1
|
Wang Z, Li Z, Zhou G, Liu J, Zhao Z, Gao J, Li Y. Graph theory-driven structural and functional connectivity analyses revealing regulatory mechanisms of brain network in patients with classic trigeminal neuralgia. Brain Imaging Behav 2024:10.1007/s11682-024-00915-5. [PMID: 39388007 DOI: 10.1007/s11682-024-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/15/2024]
Abstract
A specific regulatory mechanism underlying classical trigeminal neuralgia (cTN) remains unknown. The present study posits that the initiation and advancement of cTN may be attributed to a self-regulatory and compensatory mechanism within the brain's limbic system. A sample size of thirty-three patients diagnosed with cTN and twenty-one normal controls were recruited for this investigation. Functional magnetic resonance imaging data were collected from all participants. Graph-theoretic analysis was employed to identify abnormal nodes induced by cTN in the brain atlas, followed by determining the brain network function in conjunction with the outcomes of regional homogeneity (ReHo) and functional connectivity (FC). During data processing, relatively strict thresholds were set for all corrections. The findings indicated that the discrepancy in small-worldness characteristics between the two cohorts primarily stemmed from the characteristic path length. Additionally, there was an overlap between brain regions exhibiting markedly reduced node efficiency in cTN patients and those exhibiting markedly reduced ReHo signal. The FC analysis of the whole brain revealed nine brain regions with reduced connectivity in the cTN group, corresponding to brain regions with diminished node efficiency. Notably, most of these abnormal brain regions were located in the limbic system, providing evidence of the compensatory mechanism of the limbic system.
Collapse
Affiliation(s)
- Zairan Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Zhimin Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Gang Zhou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Jie Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurosurgery, The Forth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China.
| |
Collapse
|
2
|
Biggs EE, Timmers I, Heathcote LC, Tremblay-McGaw AG, Noel M, Borsook D, Simons LE. Emotional memory bias in adolescents with chronic pain: examining the relationship with neural, stress, and psychological factors. Pain 2024:00006396-990000000-00688. [PMID: 39172857 DOI: 10.1097/j.pain.0000000000003382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/12/2024] [Indexed: 08/24/2024]
Abstract
ABSTRACT Memory biases for pain-related information may contribute to the development and maintenance of chronic pain; however, evidence for when (and for whom) these biases occur is mixed. Therefore, we examined neural, stress, and psychological factors that could influence memory bias, focusing on memories that motivate disabling behaviors: pain perception, conditioned responses to threat-and-safety cues, and responses to aversive nonnoxious stimuli. Two studies were conducted with adolescents with and without chronic pain. Data from 58 participants were included in study 1 (chronic pain n = 34, pain free n = 24, mean age = 16 years), and 39 participants were included in study 2 (chronic pain n = 26, pain free n = 13, mean age = 16 years). Both studies used a threat-safety learning paradigm with memory recall (≈1 month later). Participants completed structural and functional (resting-state) magnetic resonance imaging, salivary cortisol measurements, and self-report measures. Adolescents with pain and pain-free peers consistently recalled being more afraid of safety cues (CS-) and, during heightened stress at encoding (higher cortisol levels), also reported being more afraid of threat cues (CS+). However, no memory bias was present for the emotional response to an aversive stimulus (US; loud scream) or for the recall of pain intensity. Functional connectivity of the amygdala and hippocampus with memory circuits related to the degree of memory bias, but the specific connections varied between the studies, and we observed no relationship between memory bias and brain morphology. Our findings highlight the value of considering the interaction between implicit and explicit memory systems, contributing to a more comprehensive understanding of emotional memory biases in the context of chronic pain.
Collapse
Affiliation(s)
- Emma E Biggs
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands
| | - Inge Timmers
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands
| | - Lauren C Heathcote
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
- Health Psychology Section, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Alexandra G Tremblay-McGaw
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Melanie Noel
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - David Borsook
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
| | - Laura E Simons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
3
|
Waisman A, Katz J. The autobiographical memory system and chronic pain: A neurocognitive framework for the initiation and maintenance of chronic pain. Neurosci Biobehav Rev 2024; 162:105736. [PMID: 38796124 DOI: 10.1016/j.neubiorev.2024.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Chronic pain affects approximately 20% of the world's population, exerting a substantial burden on the affected individual, their families, and healthcare systems globally. Deficits in autobiographical memory have been identified among individuals living with chronic pain, and even found to pose a risk for the transition to chronicity. Recent neuroimaging studies have simultaneously implicated common brain regions central to autobiographical memory processing in the maintenance of and susceptibility to chronic pain. The present review proposes a novel neurocognitive framework for chronic pain explained by mechanisms underlying the autobiographical memory system. Here, we 1) summarize the current literature on autobiographical memory in pain, 2) discuss the role of the hippocampus and cortical brain regions including the ventromedial prefrontal cortex, anterior temporal lobe, and amygdala in relation to autobiographical memory, memory schemas, emotional processing, and pain, 3) synthesize these findings in a neurocognitive framework that explains these relationships and their implications for patients' pain outcomes, and 4) propose translational directions for the prevention, management, and treatment of chronic pain.
Collapse
Affiliation(s)
- Anna Waisman
- Department of Psychology, York University, Toronto, ON, Canada.
| | - Joel Katz
- Department of Psychology, York University, Toronto, ON, Canada; Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada; Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Armstrong M, Castellanos J, Christie D. Chronic pain as an emergent property of a complex system and the potential roles of psychedelic therapies. FRONTIERS IN PAIN RESEARCH 2024; 5:1346053. [PMID: 38706873 PMCID: PMC11066302 DOI: 10.3389/fpain.2024.1346053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Despite research advances and urgent calls by national and global health organizations, clinical outcomes for millions of people suffering with chronic pain remain poor. We suggest bringing the lens of complexity science to this problem, conceptualizing chronic pain as an emergent property of a complex biopsychosocial system. We frame pain-related physiology, neuroscience, developmental psychology, learning, and epigenetics as components and mini-systems that interact together and with changing socioenvironmental conditions, as an overarching complex system that gives rise to the emergent phenomenon of chronic pain. We postulate that the behavior of complex systems may help to explain persistence of chronic pain despite current treatments. From this perspective, chronic pain may benefit from therapies that can be both disruptive and adaptive at higher orders within the complex system. We explore psychedelic-assisted therapies and how these may overlap with and complement mindfulness-based approaches to this end. Both mindfulness and psychedelic therapies have been shown to have transdiagnostic value, due in part to disruptive effects on rigid cognitive, emotional, and behavioral patterns as well their ability to promote neuroplasticity. Psychedelic therapies may hold unique promise for the management of chronic pain.
Collapse
Affiliation(s)
- Maya Armstrong
- Department of Family & Community Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Joel Castellanos
- Division of Pain Medicine, Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Devon Christie
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Zhang YH, Lin JX, Wang N, Wang JY, Luo F. Assessing cognitive biases induced by acute formalin or hotplate treatment: an animal study using affective bias test. Front Behav Neurosci 2024; 18:1332760. [PMID: 38333761 PMCID: PMC10850345 DOI: 10.3389/fnbeh.2024.1332760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Pain, a universal and burdensome condition, influences numerous individuals worldwide. It encompasses sensory, emotional, and cognitive facets, with recent research placing a heightened emphasis on comprehending pain's impact on emotion and cognition. Cognitive bias, which encompasses attentional bias, interpretation bias, and memory bias, signifies the presence of cognitive distortions influenced by emotional factors. It has gained significant prominence in pain-related research. Human studies have shown that individuals experiencing pain exhibit cognitive bias. Similarly, animal studies have demonstrated cognitive bias in pain-induced states across various species and disease models. In this study, we aimed to investigate the memory bias displayed by rats experiencing acute pain, using the affective bias test (ABT) as a tool and administering either hotplate or formalin to induce acute pain. Our data showed that rats demonstrated a significant preference for the control treatment-related substrate over the substrate associated with formalin treatment (p < 0.001), an indication of the prominent memory bias stimulated by acute formalin injections. However, when exposed to substrates related to hotplate treatment and control treatment, the acute pain induced by the hotplate treatment failed to generate a statistically significant choice bias in rats (p = 0.674). Our study demonstrates that the negative emotions associated with acute pain can be reflected by memory bias in ABT, at least for formalin-induced acute pain. This finding will augment our comprehension of the emotional and cognitive aspects of acute pain.
Collapse
Affiliation(s)
- Yu-Han Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jie-Xuan Lin
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Yan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Luo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Holmes S, Reyes N, Huang JJ, Galor A, Pattany PM, Felix ER, Moulton EA. Disentangling the neurological basis of chronic ocular pain using clinical, self-report, and brain imaging data: use of K-means clustering to explore patient phenotypes. Front Neurol 2023; 14:1265082. [PMID: 38033775 PMCID: PMC10687553 DOI: 10.3389/fneur.2023.1265082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction The factors that mediate the expression of ocular pain and the mechanisms that promote chronic ocular pain symptoms are poorly understood. Central nervous system involvement has been postulated based on observations of pain out of proportion to nociceptive stimuli in some individuals. This investigation focused on understanding functional connectivity between brain regions implicated in chronic pain in persons reporting ocular pain symptoms. Methods We recruited a total of 53 persons divided into two cohorts: persons who reported no ocular pain, and persons who reported chronic ocular pain, irrespective of ocular surface findings. We performed a resting state fMRI investigation that was focused on subcortical brain structures including the trigeminal nucleus and performed a brief battery of ophthalmological examinations. Results Persons in the pain cohort reported higher levels of pain symptoms relating to neuropathic pain and ocular surface disease, as well as more abnormal tear metrics (stability and tear production). Functional connectivity analysis between groups evinced multiple connections exemplifying both increases and decreases in connectivity including regions such as the trigeminal nucleus, amygdala, and sub-regions of the thalamus. Exploratory analysis of the pain cohort integrating clinical and brain function metrics highlighted subpopulations that showed unique phenotypes providing insight into pain mechanisms. Discussion Study findings support centralized involvement in those reporting ocular-based pain and allude to mechanisms through which pain treatment services may be directed in future research.
