T diffusion magnetic resonance imaging including multishell diffusion-weighted MRI with b-values of 1000 and 2000 s/mm2 and records of motor improvement available. RESULTS The association between a poorer DBS-response and increased free interstitial fluid showed notable effect sizes (rho > |0.4|) in SN and STN, but not in putamen. However, this did not reach significance after Bonferroni correction and controlling for sex and age. CONCLUSION Microstructural integrity of SN and STN are potential biomarkers for the prediction of therapy efficacy following STN-DBS, but further studies are required to confirm these associations.
Collapse
Affiliation(s)
- Marco G Hermann
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Schröter
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nadja Jarc
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas A Hosp
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | | | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Deep Brain Stimulation, University of Freiburg, Germany
| | - Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Steiner LA, Crompton D, Sumarac S, Vetkas A, Germann J, Scherer M, Justich M, Boutet A, Popovic MR, Hodaie M, Kalia SK, Fasano A, Hutchison Wd WD, Lozano AM, Lankarany M, Kühn AA, Milosevic L. Neural signatures of indirect pathway activity during subthalamic stimulation in Parkinson's disease. Nat Commun 2024; 15:3130. [PMID: 38605039 PMCID: PMC11009243 DOI: 10.1038/s41467-024-47552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) produces an electrophysiological signature called evoked resonant neural activity (ERNA); a high-frequency oscillation that has been linked to treatment efficacy. However, the single-neuron and synaptic bases of ERNA are unsubstantiated. This study proposes that ERNA is a subcortical neuronal circuit signature of DBS-mediated engagement of the basal ganglia indirect pathway network. In people with Parkinson's disease, we: (i) showed that each peak of the ERNA waveform is associated with temporally-locked neuronal inhibition in the STN; (ii) characterized the temporal dynamics of ERNA; (iii) identified a putative mesocircuit architecture, embedded with empirically-derived synaptic dynamics, that is necessary for the emergence of ERNA in silico; (iv) localized ERNA to the dorsal STN in electrophysiological and normative anatomical space; (v) used patient-wise hotspot locations to assess spatial relevance of ERNA with respect to DBS outcome; and (vi) characterized the local fiber activation profile associated with the derived group-level ERNA hotspot.
Collapse
Affiliation(s)
- Leon A Steiner
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
- Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - David Crompton
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Srdjan Sumarac
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Artur Vetkas
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
| | - Jürgen Germann
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Maximilian Scherer
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Maria Justich
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Neurology, University of Toronto, Toronto, ON, M5S 3H2, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
| | - Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, M5G 1×6, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
| | - Mojgan Hodaie
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Suneil K Kalia
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Alfonso Fasano
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Neurology, University of Toronto, Toronto, ON, M5S 3H2, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - William D Hutchison Wd
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andres M Lozano
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Milad Lankarany
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Luka Milosevic
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
12
|
Fu S, Yang Z, He X, Liu D, Yang Z, Zhang J, Du L. Long-term Efficacy of Bilateral Globus Pallidus Stimulation in the Treatment of Meige Syndrome. Neuromodulation 2024:S1094-7159(24)00058-8. [PMID: 38597859 DOI: 10.1016/j.neurom.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVE This study aimed to investigate the long-term efficacy and prognosis of bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) in patients with benign essential blepharospasm (BEB) and complete Meige syndrome, and to search for the best therapeutic subregion within the GPi. MATERIALS AND METHODS Data were collected for 36 patients with Meige syndrome who underwent bilateral GPi-DBS surgery at our hospital between March 2014 and February 2022. Using the Burk-Fahn-Marsden Dystonia Rating Scale (BFMDRS)-Movement (BFMDRS-M) and BFMDRS-Disability (BFMDRS-D), the severity of the symptoms of patients with complete Meige syndrome was evaluated before surgery and at specific time points after surgery. Patients with BEB were clinically evaluated for the severity of blepharospasm using BFMDRS-M, the Blepharospasm Disability Index (BDI), and Jankovic Rating Scale (JRS). Three-dimensional reconstruction of the GPi-electrode was performed in some patients using the lead-DBS software, and the correlation between GPi subregion volume of tissue activated (VTA) and symptom improvement was analyzed in patients six months after surgery. The follow-up duration ranged from six to 99 months. RESULTS Compared with preoperative scores, the results of all patients at six months after surgery and final follow-up showed a significant decrease (p < 0.05) in the mean BFMDRS-M score. Among them, the average BFMDRS-M improvement rates in patients with BEB at six months after surgery and final follow-up were 60.3% and 69.7%, respectively, whereas those in patients with complete Meige syndrome were 54.5% and 58.3%, respectively. The average JRS and BDI scores of patients with BEB also decreased significantly (p < 0.05) at six months after surgery and at the final follow-up (JRS improvement: 38.6% and 49.1%, respectively; BDI improvement: 42.6% and 57.4%, respectively). We were unable to identify significantly correlated prognostic factors. There was a significant correlation between GPi occipital VTA and symptom improvement in patients at six months after surgery (r = 0.34, p = 0.025). CONCLUSIONS Our study suggests that bilateral GPi-DBS is an effective treatment for Meige syndrome, with no serious postoperative complications. The VTA in the GPi subregion may be related to the movement score improvement. In addition, further research is needed to predict patients with poor surgical outcomes.
Collapse
|
13
|
Chao-Chia Lu D, Boulay C, Chan ADC, Sachs AJ. A Systematic Review of Neurophysiology-Based Localization Techniques Used in Deep Brain Stimulation Surgery of the Subthalamic Nucleus. Neuromodulation 2024; 27:409-421. [PMID: 37462595 DOI: 10.1016/j.neurom.2023.02.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 04/05/2024]
Abstract
OBJECTIVE This systematic review is conducted to identify, compare, and analyze neurophysiological feature selection, extraction, and classification to provide a comprehensive reference on neurophysiology-based subthalamic nucleus (STN) localization. MATERIALS AND METHODS The review was carried out using the methods and guidelines of the Kitchenham systematic review and provides an in-depth analysis on methods proposed on STN localization discussed in the literature between 2000 and 2021. Three research questions were formulated, and 115 publications were identified to answer the questions. RESULTS The three research questions formulated are answered using the literature found on the respective topics. This review discussed the technologies used in past research, and the performance of the state-of-the-art techniques is also reviewed. CONCLUSION This systematic review provides a comprehensive reference on neurophysiology-based STN localization by reviewing the research questions other new researchers may also have.
Collapse
Affiliation(s)
| | | | | | - Adam J Sachs
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
14
|
Neudorfer C, Kultas-Ilinsky K, Ilinsky I, Paschen S, Helmers AK, Cosgrove GR, Richardson RM, Horn A, Deuschl G. The role of the motor thalamus in deep brain stimulation for essential tremor. Neurotherapeutics 2024; 21:e00313. [PMID: 38195310 PMCID: PMC11103222 DOI: 10.1016/j.neurot.2023.e00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
The advent of next-generation technology has significantly advanced the implementation and delivery of Deep Brain Stimulation (DBS) for Essential Tremor (ET), yet controversies persist regarding optimal targets and networks responsible for tremor genesis and suppression. This review consolidates key insights from anatomy, neurology, electrophysiology, and radiology to summarize the current state-of-the-art in DBS for ET. We explore the role of the thalamus in motor function and describe how differences in parcellations and nomenclature have shaped our understanding of the neuroanatomical substrates associated with optimal outcomes. Subsequently, we discuss how seminal studies have propagated the ventral intermediate nucleus (Vim)-centric view of DBS effects and shaped the ongoing debate over thalamic DBS versus stimulation in the posterior subthalamic area (PSA) in ET. We then describe probabilistic- and network-mapping studies instrumental in identifying the local and network substrates subserving tremor control, which suggest that the PSA is the optimal DBS target for tremor suppression in ET. Taken together, DBS offers promising outcomes for ET, with the PSA emerging as a better target for suppression of tremor symptoms. While advanced imaging techniques have substantially improved the identification of anatomical targets within this region, uncertainties persist regarding the distinct anatomical substrates involved in optimal tremor control. Inconsistent subdivisions and nomenclature of motor areas and other subdivisions in the thalamus further obfuscate the interpretation of stimulation results. While loss of benefit and habituation to DBS remain challenging in some patients, refined DBS techniques and closed-loop paradigms may eventually overcome these limitations.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | - Igor Ilinsky
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA
| | - Steffen Paschen
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | | | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R Mark Richardson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Günther Deuschl
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
15
|
Chinichian N, Lindner M, Yanchuk S, Schwalger T, Schöll E, Berner R. Modeling brain network flexibility in networks of coupled oscillators: a feasibility study. Sci Rep 2024; 14:5713. [PMID: 38459077 PMCID: PMC10923875 DOI: 10.1038/s41598-024-55753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Modeling the functionality of the human brain is a major goal in neuroscience for which many powerful methodologies have been developed over the last decade. The impact of working memory and the associated brain regions on the brain dynamics is of particular interest due to their connection with many functions and malfunctions in the brain. In this context, the concept of brain flexibility has been developed for the characterization of brain functionality. We discuss emergence of brain flexibility that is commonly measured by the identification of changes in the cluster structure of co-active brain regions. We provide evidence that brain flexibility can be modeled by a system of coupled FitzHugh-Nagumo oscillators where the network structure is obtained from human brain Diffusion Tensor Imaging (DTI). Additionally, we propose a straightforward and computationally efficient alternative macroscopic measure, which is derived from the Pearson distance of functional brain matrices. This metric exhibits similarities to the established patterns of brain template flexibility that have been observed in prior investigations. Furthermore, we explore the significance of the brain's network structure and the strength of connections between network nodes or brain regions associated with working memory in the observation of patterns in networks flexibility. This work enriches our understanding of the interplay between the structure and function of dynamic brain networks and proposes a modeling strategy to study brain flexibility.
Collapse
Affiliation(s)
- Narges Chinichian
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany.
- Psychiatry Department, Charité-Universitätsmedizin, Berlin, Germany.
