1
|
Orsher Y, Rom A, Perel R, Lahini Y, Blinder P, Shein-Idelson M. Sequentially activated discrete modules appear as traveling waves in neuronal measurements with limited spatiotemporal sampling. eLife 2024; 12:RP92254. [PMID: 38451063 PMCID: PMC10942589 DOI: 10.7554/elife.92254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Numerous studies have identified traveling waves in the cortex and suggested they play important roles in brain processing. These waves are most often measured using macroscopic methods that are unable to assess the local spiking activity underlying wave dynamics. Here, we investigated the possibility that waves may not be traveling at the single neuron scale. We first show that sequentially activating two discrete brain areas can appear as traveling waves in EEG simulations. We next reproduce these results using an analytical model of two sequentially activated regions. Using this model, we were able to generate wave-like activity with variable directions, velocities, and spatial patterns, and to map the discriminability limits between traveling waves and modular sequential activations. Finally, we investigated the link between field potentials and single neuron excitability using large-scale measurements from turtle cortex ex vivo. We found that while field potentials exhibit wave-like dynamics, the underlying spiking activity was better described by consecutively activated spatially adjacent groups of neurons. Taken together, this study suggests caution when interpreting phase delay measurements as continuously propagating wavefronts in two different spatial scales. A careful distinction between modular and wave excitability profiles across scales will be critical for understanding the nature of cortical computations.
Collapse
Affiliation(s)
- Yuval Orsher
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv UniversityTel AvivIsrael
- School of Physics & Astronomy, Faculty of Exact Sciences, Tel Aviv UniversityTel AvivIsrael
| | - Ariel Rom
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv UniversityTel AvivIsrael
- Sagol School of Neuroscience, Tel Aviv University, IsraelTel AvivIsrael
| | - Rotem Perel
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv UniversityTel AvivIsrael
| | - Yoav Lahini
- School of Physics & Astronomy, Faculty of Exact Sciences, Tel Aviv UniversityTel AvivIsrael
- Sagol School of Neuroscience, Tel Aviv University, IsraelTel AvivIsrael
| | - Pablo Blinder
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv UniversityTel AvivIsrael
- Sagol School of Neuroscience, Tel Aviv University, IsraelTel AvivIsrael
| | - Mark Shein-Idelson
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv UniversityTel AvivIsrael
- Sagol School of Neuroscience, Tel Aviv University, IsraelTel AvivIsrael
| |
Collapse
|
2
|
Guillamón-Vivancos T, Vandael D, Torres D, López-Bendito G, Martini FJ. Mesoscale calcium imaging in vivo: evolution and contribution to developmental neuroscience. Front Neurosci 2023; 17:1210199. [PMID: 37592948 PMCID: PMC10427507 DOI: 10.3389/fnins.2023.1210199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Calcium imaging is commonly used to visualize neural activity in vivo. In particular, mesoscale calcium imaging provides large fields of view, allowing for the simultaneous interrogation of neuron ensembles across the neuraxis. In the field of Developmental Neuroscience, mesoscopic imaging has recently yielded intriguing results that have shed new light on the ontogenesis of neural circuits from the first stages of life. We summarize here the technical approaches, basic notions for data analysis and the main findings provided by this technique in the last few years, with a focus on brain development in mouse models. As new tools develop to optimize calcium imaging in vivo, basic principles of neural development should be revised from a mesoscale perspective, that is, taking into account widespread activation of neuronal ensembles across the brain. In the future, combining mesoscale imaging of the dorsal surface of the brain with imaging of deep structures would ensure a more complete understanding of the construction of circuits. Moreover, the combination of mesoscale calcium imaging with other tools, like electrophysiology or high-resolution microscopy, will make up for the spatial and temporal limitations of this technique.
Collapse
Affiliation(s)
- Teresa Guillamón-Vivancos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | | | | | | | - Francisco J. Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| |
Collapse
|
3
|
Sepers MD, Mackay JP, Koch E, Xiao D, Mohajerani MH, Chan AW, Smith-Dijak AI, Ramandi D, Murphy TH, Raymond LA. Altered cortical processing of sensory input in Huntington disease mouse models. Neurobiol Dis 2022; 169:105740. [PMID: 35460870 DOI: 10.1016/j.nbd.2022.105740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 11/24/2022] Open
Abstract
Huntington disease (HD), a hereditary neurodegenerative disorder, manifests as progressively impaired movement and cognition. Although early abnormalities of neuronal activity in striatum are well established in HD models, there are fewer in vivo studies of the cortex. Here, we record local field potentials (LFPs) in YAC128 HD model mice versus wild-type mice. In multiple cortical areas, limb sensory stimulation evokes a greater change in LFP power in YAC128 mice. Mesoscopic imaging using voltage-sensitive dyes reveals more extensive spread of evoked sensory signals across the cortical surface in YAC128 mice. YAC128 layer 2/3 sensory cortical neurons ex vivo show increased excitatory events, which could contribute to enhanced sensory responses in vivo. Cortical LFP responses to limb stimulation, visual and auditory input are also significantly increased in zQ175 HD mice. Results presented here extend knowledge of HD beyond ex vivo studies of individual neurons to the intact cortical network.