Collapse
Affiliation(s)
- Scott Holmes
- Pain and Affective Neuroscience Center, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Pediatric Pain Pathway Lab, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicholas Reyes
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Jaxon J. Huang
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Anat Galor
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Pradip M. Pattany
- Department of Radiology, University of Miami, Miami, FL, United States
| | - Elizabeth R. Felix
- Research Service, Miami Veterans Administration Medical Center, Miami, FL, United States
- Physical Medicine and Rehabilitation, University of Miami, Miami, FL, United States
| | - Eric A. Moulton
- Pain and Affective Neuroscience Center, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Brain and Eye Pain Imaging Lab, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
El-Tallawy SN, Ahmed RS, Nagiub MS. Pain Management in the Most Vulnerable Intellectual Disability: A Review. Pain Ther 2023; 12:939-961. [PMID: 37284926 PMCID: PMC10290021 DOI: 10.1007/s40122-023-00526-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
This review is made up of two parts; the first part discussing intellectual disability (ID) in general, while the second part covers the pain associated with intellectual disability and the challenges and practical tips for the management of pain associated with (ID). Intellectual disability is characterized by deficits in general mental abilities, such as reasoning, problem solving, planning, abstract thinking, judgment, academic learning, and learning from experience. ID is a disorder with no definite cause but has multiple risk factors, including genetic, medical, and acquired. Vulnerable populations such as individuals with intellectual disability may experience more pain than the general population due to additional comorbidities and secondary conditions, or at least the same frequency of pain as in the general population. Pain in patients with ID remains largely unrecognized and untreated due to barriers to verbal and non-verbal communication. It is important to identify patients at risk to promptly prevent or minimize those risk factors. As pain is multifactorial, thus, a multimodal approach using both pharmacotherapy and non-pharmacological management is often the most beneficial. Parents and caregivers should be oriented to this disorder, given adequate training and education, and be actively involved with the treatment program. Significant work to create new pain assessment tools to improve pain practices for individuals with ID has taken place, including neuroimaging and electrophysiological studies. Recent advances in technology-based interventions such as virtual reality and artificial intelligence are rapidly growing to help give patients with ID promising results to develop pain coping skills with effective reduction of pain and anxiety. Therefore, this narrative review highlights the different aspects regarding the current status of the pain associated with intellectual disability, with more emphasis on the recent pieces of evidence for the assessment and management of pain among populations with intellectual disability.
Collapse
Affiliation(s)
- Salah N. El-Tallawy
- King Khalid University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Anesthesia Department, Faculty of Medicine, Minia University and NCI, Cairo University, Giza, Egypt
| | - Rania S. Ahmed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
8
|
Haase I. Accuracy of retrospective pain measurement in patients with chronic pain. MEDICINE INTERNATIONAL 2023; 3:35. [PMID: 37448767 PMCID: PMC10336923 DOI: 10.3892/mi.2023.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
The use of pain scales that refer to a past time period is thereby based on the assumption that patients accurately remember their 'average', 'greatest' and 'least' pain. The present study addresses the validity of numerical pain rating scales that refer to a past period of time (herein, the past 7 days). Routine data from 94 patients with chronic pain were retrospectively analysed. Pain questionnaire data on the greatest, least and average pain during the past week and on current pain were compared with the mean value of entries in a pain diary from the corresponding period. The retrospectively assessed average, greatest and least pain values were consistently slightly higher than the corresponding values of daily current pain measured for the studied collective of chronic pain patients. Current pain (at the time of answering the questionnaire) better represents daily currently measured pain [intraclass correlation (ICC)=0.885] than retrospective individual measurements. The greatest correlation with averaged diary data was shown by the combination of questionnaire data on average, least and current pain (ICC=0.911). The high correlations between the questionnaire and diary data support the validity of retrospective pain surveys. However, the current status influences recall. Thus, composite retrospective pain data improve with the addition of current pain.
Collapse
Affiliation(s)
- Ingo Haase
- Department of Research, Development and Quality Assurance, Clinic Group Enzensberg, D-87629 Hopfen am See, Germany
| |
Collapse
|
9
|
Liu N, Li Y, Hong Y, Huo J, Chang T, Wang H, Huang Y, Li W, Zhang Y. Altered brain activities in mesocorticolimbic pathway in primary dysmenorrhea patients of long-term menstrual pain. Front Neurosci 2023; 17:1098573. [PMID: 36793538 PMCID: PMC9922713 DOI: 10.3389/fnins.2023.1098573] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
Background Patients with primary dysmenorrhea (PDM) often present with abnormalities other than dysmenorrhea including co-occurrence with other chronic pain conditions and central sensitization. Changes in brain activity in PDM have been demonstrated; however, the results are not consistent. Herein, this study probed into altered intraregional and interregional brain activity in patients with PDM and expounded more findings. Methods A total of 33 patients with PDM and 36 healthy controls (HCs) were recruited and underwent a resting-state functional magnetic resonance imaging scan. Regional homogeneity (ReHo) and mean amplitude of low-frequency fluctuation (mALFF) analysis were applied to compare the difference in intraregional brain activity between the two groups, and the regions with ReHo and mALFF group differences were used as seeds for functional connectivity (FC) analysis to explore the difference of interregional activity. Pearson's correlation analysis was conducted between rs-fMRI data and clinical symptoms in patients with PDM. Results Compared with HCs, patients with PDM showed altered intraregional activity in a series of brain regions, including the hippocampus, the temporal pole superior temporal gyrus, the nucleus accumbens, the pregenual anterior cingulate cortex, the cerebellum_8, the middle temporal gyrus, the inferior temporal gyrus, the rolandic operculum, the postcentral gyrus and the middle frontal gyrus (MFG), and altered interregional FC mainly between regions of the mesocorticolimbic pathway and regions associated with sensation and movement. The anxiety symptoms are correlated with the intraregional activity of the right temporal pole superior temporal gyrus and FC between MFG and superior frontal gyrus. Conclusion Our study showed a more comprehensive method to explore changes in brain activity in PDM. We found that the mesocorticolimbic pathway might play a key role in the chronic transformation of pain in PDM. We, therefore, speculate that the modulation of the mesocorticolimbic pathway may be a potential novel therapeutic mechanism for PDM.
Collapse
Affiliation(s)
- Ni Liu
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yingqiu Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yueying Hong
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jianwei Huo
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Tai Chang
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Haoyuan Wang
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yiran Huang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Wenxun Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China,Wenxun Li ✉
| | - Yanan Zhang
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China,*Correspondence: Yanan Zhang ✉
| |
Collapse
|
10
|
Waisman A, Kleiman V, Slepian PM, Clarke H, Katz J. Autobiographical memory predicts postsurgical pain up to 12 months after major surgery. Pain 2022; 163:2438-2445. [PMID: 35385438 PMCID: PMC9667382 DOI: 10.1097/j.pain.0000000000002645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Recent cross-sectional studies have identified differences in autobiographical memory (AM) among individuals with chronic pain, but the temporal relationship between the 2 is unknown. Moreover, AM has yet to be studied in patients undergoing major surgery. This study addressed these gaps by conducting a prospective, longitudinal study of memory performance, postsurgical pain, and psychosocial factors in 97 adult participants scheduled for major surgery. Memories were evaluated using the Autobiographical Memory Test before and one month after surgery when participants were asked to recall personal events related to positive and pain-related word cues. Responses were coded for level of specificity, emotional valence, and surgery-related content. Questionnaires assessing presence/absence of pain and psychological functioning were administered before and at 1-, 3-, 6-, and 12-month follow-ups. Generalized estimating equations modelled pain at each postsurgical time point with memory variables as predictors. As hypothesized, higher numbers of specific pain memories recalled before surgery predicted lower odds of pain across all time points (OR = 0.58, 95% CI [0.37-0.91]). Participants who took longer to recall pain memories before surgery (OR = 2.65, 95% CI [1.31-5.37]) and those who produced more surgery-related content at the one-month assessment (OR = 1.31, 95% CI [1.02-1.68]) had greater odds of reporting postsurgical pain up to 12 months later. These findings indicate that presurgical AM biases are risk factors for development and maintenance of postsurgical pain. To the extent that these biases are causal, presurgical interventions that modify the quality and content of patients' memories may prove to be promising strategies in the prevention of chronic postsurgical pain.
Collapse
Affiliation(s)
- Anna Waisman
- Department of Psychology, York University, Toronto, ON, Canada
| | - Valery Kleiman
- Department of Psychology, York University, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada
- Neurology Specialty Clinic, Altum Health, Toronto Western Hospital, Toronto, ON, Canada
| | - P. Maxwell Slepian
- Department of Psychology, York University, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada
| | - Hance Clarke
- Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, ON, Canada
| | - Joel Katz
- Department of Psychology, York University, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, ON, Canada
| |
Collapse
|
11
|
Sandberg J, Sundh J, Anderberg P, Currow DC, Johnson M, Lansing R, Ekström M. Comparing recalled versus experienced symptoms of breathlessness ratings: An ecological assessment study using mobile phone technology. Respirology 2022; 27:874-881. [PMID: 35697350 PMCID: PMC9546302 DOI: 10.1111/resp.14313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Recall of breathlessness is important for clinical care but might differ from the experienced (momentary) symptoms. This study aimed to characterize the relationship between momentary breathlessness ratings and the recall of the experience. It is hypothesized that recall is influenced by the peak (worst) and end (most recent) ratings of momentary breathlessness (peak-end rule). METHODS This study used mobile ecological momentary assessment (mEMA) for assessing breathlessness in daily life through an application installed on participants' mobile phones. Breathlessness ratings (0-10 numerical rating scale) were recorded throughout the day and recalled each night and at the end of the week. Analyses were performed using regular and mixed linear regression. RESULTS Eighty-four people participated. Their mean age was 64.4 years, 60% were female and 98% had modified Medical Research Council (mMRC) ≥ 1. The mean number of momentary ratings of breathlessness provided was 7.7 ratings/participant/day. Recalled breathlessness was associated with the mean, peak and end values of the day. The mean was most closely associated with the daily recall. Associations were strong for weekly values: peak breathlessness (beta = 0.95, r2 = 0.57); mean (beta = 0.91, r2 = 0.53); and end (beta = 0.67, r2 = 0.48); p < 0.001 for all. Multivariate analysis showed that peak breathlessness had the strongest influence on the breathlessness recalled at the end of the week. CONCLUSION Over 1 week, recalled breathlessness is most strongly influenced by the peak breathlessness; over 1 day, it is mean breathlessness that participants most readily recalled.