- Bernstein Center for Computational Neuroscience, Berlin, Germany.
| | - Michael Lindner
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Serhiy Yanchuk
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Institute of Mathematics, Humboldt Universität zu Berlin, Berlin, Germany
- School of Mathematical Sciences, University College Cork, Cork, Ireland
| | - Tilo Schwalger
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Institute of Mathematics, Technische Universität Berlin, Berlin, Germany
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Rico Berner
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
- Department of Physics, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
16
|
Bočková M, Lamoš M, Chrastina J, Daniel P, Kupcová S, Říha I, Šmahovská L, Baláž M, Rektor I. Coupling between beta band and high frequency oscillations as a clinically useful biomarker for DBS. NPJ Parkinsons Dis 2024; 10:40. [PMID: 38383550 PMCID: PMC10882016 DOI: 10.1038/s41531-024-00656-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Beta hypersynchrony was recently introduced into clinical practice in Parkinson's disease (PD) to identify the best stimulation contacts and for adaptive deep brain stimulation (aDBS) sensing. However, many other oscillopathies accompany the disease, and beta power sensing may not be optimal for all patients. The aim of this work was to study the potential clinical usefulness of beta power phase-amplitude coupling (PAC) with high frequency oscillations (HFOs). Subthalamic nucleus (STN) local field potentials (LFPs) from externalized DBS electrodes were recorded and analyzed in PD patients (n = 19). Beta power and HFOs were evaluated in a resting-state condition; PAC was then studied and compared with the electrode contact positions, structural connectivity, and medication state. Beta-HFO PAC (mainly in the 200-500 Hz range) was observed in all subjects. PAC was detectable more specifically in the motor part of the STN compared to beta power and HFOs. Moreover, the presence of PAC better corresponds to the stimulation setup based on the clinical effect. PAC is also sensitive to the laterality of symptoms and dopaminergic therapy, where the greater PAC cluster reflects the more affected side and medication "off" state. Coupling between beta power and HFOs is known to be a correlate of the PD "off" state. Beta-HFO PAC seems to be more sensitive than beta power itself and could be more helpful in the selection of the best clinical stimulation contact and probably also as a potential future input signal for aDBS.
Collapse
Affiliation(s)
- Martina Bočková
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Martin Lamoš
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Chrastina
- Department of Neurosurgery, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Pavel Daniel
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Silvia Kupcová
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ivo Říha
- Department of Neurosurgery, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Lucia Šmahovská
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Baláž
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Ivan Rektor
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic.
| |
Collapse
|
17
|
Carl B, Bopp M, SAß B, Waldthaler J, Timmermann L, Nimsky C. Visualization of volume of tissue activated modeling in a clinical planning system for deep brain stimulation. J Neurosurg Sci 2024; 68:59-69. [PMID: 32031356 DOI: 10.23736/s0390-5616.19.04827-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Pathway activating models try to describe stimulation spread in deep brain stimulation (DBS). Volume of tissue activated (VTA) models are simplified model variants allowing faster and easier computation. Our study aimed to investigate, how VTA visualization can be integrated into a clinical workflow applying directional electrodes using a standard clinical DBS planning system. METHODS Twelve patients underwent DBS, using directional electrodes for bilateral subthalamic nucleus (STN) stimulation in Parkinson's disease. Preoperative 3T magnetic resonance imaging was used for automatic visualization of the STN outline, as well as for fiber tractography. Intraoperative computed tomography was used for automatic lead detection. The Guide XT software, closely integrated into the DBS planning software environment, was used for VTA calculation and visualization. RESULTS VTA visualization was possible in all cases. The percentage of VTA covering the STN volume ranged from 25% to 100% (mean: 60±25%) on the left side and from 0% to 98% (51±30%) on the right side. The mean coordinate of all VTA centers was: 12.6±1.2 mm lateral, 2.1±1.2 mm posterior, and 2.3±1.4 mm inferior in relation to the midcommissural point. Stimulation effects can be compared to the VTA visualization in relation to surrounding structures, potentially facilitating programming, which might be especially beneficial in case of suboptimal lead placement. CONCLUSIONS VTA visualization in a clinical planning system allows an intuitive adjustment of the stimulation parameters, supports programming, and enhances understanding of effects and side effects of DBS.
Collapse
Affiliation(s)
- Barbara Carl
- Department of Neurosurgery, University of Marburg, Marburg, Germany
- Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Wiesbaden, Germany
| | - Miriam Bopp
- Department of Neurosurgery, University of Marburg, Marburg, Germany
- Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Benjamin SAß
- Department of Neurosurgery, University of Marburg, Marburg, Germany
| | | | - Lars Timmermann
- Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
- Department of Neurology, University Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Marburg, Germany -
- Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| |
Collapse
|
18
|
Kroneberg D, Al-Fatly B, Morkos C, Steiner LA, Schneider GH, Kühn A. Kinematic Effects of Combined Subthalamic and Dorsolateral Nigral Deep Brain Stimulation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:269-282. [PMID: 38363617 PMCID: PMC10977420 DOI: 10.3233/jpd-230181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
Background Additional stimulation of the substantia nigra (SNr) has been proposed to target axial symptoms and gait impairment in patients with Parkinson's disease (PD). Objective This study aimed to characterize effects of combined deep brain stimulation (DBS) of the subthalamic nucleus (STN) and SNr on gait performance in PD and to map stimulation sites within the SNr. Methods In a double-blinded crossover design, 10 patients with PD and gait impairment underwent clinical examination and kinematic assessment with STN DBS, combined STN+SNr DBS and OFF DBS 30 minutes after reprogramming. To confirm stimulation within the SNr, electrodes, active contacts, and stimulation volumes were modeled in a common space and overlap with atlases of SNr was computed. Results Overlap of stimulation volumes with dorsolateral SNr was confirmed for all patients. UPDRS III, scoring of freezing during turning and transitioning, stride length, stride velocity, and range of motion of shank, knee, arm, and trunk as well as peak velocities during turning and transitions and turn duration were improved with STN DBS compared to OFF. On cohort level, no further improvement was observed with combined STN+SNr DBS but additive improvement of spatiotemporal gait parameters was observed in individual subjects. Conclusions Combined high frequency DBS of the STN and dorsolateral SNr did not consistently result in additional short-term kinematic or clinical benefit compared to STN DBS. Stimulation intervals, frequency, and patient selection for target symptoms as well as target region within the SNr need further refinement in future trials.
Collapse
Affiliation(s)
- Daniel Kroneberg
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Bassam Al-Fatly
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelia Morkos
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leon Amadeus Steiner
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - A. Kühn
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Charite - Universitatsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Charité – Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
19
|
Yuan T, Chen Y, Zhu G, Zhang J. The Related Factors and Effect of Electrode Displacement on Motor Outcome of Subthalamic Nuclei Deep Brain Stimulation in Parkinson's Disease. J Clin Med 2023; 12:7561. [PMID: 38137630 PMCID: PMC10744115 DOI: 10.3390/jcm12247561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Previous studies have revealed the existence of electrode displacement during subthalamic nucleus deep brain stimulation (STN-DBS). However, the effect of electrode displacement on treatment outcomes is still unclear. In this study, we aimed to analyze the related factors of electrode displacement and assess postoperative electrode displacement in relation to the motor outcomes of STN-DBS. METHODS A total of 88 patients aged 62.73 ± 6.35 years (55 males and 33 females) with Parkinson's disease undergoing STN-DBS, with comprehensive clinical characterization before and 1 month after surgery, were involved retrospectively and divided into a cross-incision group and cannula puncture group according to different dura opening methods. The electrode displacement, unilateral pneumocephalus volume percent (uPVP), and brain volume percent were estimated. RESULTS A significant anterior and lateral electrode displacement was observed among all implanted electrodes after pneumocephalus absorption (p < 0.0001). The degree of electrode displacement was positively correlated with the uPVP (p = 0.005) and smaller in females than males (p = 0.0384). Electrode displacement was negatively correlated with motor improvement following STN-DBS in both on-medication and off-medication conditions (p < 0.05). Dural puncture reduced the uPVP (p < 0.0001) and postoperative electrode displacement (p = 0.0086) compared with dural incision. CONCLUSIONS Electrode displacement had a negative impact on the therapeutic efficacy of STN-DBS. Opening the dura via cannula puncture is recommended to increase the accuracy of the lead implantation.
Collapse
Affiliation(s)
- Tianshuo Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yingchuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| |
Collapse
|
20
|
Parisi V, Gregg NM, Lundstrom BN, Alcala-Zermeno JL, Worrell G, Kerezoudis P, Grewal SS, Brinkmann BH, Middlebrooks EH, Van Gompel JJ. Temporo-Parietal Extraventricular Approach for Deep Brain Stimulation Targeting the Anterior Nucleus of the Thalamus: Institutional Experience. Neurosurgery 2023; 93:1393-1406. [PMID: 37477444 DOI: 10.1227/neu.0000000000002600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/18/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The anterior nucleus of the thalamus (ANT) is a common target for deep brain stimulation (DBS) for drug-resistant epilepsy (DRE). However, the surgical approach to the ANT remains challenging because of its unique anatomy. This study aims to summarize our experience with the posterior temporo-parietal extraventricular (TPEV) approach targeting the ANT for DBS in DRE. METHODS We performed a retrospective analysis of patients with DRE who underwent ANT-DBS using the TPEV approach between January 2011 and February 2021. Subjects with at least 6-month follow-up were eligible. The final lead position and number of active contacts targeting the anteroventral nucleus (AV) of the ANT were assessed using Lead-DBS. Mean seizure frequency reduction percentage and responder rate (≥50% decrease in seizure frequency) were determined. RESULTS Thirty-one patients (mean age: 32.9 years; 52% female patients) were included. The mean follow-up period was 27.6 months ± 13.9 (29, 16-36). The mean seizure frequency reduction percentage was 65% ± 26 (75, 50-82). Twenty-six of 31 participants (83%) were responders, P < .001. Two subjects (6%) were seizure-free for at least 6 months at the last evaluation. Antiepileptic drugs dose and/or number decreased in 17/31 subjects (55%). The success rate for placing at least 1 contact at AV was 87% (27/31 patients) bilaterally. The number of active contacts at the AV was significantly greater in the responder group, 3.1 ± 1.3 (3, 2-4) vs 1.8 ± 1.1 (2, 1-2.5); P = .041 with a positive correlation between the number of active contacts and seizure reduction percentage; r = 0.445, R 2 = 0.198, P = .012. CONCLUSION The TPEV trajectory is a safe and effective approach to target the ANT for DBS. Future studies are needed to compare the clinical outcomes and target accuracy with the standard approaches.