Collapse
Affiliation(s)
- Marja D Sepers
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - James P Mackay
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Ellen Koch
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Dongsheng Xiao
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Majid H Mohajerani
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, Canada
| | - Allan W Chan
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Amy I Smith-Dijak
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Daniel Ramandi
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Timothy H Murphy
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Lynn A Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
4
|
Yang K, Wu S, Ghista DN, Yang D, Wong KKL. Automated vortex identification based on Lagrangian averaged vorticity deviation in analysis of blood flow in the atrium from phase contrast MRI. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 216:106678. [PMID: 35144147 DOI: 10.1016/j.cmpb.2022.106678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To present and validate a method for automated identification of the Lagrangian vortices and Eulerian vortices for analyzing flow within the right atrium (RA), from phase contrast magnetic resonance imaging (PC-MRI) data. METHODOLOGY Our proposed algorithm characterizes the trajectory integral associated with vorticity deviation and the spatial mean of vortex rings, for the Lagrangian averaged vorticity deviation (LAVD) based identification and tracking of vortex rings within the heart chamber. For this purpose, the optical flow concept was adopted to interpolate the time frames between larger discrete frames, to minimize the error caused by constructing a continuous velocity field for the integral process of LAVD. Then the Hough transform was used to automatically extract the vortex regions of interest. The computed flow data within the RA of the participants' hearts was then used to validate the performance of our proposed method. RESULTS In the paper, illustrations are provided for derived evolution of Euler vortices and Lagrangian vortices of a healthy subject. The visualization results have shown that our proposed method can accurately identify the Euler vortices and Lagrangian vortices, in the context of measuring the vorticity and vortex volume of the vortices within the RA chamber. Then the employment of Hough transform-based automated vortex extraction has improved the robustness and scalability of the LAVD in identifying cardiac vortices. The analytical results have demonstrated that the introduction of the Horn-Schunck optical flow can more accurately synthesize the intermediate PC-MRI to construct a continuous velocity field, compared with other interpolation methods. CONCLUSION A novel analytical framework has been developed to accurately identify the flow vortices in the RA chamber based on Horn-Schunck optical flow and Hough transform. From the obtained analytical study results, the development and changes of dominant vortices within this cardiac chamber during the cardiac cycle can be acquired. This can provide to cardiologists a deeper understanding of the hemodynamics within the heart chambers.
Collapse
Affiliation(s)
- Ke Yang
- Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan, China.
| | - Shiqian Wu
- School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan, China.
| | | | - Di Yang
- Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan, China.
| | - Kelvin K L Wong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
5
|
Afrashteh N, Inayat S, Bermudez-Contreras E, Luczak A, McNaughton BL, Mohajerani MH. Spatiotemporal structure of sensory-evoked and spontaneous activity revealed by mesoscale imaging in anesthetized and awake mice. Cell Rep 2021; 37:110081. [PMID: 34879278 DOI: 10.1016/j.celrep.2021.110081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 05/25/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022] Open
Abstract
Stimuli-evoked and spontaneous brain activity propagates across the cortex in diverse spatiotemporal patterns. Despite extensive studies, the relationship between spontaneous and evoked activity is poorly understood. We investigate this relationship by comparing the amplitude, speed, direction, and complexity of propagation trajectories of spontaneous and evoked activity elicited with visual, auditory, and tactile stimuli using mesoscale wide-field imaging in mice. For both spontaneous and evoked activity, the speed and direction of propagation is modulated by the amplitude. However, spontaneous activity has a higher complexity of the propagation trajectories. For low stimulus strengths, evoked activity amplitude and speed is similar to that of spontaneous activity but becomes dissimilar at higher stimulus strengths. These findings are consistent with observations that primary sensory areas receive widespread inputs from other cortical regions, and during rest, the cortex tends to reactivate traces of complex multisensory experiences that might have occurred in exhibition of different behaviors.