Collapse
Affiliation(s)
- Jacob Sandberg
- Department of Clinical Sciences, Division of Respiratory Medicine & AllergologyLund UniversityLundSweden
| | - Josefin Sundh
- Department of Respiratory Medicine, School of Medical SciencesÖrebro UniversityÖrebroSweden
| | - Peter Anderberg
- Department of HealthBlekinge Institute of TechnologyKarlskronaSweden
| | - David C. Currow
- Wolfson Palliative Care Research Centre, Hull York Medical SchoolUniversity of HullHullUK
- IMPACCT, Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| | - Miriam Johnson
- Wolfson Palliative Care Research Centre, Hull York Medical SchoolUniversity of HullHullUK
| | - Robert Lansing
- Department of PsychologyUniversity of ArizonaTucsonArizonaUSA
| | - Magnus Ekström
- Department of Clinical Sciences, Division of Respiratory Medicine & AllergologyLund UniversityLundSweden
| |
Collapse
|
12
|
Waisman A, Pavlova M, Noel M, Katz J. Painful reminders: Involvement of the autobiographical memory system in pediatric postsurgical pain and the transition to chronicity. Can J Pain 2022; 6:121-141. [PMID: 35692557 PMCID: PMC9176239 DOI: 10.1080/24740527.2022.2058474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 10/27/2022]
Abstract
Memory biases for previous pain experiences are known to be strong predictors of postsurgical pain outcomes in children. Until recently, much research on the subject in youth has assessed the sensory and affective components of recall using single-item self-report pain ratings. However, a newly emerging focus in the field has been on the episodic specificity of autobiographical pain memories. Still in its infancy, cross-sectional work has identified the presence of various memory biases in adults living with chronic pain, one of which concerns the lack of spatiotemporal specificity. Moreover, a recent prospective longitudinal study found that adults scheduled for major surgery who produced fewer specific pain memories before surgery were at greater risk of developing chronic postsurgical pain up to 12 months later. The present review draws on this research to highlight the timely need for a similar line of investigation into autobiographical pain memories in pediatric surgical populations. We (1) provide an overview of the literature on children's pain memories and underscore the need for further research pertaining to memory specificity and related neurobiological factors in chronic pain and an overview of the (2) important role of parent (and sibling) psychosocial characteristics in influencing children's pain development, (3) cognitive mechanisms underlying overgeneral memory, and (4) interplay between memory and other psychological factors in its contributions to chronic pain and (5) conclude with a discussion of the implications this research has for novel interventions that target memory biases to attenuate, and possibly eliminate, the risk that acute pain after pediatric surgery becomes chronic.
Collapse
Affiliation(s)
- Anna Waisman
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Maria Pavlova
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Melanie Noel
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Joel Katz
- Department of Psychology, York University, Toronto, Ontario, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
13
|
Berger SE, Baria AT. Assessing Pain Research: A Narrative Review of Emerging Pain Methods, Their Technosocial Implications, and Opportunities for Multidisciplinary Approaches. FRONTIERS IN PAIN RESEARCH 2022; 3:896276. [PMID: 35721658 PMCID: PMC9201034 DOI: 10.3389/fpain.2022.896276] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pain research traverses many disciplines and methodologies. Yet, despite our understanding and field-wide acceptance of the multifactorial essence of pain as a sensory perception, emotional experience, and biopsychosocial condition, pain scientists and practitioners often remain siloed within their domain expertise and associated techniques. The context in which the field finds itself today-with increasing reliance on digital technologies, an on-going pandemic, and continued disparities in pain care-requires new collaborations and different approaches to measuring pain. Here, we review the state-of-the-art in human pain research, summarizing emerging practices and cutting-edge techniques across multiple methods and technologies. For each, we outline foreseeable technosocial considerations, reflecting on implications for standards of care, pain management, research, and societal impact. Through overviewing alternative data sources and varied ways of measuring pain and by reflecting on the concerns, limitations, and challenges facing the field, we hope to create critical dialogues, inspire more collaborations, and foster new ideas for future pain research methods.
Collapse
Affiliation(s)
- Sara E. Berger
- Responsible and Inclusive Technologies Research, Exploratory Sciences Division, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States
| | | |
Collapse
|
14
|
Wang Y, Wang Y, Bu L, Wang S, Xie X, Lin F, Xiao Z. Functional Connectivity Features of Resting-State Functional Magnetic Resonance Imaging May Distinguish Migraine From Tension-Type Headache. Front Neurosci 2022; 16:851111. [PMID: 35557602 PMCID: PMC9087040 DOI: 10.3389/fnins.2022.851111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Background Migraineurs often exhibited abnormalities in cognition, emotion, and resting-state functional connectivity (rsFC), whereas patients with tension-type headache (TTH) rarely exhibited these abnormalities. The aim of this study is to explore whether rsFC alterations in brain regions related to cognition and emotion could be used to distinguish patients with migraine from patients with TTH. Methods In this study, Montreal Cognitive Assessment (MoCA), Self-Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS), and rsFC analyses were used to assess the cognition, anxiety, and depression of 24 healthy controls (HCs), 24 migraineurs, and 24 patients with TTH. Due to their important roles in neuropsychological functions, the bilateral amygdala and hippocampus were chosen as seed regions for rsFC analyses. We further assessed the accuracy of the potential rsFC alterations for distinguishing migraineurs from non-migraineurs (including HCs and patients with TTH) by the receiver operating characteristic (ROC) analysis. Associations between headache characteristics and rsFC features were calculated using a multi-linear regression model. This clinical trial protocol has been registered in the Chinese Clinical Trial Registry (registry number: ChiCTR1900024307, Registered: 5 July 2019-Retrospectively registered, http://www.chictr.org.cn/showproj.aspx?proj=40817). Results Migraineurs showed lower MoCA scores (p = 0.010) and higher SAS scores (p = 0.017) than HCs. Migraineurs also showed decreased rsFC in the bilateral calcarine/cuneus, lingual gyrus (seed: left amygdala), and bilateral calcarine/cuneus (seed: left hippocampus) in comparison to HCs and patients with TTH. These rsFC features demonstrated significant distinguishing capabilities and got a sensitivity of 82.6% and specificity of 81.8% with an area under the curve (AUC) of 0.868. rsFC alterations showed a significant correlation with headache frequency in migraineurs (p = 0.001, Pc = 0.020). Conclusion The rsFC of amygdala and hippocampus with occipital lobe can be used to distinguish patients with migraine from patients with TTH. Clinical Trial Registration [http://www.chictr.org.cn/showproj.aspx?proj=40817], identifier [ChiCTR1900024307].
Collapse
Affiliation(s)
- Yajuan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingshuang Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihong Bu
- Positron Emission Tomography-Computer Tomography (PET-CT)/Magnetic Resonance Imaging (MRI) Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoyang Wang
- Department of Emergency, People's Hospital of Rizhao, Rizhao, China
| | - Xinhui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fuchun Lin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Vachon-Presseau E, Abdullah TB, Berger SE, Huang L, Griffith JW, Schnitzer TJ, Apkarian AV. Validating a biosignature-predicting placebo pill response in chronic pain in the settings of a randomized controlled trial. Pain 2022; 163:910-922. [PMID: 34433773 PMCID: PMC8863986 DOI: 10.1097/j.pain.0000000000002450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/08/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT The objective of this study is to validate a placebo pill response predictive model-a biosignature-that classifies chronic pain patients into placebo responders (predicted-PTxResp) and nonresponders (predicted-PTxNonR) and test whether it can dissociate placebo and active treatment responses. The model, based on psychological and brain functional connectivity, was derived in our previous study and blindly applied to current trial participants. Ninety-four chronic low back pain (CLBP) patients were classified into predicted-PTxResp or predicted-PTxNonR and randomized into no treatment, placebo treatment, or naproxen treatment. To monitor analgesia, back pain intensity was collected twice a day: 3 weeks baseline, 6 weeks of treatment, and 3 weeks of washout. Eighty-nine CLBP patients were included in the intent-to-treat analyses and 77 CLBP patients in the per-protocol analyses. Both analyses showed similar results. At the group level, the predictive model performed remarkably well, dissociating the separate effect sizes of pure placebo response and pure active treatment response and demonstrating that these effects interacted additively. Pain relief was about 15% stronger in the predicted-PTxResp compared with the predicted-PTxNonR receiving either placebo or naproxen, and the predicted-PTxNonR successfully isolated the active drug effect. At a single subject level, the biosignature better predicted placebo nonresponders, with poor accuracy. One component of the biosignature (dorsolateral prefrontal cortex-precentral gyrus functional connectivity) could be generalized across 3 placebo studies and in 2 different cohorts-CLBP and osteoarthritis pain patients. This study shows that a biosignature can predict placebo response at a group level in the setting of a randomized controlled trial.