Collapse
Affiliation(s)
- Veronica Parisi
- Department of Neurosurgery, AORN "Antonio Cardarelli", Naples , Italy
| | - Nicholas M Gregg
- Department of Neurology, Mayo Clinic, Rochester , Minnesota , USA
| | | | - Juan Luis Alcala-Zermeno
- Department of Neurology, Mayo Clinic, Rochester , Minnesota , USA
- Department of Neurology, Thomas Jefferson University, Philadelphia , Pennsylvania, USA
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester , Minnesota , USA
| | | | - Sanjeet S Grewal
- Department of Neurosurgery, Mayo Clinic, Jacksonville , Florida , USA
| | | | | | | |
Collapse
|
21
|
Yu CH, Lench DH, Cooper C, Rowland NC, Takacs I, Revuelta G. Deep brain stimulation for essential tremor versus essential tremor plus: should we target the same spot in the thalamus? Front Hum Neurosci 2023; 17:1271046. [PMID: 38021224 PMCID: PMC10644388 DOI: 10.3389/fnhum.2023.1271046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Although ET is a phenomenologically heterogeneous condition, thalamic DBS appears to be equally effective across subtypes. We hypothesized stimulation sites optimized for individuals with essential tremor (ET) would differ from individuals with essential tremor plus syndrome (ET-plus). We examined group differences in optimal stimulation sites within the ventral thalamus and their overlap of with relevant white matter tracts. By capturing these differences, we sought to determine whether ET subtypes are associated with anatomically distinct neural pathways. Methods A retrospective chart review was conducted on ET patients undergoing VIM DBS at MUSC between 01/2012 and 02/2022. Clinical, demographic, neuroimaging, and DBS stimulation parameter data were collected. Clinical characteristics and pre-DBS videos were reviewed to classify ET and ET-plus cohorts. Patients in ET-plus cohorts were further divided into ET with dystonia, ET with ataxia, and ET with others. DBS leads were reconstructed using Lead-DBS and the volume of tissue activated (VTA) overlap was performed using normative connectomes. Tremor improvement was measured by reduction in a subscore of tremor rating scale (TRS) post-DBS lateralized to the more affected limb. Results Sixty-eight ET patients were enrolled after initial screening, of these 10 ET and 24 ET-plus patients were included in the final analyses. ET group had an earlier age at onset (p = 0.185) and underwent surgery at a younger age (p = 0.096). Both groups achieved effective tremor control. No significant differences were found in lead placement or VTA overlap within ventral thalamus. The VTA center of gravity (COG) in the ET-plus cohort was located dorsal to that of the ET cohort. No significant differences were found in VTA overlap with the dentato-rubral-thalamic (DRTT) tracts or the ansa lenticularis. Dystonia was more prevalent than ataxia in the ET-plus subgroups (n = 18 and n = 5, respectively). ET-plus with dystonia subgroup had a more medial COG compared to ET-plus with ataxia. Conclusion VIM DBS therapy is efficacious in patients with ET and ET-plus. There were no significant differences in optimal stimulation site or VTA overlap with white-matter tracts between ET, ET-plus and ET-plus subgroups.
Collapse
Affiliation(s)
- Cherry H. Yu
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Daniel H. Lench
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Christine Cooper
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Nathan C. Rowland
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - Istvan Takacs
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - Gonzalo Revuelta
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
22
|
Younger E, Ellis EG, Parsons N, Pantano P, Tommasin S, Caeyenberghs K, Benito-León J, Romero JP, Joutsa J, Corp DT. Mapping Essential Tremor to a Common Brain Network Using Functional Connectivity Analysis. Neurology 2023; 101:e1483-e1494. [PMID: 37596042 PMCID: PMC10585696 DOI: 10.1212/wnl.0000000000207701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/09/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The cerebello-thalamo-cortical circuit plays a critical role in essential tremor (ET). However, abnormalities have been reported in multiple brain regions outside this circuit, leading to inconsistent characterization of ET pathophysiology. Here, we test whether these mixed findings in ET localize to a common functional network and whether this network has therapeutic relevance. METHODS We conducted a systematic literature search to identify studies reporting structural or metabolic brain abnormalities in ET. We then used 'coordinate network mapping,' which leverages a normative connectome (n = 1,000) of resting-state fMRI data to identify regions commonly connected to findings across all studies. To assess whether these regions may be relevant for the treatment of ET, we compared our network with a therapeutic network derived from lesions that relieved ET. Finally, we investigated whether the functional connectivity of this ET symptom network is abnormal in an independent cohort of patients with ET as compared with healthy controls. RESULTS Structural and metabolic brain abnormalities in ET were located in heterogeneous regions throughout the brain. However, these coordinates were connected to a common functional brain network, including the cerebellum, thalamus, motor cortex, precuneus, inferior parietal lobe, and insula. The cerebellum was identified as the hub of this network because it was the only brain region that was both functionally connected to the findings of over 90% of studies and significantly different in connectivity compared with a control data set of other movement disorders. This network was strikingly similar to the therapeutic network derived from lesions improving ET, with key regions aligning in the thalamus and cerebellum. Furthermore, positive functional connectivity between the cerebellar network hub and the sensorimotor cortices was significantly reduced in patients with ET compared with healthy controls, and connectivity within this network was correlated with tremor severity and cognitive functioning. DISCUSSION These findings suggest that the cerebellum is the central hub of a network commonly connected to structural and metabolic abnormalities in ET. This network may have therapeutic utility in refining and informing new targets for neuromodulation of ET.
Collapse
Affiliation(s)
- Ellen Younger
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Elizabeth G Ellis
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Nicholas Parsons
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Patrizia Pantano
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Silvia Tommasin
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Karen Caeyenberghs
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Julián Benito-León
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Juan Pablo Romero
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Juho Joutsa
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Daniel T Corp
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
23
|
Tonroe T, McDermott H, Pearce P, Acevedo N, Thevathasan W, Xu SS, Bulluss K, Perera T. Anatomical targeting for electrode localization in subthalamic nucleus deep brain stimulation: A comparative study. J Neuroimaging 2023; 33:792-801. [PMID: 37288952 PMCID: PMC10946722 DOI: 10.1111/jon.13133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND AND PURPOSE In deep brain stimulation (DBS), accurate electrode placement is essential for optimizing patient outcomes. Localizing electrodes enables insight into therapeutic outcomes and development of metrics for use in clinical trials. Methods of defining anatomical targets have been described with varying accuracy and objectivity. To assess variability in anatomical targeting, we compare four methods of defining an appropriate target for DBS of the subthalamic nucleus for Parkinson's disease. METHODS The methods compared are direct visualization, red nucleus-based indirect targeting, mid-commissural point-based indirect targeting, and automated template-based targeting. This study assessed 226 hemispheres in 113 DBS recipients (39 females, 73 males, 62.2 ± 7.7 years). We utilized the electrode placement error (the Euclidean distance between the defined target and closest DBS electrode) as a metric for comparative analysis. Pairwise differences in electrode placement error across the four methods were compared using the Kruskal-Wallis H-test and Wilcoxon signed-rank tests. RESULTS Interquartile ranges of the differences in electrode placement error spanned 1.18-1.56 mm. A Kruskal-Wallis H-test reported a statistically significant difference in the median of at least two groups (H(5) = 41.052, p < .001). Wilcoxon signed-rank tests reported statistically significant difference in two comparisons: direct visualization versus red nucleus-based indirect, and direct visualization versus automated template-based methods (T < 9215, p < .001). CONCLUSIONS All methods were similarly discordant in their relative accuracy, despite having significant technical differences in their application. The differing protocols and technical aspects of each method, however, have the implication that one may be more practical depending on the clinical or research application at hand.
Collapse
Affiliation(s)
- Thomas Tonroe
- Bionics InstituteEast MelbourneVictoriaAustralia
- School of EngineeringRMIT UniversityMelbourneVictoriaAustralia
| | - Hugh McDermott
- Bionics InstituteEast MelbourneVictoriaAustralia
- DBS Technologies Pty LtdEast MelbourneVictoriaAustralia
- Medical Bionics DepartmentThe University of MelbourneEast MelbourneVictoriaAustralia
| | - Patrick Pearce
- Bionics InstituteEast MelbourneVictoriaAustralia
- Department of NeurosurgerySt Vincent's Hospital MelbourneFitzroyVictoriaAustralia
| | - Nicola Acevedo
- Bionics InstituteEast MelbourneVictoriaAustralia
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
| | - Wesley Thevathasan
- Bionics InstituteEast MelbourneVictoriaAustralia
- DBS Technologies Pty LtdEast MelbourneVictoriaAustralia
- Department of NeurologyAustin HospitalHeidelbergVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyThe Royal Melbourne HospitalParkvilleVictoriaAustralia
- Department of NeurosurgeryCabrini HospitalMalvernVictoriaAustralia
| | - San San Xu
- Bionics InstituteEast MelbourneVictoriaAustralia
- Medical Bionics DepartmentThe University of MelbourneEast MelbourneVictoriaAustralia
- Department of NeurologyAustin HospitalHeidelbergVictoriaAustralia
| | - Kristian Bulluss
- Bionics InstituteEast MelbourneVictoriaAustralia
- DBS Technologies Pty LtdEast MelbourneVictoriaAustralia
- Department of NeurosurgerySt Vincent's Hospital MelbourneFitzroyVictoriaAustralia
- Department of NeurosurgeryCabrini HospitalMalvernVictoriaAustralia
- Department of NeurosurgeryAustin HospitalHeidelbergVictoriaAustralia
- Department of SurgeryThe University of MelbourneParkvilleVictoriaAustralia
| | - Thushara Perera
- Bionics InstituteEast MelbourneVictoriaAustralia
- DBS Technologies Pty LtdEast MelbourneVictoriaAustralia
- Medical Bionics DepartmentThe University of MelbourneEast MelbourneVictoriaAustralia
| |
Collapse
|
24
|
Campbell BA, Favi Bocca L, Tiefenbach J, Hogue O, Nagel SJ, Rammo R, Escobar Sanabria D, Machado AG, Baker KB. Myogenic and cortical evoked potentials vary as a function of stimulus pulse geometry delivered in the subthalamic nucleus of Parkinson's disease patients. Front Neurol 2023; 14:1216916. [PMID: 37693765 PMCID: PMC10484227 DOI: 10.3389/fneur.2023.1216916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction The therapeutic efficacy of deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) may be limited for some patients by the presence of stimulation-related side effects. Such effects are most often attributed to electrical current spread beyond the target region. Prior computational modeling studies have suggested that changing the degree of asymmetry of the individual phases of the biphasic, stimulus pulse may allow for more selective activation of neural elements in the target region. To the extent that different neural elements contribute to the therapeutic vs. side-effect inducing effects of DBS, such improved selectivity may provide a new parameter for optimizing DBS to increase the therapeutic window. Methods We investigated the effect of six different pulse geometries on cortical and myogenic evoked potentials in eight patients with PD whose leads were temporarily externalized following STN DBS implant surgery. DBS-cortical evoked potentials were quantified using peak to peak measurements and wavelets and myogenic potentials were quantified using RMS. Results We found that the slope of the recruitment curves differed significantly as a function of pulse geometry for both the cortical- and myogenic responses. Notably, this effect was observed most frequently when stimulation was delivered using a monopolar, as opposed to a bipolar, configuration. Discussion Manipulating pulse geometry results in differential physiological effects at both the cortical and neuromuscular level. Exploiting these differences may help to expand DBS' therapeutic window and support the potential for incorporating pulse geometry as an additional parameter for optimizing therapeutic benefit.