Collapse
Affiliation(s)
- Navvab Afrashteh
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada
| | - Samsoon Inayat
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada
| | - Edgar Bermudez-Contreras
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada
| | - Artur Luczak
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada
| | - Bruce L McNaughton
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada; Center for Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92603, USA
| | - Majid H Mohajerani
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
6
|
Yang K, Wu S, Samuel OW, Zhang H, Ghista DN, Yang D, Wong KKL. A Hybrid Approach for Cardiac Blood Flow Vortex Ring Identification Based on Optical Flow and Lagrangian Averaged Vorticity Deviation. Front Physiol 2021; 12:698405. [PMID: 34539430 PMCID: PMC8440940 DOI: 10.3389/fphys.2021.698405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The measurement of cardiac blood flow vortex characteristics can help to facilitate the analysis of blood flow dynamics that regulates heart function. However, the complexity of cardiac flow along with other physical limitations makes it difficult to adequately identify the dominant vortices in a heart chamber, which play a significant role in regulating the heart function. Although the existing vortex quantification methods can achieve this goal, there are still some shortcomings: such as low precision, and ignoring the center of the vortex without the description of vortex deformation processes. To address these problems, an optical flow Lagrangian averaged vorticity deviation (Optical flow-LAVD) method is proposed. Methodology: We examined the flow within the right atrium (RA) of the participants’ hearts, by using a single set of scans pertaining to a slice at two-chamber short-axis orientation. Toward adequate extraction of the vortex ring characteristics, a novel approach driven by the Lagrangian averaged vorticity deviation (LAVD) was implemented and applied to characterize the trajectory integral associated with vorticity deviation and the spatial mean of rings, by using phase-contrast magnetic resonance imaging (PC-MRI) datasets as a case study. To interpolate the time frames between every larger discrete frame and minimize the error caused by constructing a continuous velocity field for the integral process of LAVD, we implemented the optical flow as an interpolator and introduced the backward warping as an intermediate frame synthesis basis, which is then used to generate higher quality continuous velocity fields. Results: Our analytical study results showed that the proposed Optical flow-LAVD method can accurately identify vortex ring and continuous velocity fields, based on optical flow information, for yielding high reconstruction outcomes. Compared with the linear interpolation and phased-based frame interpolation methods, our proposed algorithm can generate more accurate synthesized PC-MRI. Conclusion: This study has developed a novel Optical flow-LAVD model to accurately identify cardiac vortex rings, and minimize the associated errors caused by the construction of a continuous velocity field. Our paper presents a superior vortex characteristics detection method that may potentially aid the understanding of medical experts on the dynamics of blood flow within the heart.
Collapse
Affiliation(s)
- Ke Yang
- Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Shiqian Wu
- School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Oluwarotimi W Samuel
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui Zhang
- Ultrasound Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dhanjoo N Ghista
- University 2020 Foundation, Inc., California City, CA, United States
| | - Di Yang
- Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Kelvin K L Wong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
7
|
Linden NJ, Tabuena DR, Steinmetz NA, Moody WJ, Brunton SL, Brunton BW. Go with the FLOW: visualizing spatiotemporal dynamics in optical widefield calcium imaging. J R Soc Interface 2021; 18:20210523. [PMID: 34428947 PMCID: PMC8385384 DOI: 10.1098/rsif.2021.0523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Widefield calcium imaging has recently emerged as a powerful experimental technique to record coordinated large-scale brain activity. These measurements present a unique opportunity to characterize spatiotemporally coherent structures that underlie neural activity across many regions of the brain. In this work, we leverage analytic techniques from fluid dynamics to develop a visualization framework that highlights features of flow across the cortex, mapping wavefronts that may be correlated with behavioural events. First, we transform the time series of widefield calcium images into time-varying vector fields using optic flow. Next, we extract concise diagrams summarizing the dynamics, which we refer to as FLOW (flow lines in optical widefield imaging) portraits. These FLOW portraits provide an intuitive map of dynamic calcium activity, including regions of initiation and termination, as well as the direction and extent of activity spread. To extract these structures, we use the finite-time Lyapunov exponent technique developed to analyse time-varying manifolds in unsteady fluids. Importantly, our approach captures coherent structures that are poorly represented by traditional modal decomposition techniques. We demonstrate the application of FLOW portraits on three simple synthetic datasets and two widefield calcium imaging datasets, including cortical waves in the developing mouse and spontaneous cortical activity in an adult mouse.
Collapse
Affiliation(s)
- Nathaniel J. Linden
- Department of Bioengineering, University of Washington, Seattle, WA 98195-0005, USA
- Department of Biology, University of Washington, Seattle, WA 98195-0005, USA
| | - Dennis R. Tabuena
- Department of Biology, University of Washington, Seattle, WA 98195-0005, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195-0005, USA
| | - Nicholas A. Steinmetz
- Department of Biological Structure, University of Washington, Seattle, WA 98195-0005, USA
| | - William J. Moody
- Department of Biology, University of Washington, Seattle, WA 98195-0005, USA
| | - Steven L. Brunton
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195-0005, USA
| | - Bingni W. Brunton
- Department of Biology, University of Washington, Seattle, WA 98195-0005, USA
| |
Collapse
|
8
|
Raut RV, Snyder AZ, Mitra A, Yellin D, Fujii N, Malach R, Raichle ME. Global waves synchronize the brain's functional systems with fluctuating arousal. SCIENCE ADVANCES 2021; 7:7/30/eabf2709. [PMID: 34290088 PMCID: PMC8294763 DOI: 10.1126/sciadv.abf2709] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/04/2021] [Indexed: 05/04/2023]
Abstract
We propose and empirically support a parsimonious account of intrinsic, brain-wide spatiotemporal organization arising from traveling waves linked to arousal. We hypothesize that these waves are the predominant physiological process reflected in spontaneous functional magnetic resonance imaging (fMRI) signal fluctuations. The correlation structure ("functional connectivity") of these fluctuations recapitulates the large-scale functional organization of the brain. However, a unifying physiological account of this structure has so far been lacking. Here, using fMRI in humans, we show that ongoing arousal fluctuations are associated with global waves of activity that slowly propagate in parallel throughout the neocortex, thalamus, striatum, and cerebellum. We show that these waves can parsimoniously account for many features of spontaneous fMRI signal fluctuations, including topographically organized functional connectivity. Last, we demonstrate similar, cortex-wide propagation of neural activity measured with electrocorticography in macaques. These findings suggest that traveling waves spatiotemporally pattern brain-wide excitability in relation to arousal.