Collapse
Affiliation(s)
- Etienne Vachon-Presseau
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
- Department of Anesthesia, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, QC, Canada
| | - Taha B. Abdullah
- Department of Physiology, Northwestern University Feinberg School of Medicine, 710 N Lake Shore Drive, Room 1020, Chicago, IL 60611, USA
| | - Sara E. Berger
- Healthcare and Life Sciences Department, IBM Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA
| | - Lejian Huang
- Department of Physiology, Northwestern University Feinberg School of Medicine, 710 N Lake Shore Drive, Room 1020, Chicago, IL 60611, USA
| | - James W. Griffith
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, 710 N Lake Shore Drive, Room 1020, Chicago, IL 60611, USA
| | - Thomas J. Schnitzer
- Departments of Internal Medicine and Rheumatology, Northwestern University Feinberg School of Medicine, 710 N Lake Shore Drive, Room 1020, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, 710 N Lake Shore Drive, Room 1020, Chicago, IL 60611, USA
| | - A. Vania Apkarian
- Department of Physiology, Northwestern University Feinberg School of Medicine, 710 N Lake Shore Drive, Room 1020, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, 710 N Lake Shore Drive, Room 1020, Chicago, IL 60611, USA
- Department of Anesthesia, Northwestern University Feinberg School of Medicine, 710 N Lake Shore Drive, Room 1020, Chicago, IL 60611, USA
| |
Collapse
|
16
|
Wu JW, Lai PY, Chen YL, Wang YF, Lirng JF, Chen ST, Lai KL, Chen WT, Wu YT, Wang SJ. The Use of Neuroimaging for Predicting Sumatriptan Treatment Response in Patients With Migraine. Front Neurol 2022; 13:798695. [PMID: 35173673 PMCID: PMC8841861 DOI: 10.3389/fneur.2022.798695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/07/2022] [Indexed: 01/14/2023] Open
Abstract
Objectives To identify the neuroimaging predictors for the responsiveness of patients to sumatriptan and use an independent cohort for external validation. Methods Structuralized headache questionnaire and 3-Tesla brain magnetic resonance imaging were performed in migraine patients. Regional brain volumes were automatically calculated using FreeSurfer version 6.0, including bilateral amygdala, anterior cingulated cortex, caudate, putamen, precuneus, orbitofrontal cortex, superior frontal gyri, middle frontal gyri, hippocampus, and parahippocampus. A sumatriptan-responder was defined as headache relief within 2 h after the intake of sumatriptan in at least two out of three treated attacks. We constructed a prediction model for sumatriptan response using the regional brain volume and validated it with an independent cohort of migraine patients. Results A total of 105 migraine patients were recruited, including 73 sumatriptan responders (69.5%) and 32 (30.5%) non-responders. We divided the migraine patients into derivation (n = 73) and validation cohorts (n = 32). In the derivation cohort, left hippocampal volume was larger in sumatriptan responders (responders vs. non-responders: 3,929.5 ± 403.1 vs. 3,611.0 ± 389.9 mm3, p = 0.002), and patients with a larger left hippocampal volume had a higher response rate to sumatriptan (>4,036.2 vs. ≤4,036.2 mm3: 92.0 vs. 56.3%, p = 0.001). Based on the findings, we constructed a prediction model using the cutoff value of 4,036.2 mm3, and we found that patients with a left hippocampal volume >4,032.6 mm3 had a higher response rate to sumatriptan than those with a left hippocampal volume ≤4,032.6 mm3 (84.6 vs. 42.1%, odds ratio [OR] = 7.6 [95% confidence interval = 1.3–44.0], p = 0.013) in the validation cohort. Conclusion Our study showed that left hippocampal volume is helpful to identify sumatriptan non-responders. This proof-of-concept study shows that left hippocampal volume could be used to predict the treatment response to sumatriptan in migraine patients.
Collapse
Affiliation(s)
- Jr-Wei Wu
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pi-Yi Lai
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Lin Chen
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Feng Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiing-Feng Lirng
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Ting Chen
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuan-Lin Lai
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ta Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Shuu-Jiun Wang ;
| |
Collapse
|
17
|
Individually unique dynamics of cortical connectivity reflect the ongoing intensity of chronic pain. Pain 2022; 163:1987-1998. [PMID: 35082250 DOI: 10.1097/j.pain.0000000000002594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Chronic pain diseases are characterised by an ongoing and fluctuating endogenous pain, yet it remains to be elucidated how this is reflected by the dynamics of ongoing functional cortical connections.Here, we investigated the cortical encoding of 20 chronic back pain patients and 20 chronic migraineurs in four repeated fMRI sessions. A brain parcellation approach subdivided the whole brain into 408 regions. Linear mixed effects models were fitted for each pair of brain regions to explore the relationship between the dynamic cortical connectivity and the observed trajectory of the patients' ratings of fluctuating endogenous pain.Overall, we found that periods of high and increasing pain were predominantly related to low cortical connectivity. The change of pain intensity in chronic back pain was subserved by connections in left parietal opercular regions, right insular regions, as well as large parts of the parietal, cingular and motor cortices. The change of pain intensity direction in chronic migraine was reflected by decreasing connectivity between the anterior insular cortex and orbitofrontal areas, as well as between the PCC and frontal and ACC regions.Interestingly, the group results were not mirrored by the individual patterns of pain-related connectivity, which is suggested to deny the idea of a common neuronal core problem for chronic pain diseases. The diversity of the individual cortical signatures of chronic pain encoding results adds to the understanding of chronic pain as a complex and multifaceted disease. The present findings support recent developments for more personalised medicine.
Collapse
|
18
|
Zhang Z, Gewandter JS, Geha P. Brain Imaging Biomarkers for Chronic Pain. Front Neurol 2022; 12:734821. [PMID: 35046881 PMCID: PMC8763372 DOI: 10.3389/fneur.2021.734821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
The prevalence of chronic pain has reached epidemic levels. In addition to personal suffering chronic pain is associated with psychiatric and medical co-morbidities, notably substance misuse, and a huge a societal cost amounting to hundreds of billions of dollars annually in medical cost, lost wages, and productivity. Chronic pain does not have a cure or quantitative diagnostic or prognostic tools. In this manuscript we provide evidence that this situation is about to change. We first start by summarizing our current understanding of the role of the brain in the pathogenesis of chronic pain. We particularly focus on the concept of learning in the emergence of chronic pain, and the implication of the limbic brain circuitry and dopaminergic signaling, which underly emotional learning and decision making, in this process. Next, we summarize data from our labs and from other groups on the latest brain imaging findings in different chronic pain conditions focusing on results with significant potential for translation into clinical applications. The gaps in the study of chronic pain and brain imaging are highlighted in throughout the overview. Finally, we conclude by discussing the costs and benefits of using brain biomarkers of chronic pain and compare to other potential markers.
Collapse
Affiliation(s)
- Zhengwu Zhang
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jennifer S Gewandter
- Anesthesiology and Perioperative Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Paul Geha
- Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States.,Department of Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States.,Del Monte Neuroscience Institute, University of Rochester, Rochester, NY, United States
| |
Collapse
|
19
|
Wei X, Centeno MV, Ren W, Borruto AM, Procissi D, Xu T, Jabakhanji R, Mao Z, Kim H, Li Y, Yang Y, Gutruf P, Rogers JA, Surmeier DJ, Radulovic J, Liu X, Martina M, Apkarian AV. Activation of the dorsal, but not the ventral, hippocampus relieves neuropathic pain in rodents. Pain 2021; 162:2865-2880. [PMID: 34160168 PMCID: PMC8464622 DOI: 10.1097/j.pain.0000000000002279] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Accumulating evidence suggests hippocampal impairment under the chronic pain phenotype. However, it is unknown whether neuropathic behaviors are related to dysfunction of the hippocampal circuitry. Here, we enhanced hippocampal activity by pharmacological, optogenetic, and chemogenetic techniques to determine hippocampal influence on neuropathic pain behaviors. We found that excitation of the dorsal (DH), but not the ventral (VH) hippocampus induces analgesia in 2 rodent models of neuropathic pain (SNI and SNL) and in rats and mice. Optogenetic and pharmacological manipulations of DH neurons demonstrated that DH-induced analgesia was mediated by N-Methyl-D-aspartate and μ-opioid receptors. In addition to analgesia, optogenetic stimulation of the DH in SNI mice also resulted in enhanced real-time conditioned place preference for the chamber where the DH was activated, a finding consistent with pain relief. Similar manipulations in the VH were ineffective. Using chemo-functional magnetic resonance imaging (fMRI), where awake resting-state fMRI was combined with viral vector-mediated chemogenetic activation (PSAM/PSEM89s) of DH neurons, we demonstrated changes of functional connectivity between the DH and thalamus and somatosensory regions that tracked the extent of relief from tactile allodynia. Moreover, we examined hippocampal functional connectivity in humans and observe differential reorganization of its anterior and posterior subdivisions between subacute and chronic back pain. Altogether, these results imply that downregulation of the DH circuitry during chronic neuropathic pain aggravates pain-related behaviors. Conversely, activation of the DH reverses pain-related behaviors through local excitatory and opioidergic mechanisms affecting DH functional connectivity. Thus, this study exhibits a novel causal role for the DH but not the VH in controlling neuropathic pain-related behaviors.