Collapse
Affiliation(s)
- Brett A. Campbell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
| | - Leonardo Favi Bocca
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
| | - Jakov Tiefenbach
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
| | - Olivia Hogue
- Center for Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Sean J. Nagel
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, United States
| | - Richard Rammo
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, United States
| | - David Escobar Sanabria
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States
| | - Andre G. Machado
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, United States
| | - Kenneth B. Baker
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
25
|
Hacker ML, Rajamani N, Neudorfer C, Hollunder B, Oxenford S, Li N, Sternberg AL, Davis TL, Konrad PE, Horn A, Charles D. Connectivity Profile for Subthalamic Nucleus Deep Brain Stimulation in Early Stage Parkinson Disease. Ann Neurol 2023; 94:271-284. [PMID: 37177857 PMCID: PMC10846105 DOI: 10.1002/ana.26674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial. METHODS To determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]). RESULTS Sweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort. INTERPRETATION These results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284.
Collapse
Affiliation(s)
- Mallory L Hacker
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nanditha Rajamani
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara Hollunder
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt University of Berlin, Berlin, Germany
| | - Simon Oxenford
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Alice L Sternberg
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas L Davis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter E Konrad
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Charles
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
26
|
Boëx C, Awadhi AA, Tyrand R, Corniola MV, Kibleur A, Fleury V, Burkhard PR, Momjian S. Validation of Lead-DBS β-Oscillation Localization with Directional Electrodes. Bioengineering (Basel) 2023; 10:898. [PMID: 37627782 PMCID: PMC10451384 DOI: 10.3390/bioengineering10080898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
In deep brain stimulation (DBS) studies in patients with Parkinson's disease, the Lead-DBS toolbox allows the reconstruction of the location of β-oscillations in the subthalamic nucleus (STN) using Vercise Cartesia directional electrodes (Boston Scientific). The objective was to compare these probabilistic locations with those of intraoperative monopolar β-oscillations computed from local field potentials (0.5-3 kHz) recorded by using shielded single wires and an extracranial shielded reference electrode. For each electrode contact, power spectral densities of the β-band (13-31 Hz) were compared with those of all eight electrode contacts on the directional electrodes. The DBS Intrinsic Template AtLas (DISTAL), electrophysiological, and DBS target atlases of the Lead-DBS toolbox were applied to the reconstructed electrodes from preoperative MRI and postoperative CT. Thirty-six electrodes (20 patients: 7 females, 13 males; both STN electrodes for 16 of 20 patients; one single STN electrode for 4 of 20 patients) were analyzed. Stimulation sites both dorsal and/or lateral to the sensorimotor STN were the most efficient. In 33 out of 36 electrodes, at least one contact was measured with stronger β-oscillations, including 23 electrodes running through or touching the ventral subpart of the β-oscillations' probabilistic volume, while 10 did not touch it but were adjacent to this volume; in 3 out of 36 electrodes, no contact was found with β-oscillations and all 3 were distant from this volume. Monopolar local field potentials confirmed the ventral subpart of the probabilistic β-oscillations.
Collapse
Affiliation(s)
- Colette Boëx
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| | - Abdullah Al Awadhi
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
| | - Rémi Tyrand
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| | - Marco V. Corniola
- Department of Neurosurgery, Pontchaillou Hospitals, CEDEX 9, F-35033 Rennes, France
| | - Astrid Kibleur
- Centre Hospitalier Universitaire Caen Normandie, F-14000 Caen, France
| | - Vanessa Fleury
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
- Department of Neurosurgery, Pontchaillou Hospitals, CEDEX 9, F-35033 Rennes, France
| | - Pierre R. Burkhard
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| | - Shahan Momjian
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| |
Collapse
|
27
|
Lead-DBS v3.0: Mapping deep brain stimulation effects to local anatomy and global networks. Neuroimage 2023; 268:119862. [PMID: 36610682 PMCID: PMC10144063 DOI: 10.1016/j.neuroimage.2023.119862] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Following its introduction in 2014 and with support of a broad international community, the open-source toolbox Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, update, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image preprocessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool. The aim of the present manuscript is to introduce fundamental additions to the Lead-DBS pipeline including a deformation warpfield editor and novel algorithms for electrode localization. Furthermore, we introduce a total of three comprehensive tools to map DBS effects to local, tract- and brain network-levels. These updates are demonstrated using a single patient example (for subject-level analysis), as well as a retrospective cohort of 51 Parkinson's disease patients who underwent DBS of the subthalamic nucleus (for group-level analysis). Their applicability is further demonstrated by comparing the various methodological choices and the amount of explained variance in clinical outcomes across analysis streams. Finally, based on an increasing need to standardize folder and file naming specifications across research groups in neuroscience, we introduce the brain imaging data structure (BIDS) derivative standard for Lead-DBS. Thus, this multi-institutional collaborative effort represents an important stage in the evolution of a comprehensive, open-source pipeline for DBS imaging and connectomics.
Collapse
|
28
|
Xu Y, Qin G, Tan B, Fan S, An Q, Gao Y, Fan H, Xie H, Wu D, Liu H, Yang G, Fang H, Xiao Z, Zhang J, Zhang H, Shi L, Yang A. Deep Brain Stimulation Electrode Reconstruction: Comparison between Lead-DBS and Surgical Planning System. J Clin Med 2023; 12:jcm12051781. [PMID: 36902568 PMCID: PMC10002993 DOI: 10.3390/jcm12051781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Electrode reconstruction for postoperative deep brain simulation (DBS) can be achieved manually using a surgical planning system such as Surgiplan, or in a semi-automated manner using software such as the Lead-DBS toolbox. However, the accuracy of Lead-DBS has not been thoroughly addressed. METHODS In our study, we compared the DBS reconstruction results of Lead-DBS and Surgiplan. We included 26 patients (21 with Parkinson's disease and 5 with dystonia) who underwent subthalamic nucleus (STN)-DBS, and reconstructed the DBS electrodes using the Lead-DBS toolbox and Surgiplan. The electrode contact coordinates were compared between Lead-DBS and Surgiplan with postoperative CT and MRI. The relative positions of the electrode and STN were also compared between the methods. Finally, the optimal contact during follow-up was mapped onto the Lead-DBS reconstruction results to check for overlap between the contacts and the STN. RESULTS We found significant differences in all axes between Lead-DBS and Surgiplan with postoperative CT, with the mean variance for the X, Y, and Z coordinates being -0.13, -1.16, and 0.59 mm, respectively. Y and Z coordinates showed significant differences between Lead-DBS and Surgiplan with either postoperative CT or MRI. However, no significant difference in the relative distance of the electrode and the STN was found between the methods. All optimal contacts were located in the STN, with 70% of them located within the dorsolateral region of the STN in the Lead-DBS results. CONCLUSIONS Although significant differences in electrode coordinates existed between Lead-DBS and Surgiplan, our results suggest that the coordinate difference was around 1 mm, and Lead-DBS can capture the relative distance between the electrode and the DBS target, suggesting it is reasonably accurate for postoperative DBS reconstruction.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Guofan Qin
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Bojing Tan
- Department of Neurosurgery, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shiying Fan
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qi An
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yuan Gao
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Houyou Fan
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Hutao Xie
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Delong Wu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Huanguang Liu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, China
| | - Huaying Fang
- Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100089, China
- Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100089, China
| | - Zunyu Xiao
- Molecular Imaging Research Center, Harbin Medical University, Harbin 150076, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Hua Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Correspondence: (H.Z.); (L.S.); (A.Y.)
| | - Lin Shi
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Correspondence: (H.Z.); (L.S.); (A.Y.)
| | - Anchao Yang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Correspondence: (H.Z.); (L.S.); (A.Y.)
| |
Collapse
|
29
|
Feldmann LK, Lofredi R, Al-Fatly B, Busch JL, Mathiopoulou V, Roediger J, Krause P, Schneider GH, Faust K, Horn A, Kühn AA, Neumann WJ. Christmas-Related Reduction in Beta Activity in Parkinson's Disease. Mov Disord 2023; 38:692-697. [PMID: 36718788 DOI: 10.1002/mds.29334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Subthalamic nucleus (STN) beta (13 - 35 Hz) activity is a biomarker reflecting motor state in Parkinson's disease (PD). Adaptive deep brain stimulation (DBS) aims to use beta activity for therapeutic adjustments, but many aspects of beta activity in real-life situations are unknown. OBJECTIVE The aim was to investigate Christmas-related influences on beta activity in PD. METHODS Differences in Christmas Day to nonfestive daily averages in chronic biomarker recordings in 4 PD patients with a sensing-enabled STN DBS implant were retrospectively analyzed. Sweet-spot and whole-brain network connectomic analyses were performed. RESULTS Beta activity was significantly reduced on Christmas Eve in all patients (4.00-9.00 p.m.: -12.30 ± 10.78%, P = 0.015). A sweet spot in the dorsolateral STN connected recording sites to motor, premotor, and supplementary motor cortices. CONCLUSIONS We demonstrate that festive events can reduce beta biomarker activity. We conclude that circadian and holiday-related changes should be considered when tailoring adaptive DBS algorithms to patient demands. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lucia K Feldmann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Roxanne Lofredi
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Bassam Al-Fatly
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes L Busch
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Varvara Mathiopoulou
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Roediger
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Krause
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Horn
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Charité University Medicine, Berlin, Germany.,NeuroCure Clinical Research Centre, Charité University Medicine, Berlin, Germany.,DZNE, German Center for Degenerative Diseases, Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
30
|
Wang X, Mao Z, Yu X. Volume of tissue activated within subthalamic nucleus and clinical efficacy of deep brain stimulation in Meige syndrome. Neurol Sci 2023; 44:1643-1651. [PMID: 36622476 DOI: 10.1007/s10072-022-06594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The clinical efficacy of deep brain stimulation (DBS) relies on the optimal electrode placement in a large extent. Subthalamic nucleus (STN) DBS was recognized as clinically effective for Meige syndrome. This study identified the correlations of volume of tissue activated (VTA) within the motor STN and the final efficacy of the surgical procedure. METHODS Clinical outcomes of the patients (n=25) were evaluated with the percentage improvement in Burke-Fahn-Marsden Dystonia Rating Scale movement (BFMDRS-M) scores at the last follow-up (LFU) visit. Pearson's correlation coefficients were calculated to identify the relationship of the final clinical outcomes with the VTA within the STN, VTA within the different STN territories, and other clinical variables. RESULTS On the whole, the patients showed an average of 59.21% improvement at the LFU visit relative to the baseline (5.72 ± 7.31 vs. 13.70 ± 7.36, P ˂ 0.001). Active electrode contacts mainly clustered in the STN motor territories. There were significant positive correlations between the BFMDRS-M percentage improvement and VTA within the STN (Pearson r = 0.434, P = 0.039) and the STN motor territories (r = 0.430, P = 0.041), but not associative or limbic STN. Other basic clinical characteristics including age, disease duration, and preoperative scores were not significantly correlated with the final outcomes. CONCLUSIONS Our study further validated the efficacy of STN-DBS in even the cases with intractable Meige syndrome. Furthermore, VTA within the motor STN could serve as a potential prognostic factor for the final clinical outcomes.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, Shandong, China.