Collapse
Affiliation(s)
- Ryan V Raut
- Department of Radiology, Washington University, St. Louis, MO 63110, USA.
| | - Abraham Z Snyder
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Anish Mitra
- Department of Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Dov Yellin
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Naotaka Fujii
- Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Rafael Malach
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Marcus E Raichle
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Cecchini G, Scaglione A, Allegra Mascaro AL, Checcucci C, Conti E, Adam I, Fanelli D, Livi R, Pavone FS, Kreuz T. Cortical propagation tracks functional recovery after stroke. PLoS Comput Biol 2021; 17:e1008963. [PMID: 33999967 PMCID: PMC8159272 DOI: 10.1371/journal.pcbi.1008963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/27/2021] [Accepted: 04/13/2021] [Indexed: 12/04/2022] Open
Abstract
Stroke is a debilitating condition affecting millions of people worldwide. The development of improved rehabilitation therapies rests on finding biomarkers suitable for tracking functional damage and recovery. To achieve this goal, we perform a spatiotemporal analysis of cortical activity obtained by wide-field calcium images in mice before and after stroke. We compare spontaneous recovery with three different post-stroke rehabilitation paradigms, motor training alone, pharmacological contralesional inactivation and both combined. We identify three novel indicators that are able to track how movement-evoked global activation patterns are impaired by stroke and evolve during rehabilitation: the duration, the smoothness, and the angle of individual propagation events. Results show that, compared to pre-stroke conditions, propagation of cortical activity in the subacute phase right after stroke is slowed down and more irregular. When comparing rehabilitation paradigms, we find that mice treated with both motor training and pharmacological intervention, the only group associated with generalized recovery, manifest new propagation patterns, that are even faster and smoother than before the stroke. In conclusion, our new spatiotemporal propagation indicators could represent promising biomarkers that are able to uncover neural correlates not only of motor deficits caused by stroke but also of functional recovery during rehabilitation. In turn, these insights could pave the way towards more targeted post-stroke therapies. Millions of people worldwide suffer from long-lasting motor deficits caused by stroke. Very recently, the two basic therapeutic approaches, motor training and pharmacological intervention, have been combined in order to achieve a more efficient functional recovery. In this study, we analyze the neurophysiological activity in the brain of mice observed with in vivo calcium imaging before and after the induction of a stroke. We use a newly developed universal approach based on the temporal sequence of local activation in different brain regions to quantify three properties of global propagation patterns: duration, smoothness and angle. These innovative spatiotemporal propagation indicators allow us to track damage and functional recovery following stroke and to quantify the relative success of motor training, pharmacological inactivation, and a combination of both, compared to spontaneous recovery. We show that all three treatments reverse the alterations observed during the subacute phase right after stroke. We also find that combining motor training and pharmacological intervention does not restore pre-stroke features but rather leads to the emergence of new propagation patterns that, surprisingly, are even faster and smoother than the pre-stroke patterns.
Collapse
Affiliation(s)
- Gloria Cecchini
- Department of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- * E-mail:
| | - Alessandro Scaglione
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
- Neuroscience Institute, National Research Council, Pisa, Italy
| | - Curzio Checcucci
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
| | - Emilia Conti
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
- Neuroscience Institute, National Research Council, Pisa, Italy
| | - Ihusan Adam
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- Department of Information Engineering, University of Florence, Sesto Fiorentino, Italy
| | - Duccio Fanelli
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- INFN, Florence Section, Sesto Fiorentino, Italy
| | - Roberto Livi
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- INFN, Florence Section, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics (INO), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Thomas Kreuz
- Institute for Complex Systems (ISC), National Research Council (CNR), Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Hamid AA, Frank MJ, Moore CI. Wave-like dopamine dynamics as a mechanism for spatiotemporal credit assignment. Cell 2021; 184:2733-2749.e16. [PMID: 33861952 PMCID: PMC8122079 DOI: 10.1016/j.cell.2021.03.046] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/31/2020] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
Significant evidence supports the view that dopamine shapes learning by encoding reward prediction errors. However, it is unknown whether striatal targets receive tailored dopamine dynamics based on regional functional specialization. Here, we report wave-like spatiotemporal activity patterns in dopamine axons and release across the dorsal striatum. These waves switch between activational motifs and organize dopamine transients into localized clusters within functionally related striatal subregions. Notably, wave trajectories were tailored to task demands, propagating from dorsomedial to dorsolateral striatum when rewards are contingent on animal behavior and in the opponent direction when rewards are independent of behavioral responses. We propose a computational architecture in which striatal dopamine waves are sculpted by inference about agency and provide a mechanism to direct credit assignment to specialized striatal subregions. Supporting model predictions, dorsomedial dopamine activity during reward-pursuit signaled the extent of instrumental control and interacted with reward waves to predict future behavioral adjustments.