Collapse
Affiliation(s)
- Xuhong Wei
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Departments of Physiology and
| | | | | | | | - Daniele Procissi
- Radiology, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Ting Xu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | - Yajing Li
- Departments of Materials Science and Engineering and
- Biomedical Engineering, Northwestern University, Evanston, IL, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yiyuan Yang
- Departments of Materials Science and Engineering and
- Biomedical Engineering, Northwestern University, Evanston, IL, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Philipp Gutruf
- Departments of Materials Science and Engineering and
- Biomedical Engineering, Northwestern University, Evanston, IL, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - John A. Rogers
- Departments of Materials Science and Engineering and
- Biomedical Engineering, Northwestern University, Evanston, IL, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Jelena Radulovic
- Department of Neuroscience and Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Xianguo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Marco Martina
- Departments of Physiology and
- Department of Neuroscience and Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Apkar Vania Apkarian
- Departments of Physiology and
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Anesthesia, at Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
20
|
Barroso J, Branco P, Apkarian AV. Brain mechanisms of chronic pain: critical role of translational approach. Transl Res 2021; 238:76-89. [PMID: 34182187 PMCID: PMC8572168 DOI: 10.1016/j.trsl.2021.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 01/15/2023]
Abstract
Chronic pain is a leading cause of disability worldwide and its prevalence is likely to increase over the next decades. Treatment for chronic pain remains insufficient and therapeutical advances have not made comparable progress with that for many chronic disorders, thus amplifying the concern on the future burden of the disease. At the same time, and even after decades of intense research, the underlying pathophysiology of chronic pain remains minimally understood. We believe advancing our current understanding of chronic pain requires mechanistically explicit, hypothesis-driven, and clinically focused models. In this review we highlight some of the main findings over the last decades that have contributed to the present knowledge of brain mechanisms of chronic pain, and how such advances were possible due to a reverse translational research approach. We argue that this approach is essential in the chronic pain field, in order to generate new scientific hypotheses, probe physiological mechanisms, develop therapeutic strategies and translate findings back into promising human clinical trials.
Collapse
Affiliation(s)
- Joana Barroso
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Center for Chronic Pain and Drug Abuse, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Paulo Branco
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Center for Chronic Pain and Drug Abuse, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Apkar Vania Apkarian
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Center for Chronic Pain and Drug Abuse, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
21
|
Danyluk H, Lang S, Monchi O, Sankar T. Pre-operative Limbic System Functional Connectivity Distinguishes Responders From Non-responders to Surgical Treatment for Trigeminal Neuralgia. Front Neurol 2021; 12:716500. [PMID: 34671309 PMCID: PMC8520903 DOI: 10.3389/fneur.2021.716500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Trigeminal neuralgia (TN) is a severe facial pain condition often requiring surgical treatment. Unfortunately, even technically successful surgery fails to achieve durable pain relief in many patients. The purpose of this study was to use resting-state functional magnetic resonance imaging (fMRI) to: (1) compare functional connectivity between limbic and accessory sensory networks in TN patients vs. healthy controls; and (2) determine if pre-operative variability in these networks can distinguish responders and non-responders to surgery for TN. Methods: We prospectively recruited 22 medically refractory classic or idiopathic TN patients undergoing surgical treatment over a 3-year period, and 19 age- and sex-matched healthy control subjects. fMRI was acquired within the month prior to surgery for all TN patients and at any time during the study period for controls. Functional connectivity analysis was restricted to six pain-relevant brain regions selected a priori: anterior cingulate cortex (ACC), posterior cingulate cortex, hippocampus, amygdala, thalamus, and insula. Two comparisons were performed: (1) TN vs. controls; and (2) responders vs. non-responders to surgical treatment for TN. Functional connectivity was assessed with a two-sample t-test, using a statistical significance threshold of p < 0.050 with false discovery rate (FDR) correction for multiple comparisons. Results: Pre-operative functional connectivity was increased in TN patients compared to controls between the right insular cortex and both the left thalamus [t (39) = 3.67, p = 0.0007] and right thalamus [t (39) = 3.22, p = 0.0026]. TN patients who were non-responders to surgery displayed increased functional connectivity between limbic structures, including between the left and right hippocampus [t (18) = 2.85, p = 0.0106], and decreased functional connectivity between the ACC and both the left amygdala [t (18) = 2.94, p = 0.0087] and right hippocampus [t (18) = 3.20, p = 0.0049]. Across all TN patients, duration of illness was negatively correlated with connectivity between the ACC and left amygdala (r 2 = 0.34, p = 0.00437) as well as the ACC and right hippocampus (r 2 = 0.21, p = 0.0318). Conclusions: TN patients show significant functional connectivity abnormalities in sensory-salience regions. However, variations in the strength of functional connectivity in limbic networks may explain why some TN patients fail to respond adequately to surgery.
Collapse
Affiliation(s)
- Hayden Danyluk
- Division of Surgical Research, University of Alberta, Edmonton, AB, Canada.,Division of Neurosurgery, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Stefan Lang
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Health Research Innovation Centre, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Oury Monchi
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Health Research Innovation Centre, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tejas Sankar
- Division of Neurosurgery, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Histone deacetylase 3 in hippocampus contributes to memory impairment after chronic constriction injury of sciatic nerve in mice. Pain 2021; 162:382-395. [PMID: 32868749 DOI: 10.1097/j.pain.0000000000002056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
ABSTRACT Chronic neuropathic pain is frequently accompanied by memory impairment, yet the underlying mechanisms remain unclear. Here, we showed that mice displayed memory impairment starting at 14 days and lasting for at least 21 days after chronic constriction injury (CCI) of unilateral sciatic nerve in mice. Systemic administration of the pan histone deacetylase (HDAC) inhibitor sodium butyrate attenuated this memory impairment. More specifically, we found that hippocampus HDAC3 was involved in this process because the levels of its mRNA and protein increased significantly in the hippocampus at 14 and 21 days after CCI, but not sham surgery. Systemic administration of the selective HDAC3 antagonist RGFP966 attenuated CCI-induced memory impairment, improved hippocampal long-term potentiation impairment, and rescued reductions of dendritic spine density and synaptic plasticity-associated protein in the hippocampus. In addition, HDAC3 overexpression in the hippocampus led to memory impairment without affecting basal nociceptive responses in naive mice. Our findings suggest that HDAC3 contributes to memory impairment after CCI by impairing synaptic plasticity in hippocampus. Histone deacetylase 3 might serve as a potential molecular target for therapeutic treatment of memory impairment under neuropathic pain conditions.
Collapse
|
23
|
Reckziegel D, Abdullah T, Wu B, Wu B, Huang L, Schnitzer TJ, Apkarian AV. Hippocampus shape deformation: a potential diagnostic biomarker for chronic back pain in women. Pain 2021; 162:1457-1467. [PMID: 33181581 PMCID: PMC8049947 DOI: 10.1097/j.pain.0000000000002143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
ABSTRACT Sex differences in the quality and prevalence of chronic pain are manifold, with women generally presenting higher incidence and severity. Uncovering chronic pain-related sex differences inform neural mechanisms and may lead to novel treatment routes. In a multicenter morphological study (total n = 374), we investigated whether the shape of subcortical regions would reflect sex differences in back pain. Given the hormone-dependent functions of the hippocampus, and its role in the transition to chronic pain, this region constituted our primary candidate. We found that the anterior part of the left hippocampus (alHP) presented outer deformation in women with chronic back pain (CBP), identified in CBP in the United States (n = 77 women vs n = 78 men) and validated in a Chinese data set (n = 29 women vs n = 58 men with CBP, in contrast to n = 53 female and n = 43 male healthy controls). Next, we examined this region in subacute back pain who persisted with back pain a year later (SBPp; n = 18 women vs n = 18 men) and in a subgroup with persistent back pain for 3 years. Weeks after onset of back pain, there was no deformation within alHP, but at 1 and 3 years women exhibited a trend for outer deformation. The alHP partly overlapped with the subiculum and entorhinal cortex, whose functional connectivity, in healthy subjects, was associated with emotional and episodic memory related terms (Neurosynth, reverse inference). These findings suggest that in women the alHP undergoes anatomical changes with pain persistence, highlighting sexually dimorphic involvement of emotional and episodic memory-related circuitry with chronic pain.
Collapse
Affiliation(s)
- Diane Reckziegel
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Taha Abdullah
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Touro College of Osteopathic Medicine, New York, USA
| | - Binbin Wu
- Department of Pain Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bo Wu
- Department of Information, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lejian Huang
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Thomas J Schnitzer
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Rheumatology, Northwestern University, Feinberg School of Medicine, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - A Vania Apkarian
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Anesthesia, Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
24
|
Momentary pain assessments reveal benefits of endoscopic discectomy: a prospective cohort study. Pain Rep 2021; 6:e906. [PMID: 33981932 PMCID: PMC8108591 DOI: 10.1097/pr9.0000000000000906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 12/18/2020] [Accepted: 01/23/2021] [Indexed: 11/27/2022] Open
Abstract
Both pain rating and exponential model revealed that percutaneous endoscopic lumbar discectomy provided rapid pain recovery that was maintained for at least 3 months compared with conservative treatments. Lumbar disc herniation (LDH) is a common back disorder that evokes back and/or leg pain. Percutaneous endoscopic lumbar discectomy (PELD) is a minimally invasive surgery for patients with LDH. However, there is little evidence of effectiveness of PELD compared with conservative treatments.
Collapse
|
25
|
Youssef AM, Peng K, Kim PK, Lebel A, Sethna NF, Kronman C, Zurakowski D, Borsook D, Simons LE. Pain stickiness in pediatric complex regional pain syndrome: A role for the nucleus accumbens. NEUROBIOLOGY OF PAIN 2021; 9:100062. [PMID: 33732954 PMCID: PMC7941018 DOI: 10.1016/j.ynpai.2021.100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022]
Abstract
Pain nonresponders have decreased nucleus accumbens (NAc) grey matter density. Pain nonresponders have reduced functional connectivity between NAc and dlPFC. Connectivity strength between NAc and dlPFC correlates with changes in pain. Prediction estimate for pain improvement with grey matter and connectivity was 87%.