| | - Zhiqi Mao
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
31
|
Ríos AS, Oxenford S, Neudorfer C, Butenko K, Li N, Rajamani N, Boutet A, Elias GJB, Germann J, Loh A, Deeb W, Wang F, Setsompop K, Salvato B, Almeida LBD, Foote KD, Amaral R, Rosenberg PB, Tang-Wai DF, Wolk DA, Burke AD, Salloway S, Sabbagh MN, Chakravarty MM, Smith GS, Lyketsos CG, Okun MS, Anderson WS, Mari Z, Ponce FA, Lozano AM, Horn A. Optimal deep brain stimulation sites and networks for stimulation of the fornix in Alzheimer's disease. Nat Commun 2022; 13:7707. [PMID: 36517479 PMCID: PMC9751139 DOI: 10.1038/s41467-022-34510-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
Deep brain stimulation (DBS) to the fornix is an investigational treatment for patients with mild Alzheimer's Disease. Outcomes from randomized clinical trials have shown that cognitive function improved in some patients but deteriorated in others. This could be explained by variance in electrode placement leading to differential engagement of neural circuits. To investigate this, we performed a post-hoc analysis on a multi-center cohort of 46 patients with DBS to the fornix (NCT00658125, NCT01608061). Using normative structural and functional connectivity data, we found that stimulation of the circuit of Papez and stria terminalis robustly associated with cognitive improvement (R = 0.53, p < 0.001). On a local level, the optimal stimulation site resided at the direct interface between these structures (R = 0.48, p < 0.001). Finally, modulating specific distributed brain networks related to memory accounted for optimal outcomes (R = 0.48, p < 0.001). Findings were robust to multiple cross-validation designs and may define an optimal network target that could refine DBS surgery and programming.
Collapse
Grants
- P30 AG066507 NIA NIH HHS
- R01 NS127892 NINDS NIH HHS
- R01 MH113929 NIMH NIH HHS
- R01 MH130666 NIMH NIH HHS
- P30 AG072979 NIA NIH HHS
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- Received grants and personal fees from Medtronic and Boston Scientific, grants from Abbott/St. Jude, and Functional Neuromodulation outside the submitted work.
- Received grants from Functional Neuromodulation during conduct of this study, grants and personal fees from Avid/Lily, and Merck, personal fees from Jannsen, GE Healthcare, Biogen and Neuronix outside the submitted work.
- Receives personal fees from Elsai, Lilly, Roche Novartis and Biogen outside the submitted work.
- Received personal fees from Allergan, Biogen, Roche-Genentech, Cortexyme, Bracket, Sanofi, and other type of support from Brain Health Inc and uMethod Health outside of the submitted work.
- Received grants from Functional Neuromodulation Inc. during conduct of this study, from Avanir and Eli Lily and NFL Benefits Office outside of the submitted work.
- Received grants from NIH, Tourette Association of America Grant, Parkinson’s Alliance, Smallwood Foundation, and personal fees from Parkinson’s Foundation Medical Director, Books4Patients, American Academy of Neurology, Peerview, WebMD/Medscape, Mededicus, Movement Disorders Society, Taylor and Francis, Demos, Robert Rose and non-financial support from Medtronic outside of the submitted work.
- Received grants from Medtronic and Functional Neuromodulation during conduct of this study, personal fees from Medtronic, St. Jude, Boston Scientific, and Functional Neuromodulation outside of submitted work
- Deutsches Zentrum für Luft- und Raumfahrt (German Centre for Air and Space Travel)
- National Institutes of Health (R01 13478451, 1R01NS127892-01 & 2R01 MH113929) New Venture Fund (FFOR Seed Grant).
Collapse
Affiliation(s)
- Ana Sofía Ríos
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simón Oxenford
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Neudorfer
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Konstantin Butenko
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nanditha Rajamani
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, M5T1W7, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Jurgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Wissam Deeb
- UMass Chan Medical School, Department of Neurology, Worcester, MA, 01655, USA
- UMass Memorial Health, Department of Neurology, Worcester, MA, 01655, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Bryan Salvato
- University of Florida Health Jacksonville, Jacksonville, FL, USA
| | - Leonardo Brito de Almeida
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Robert Amaral
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David F Tang-Wai
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
- Department of Medicine, Division of Neurology, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Stephen Salloway
- Department of Psychiatry and Human Behavior and Neurology, Alpert Medical School of Brown University, Providence, RI, USA
- Memory & Aging Program, Butler Hospital, Providence, USA
| | | | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Constantine G Lyketsos
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | | | - Zoltan Mari
- Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | | | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.
- Departments of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
32
|
Piper RJ, Richardson RM, Worrell G, Carmichael DW, Baldeweg T, Litt B, Denison T, Tisdall MM. Towards network-guided neuromodulation for epilepsy. Brain 2022; 145:3347-3362. [PMID: 35771657 PMCID: PMC9586548 DOI: 10.1093/brain/awac234] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Epilepsy is well-recognized as a disorder of brain networks. There is a growing body of research to identify critical nodes within dynamic epileptic networks with the aim to target therapies that halt the onset and propagation of seizures. In parallel, intracranial neuromodulation, including deep brain stimulation and responsive neurostimulation, are well-established and expanding as therapies to reduce seizures in adults with focal-onset epilepsy; and there is emerging evidence for their efficacy in children and generalized-onset seizure disorders. The convergence of these advancing fields is driving an era of 'network-guided neuromodulation' for epilepsy. In this review, we distil the current literature on network mechanisms underlying neurostimulation for epilepsy. We discuss the modulation of key 'propagation points' in the epileptogenic network, focusing primarily on thalamic nuclei targeted in current clinical practice. These include (i) the anterior nucleus of thalamus, now a clinically approved and targeted site for open loop stimulation, and increasingly targeted for responsive neurostimulation; and (ii) the centromedian nucleus of the thalamus, a target for both deep brain stimulation and responsive neurostimulation in generalized-onset epilepsies. We discuss briefly the networks associated with other emerging neuromodulation targets, such as the pulvinar of the thalamus, piriform cortex, septal area, subthalamic nucleus, cerebellum and others. We report synergistic findings garnered from multiple modalities of investigation that have revealed structural and functional networks associated with these propagation points - including scalp and invasive EEG, and diffusion and functional MRI. We also report on intracranial recordings from implanted devices which provide us data on the dynamic networks we are aiming to modulate. Finally, we review the continuing evolution of network-guided neuromodulation for epilepsy to accelerate progress towards two translational goals: (i) to use pre-surgical network analyses to determine patient candidacy for neurostimulation for epilepsy by providing network biomarkers that predict efficacy; and (ii) to deliver precise, personalized and effective antiepileptic stimulation to prevent and arrest seizure propagation through mapping and modulation of each patients' individual epileptogenic networks.
Collapse
Affiliation(s)
- Rory J Piper
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | | | - Torsten Baldeweg
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Brian Litt
- Department of Neurology and Bioengineering, University of Pennsylvania, Philadelphia, USA
| | | | - Martin M Tisdall
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
33
|
Vázquez-Medina A, Diano G, Papageorgakopoulou MA, Otamendi-Lopez A. Letter to the Editor. Tourette syndrome: tripartite considerations in DBS. J Neurosurg 2022; 137:1198-1199. [PMID: 35523264 DOI: 10.3171/2022.3.jns22600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Adriana Vázquez-Medina
- University of Puerto Rico, Medical Sciences Campus School of Medicine, San Juan, Puerto Rico
| | | | | | | |
Collapse
|
34
|
Heiden P, Weigel DT, Loução R, Hamisch C, Gündüz EM, Ruge MI, Kuhn J, Visser-Vandewalle V, Andrade P. Connectivity in deep brain stimulation for self-injurious behavior: multiple targets for a common network? Front Hum Neurosci 2022; 16:958247. [PMID: 36092644 PMCID: PMC9448926 DOI: 10.3389/fnhum.2022.958247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Self-injurious behavior (SIB) is associated with diverse psychiatric conditions. Sometimes (e.g., in patients with autism spectrum disorder or acquired brain injuries), SIB is the most dominant symptom, severely restricting the psychosocial functioning and quality of life of the patients and inhibiting appropriate patient care. In severe cases, it can lead to permanent physical injuries or even death. Primary therapy consists of medical treatment and if implementable, behavioral therapy. For patients with severe SIB refractory to conventional therapy, neuromodulation can be considered as a last recourse. In scientific literature, several successful lesioning and deep brain stimulation targets have been described that can indicate a common underlying neuronal pathway. The objectives of this study were to evaluate the short- and long-term clinical outcome of patients with severe, therapy refractory SIB who underwent DBS with diverse underlying psychiatric disorders and to correlate these outcomes with the activated connectivity networks. We retrospectively analyzed 10 patients with SIB who underwent DBS surgery with diverse psychiatric conditions including autism spectrum disorder, organic personality disorder after hypoxic or traumatic brain injury or Tourette syndrome. DBS targets were chosen according to the underlying disorder, patients were either stimulated in the nucleus accumbens, amygdala, posterior hypothalamus, medial thalamus or ventrolateral thalamus. Clinical outcome was measured 6 months after surgery and at long-term follow-up after 10 or more years using the Early Rehabilitation Barthel index (ERBI) and time of restraint. Connectivity patterns were analyzed using normative connectome. Based on previous literature the orbitofrontal cortex, superior frontal gyrus, the anterior cingulate cortex, the amygdala and the hippocampus were chosen as regions of interest. This analysis showed a significant improvement in the functionality of the patients with DBS in the short- and long-term follow-up. Good clinical outcome correlated with higher connectivity to the amygdala and hippocampus. These findings may suggest a common pathway, which can be relevant when planning a surgical procedure in patients with SIB.