Collapse
Affiliation(s)
- Arif A Hamid
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA.
| | - Michael J Frank
- Department of Cognitive Linguistics & Psychological Sciences, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA.
| | - Christopher I Moore
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
11
|
KCl-induced cortical spreading depression waves more heterogeneously propagate than optogenetically-induced waves in lissencephalic brain: an analysis with optical flow tools. Sci Rep 2020; 10:12793. [PMID: 32732932 PMCID: PMC7393358 DOI: 10.1038/s41598-020-69669-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/16/2020] [Indexed: 11/21/2022] Open
Abstract
Although cortical spreading depolarizations (CSD) were originally assumed to be homogeneously and concentrically propagating waves, evidence obtained first in gyrencephalic brains and later in lissencephalic brains suggested a rather non-uniform propagation, shaped heterogeneously by factors like cortical region differences, vascular anatomy, wave recurrences and refractory periods. Understanding this heterogeneity is important to better evaluate the experimental models on the mechanistics of CSD and to make appropriate clinical estimations on neurological disorders like migraine, stroke, and traumatic brain injury. This study demonstrates the application of optical flow analysis tools for systematic and objective evaluation of spatiotemporal CSD propagation patterns in anesthetized mice and compares the propagation profile in different CSD induction models. Our findings confirm the asymmetric angular CSD propagation in lissencephalic brains and suggest a strong dependency on induction-method, such that continuous potassium chloride application leads to significantly higher angular propagation variability compared to optogenetically-induced CSDs.
Collapse
|
12
|
Inayat S, Singh S, Ghasroddashti A, Qandeel, Egodage P, Whishaw IQ, Mohajerani MH. A Matlab-based toolbox for characterizing behavior of rodents engaged in string-pulling. eLife 2020; 9:54540. [PMID: 32589141 PMCID: PMC7347385 DOI: 10.7554/elife.54540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/26/2020] [Indexed: 12/23/2022] Open
Abstract
String-pulling by rodents is a behavior in which animals make rhythmical body, head, and bilateral forearm as well as skilled hand movements to spontaneously reel in a string. Typical analysis includes kinematic assessment of hand movements done by manually annotating frames. Here, we describe a Matlab-based software that allows whole-body motion characterization using optical flow estimation, descriptive statistics, principal component, and independent component analyses as well as temporal measures of Fano factor, entropy, and Higuchi fractal dimension. Based on image-segmentation and heuristic algorithms for object tracking, the software also allows tracking of body, ears, nose, and forehands for estimation of kinematic parameters such as body length, body angle, head roll, head yaw, head pitch, and path and speed of hand movements. The utility of the task and software is demonstrated by characterizing postural and hand kinematic differences in string-pulling behavior of two strains of mice, C57BL/6 and Swiss Webster.
Collapse
Affiliation(s)
- Samsoon Inayat
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Surjeet Singh
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Arashk Ghasroddashti
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Qandeel
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Pramuka Egodage
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
13
|
Oprea L, Pack CC, Khadra A. Machine classification of spatiotemporal patterns: automated parameter search in a rebounding spiking network. Cogn Neurodyn 2020; 14:267-280. [PMID: 32399070 PMCID: PMC7203379 DOI: 10.1007/s11571-020-09568-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/20/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
Various patterns of electrical activities, including travelling waves, have been observed in cortical experimental data from animal models as well as humans. By applying machine learning techniques, we investigate the spatiotemporal patterns, found in a spiking neuronal network with inhibition-induced firing (rebounding). Our cortical sheet model produces a wide variety of network activities including synchrony, target waves, and travelling wavelets. Pattern formation is controlled by modifying a Gaussian derivative coupling kernel through varying the level of inhibition, coupling strength, and kernel geometry. We have designed a computationally efficient machine classifier, based on statistical, textural, and temporal features, to identify the parameter regimes associated with different spatiotemporal patterns. Our results reveal that switching between synchrony and travelling waves can occur transiently and spontaneously without a stimulus, in a noise-dependent fashion, or in the presence of stimulus when the coupling strength and level of inhibition are at moderate values. They also demonstrate that when a target wave is formed, its wave speed is most sensitive to perturbations in the coupling strength between model neurons. This study provides an automated method to characterize activities produced by a novel spiking network that phenomenologically models large scale dynamics in the cortex.