Some individuals with chronic pain experience improvement in their pain with treatment, whereas others do not. The neurobiological reason is unclear, but an understanding of brain structure and functional patterns may provide insights into pain’s responsivity to treatment. In this investigation, we used magnetic resonance imaging (MRI) techniques to determine grey matter density alterations on resting functional connectivity (RFC) strengths between pain responders and nonresponders in patients with complex regional pain syndrome. Brain metrics of pediatric patients at admission to an intensive pain rehabilitative treatment program were evaluated. Pain responders reported significant pain improvement at discharge and/or follow-up whereas nonresponders reported no improvements in pain, increases in pain, or emergence of new pain symptoms. The pain (responder/nonresponder) groups were compared with pain-free healthy controls to examine predictors of pain responder status via brain metrics. Our results show: (1) on admission, pain nonresponders had decreased grey matter density (GMD) within the nucleus accumbens (NAc) and reduced RFC strength between the NAc and the dorsolateral prefrontal cortex vs. responders; (2) Connectivity strength was positively correlated with change in pain intensity from admission to discharge; (3) Compared with pain-free controls, grey matter and RFC differences emerged only among pain nonresponders; and (4) Using a discriminative model, combining GMD and RFC strengths assessed at admission showed the highest prediction estimate (87%) on potential for pain improvement, warranting testing in a de novo sample. Taken together, these results support the idea that treatment responsiveness on pain is underpinned by concurrent brain structure and resting brain activity.
Collapse
Affiliation(s)
- Andrew M Youssef
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, United States
| | - Ke Peng
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, United States.,Department of Radiology and Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Pearl Kijoo Kim
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, United States
| | - Alyssa Lebel
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, United States
| | - Navil F Sethna
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, United States
| | - Corey Kronman
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - David Zurakowski
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, United States
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, United States.,Department of Radiology and Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Laura E Simons
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| |
Collapse
|
26
|
Danyluk H, Ishaque A, Ta D, Yang YH, Wheatley BM, Kalra S, Sankar T. MRI Texture Analysis Reveals Brain Abnormalities in Medically Refractory Trigeminal Neuralgia. Front Neurol 2021; 12:626504. [PMID: 33643203 PMCID: PMC7907508 DOI: 10.3389/fneur.2021.626504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/20/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Several neuroimaging studies report structural alterations of the trigeminal nerve in trigeminal neuralgia (TN). Less attention has been paid to structural brain changes occurring in TN, even though such changes can influence the development and response to treatment of other headache and chronic pain conditions. The purpose of this study was to apply a novel neuroimaging technique-texture analysis-to identify structural brain differences between classical TN patients and healthy subjects. Methods: We prospectively recruited 14 medically refractory classical TN patients and 20 healthy subjects. 3-Tesla T1-weighted brain MRI scans were acquired in all participants. Three texture features (autocorrelation, contrast, energy) were calculated within four a priori brain regions of interest (anterior cingulate, insula, thalamus, brainstem). Voxel-wise analysis was used to identify clusters of texture difference between TN patients and healthy subjects within regions of interest (p < 0.001, cluster size >20 voxels). Median raw texture values within clusters were also compared between groups, and further used to differentiate TN patients from healthy subjects (receiver-operator characteristic curve analysis). Median raw texture values were correlated with pain severity (visual analog scale, 1-100) and illness duration. Results: Several clusters of texture difference were observed between TN patients and healthy subjects: right-sided TN patients showed reduced autocorrelation in the left brainstem, increased contrast in the left brainstem and right anterior insula, and reduced energy in right and left anterior cingulate, right midbrain, and left brainstem. Within-cluster median raw texture values also differed between TN patients and healthy subjects: TN patients could be segregated from healthy subjects using brainstem autocorrelation (p = 0.0040, AUC = 0.84, sensitivity = 89%, specificity = 70%), anterior insula contrast (p = 0.0002, AUC = 0.92, sensitivity = 78%, specificity = 100%), and anterior cingulate energy (p = 0.0004, AUC = 0.92, sensitivity = 78%, specificity = 100%). Additionally, anterior insula contrast and duration of TN were inversely correlated (p = 0.030, Spearman r = -0.73). Conclusions: Texture analysis reveals distinct brain abnormalities in TN, which relate to clinical features such as duration of illness. These findings further implicate structural brain changes in the development and maintenance of TN.
Collapse
Affiliation(s)
- Hayden Danyluk
- Division of Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Division of Neurosurgery, Department of Surgery, University of Alberta Hospital, University of Alberta, Edmonton, AB, Canada
| | - Abdullah Ishaque
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Daniel Ta
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Yee Hong Yang
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada
| | - B Matthew Wheatley
- Division of Neurosurgery, Department of Surgery, University of Alberta Hospital, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sanjay Kalra
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Tejas Sankar
- Division of Neurosurgery, Department of Surgery, University of Alberta Hospital, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
27
|
Xiong B, Zhang W, Zhang L, Huang X, Zhou W, Zou Q, Manyande A, Wang J, Tian Y, Tian X. Hippocampal glutamatergic synapses impairment mediated novel-object recognition dysfunction in rats with neuropathic pain. Pain 2020; 161:1824-1836. [PMID: 32701842 DOI: 10.1097/j.pain.0000000000001878] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cognitive impairment is one of the most common complications associated with chronic pain. Almost 20% of chronic pain patients suffer from cognitive impairment, which may substantially influence their quality of life. Levels of major excitatory neurotransmitters in the central nervous system and alterations in the glutamatergic system may influence cognitive function and the pain sensory pathway. In this study, we adopted the spared nerve injury model to establish the progress of chronic pain and investigated the mechanism underlying the cognitive aspect related to it. At behavioral level, using the novel-object recognition test, mechanical hypersensitivity was observed in peripheral nerve-injured rats because they exhibited recognition deficits. We showed a dramatic decrease in hippocampal glutamate concentration using nuclear magnetic resonance and reduced glutamatergic synaptic transmission using whole-cell recordings. These were associated with deficient hippocampal long-term potentiation induced by high-frequency stimulation of the Schaffer collateral afferent. Ultra-high-performance liquid chromatography revealed lower levels of D-serine in the hippocampus of the spared nerve injury rats and that D-serine treatment could restore synaptic plasticity and cognitive dysfunction. The reduction of excitatory synapses was also increased by administering D-serine. These findings suggest that chronic pain has a critical effect on synaptic plasticity linked to cognitive function and may built up a new target for the development of cognitive impairment under chronic pain conditions.
Collapse
Affiliation(s)
- Bingrui Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Longqing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Huang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenchang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Zou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yuke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
28
|
Mioton LM, Dumanian GA, Fracol ME, Apkarian AV, Valerio IL, Souza JM, Potter BK, Tintle SM, Nanos GP, Ertl WJ, Ko JH, Jordan SW. Benchmarking Residual Limb Pain and Phantom Limb Pain in Amputees through a Patient-reported Outcomes Survey. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e2977. [PMID: 32802669 PMCID: PMC7413780 DOI: 10.1097/gox.0000000000002977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/22/2020] [Indexed: 11/26/2022]
Abstract
More than 75% of major limb amputees experience chronic pain; however, data on severity and experience of pain are inconsistent. Without a benchmark using quantitative patient-reported outcomes, it is difficult to critically assess the efficacy of novel treatment strategies. Our primary objective is to report quantitative pain parameters for a large sample of amputees using the validated Patient-reported Outcomes Measurement System (PROMIS). Secondarily, we hypothesize that certain patient factors will be associated with worse pain. METHODS PROMIS and Numerical Rating Scales for residual limb pain (RLP) and phantom limb pain (PLP) were obtained from a cross-sectional survey of upper and lower extremity amputees recruited throughout North America via amputee clinics and websites. Demographics (gender, age, race, and education) and clinical information (cause, amputation level, and time since amputation) were collected. Regression modeling identified factors associated with worse pain scores (P < 0.05). RESULTS Seven hundred twenty-seven surveys were analyzed, in which 73.4% reported RLP and 70.4% reported PLP. Median residual PROMIS scores were 46.6 [interquartile range (IQR), 41-52] for RLP Intensity, 56.7 (IQR, 51-61) for RLP Behavior, and 55.9 (IQR, 41-63) for RLP Interference. Similar scores were calculated for PLP parameters: 46.8 (IQR, 41-54) for PLP Intensity, 56.2 (IQR, 50-61) for PLP Behavior, and 54.6 (IQR, 41-62) for PLP Interference. Female sex, lower education, trauma-related amputation, more proximal amputation, and closer to time of amputation increased odds of PLP. Female sex, lower education, and infection/ischemia-related amputation increased odds of RLP. CONCLUSION This survey-based analysis provides quantitative benchmark data regarding RLP and PLP in amputees with more granularity than has previously been reported.