Collapse
Affiliation(s)
- Petra Heiden
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Tim Weigel
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ricardo Loução
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christina Hamisch
- Department of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Enes M. Gündüz
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maximilian I. Ruge
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Pablo Andrade
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- *Correspondence: Pablo Andrade
| |
Collapse
|
35
|
Lofredi R, Auernig CG, Ewert S, Irmen F, Steiner LA, Scheller U, van Wijk BCM, Oxenford S, Kühn AA, Horn A. Interrater reliability of deep brain stimulation electrode localizations. Neuroimage 2022; 262:119552. [PMID: 35981644 DOI: 10.1016/j.neuroimage.2022.119552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Lead-DBS is an open-source, semi-automatized and widely applied software tool facilitating precise localization of deep brain stimulation electrodes both in native as well as in standardized stereotactic space. While automatized preprocessing steps within the toolbox have been tested and validated in previous studies, the interrater reliability in manual refinements of electrode localizations using the tool has not been objectified so far. Here, we investigate the variance introduced in this processing step by different raters when localizing electrodes based on postoperative CT or MRI. Furthermore, we compare the performance of novel trainees that received a structured training and more experienced raters with an expert user. We show that all users yield similar results with an average difference in localizations ranging between 0.52-0.75 mm with 0.07-0.12 mm increases in variability when using postoperative MRI and following normalization to standard space. Our findings may pave the way toward formal training for using Lead-DBS and demonstrate its reliability and ease-of-use for imaging research in the field of deep brain stimulation.
Collapse
Affiliation(s)
- Roxanne Lofredi
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| | - Cem-Georg Auernig
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Siobhan Ewert
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Friederike Irmen
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Leon A Steiner
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Ute Scheller
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Bernadette C M van Wijk
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Simon Oxenford
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany; NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany; DZNE, German center for neurodegenerative diseases, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin
| | - Andreas Horn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School; MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
36
|
Loh A, Elias GJB, Germann J, Boutet A, Gwun D, Yamamoto K, Sarica C, Azevedo P, Zemmar A, Pinto J, Naheed A, Kalia SK, Hodaie M, Munhoz RP, Lozano AM, Fasano A. Neural correlates of optimal deep brain stimulation for cervical dystonia. Ann Neurol 2022; 92:418-424. [PMID: 35785489 DOI: 10.1002/ana.26450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022]
Abstract
Fifteen subjects with cervical dystonia and good outcome following pallidal deep brain stimulation underwent resting-state functional magnetic resonance imaging under three conditions: stimulation using a priori clinically determined optimal settings (ON-Op), non-optimal settings (ON-NOp), and stimulation off (OFF). ON-Op>OFF and ON-Op>ON-NOp were both associated with significant deactivation within sensorimotor cortex (changes not seen with ON-NOp>OFF). Brain responses to stimulation were related to individual long-term clinical improvement (R=0.73 , R2 =0.53, p=0.001). The relationship was consistent when this model included four additional patients with generalized or truncal dystonia. These findings highlight the potential for immediate imaging-based biomarkers of clinical efficacy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Dave Gwun
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Can Sarica
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Paula Azevedo
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Ajmal Zemmar
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada.,Department of Neurosurgery, People's Hospital of Zhengzhou University, Henan Provincial People´s Hospital, Henan University People's Hospital, Henan University School of Medicine, 7 Weiwu Road, Zhengzhou, China, 450000.,Department of Neurosurgery, University of Louisville, School of Medicine, 200 Abraham Flexner Way, Louisville, KY, 40202, USA
| | - Jessica Pinto
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Asma Naheed
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada.,Krembil Research Institute, Toronto, Ontario, Canada.,Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - Renato P Munhoz
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada.,Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| |
Collapse
|
37
|
Briggs RG, Young IM, Dadario NB, Fonseka RD, Hormovas J, Allan P, Larsen ML, Lin YH, Tanglay O, Maxwell BD, Conner AK, Stafford JF, Glenn CA, Teo C, Sughrue ME. Parcellation-based tractographic modeling of the salience network through meta-analysis. Brain Behav 2022; 12:e2646. [PMID: 35733239 PMCID: PMC9304834 DOI: 10.1002/brb3.2646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/09/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The salience network (SN) is a transitory mediator between active and passive states of mind. Multiple cortical areas, including the opercular, insular, and cingulate cortices have been linked in this processing, though knowledge of network connectivity has been devoid of structural specificity. OBJECTIVE The current study sought to create an anatomically specific connectivity model of the neural substrates involved in the salience network. METHODS A literature search of PubMed and BrainMap Sleuth was conducted for resting-state and task-based fMRI studies relevant to the salience network according to PRISMA guidelines. Publicly available meta-analytic software was utilized to extract relevant fMRI data for the creation of an activation likelihood estimation (ALE) map and relevant parcellations from the human connectome project overlapping with the ALE data were identified for inclusion in our SN model. DSI-based fiber tractography was then performed on publicaly available data from healthy subjects to determine the structural connections between cortical parcellations comprising the network. RESULTS Nine cortical regions were found to comprise the salience network: areas AVI (anterior ventral insula), MI (middle insula), FOP4 (frontal operculum 4), FOP5 (frontal operculum 5), a24pr (anterior 24 prime), a32pr (anterior 32 prime), p32pr (posterior 32 prime), and SCEF (supplementary and cingulate eye field), and 46. The frontal aslant tract was found to connect the opercular-insular cluster to the middle cingulate clusters of the network, while mostly short U-fibers connected adjacent nodes of the network. CONCLUSION Here we provide an anatomically specific connectivity model of the neural substrates involved in the salience network. These results may serve as an empiric basis for clinical translation in this region and for future study which seeks to expand our understanding of how specific neural substrates are involved in salience processing and guide subsequent human behavior.
Collapse
Affiliation(s)
- Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Parker Allan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Micah L Larsen
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Onur Tanglay
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - B David Maxwell
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jordan F Stafford
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia.,Omniscient Neurotechnology, Sydney, New South Wales, Australia
| |
Collapse
|
38
|
Merk T, Peterson V, Lipski WJ, Blankertz B, Turner RS, Li N, Horn A, Richardson RM, Neumann WJ. Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease. eLife 2022; 11:e75126. [PMID: 35621994 PMCID: PMC9142148 DOI: 10.7554/elife.75126] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/15/2022] [Indexed: 01/07/2023] Open
Abstract
Brain signal decoding promises significant advances in the development of clinical brain computer interfaces (BCI). In Parkinson's disease (PD), first bidirectional BCI implants for adaptive deep brain stimulation (DBS) are now available. Brain signal decoding can extend the clinical utility of adaptive DBS but the impact of neural source, computational methods and PD pathophysiology on decoding performance are unknown. This represents an unmet need for the development of future neurotechnology. To address this, we developed an invasive brain-signal decoding approach based on intraoperative sensorimotor electrocorticography (ECoG) and subthalamic LFP to predict grip-force, a representative movement decoding application, in 11 PD patients undergoing DBS. We demonstrate that ECoG is superior to subthalamic LFP for accurate grip-force decoding. Gradient boosted decision trees (XGBOOST) outperformed other model architectures. ECoG based decoding performance negatively correlated with motor impairment, which could be attributed to subthalamic beta bursts in the motor preparation and movement period. This highlights the impact of PD pathophysiology on the neural capacity to encode movement vigor. Finally, we developed a connectomic analysis that could predict grip-force decoding performance of individual ECoG channels across patients by using their connectomic fingerprints. Our study provides a neurophysiological and computational framework for invasive brain signal decoding to aid the development of an individualized precision-medicine approach to intelligent adaptive DBS.
Collapse
Affiliation(s)
- Timon Merk
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Victoria Peterson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General HospitalBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Witold J Lipski
- Department of Neurobiology, University of PittsburghPittsburghUnited States
| | - Benjamin Blankertz
- Department of Computer Science, Technische Universität BerlnBerlinGermany
| | - Robert S Turner
- Department of Neurobiology, University of PittsburghPittsburghUnited States
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Robert Mark Richardson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General HospitalBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| |
Collapse
|
39
|
Oxenford S, Roediger J, Neudorfer C, Milosevic L, Güttler C, Spindler P, Vajkoczy P, Neumann WJ, Kühn A, Horn A. Lead-OR: A multimodal platform for deep brain stimulation surgery. eLife 2022; 11:e72929. [PMID: 35594135 PMCID: PMC9177150 DOI: 10.7554/elife.72929] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Background Deep brain stimulation (DBS) electrode implant trajectories are stereotactically defined using preoperative neuroimaging. To validate the correct trajectory, microelectrode recordings (MERs) or local field potential recordings can be used to extend neuroanatomical information (defined by MRI) with neurophysiological activity patterns recorded from micro- and macroelectrodes probing the surgical target site. Currently, these two sources of information (imaging vs. electrophysiology) are analyzed separately, while means to fuse both data streams have not been introduced. Methods Here, we present a tool that integrates resources from stereotactic planning, neuroimaging, MER, and high-resolution atlas data to create a real-time visualization of the implant trajectory. We validate the tool based on a retrospective cohort of DBS patients (N = 52) offline and present single-use cases of the real-time platform. Results We establish an open-source software tool for multimodal data visualization and analysis during DBS surgery. We show a general correspondence between features derived from neuroimaging and electrophysiological recordings and present examples that demonstrate the functionality of the tool. Conclusions This novel software platform for multimodal data visualization and analysis bears translational potential to improve accuracy of DBS surgery. The toolbox is made openly available and is extendable to integrate with additional software packages. Funding Deutsche Forschungsgesellschaft (410169619, 424778381), Deutsches Zentrum für Luft- und Raumfahrt (DynaSti), National Institutes of Health (2R01 MH113929), and Foundation for OCD Research (FFOR).
Collapse
Affiliation(s)
- Simón Oxenford
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Jan Roediger
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
- Charité — Universitätsmedizin Berlin, Einstein Center for Neurosciences BerlinBerlinGermany
| | - Clemens Neudorfer
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
- Center for Brain Circuit Therapeutics Department of Neurology, Brigham & Women’s Hospital, Harvard Medical SchoolBostonUnited States
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Luka Milosevic
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
- Krembil Brain Institute, University Health NetworkTorontoCanada
| | - Christopher Güttler
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Philipp Spindler
- Department of Neurosurgery, Charité — Universitätsmedizin BerlinBerlinGermany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité — Universitätsmedizin BerlinBerlinGermany
| | - Wolf-Julian Neumann
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Andrea Kühn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
- Center for Brain Circuit Therapeutics Department of Neurology, Brigham & Women’s Hospital, Harvard Medical SchoolBostonUnited States
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
40
|
van Wijk BCM, Neumann WJ, Kroneberg D, Horn A, Irmen F, Sander TH, Wang Q, Litvak V, Kühn AA. Functional connectivity maps of theta/alpha and beta coherence within the subthalamic nucleus region. Neuroimage 2022; 257:119320. [PMID: 35580809 DOI: 10.1016/j.neuroimage.2022.119320] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
The subthalamic nucleus (STN) is a primary target for deep brain stimulation in Parkinson's disease (PD). Although small in size, the STN is commonly partitioned into sensorimotor, cognitive/associative, and limbic subregions based on its structural connectivity profile to cortical areas. We investigated whether such a regional specialization is also supported by functional connectivity between local field potential recordings and simultaneous magnetoencephalography. Using a novel data set of 21 PD patients, we replicated previously reported cortico-STN coherence networks in the theta/alpha and beta frequency ranges, and looked for the spatial distribution of these networks within the STN region. Although theta/alpha and beta coherence peaks were both observed in on-medication recordings from electrode contacts at several locations within and around the STN, sites with theta/alpha coherence peaks were situated at significantly more inferior MNI coordinates than beta coherence peaks. Sites with only theta/alpha coherence peaks, i.e. without distinct beta coherence, were mostly located near the border of sensorimotor and cognitive/associative subregions as defined by a tractography-based atlas of the STN. Peak coherence values were largely unaltered by the medication state of the subject, however, theta/alpha peaks were more often identified in recordings obtained after administration of dopaminergic medication. Our findings suggest the existence of a frequency-specific topography of cortico-STN coherence within the STN, albeit with considerable spatial overlap between functional networks. Consequently, optimization of deep brain stimulation targeting might remain a trade-off between alleviating motor symptoms and avoiding adverse neuropsychiatric side effects.