Collapse
Affiliation(s)
- Lawrence Oprea
- Department of Physiology, McGill University, Montréal, QC Canada
| | - Christopher C. Pack
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montréal, QC Canada
| |
Collapse
|
14
|
MacDowell CJ, Buschman TJ. Low-Dimensional Spatiotemporal Dynamics Underlie Cortex-wide Neural Activity. Curr Biol 2020; 30:2665-2680.e8. [PMID: 32470366 DOI: 10.1016/j.cub.2020.04.090] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
Abstract
Cognition arises from the dynamic flow of neural activity through the brain. To capture these dynamics, we used mesoscale calcium imaging to record neural activity across the dorsal cortex of awake mice. We found that the large majority of variance in cortex-wide activity (∼75%) could be explained by a limited set of ∼14 "motifs" of neural activity. Each motif captured a unique spatiotemporal pattern of neural activity across the cortex. These motifs generalized across animals and were seen in multiple behavioral environments. Motif expression differed across behavioral states, and specific motifs were engaged by sensory processing, suggesting the motifs reflect core cortical computations. Together, our results show that cortex-wide neural activity is highly dynamic but that these dynamics are restricted to a low-dimensional set of motifs, potentially allowing for efficient control of behavior.
Collapse
Affiliation(s)
- Camden J MacDowell
- Princeton Neuroscience Institute, Princeton University, Washington Rd., Princeton, NJ 08540, USA; Department of Molecular Biology, Princeton University, Washington Rd., Princeton, NJ 08540, USA; Rutgers Robert Wood Johnson Medical School, 125 Paterson St., New Brunswick, NJ 08901, USA.
| | - Timothy J Buschman
- Princeton Neuroscience Institute, Princeton University, Washington Rd., Princeton, NJ 08540, USA; Department of Psychology, Princeton University, Washington Rd., Princeton, NJ 08540, USA.
| |
Collapse
|
15
|
Karimi Abadchi J, Nazari-Ahangarkolaee M, Gattas S, Bermudez-Contreras E, Luczak A, McNaughton BL, Mohajerani MH. Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples. eLife 2020; 9:51972. [PMID: 32167467 PMCID: PMC7096182 DOI: 10.7554/elife.51972] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/11/2020] [Indexed: 01/06/2023] Open
Abstract
A prevalent model is that sharp-wave ripples (SWR) arise ‘spontaneously’ in CA3 and propagate recent memory traces outward to the neocortex to facilitate memory consolidation there. Using voltage and extracellular glutamate transient recording over widespread regions of mice dorsal neocortex in relation to CA1 multiunit activity (MUA) and SWR, we find that the largest SWR-related modulation occurs in retrosplenial cortex; however, contrary to the unidirectional hypothesis, neocortical activation exhibited a continuum of activation timings relative to SWRs, varying from leading to lagging. Thus, contrary to the model in which SWRs arise ‘spontaneously’ in the hippocampus, neocortical activation often precedes SWRs and may thus constitute a trigger event in which neocortical information seeds associative reactivation of hippocampal ‘indices’. This timing continuum is consistent with a dynamics in which older, more consolidated memories may in fact initiate the hippocampal-neocortical dialog, whereas reactivation of newer memories may be initiated predominantly in the hippocampus.
Collapse
Affiliation(s)
- J Karimi Abadchi
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
| | | | - Sandra Gattas
- Department of Electrical Engineering and Computer Science, University of California, Irvine, United States.,Medical Scientist Training Program, University of California, Irvine, United States
| | | | - Artur Luczak
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Bruce L McNaughton
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada.,Department of Neurobiology and Behavior, University of California, Irvine, United States
| | - Majid H Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
16
|
Celotto M, De Luca C, Muratore P, Resta F, Allegra Mascaro AL, Pavone FS, De Bonis G, Paolucci PS. Analysis and Model of Cortical Slow Waves Acquired with Optical Techniques. Methods Protoc 2020; 3:E14. [PMID: 32023996 PMCID: PMC7189682 DOI: 10.3390/mps3010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Accepted: 01/22/2020] [Indexed: 12/25/2022] Open
Abstract
Slow waves (SWs) are spatio-temporal patterns of cortical activity that occur both during natural sleep and anesthesia and are preserved across species. Even though electrophysiological recordings have been largely used to characterize brain states, they are limited in the spatial resolution and cannot target specific neuronal population. Recently, large-scale optical imaging techniques coupled with functional indicators overcame these restrictions, and new pipelines of analysis and novel approaches of SWs modelling are needed to extract relevant features of the spatio-temporal dynamics of SWs from these highly spatially resolved data-sets. Here we combined wide-field fluorescence microscopy and a transgenic mouse model expressing a calcium indicator (GCaMP6f) in excitatory neurons to study SW propagation over the meso-scale under ketamine anesthesia. We developed a versatile analysis pipeline to identify and quantify the spatio-temporal propagation of the SWs. Moreover, we designed a computational simulator based on a simple theoretical model, which takes into account the statistics of neuronal activity, the response of fluorescence proteins and the slow waves dynamics. The simulator was capable of synthesizing artificial signals that could reliably reproduce several features of the SWs observed in vivo, thus enabling a calibration tool for the analysis pipeline. Comparison of experimental and simulated data shows the robustness of the analysis tools and its potential to uncover mechanistic insights of the Slow Wave Activity (SWA).