Collapse
Affiliation(s)
- Lauren M. Mioton
- From the Division of Plastic Surgery, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Gregory A. Dumanian
- From the Division of Plastic Surgery, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Megan E. Fracol
- From the Division of Plastic Surgery, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - A. Vania Apkarian
- The Department of Physiology, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Ian L. Valerio
- Department of Plastic Surgery, The Ohio State University, Columbus, Ohio
| | - Jason M. Souza
- The Division of Plastic Surgery and Department of Orthopedics, Uniformed Services University—Walter Reed National Military, Bethesda, Md
| | - Benjamin K. Potter
- The Division of Plastic Surgery and Department of Orthopedics, Uniformed Services University—Walter Reed National Military, Bethesda, Md
| | - Scott M. Tintle
- The Division of Plastic Surgery and Department of Orthopedics, Uniformed Services University—Walter Reed National Military, Bethesda, Md
| | - George P. Nanos
- The Division of Plastic Surgery and Department of Orthopedics, Uniformed Services University—Walter Reed National Military, Bethesda, Md
| | - William J. Ertl
- The Department of Orthopedic Surgery, University of Oklahoma, Oklahoma City, Okla
| | - Jason H. Ko
- From the Division of Plastic Surgery, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Sumanas W. Jordan
- From the Division of Plastic Surgery, Northwestern Feinberg School of Medicine, Chicago, Ill
| |
Collapse
|
29
|
De Groote S, Goudman L, Linderoth B, Buyck F, Rigoard P, De Jaeger M, Van Schuerbeek P, Peeters R, Sunaert S, Moens M. A Regions of Interest Voxel-Based Morphometry Study of the Human Brain During High-Frequency Spinal Cord Stimulation in Patients With Failed Back Surgery Syndrome. Pain Pract 2020; 20:878-888. [PMID: 32470180 DOI: 10.1111/papr.12922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The effectiveness of spinal cord stimulation (SCS) as pain-relieving treatment for failed back surgery syndrome (FBSS) has already been demonstrated. However, potential structural and functional brain alterations resulting from subsensory SCS are less clear. The aim of this study was to test structural volumetric changes in a priori chosen regions of interest related to chronic pain after 1 month and 3 months of high-frequency SCS in patients with FBSS. METHODS Eleven patients with FBSS who were scheduled for SCS device implantation were included in this study. All patients underwent a magnetic resonance imaging protocol before SCS device implantation 1 and 3 months after high-frequency SCS. Pain intensity, pain catastrophizing, and sleep quality were also measured. Regions-of-interest voxel-based morphometry was used to explore grey matter volumetric changes over time. Additionally, volumetric changes were correlated with changes in pain intensity, catastrophizing, and sleep quality. RESULTS Significant decreases were found in volume in the left and right hippocampus over time. More specifically, a significant difference was revealed between volumes before SCS implantation and after 3 months of SCS. Repeated-measures correlations revealed a significant positive correlation between volumetric changes in the left hippocampus and changes in back pain score over time and between volumetric changes in the right hippocampus and changes in back pain score over time. CONCLUSION In patients with FBSS, high-frequency SCS influences structural brain regions over time. The volume of the hippocampus was decreased bilaterally after 3 months of high-frequency SCS with a positive correlation with back pain intensity.
Collapse
Affiliation(s)
- Sander De Groote
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Jette, Belgium.,Pain in Motion International Research Group, Vrije Universiteit Brussel, Jette, Belgium
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Félix Buyck
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium
| | - Philippe Rigoard
- Spine & Neuromodulation Functional Unit, Poitiers University Hospital, Poitiers, France.,Institut Prime UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, Poitiers, France.,PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Mats De Jaeger
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium
| | | | - Ronald Peeters
- Department of Radiology, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Jette, Belgium.,Department of Radiology, Universitair Ziekenhuis Brussel, Jette, Belgium
| |
Collapse
|
30
|
The Reorganization of Insular Subregions in Individuals with Below-Level Neuropathic Pain following Incomplete Spinal Cord Injury. Neural Plast 2020; 2020:2796571. [PMID: 32211038 PMCID: PMC7085828 DOI: 10.1155/2020/2796571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate the reorganization of insular subregions in individuals suffering from neuropathic pain (NP) after incomplete spinal cord injury (ISCI) and further to disclose the underlying mechanism of NP. Method The 3D high-resolution T1-weighted structural images and resting-state functional magnetic resonance imaging (rs-fMRI) of all individuals were obtained using a 3.0 Tesla MRI system. A comparative analysis of structure and function connectivity (FC) with insular subareas as seeds in 10 ISCI individuals with below-level NP (ISCI-P), 11 ISCI individuals without NP (ISCI-N), and 25 healthy controls (HCs) was conducted. Associations between the structural and functional alteration of insula subregions and visual analog scale (VAS) scores were analyzed using the Pearson correlation in SPSS 20. Results Compared with ISCI-N patients, when the left posterior insula as the seed, ISCI-P showed increased FC in right cerebellum VIIb and cerebellum VIII, Brodmann 37 (BA 37). When the left ventral anterior insula as the seed, ISCI-P indicated enhanced FC in right BA18 compared with ISCI-N patients. These increased FCs positively correlated with VAS scores. Relative to HCs, ISCI-P presented increased FC in the left hippocampus when the left dorsal anterior insula was determined as the seed. There was no statistical difference in the volume of insula subregions among the three groups. Conclusion Our study indicated that distinctive patterns of FC in each subregion of insula suggest that the insular subareas participate in the NP processing through different FC following ISCI. Further, insula subregions could serve as a therapeutic target for NP following ISCI.
Collapse
|
31
|
|
32
|
Mu J, Chen T, Quan S, Wang C, Zhao L, Liu J. Neuroimaging features of whole-brain functional connectivity predict attack frequency of migraine. Hum Brain Mapp 2019; 41:984-993. [PMID: 31680376 PMCID: PMC7267923 DOI: 10.1002/hbm.24854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/25/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023] Open
Abstract
Migraine is a chronic neurological disorder characterized by attacks of moderate or severe headache accompanying functionally and structurally maladaptive changes in brain. As the headache days/month is often measured by patient self‐report and tends to be overestimated than actually experienced, the possibility of using neuroimaging data to predict migraine attack frequency is of great interest. To identify neuroimaging features that could objectively evaluate patients' headache days, a total of 179 migraineurs were recruited from two data center with one dataset used as the training/test cohort and the other used as the validating cohort. The guidelines for controlled trials of prophylactic treatment of chronic migraine in adults were used to identify the frequency of attacks and migraineurs were divided into low (MOl) and high (MOh) subgroups. Whole‐brain functional connectivity was used to build multivariate logistic regression models with model iteration optimization to identify MOl and MOh. The best model accurately discriminated MOh from MOl with AUC of 0.91 (95%CI [0.86, 0.95]) in the training/test cohort and 0.79 in the validating cohort. The discriminative features were mainly located within the limbic lobe, frontal lobe, and temporal lobe. Permutation tests analysis demonstrated that the classification performance of these features was significantly better than chance. Furthermore, the indicator of functional connectivity had a higher odds ratio than behavioral variables with implementing a holistic regression analysis. The current findings suggested that the migraine attack frequency could be distinguished by using machine‐learning algorithms, and highlighted the role of brain functional connectivity in revealing underlying migraine‐related neurobiology.
Collapse
Affiliation(s)
- Junya Mu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, China
| | - Tao Chen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, China
| | - Shilan Quan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, China
| | - Chen Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, China
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jixin Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, China
| |
Collapse
|
33
|
Hyatt CS, Owens MM, Crowe ML, Carter NT, Lynam DR, Miller JD. The quandary of covarying: A brief review and empirical examination of covariate use in structural neuroimaging studies on psychological variables. Neuroimage 2019; 205:116225. [PMID: 31568872 DOI: 10.1016/j.neuroimage.2019.116225] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/12/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Although covarying for potential confounds or nuisance variables is common in psychological research, relatively little is known about how the inclusion of covariates may influence the relations between psychological variables and indices of brain structure. In Part 1 of the current study, we conducted a descriptive review of relevant articles from the past two years of NeuroImage in order to identify the most commonly used covariates in work of this nature. Age, sex, and intracranial volume were found to be the most commonly used covariates, although the number of covariates used ranged from 0 to 14, with 37 different covariate sets across the 68 models tested. In Part 2, we used data from the Human Connectome Project to investigate the degree to which the addition of common covariates altered the relations between individual difference variables (i.e., personality traits, psychopathology, cognitive tasks) and regional gray matter volume (GMV), as well as the statistical significance of values associated with these effect sizes. Using traditional and random sampling approaches, our results varied widely, such that some covariate sets influenced the relations between the individual difference variables and GMV very little, while the addition of other covariate sets resulted in a substantially different pattern of results compared to models with no covariates. In sum, these results suggest that the use of covariates should be critically examined and discussed as part of the conversation on replicability in structural neuroimaging. We conclude by recommending that researchers pre-register their analytic strategy and present information on how relations differ based on the inclusion of covariates.
Collapse
Affiliation(s)
| | - Max M Owens
- University of Georgia, USA; University of Vermont, USA
| | | | | | | | | |
Collapse
|
34
|
Koban L, Jepma M, López-Solà M, Wager TD. Different brain networks mediate the effects of social and conditioned expectations on pain. Nat Commun 2019; 10:4096. [PMID: 31506426 PMCID: PMC6736972 DOI: 10.1038/s41467-019-11934-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/06/2019] [Indexed: 01/31/2023] Open
Abstract
Information about others' experiences can strongly influence our own feelings and decisions. But how does such social information affect the neural generation of affective experience, and are the brain mechanisms involved distinct from those that mediate other types of expectation effects? Here, we used fMRI to dissociate the brain mediators of social influence and associative learning effects on pain. Participants viewed symbolic depictions of other participants' pain ratings (social information) and classically conditioned pain-predictive cues before experiencing painful heat. Social information and conditioned stimuli each had significant effects on pain ratings, and both effects were mediated by self-reported expectations. Yet, these effects were mediated by largely separable brain activity patterns, involving different large-scale functional networks. These results show that learned versus socially instructed expectations modulate pain via partially different mechanisms-a distinction that should be accounted for by theories of predictive coding and related top-down influences.
Collapse
Affiliation(s)
- Leonie Koban
- Institute of Cognitive Science, University of Colorado Boulder, Muenzinger D244, 345 UCB, Boulder, CO, 80302, USA.
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244, 345 UCB, Boulder, CO, 80302, USA.
- Brain and Spine Institute (ICM), Control-Interoception-Attention Team, 47 Boulevard de l'Hôpital, 75013, Paris, France.