Collapse
Affiliation(s)
- Bernadette C M van Wijk
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands; Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, the Netherlands; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Wellcome Centre for Human Neuroimaging, University College London, UK.
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Daniel Kroneberg
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, USA; MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR), MGH Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Friederike Irmen
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Qiang Wang
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, University College London, UK
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Centre, Charité - Universitätsmedizin Berlin, Germany; DZNE, German Center for Degenerative Diseases, Berlin, Germany
| |
Collapse
|
41
|
Neudorfer C, Kroneberg D, Al-Fatly B, Goede L, Kübler D, Faust K, van Rienen U, Tietze A, Picht T, Herrington TM, Middlebrooks EH, Kühn A, Schneider GH, Horn A. Personalizing Deep Brain Stimulation Using Advanced Imaging Sequences. Ann Neurol 2022; 91:613-628. [PMID: 35165921 DOI: 10.1002/ana.26326] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE With a growing appreciation for interindividual anatomical variability and patient-specific brain connectivity, advanced imaging sequences offer the opportunity to directly visualize anatomical targets for deep brain stimulation (DBS). The lack of quantitative evidence demonstrating their clinical utility, however, has hindered their broad implementation in clinical practice. METHODS Using fast gray matter acquisition T1 inversion recovery (FGATIR) sequences, the present study identified a thalamic hypointensity that holds promise as a visual marker in DBS. To validate the clinical utility of the identified hypointensity, we retrospectively analyzed 65 patients (26 female, mean age = 69.1 ± 12.7 years) who underwent DBS in the treatment of essential tremor. We characterized its neuroanatomical substrates and evaluated the hypointensity's ability to predict clinical outcome using stimulation volume modeling and voxelwise mapping. Finally, we determined whether the hypointensity marker could predict symptom improvement on a patient-specific level. RESULTS Anatomical characterization suggested that the identified hypointensity constituted the terminal part of the dentatorubrothalamic tract. Overlap between DBS stimulation volumes and the hypointensity in standard space significantly correlated with tremor improvement (R2 = 0.16, p = 0.017) and distance to hotspots previously reported in the literature (R2 = 0.49, p = 7.9e-4). In contrast, the amount of variance explained by other anatomical atlas structures was reduced. When accounting for interindividual neuroanatomical variability, the predictive power of the hypointensity increased further (R2 = 0.37, p = 0.002). INTERPRETATION Our findings introduce and validate a novel imaging-based marker attainable from FGATIR sequences that has the potential to personalize and inform targeting and programming in DBS for essential tremor. ANN NEUROL 2022;91:613-628.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany.,MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR), MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Kroneberg
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Bassam Al-Fatly
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Lukas Goede
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Dorothee Kübler
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.,Department Life, Light, and Matter, University of Rostock, Rostock, Germany.,Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
| | - Anna Tietze
- Institute of Neuroradiology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Department of Neurology, Harvard Medical School, Boston, MA
| | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL.,Department of Neurosurgery, Mayo Clinic, Jacksonville, FL
| | - Andrea Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany.,MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR), MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Optimal deep brain stimulation sites and networks for cervical vs. generalized dystonia. Proc Natl Acad Sci U S A 2022; 119:e2114985119. [PMID: 35357970 PMCID: PMC9168456 DOI: 10.1073/pnas.2114985119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied deep brain stimulation effects in two types of dystonia and conclude that different specific connections between the pallidum and thalamus are responsible for optimal treatment effects. Since alternative treatment options for dystonia beyond deep brain stimulation are scarce, our results will be crucial to maximize treatment outcome in this population of patients. Dystonia is a debilitating disease with few treatment options. One effective option is deep brain stimulation (DBS) to the internal pallidum. While cervical and generalized forms of isolated dystonia have been targeted with a common approach to the posterior third of the nucleus, large-scale investigations regarding optimal stimulation sites and potential network effects have not been carried out. Here, we retrospectively studied clinical results following DBS for cervical and generalized dystonia in a multicenter cohort of 80 patients. We model DBS electrode placement based on pre- and postoperative imaging and introduce an approach to map optimal stimulation sites to anatomical space. Second, we investigate which tracts account for optimal clinical improvements, when modulated. Third, we investigate distributed stimulation effects on a whole-brain functional connectome level. Our results show marked differences of optimal stimulation sites that map to the somatotopic structure of the internal pallidum. While modulation of the striatopallidofugal axis of the basal ganglia accounted for optimal treatment of cervical dystonia, modulation of pallidothalamic bundles did so in generalized dystonia. Finally, we show a common multisynaptic network substrate for both phenotypes in the form of connectivity to the cerebellum and somatomotor cortex. Our results suggest a brief divergence of optimal stimulation networks for cervical vs. generalized dystonia within the pallidothalamic loop that merge again on a thalamo-cortical level and share a common whole-brain network.
Collapse
|
43
|
Wong JK, Patel B, Middlebrooks EH, Hilliard JD, Foote KD, Okun MS, Almeida L. Connectomic analysis of unilateral dual lead thalamic deep brain stimulation for treatment of multiple sclerosis tremor. Brain Commun 2022; 4:fcac063. [PMID: 35368612 PMCID: PMC8971897 DOI: 10.1093/braincomms/fcac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
Abstract
Tremor is a common symptom in multiple sclerosis and can present as a severe postural and action tremor, leading to significant disability. Owing to the diffuse and progressive nature of the disease, it has been challenging to characterize the pathophysiology underlying multiple sclerosis tremor. Deep brain stimulation of the ventralis intermedius and the ventralis oralis posterior thalamic nuclei has been used to treat medically refractory multiple sclerosis tremors with variable results. The aim of this study was to characterize multiple sclerosis tremor at the network level by applying modern connectomic techniques to data from a previously completed single-centre, randomized, single-blind prospective trial of 12 subjects who were treated with unilateral dual-lead (ventralis intermedius + ventralis oralis posterior) thalamic deep brain stimulation. Preoperative T1-weighted MRI and postoperative head CTs were used, along with applied programming settings, to estimate the volume of tissue activated for each patient. The volumes of tissue activated were then used to make voxel-wise and structural connectivity correlations with clinically observed tremor suppression. The volume of the tissue-activated analyses identified the optimal region of stimulation at the ventralis oralis posterior ventralis intermedius border intersecting with the dentato-rubro-thalamic tract. A regression model showed strong connectivity to the supplemental motor area was positively associated with tremor suppression (r = 0.66) in this cohort, whereas connectivity to the primary motor cortex was negatively associated with tremor suppression (r = −0.69), a finding opposite to that seen in ventralis intermedius deep brain stimulation for essential tremor. Comparing the structural connectivity to that of an essential tremor cohort revealed a distinct network that lies anterior to the essential tremor network. Overall, the volumes of tissue activated and connectivity observations converge to suggest that optimal suppression of multiple sclerosis tremor will likely be achieved by directing stimulation more anteriorly toward the ventralis oralis posterior and that a wide field of stimulation synergistically modulating the ventralis oralis posterior and ventralis intermedius nuclei may be more effective than traditional ventralis intermedius deep brain stimulation at suppressing the severe tremors commonly seen in complex tremor syndromes such as multiple sclerosis tremor.
Collapse
Affiliation(s)
- Joshua K. Wong
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL 32608, USA
- Correspondence to: Joshua K. Wong, MD 3009 Williston Road Gainesville, FL 32608, USA E-mail:
| | - Bhavana Patel
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL 32608, USA
| | | | - Justin D. Hilliard
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Kelly D. Foote
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Michael S. Okun
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL 32608, USA
| | - Leonardo Almeida
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
44
|
Abstract
Mania, the diagnostic hallmark of bipolar disorder, is an episodic disturbance of mood, sleep, behavior, and perception. Improved understanding of the neurobiology of mania is expected to allow for novel avenues to address current challenges in its diagnosis and treatment. Previous research focusing on the impairment of functional neuronal circuits and brain networks has resulted in heterogenous findings, possibly due to a focus on bipolar disorder and its several phases, rather than on the unique context of mania. Here we present a comprehensive overview of the evidence regarding the functional neuroanatomy of mania. Our interpretation of the best available evidence is consistent with a convergent model of lateralized circuit dysfunction in mania, with hypoactivity of the ventral prefrontal cortex in the right hemisphere, and hyperactivity of the amygdala, basal ganglia, and anterior cingulate cortex in the left hemisphere of the brain. Clarification of dysfunctional neuroanatomic substrates of mania may contribute not only to improve understanding of the neurobiology of bipolar disorder overall, but also highlights potential avenues for new circuit-based therapeutic approaches in the treatment of mania.
Collapse
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
- Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal.
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
45
|
Genetti Gatfield M, Péron J, Medlin F, Annoni JM, Accolla EA. Compulsions without obsession following stroke. Neuropsychologia 2021; 162:108050. [PMID: 34624261 DOI: 10.1016/j.neuropsychologia.2021.108050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/13/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is characterized by intrusive and irrational thoughts as well as repetitive behaviours. OCD-like behaviours have been described in a wide range of neurological disorders. In cerebrovascular accidents, the semiology arises mostly from lesions to the basal ganglia - though cortical regions may also be involved. In the past few years, the mechanisms underlying OCD in psychiatric patients have been re-examined, in particular the functional relationship between anxiety, obsessions and compulsions. Traditionally, obsessions are viewed as a trigger for compulsive behaviour that represents an attempt to reduce anxiety. By contrast, other models place compulsions - as a manifestation of an imbalance between goal-directed action and automatic habits that leads to maladaptive habit learning - at the core of OCD. CASE We show neurological evidence of pure compulsions without obsession in a patient following stroke in the left subcortical regions. Furthermore, we present comprehensive neuropsychological findings that identify specific alterations across executive and emotional domains. Finally, MRI analyses reveal that the subcortical stroke had resulted in a strong decrease of connectivity suggestive of large network alterations. CONCLUSIONS Our case provides direct information on how brain structure and function relate in an OCD patient, highlighting the central role of compulsions in the pathology.