Collapse
Affiliation(s)
- Marco Celotto
- Department of Physics, “Sapienza” University of Rome, 00185 Rome, Italy; (M.C.); (C.D.L.); (P.M.)
- IIT—Neural Computation Lab, CNCS@UniTn, 38068 Rovereto, Italy
| | - Chiara De Luca
- Department of Physics, “Sapienza” University of Rome, 00185 Rome, Italy; (M.C.); (C.D.L.); (P.M.)
- INFN, 00185 Rome, Italy;
- PhD Program in Behavioural Neuroscience,“Sapienza” University of Rome, 00185 Rome, Italy
| | - Paolo Muratore
- Department of Physics, “Sapienza” University of Rome, 00185 Rome, Italy; (M.C.); (C.D.L.); (P.M.)
- PhD Program in Cognitive Neuroscience, SISSA, 34136 Trieste, Italy
| | - Francesco Resta
- LENS, University of Florence, 50019 Florence, Italy; (F.R.); (A.L.A.M.); (F.S.P.)
| | - Anna Letizia Allegra Mascaro
- LENS, University of Florence, 50019 Florence, Italy; (F.R.); (A.L.A.M.); (F.S.P.)
- Istituto di Neuroscienze, CNR, 56124 Pisa, Italy
| | - Francesco Saverio Pavone
- LENS, University of Florence, 50019 Florence, Italy; (F.R.); (A.L.A.M.); (F.S.P.)
- Department of Physics, University of Florence, 50019 Florence, Italy
| | | | | |
Collapse
|
17
|
Ashby DM, LeDue J, Murphy TH, McGirr A. Peripheral Nerve Ligation Elicits Widespread Alterations in Cortical Sensory Evoked and Spontaneous Activity. Sci Rep 2019; 9:15341. [PMID: 31653941 PMCID: PMC6814845 DOI: 10.1038/s41598-019-51811-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022] Open
Abstract
Peripheral neuropathies result in adaptation in primary sensory and other regions of cortex, and provide a framework for understanding the localized and widespread adaptations that arise from altered sensation. Mesoscale cortical imaging achieves high temporal resolution of activity using optical sensors of neuronal activity to simultaneously image across a wide expanse of cortex and capture this adaptation using sensory-evoked and spontaneous cortical activity. Saphenous nerve ligation in mouse is an animal model of peripheral neuropathy that produces hyperalgesia circumscribed to the hindlimb. We performed saphenous nerve ligation or sham, followed by mesoscale cortical imaging using voltage sensitive dye (VSD) after ten days. We utilized subcutaneous electrical stimulation at multiple stimulus intensities to characterize sensory responses after ligation or sham, and acquired spontaneous activity to characterize functional connectivity and large scale cortical network reorganization. Relative to sham animals, the primary sensory-evoked response to hindlimb stimulation in ligated animals was unaffected in magnitude at all stimulus intensities. However, we observed a diminished propagating wave of cortical activity at lower stimulus intensities in ligated animals after hindlimb, but not forelimb, sensory stimulation. We simultaneously observed a widespread decrease in cortical functional connectivity, where midline association regions appeared most affected. These results are consistent with localized and broad alterations in intracortical connections in response to a peripheral insult, with implications for novel circuit level understanding and intervention for peripheral neuropathies and other conditions affecting sensation.
Collapse
Affiliation(s)
- Donovan M Ashby
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jeffrey LeDue
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Timothy H Murphy
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Alexander McGirr
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada.
| |
Collapse
|
18
|
Feiz MS, Latifi H, Rezaei A, Karimkhan-zand M. Digital image registration reveals signal improvements in voltage-sensitive dye imaging of
in vivo
rat brain. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab3f68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Abstract
The global population is ageing at an accelerating speed. The ability to perform working memory tasks together with rapid processing becomes increasingly difficult with increases in age. With increasing national average life spans and a rise in the prevalence of age-related disease, it is pertinent to discuss the unique perspectives that can be gained from imaging the aged brain. Differences in structure, function, blood flow, and neurovascular coupling are present in both healthy aged brains and in diseased brains and have not yet been explored to their full depth in contemporary imaging studies. Imaging methods ranging from optical imaging to magnetic resonance imaging (MRI) to newer technologies such as photoacoustic tomography each offer unique advantages and challenges in imaging the aged brain. This paper will summarize first the importance and challenges of imaging the aged brain and then offer analysis of potential imaging modalities and their representative applications. The potential breakthroughs in brain imaging are also envisioned.
Collapse
Affiliation(s)
- Hannah Humayun
- Photoacoustic Imaging Laboratory, Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Junjie Yao
- Photoacoustic Imaging Laboratory, Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
20
|
Townsend RG, Gong P. Detection and analysis of spatiotemporal patterns in brain activity. PLoS Comput Biol 2018; 14:e1006643. [PMID: 30507937 PMCID: PMC6292652 DOI: 10.1371/journal.pcbi.1006643] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 12/13/2018] [Accepted: 11/14/2018] [Indexed: 12/31/2022] Open
Abstract
There is growing evidence that population-level brain activity is often organized into propagating waves that are structured in both space and time. Such spatiotemporal patterns have been linked to brain function and observed across multiple recording methodologies and scales. The ability to detect and analyze these patterns is thus essential for understanding the working mechanisms of neural circuits. Here we present a mathematical and computational framework for the identification and analysis of multiple classes of wave patterns in neural population-level recordings. By drawing a conceptual link between spatiotemporal patterns found in the brain and coherent structures such as vortices found in turbulent flows, we introduce velocity vector fields to characterize neural population activity. These vector fields are calculated for both phase and amplitude of oscillatory neural signals by adapting optical flow estimation methods from the field of computer vision. Based on these velocity vector fields, we then introduce order parameters and critical point analysis to detect and characterize a diverse range of propagating wave patterns, including planar waves, sources, sinks, spiral waves, and saddle patterns. We also introduce a novel vector field decomposition method that extracts the dominant spatiotemporal structures in a recording. This enables neural data to be represented by the activity of a small number of independent spatiotemporal modes, providing an alternative to existing dimensionality reduction techniques which separate space and time components. We demonstrate the capabilities of the framework and toolbox with simulated data, local field potentials from marmoset visual cortex and optical voltage recordings from whole mouse cortex, and we show that pattern dynamics are non-random and are modulated by the presence of visual stimuli. These methods are implemented in a MATLAB toolbox, which is freely available under an open-source licensing agreement. Structured activity such as propagating wave patterns at the level of neural circuits can arise from highly variable firing activity of individual neurons. This property makes the brain, a quintessential example of a complex system, analogous to other complex physical systems such as turbulent fluids, in which structured patterns like vortices similarly emerge from molecules that behave irregularly. In this study, by uniquely adapting techniques for the identification of coherent structures in fluid turbulence, we develop new analytical and computational methods for the reliable detection of a diverse range of propagating wave patterns in large-scale neural recordings, for comprehensive analysis and visualization of these patterns, and for analysis of their dominant spatiotemporal modes. We demonstrate that these methods can be used to uncover the essential spatiotemporal properties of neural population activity recorded by different modalities, thus offering new insights into understanding the working mechanisms of neural systems.
Collapse
Affiliation(s)
- Rory G. Townsend
- School of Physics, The University of Sydney, NSW, Australia
- ARC Centre of Excellence for Integrative Brain Function, The University of Sydney, NSW, Australia
| | - Pulin Gong
- School of Physics, The University of Sydney, NSW, Australia
- ARC Centre of Excellence for Integrative Brain Function, The University of Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
21
|
Whishaw IQ, Mirza Agha B, Kuntz JR, Qandeel, Faraji J, Mohajerani MH. Tongue protrusions modify the syntax of skilled reaching for food by the mouse: Evidence for flexibility in action selection and shared hand/mouth central modulation of action. Behav Brain Res 2017; 341:37-44. [PMID: 29229548 DOI: 10.1016/j.bbr.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 01/24/2023]
Abstract
Skilled reaching for food by the laboratory mouse has the appearance of an action pattern with a distinctive syntax in which ten submovements occur in an orderly sequence. A mouse locates the food by Sniffing, Lifts, Aims, Advances, and Shapes the hand to Pronate it over a food target that it Grasps, Retracts, and Withdraws to Release to its mouth for eating. The structure of the individual actions in the chain are useful for the study of the mouse motor system and contribute to the use of the mouse as a model of human neurological conditions. The present study describes tongue protrusions that modify the syntax of reaching by occurring at the point of the reaching action at which the hand is at the Aim position. Tongue protrusions were not related to reaching success and were not influenced by training. Tongue protrusions were more likely to occur in the presence of a food target than with reaches made when food was absent. There were vast individual differences; some mice always make tongue protrusions while other mice never make tongue protrusions. That the syntax of reaching can be altered by the insertion of a surrogate (co-occurring) movement adds to a growing body of evidence that skilled reaching is assembled from a number of relatively independent actions, each with its own sensorimotor control that are subject to central modulation. That tongue and hand reaching movements can co-occur suggests a privileged relation between neural mechanisms that control movements of the tongue and hand.
Collapse
Affiliation(s)
- Ian Q Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Behroo Mirza Agha
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Jessica R Kuntz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Qandeel
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Jamshid Faraji
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada; Golestan University of Medical Sciences, Faculty of Nursing & Midwifery, Gorgan, Islamic Republic of Iran
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|