Collapse
Affiliation(s)
| | - Julie Péron
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, Switzerland; Cognitive Neurology Unit, Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland
| | - Friedrich Medlin
- Department of Internal Medicine, Unit of Neurology, HFR Fribourg Hopital Cantonal, Fribourg, Switzerland
| | - Jean-Marie Annoni
- Department of Internal Medicine, Unit of Neurology, HFR Fribourg Hopital Cantonal, Fribourg, Switzerland; Laboratory for Cognitive and Neurological Sciences, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Ettore A Accolla
- Department of Internal Medicine, Unit of Neurology, HFR Fribourg Hopital Cantonal, Fribourg, Switzerland; Laboratory for Cognitive and Neurological Sciences, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
46
|
Rodrigues RB, Araujo VL, Omori PY, Nunes NDSM, Neves MAO, Castro RRT, Pessoa BL. Lead-DBS: an additional tool for stereotactic surgery. Rev Assoc Med Bras (1992) 2021; 67:816-821. [PMID: 34709323 DOI: 10.1590/1806-9282.20201104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Use Lead-DBS software to analyze stereotactical surgical outcome of an operated population and demonstrate that small target deviations do not compromise the stimulation of desired structures, even with small amperages. METHODS Image exams of patients submitted to deep brain stimulation for movement disorders treatment were processed in Lead-DBS software. Electrode stereotactic coordinates were subtracted from the planned target and those deviations, compared among different anatomical targets and sides operated firstly and secondly. We also quantified the frequency of relation between the activated tissue volume and the planned target through computer simulations. RESULTS None of the 16 electrodes were exactly implanted at the planned coordinates. A stimulation of 3 mA reached 62.5% of the times the planned coordinates, rising to 68.75% with a 3,5 mA. No statistical significance was demonstrated in any comparison of laterality and anatomical sites. CONCLUSIONS The simulation of small amperage fields could reach the intended target even when electrode placement is suboptimal. Furthermore, such a goal can be achieved without overlapping the volume of activated tissue with undesired structures. Software Lead-DBS proved to be a valuable complementary asset for surgical stereotactical result assessment.
Collapse
Affiliation(s)
- Renato Barradas Rodrigues
- Universidade Federal Fluminense, Department of General and Specialized Surgery - Niterói (RJ), Brazil
| | - Victor Lima Araujo
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, School of Mechanical Engineering - Nova Iguaçu (RJ), Brazil
| | - Pamella Yoko Omori
- Universidade Federal Fluminense, Department of General and Specialized Surgery - Niterói (RJ), Brazil
| | | | | | | | - Bruno Lima Pessoa
- Universidade Federal Fluminense, Department of General and Specialized Surgery - Niterói (RJ), Brazil
| |
Collapse
|
47
|
Bertino S, Basile GA, Bramanti A, Ciurleo R, Tisano A, Anastasi GP, Milardi D, Cacciola A. Ventral intermediate nucleus structural connectivity-derived segmentation: anatomical reliability and variability. Neuroimage 2021; 243:118519. [PMID: 34461233 DOI: 10.1016/j.neuroimage.2021.118519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/24/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
The Ventral intermediate nucleus (Vim) of thalamus is the most targeted structure for the treatment of drug-refractory tremors. Since methodological differences across existing studies are remarkable and no gold-standard pipeline is available, in this study, we tested different parcellation pipelines for tractography-derived putative Vim identification. Thalamic parcellation was performed on a high quality, multi-shell dataset and a downsampled, clinical-like dataset using two different diffusion signal modeling techniques and two different voxel classification criteria, thus implementing a total of four parcellation pipelines. The most reliable pipeline in terms of inter-subject variability has been picked and parcels putatively corresponding to motor thalamic nuclei have been selected by calculating similarity with a histology-based mask of Vim. Then, spatial relations with optimal stimulation points for the treatment of essential tremor have been quantified. Finally, effect of data quality and parcellation pipelines on a volumetric index of connectivity clusters has been assessed. We found that the pipeline characterized by higher-order signal modeling and threshold-based voxel classification criteria was the most reliable in terms of inter-subject variability regardless data quality. The maps putatively corresponding to Vim were those derived by precentral and dentate nucleus-thalamic connectivity. However, tractography-derived functional targets showed remarkable differences in shape and sizes when compared to a ground truth model based on histochemical staining on seriate sections of human brain. Thalamic voxels connected to contralateral dentate nucleus resulted to be the closest to literature-derived stimulation points for essential tremor but at the same time showing the most remarkable inter-subject variability. Finally, the volume of connectivity parcels resulted to be significantly influenced by data quality and parcellation pipelines. Hence, caution is warranted when performing thalamic connectivity-based segmentation for stereotactic targeting.
Collapse
Affiliation(s)
- Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | | | - Adriana Tisano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| |
Collapse
|
48
|
Torres Díaz CV, Treu S, Strange B, Lara M, Navas M, Ezquiaga E, Zazo ES, Vicente JS, Muñiz I, Fernandez FS. Deep Brain Stimulation of the Nucleus Accumbens, Ventral Striatum, or Internal Capsule Targets for Medication-Resistant Obsessive-Compulsive Disorder: A Multicenter Study. World Neurosurg 2021; 155:e168-e176. [PMID: 34403796 DOI: 10.1016/j.wneu.2021.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Deep brain stimulation of the nucleus accumbens, ventral striatum, or internal capsule region has shown a 45%-60% response rate in adults with severe treatment-refractory obsessive-compulsive disorder, regardless of which target is used. We sought to improve the effectiveness of deep brain stimulation by placing the electrode along a trajectory including these 3 targets, enabling a change of stimulation site depending on the patient's response. METHODS This study used the medical records of 14 patients from 4 different Spanish institutions: 7 from the Hospital Universitario La Princesa, 3 from the Hospital Universitario Central de Asturias, 2 from Hospital Universitario Fundación Jiménez Díaz, and 2 from Hospital Universitari Son Espases. All patients were operated on under the same protocol. Qualitative and quantitative data were collected. RESULTS Of 14 patients, 11 showed significant improvement in obsessive-compulsive disorder symptoms, as evident in a reduction ≥35% in Yale-Brown Obsessive Compulsive Scale scores following stimulation relative to preoperative scores. Seven patients responded to stimulation at the nucleus accumbens (the first area we set for stimulation), whereas 4 patients needed to have the active contact switched to the internal capsule to benefit from stimulation. CONCLUSIONS Deep brain stimulation of the nucleus accumbens, internal capsule, and ventral striatum significantly benefited our cohort of patients with medication-resistant obsessive-compulsive disorder. Electrode insertion through the 3 main targets might confer additional therapeutic efficacy.
Collapse
Affiliation(s)
- Cristina V Torres Díaz
- Department of Neurourgery, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Svenja Treu
- Laboratory for Clinical Neuroscience, Centre of Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Bryan Strange
- Laboratory for Clinical Neuroscience, Centre of Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Monica Lara
- Department of Neurosurgery, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Marta Navas
- Department of Neurourgery, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena Ezquiaga
- Department of Psychiatry, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elisa Seijo Zazo
- Department of Psychiatry, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Isabel Muñiz
- Department of Psychology, Universidad Anáhuac Cancún, Cancún, Mexico
| | | |
Collapse
|
49
|
Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M, Oya H, Roberts AC, Roe AW, Rushworth MFS, Sallet J, Schmid MC, Schroeder CE, Tasserie J, Tsao DY, Uhrig L, Vanduffel W, Wilke M, Kagan I, Petkov CI. Combining brain perturbation and neuroimaging in non-human primates. Neuroimage 2021; 235:118017. [PMID: 33794355 PMCID: PMC11178240 DOI: 10.1016/j.neuroimage.2021.118017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.
Collapse
Affiliation(s)
- P Christiaan Klink
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Vincent P Ferrera
- Department of Neuroscience & Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Andrew S Fox
- Department of Psychology & California National Primate Research Center, University of California, Davis, CA, USA
| | | | - Béchir Jarraya
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France; Foch Hospital, UVSQ, Suresnes, France
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Michael Ortiz-Rios
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Hiroyuki Oya
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa, Iowa city, IA, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | | | - Jérôme Sallet
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Michael Christoph Schmid
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Charles E Schroeder
- Nathan Kline Institute, Orangeburg, NY, USA; Columbia University, New York, NY, USA
| | - Jordy Tasserie
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Doris Y Tsao
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience; Howard Hughes Medical Institute; Computation and Neural Systems, Caltech, Pasadena, CA, USA
| | - Lynn Uhrig
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Neurosciences Department, KU Leuven Medical School, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven Belgium; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Melanie Wilke
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Igor Kagan
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.
| | - Christopher I Petkov
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
50
|
Determining an efficient deep brain stimulation target in essential tremor - Cohort study and review of the literature. Parkinsonism Relat Disord 2021; 89:54-62. [PMID: 34225135 DOI: 10.1016/j.parkreldis.2021.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is a highly efficacious treatment for essential tremor (ET). Still, the optimal anatomical target in the (sub)thalamic area is a matter of debate. The aim of this study was to determine the optimal target of DBS for ET regarding beneficial clinical outcome and impact on activities of daily living as well as stimulation-induced side effects and compare it with previously published coordinates. METHODS In 30 ET patients undergoing bilateral DBS, severity of tremor was assessed by blinded video ratings before and at 1-year follow-up with DBS ON and OFF. Tremor scores and reported side effects and volumes of tissue activated were used to create a probabilistic map of DBS efficiency and side effects. RESULTS DBS was effective both in tremor suppression as well as in improving patient reported outcomes, which were positively correlated. The "sweet spot" for tremor suppression was located inferior of the VIM in the subthalamic area, close to the superior margin of the zona incerta. The Euclidean distance of active contacts to this spot as well as to 10 of 13 spots from the literature review was predictive of individual outcome. A cluster associated with the occurrence of ataxia was located in direct vicinity of the "sweet spot". CONCLUSION Our findings suggest the highest clinical efficacy of DBS in the posterior subthalamic area, lining up with previously published targets likely representing the dentato-rubro-thalamic tract. Side effects may not necessarily indicate lead misplacement, but should encourage clinicians to employ novel DBS programing options.
Collapse
|