- Marketing Area, INSEAD, Boulevard de Constance, 77300, Fontainebleau, France.
| | - Marieke Jepma
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1018 WS, Amsterdam, The Netherlands
| | - Marina López-Solà
- Division of Behavioral Medicine and Clinical Psychology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, MLC2 7031 Pain Research Center, Cincinnati, OH, 45229, USA
| | - Tor D Wager
- Institute of Cognitive Science, University of Colorado Boulder, Muenzinger D244, 345 UCB, Boulder, CO, 80302, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244, 345 UCB, Boulder, CO, 80302, USA
- Department of Psychological and Brain Sciences, Dartmouth College, HB 6207, Moore Hall, Hanover, NH, 03755, USA
| |
Collapse
|
35
|
Egorova E, Starinets A, Tyrtyshnaia A, Ponomarenko A, Manzhulo I. Hippocampal Neurogenesis in Conditions of Chronic Stress Induced by Sciatic Nerve Injury in the Rat. Cells Tissues Organs 2019; 207:58-68. [PMID: 31284284 DOI: 10.1159/000501236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
The dentate gyrus of the hippocampus is the primary location of adult neurogenesis, which is affected by a variety of external and internal factors, including activity of surrounding glial cells. This study concerns alterations in hippocampal neurogenesis and changes in activity of both proinflammatory and neuroprotective microglia/macrophages after sciatic nerve injury in the rat. Here, we demonstrated that the chronic pain induced by a peripheral nerve injury manifests in the hippocampus by a decrease in proliferation (PCNA+) and neurogenesis (DCX+), an increase in proinflammatory cytokines (CD86+), and a reduction in neuroprotective (CD163+) microglia/macrophages. We suggest that a pathological increase microglia/macrophage activity is the cause of neurogenesis suppression observed in chronic neuropathic pain.
Collapse
Affiliation(s)
- Evgeniia Egorova
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.,Far Eastern Federal University, Vladivostok, Russian Federation
| | - Anna Starinets
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.,Far Eastern Federal University, Vladivostok, Russian Federation
| | - Anna Tyrtyshnaia
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.,Far Eastern Federal University, Vladivostok, Russian Federation
| | - Arina Ponomarenko
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.,Far Eastern Federal University, Vladivostok, Russian Federation
| | - Igor Manzhulo
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation, .,Far Eastern Federal University, Vladivostok, Russian Federation,
| |
Collapse
|
36
|
Davis KD, Cheng JC. Differentiating trait pain from state pain: a window into brain mechanisms underlying how we experience and cope with pain. Pain Rep 2019; 4:e735. [PMID: 31579845 PMCID: PMC6727997 DOI: 10.1097/pr9.0000000000000735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/22/2019] [Indexed: 11/25/2022] Open
Abstract
Across various biological and psychological attributes, individuals have a set point around which they can fluctuate transiently into various states. However, if one remains in a different state other than their set point for a considerable period (eg, induced by a disease), this different state can be considered to be a new set point that also has associated surrounding states. This concept is instructive for understanding chronic pain, where an individual's set point may maladaptively shift such that they become stuck at a new set point of pain (trait pain), from which pain can fluctuate on different timescales (ie, pain states). Here, we discuss the importance of considering trait and state pains in neuroimaging studies of brain structure and function to gain an understanding of not only an individual's current pain state but also more broadly to their trait pain, which may be more reflective of their general condition.
Collapse
Affiliation(s)
- Karen D. Davis
- Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Joshua C. Cheng
- Stony Brook University School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
37
|
Farley D, Piszczek Ł, Bąbel P. Why is running a marathon like giving birth? The possible role of oxytocin in the underestimation of the memory of pain induced by labor and intense exercise. Med Hypotheses 2019; 128:86-90. [PMID: 31203917 DOI: 10.1016/j.mehy.2019.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/14/2019] [Accepted: 05/10/2019] [Indexed: 01/09/2023]
Abstract
Pain can be overestimated, underestimated or reported accurately at recall. The way pain is remembered seems to depend on certain factors, including the type of pain or, in other words, its cause, the context, and the meaning it has for the person suffering from it. For instance, episodes of chronic pain, as well as pain related to surgery, are often overestimated at recall. Interestingly, research shows that pain induced by parturition or marathon running is often underestimated at recall despite the fact that both are not only physically grueling but also emotionally intense experiences. However, both processes can likewise be considered positive events, as opposed to most that involve pain. On the neurophysiological level, one of the similarities between giving birth and running a marathon is the particular involvement of the oxytocin system. Oxytocin is involved both in parturition and intense exercise, for various reasons. During labor, oxytocin mediates uterine contractions, while in the case of extensive running it might be involved in the maintenance of fluid balance. It also has well-documented analgesic properties and plays an important role in memory formation and recall. It has been suggested that oxytocin modulates the output of the central nucleus of the amygdala (CeA) during the fear recall. Moreover, it has been demonstrated that oxytocin can impair fear learning and influence the memory of both positive and negative emotionally salient stimuli. We propose that the reason for pain to be remembered in a more favorable light is the central action of oxytocin in the central nucleus of the amygdala, first and foremost during the encoding phase.
Collapse
Affiliation(s)
- Dominika Farley
- Jagiellonian University, Institute of Psychology, Pain Research Group, Poland.
| | | | - Przemysław Bąbel
- Jagiellonian University, Institute of Psychology, Pain Research Group, Poland
| |
Collapse
|
38
|
Volumetric brain correlates of approach-avoidance behavior and their relation to chronic back pain. Brain Imaging Behav 2019; 14:1758-1768. [PMID: 31065925 DOI: 10.1007/s11682-019-00110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Avoiding any harm, such as painful experiences, is an important ability for our physical and mental health. This avoidance behavior might be overactive under chronic pain, and the cortical and subcortical brain volumetry, which also often changes in chronic pain states, might be a significant correlate of this behavior. In the present study, we thus investigated the association between volumetric brain differences using 3 T structural magnetic resonance imaging and pain- versus pleasure-related approach-avoidance behavior using an Approach Avoidance Task in the laboratory in chronic back pain (N = 42; mean age: 51.34 years; 23 female) and healthy individuals (N = 43; mean age: 45.21 years; 15 female). We found significant differences in hippocampal, amygdala and accumbens volumes in patients compared to controls. The patients` hippocampal volume was significantly positively related to pain avoidance, the amygdala volume to positive approach, and the accumbens volume negatively to a bias to pain avoidance over positive approach. These associations were significantly moderated by pain symptom duration. Cortical structure may thus contribute to an overacting pain avoidance system in chronic back pain, and could, together with a reduction in approaching positive stimuli, be related to maladaptive choice and decision-making processes in chronic pain.
Collapse
|
39
|
Torrecillas-Martínez L, Catena A, O'Valle F, Padial-Molina M, Galindo-Moreno P. Does experienced pain affects local brain volumes? Insights from a clinical acute pain model. Int J Clin Health Psychol 2019; 19:115-123. [PMID: 31193130 PMCID: PMC6517646 DOI: 10.1016/j.ijchp.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/23/2019] [Indexed: 12/04/2022] Open
Abstract
Background/Objective:To study pain-brain morphometry associations as a function of post-surgery stages (anesthesia, pain and analgesia) in an acute pain model. Method:Impacted mandible third molar were extracted. Before surgery, an anatomical T1 scan was obtained. Regional brain volumen and subcortical nuclei shapes were obtained. Statistical analyses were done using multiple regression, being pain scores the predictors and voxel volumes, subcortical nuclei volumes and subcortical nuclei shapes, the outcomes. Results:Pain was significantly larger at pain than at anesthesia and analgesia stages, and was higher during anesthesia than during analgesia. Pain intensity was related to grey matter in several cortical (Insula, Mid Frontal and Temporal Gyruses, Precuneus, Anterior Cingulate), and subcortical nuclei (Hippocampus, Thalamus, Putamen, Amygdala), depending of the post-surgical stage. A larger number of brain areas showed significance at pain that at anesthesia and analgesia stages. Conclusions:The relationships of regional brain volumes and subcortical nuclei shapes with pain scores seemed to be unsteady, as they changed with the patient's actual pain stage.
Collapse
Affiliation(s)
| | - Andrés Catena
- Mind, Brain and Behavior Research Center, University of Granada, Spain
| | - Francisco O'Valle
- Department of Pathology, School of Medicine & IBIMER, University of Granada, Spain
| | - Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Spain
| | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Spain
| |
Collapse
|
40
|
Abstract
Low back pain affects individuals of all ages and is a leading contributor to disease burden worldwide. Despite advancements in assessment and treatment methods, the management of low back pain remains a challenge for researchers and clinicians alike. One reason for the limited success in identifying effective treatments is the large variation in the manifestations, possible causes, precipitating and maintaining factors, course, prognosis and consequences in terms of activity interference and quality of life. However, despite these challenges, steady progress has been achieved in the understanding of back pain, and important steps in the understanding of the psychological and social risk factors, genetics and brain mechanisms of low back pain have been made. These new findings have given impetus to the development of new diagnostic procedures, evidence-based screening methods and more targeted interventions, which underscore the need for a multidisciplinary approach to the management of low back pain that integrates biological, psychological and social aspects.
Collapse
|
41
|
Zhang X, Wang T, Yu Y, Zhao S. Key nodes affecting patient satisfaction in a cross-regional referral service process: an empirical analysis study in Sichuan. BMC Health Serv Res 2018; 18:840. [PMID: 30404644 PMCID: PMC6223049 DOI: 10.1186/s12913-018-3460-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/09/2018] [Indexed: 02/05/2023] Open
Abstract
Background The referral service is a significant component of healthcare reform in China, and the measurement of patient satisfaction with the referral service process will help to improve the quality of referral medical delivery. Furthermore, the referral service in China includes inter-institutional collaborations between hospitals at different levels and multi-nodes throughout the referral process. It is therefore necessary to identify the key nodes that affect patient satisfaction during the referral service process. Methods This study conducted a questionnaire survey of 110 patients to collect data regarding patient satisfaction at the following healthcare nodes: primary-level hospital, referral appointment registration, claim of appointment number in the outpatient department, examination service, admission service, and overall satisfaction during the referral service process. Correlation analysis and logistic regression methods were used to establish a mathematical model of patient satisfaction between five nodes and overall satisfaction. Additionally, a peak-end model was formed to identify the peak node impacting overall patient satisfaction during the referral service based on the sample data. Results Over 80% of referral patients rated the overall referral service as ‘good’. The correlation analysis revealed that there was a significant correlation between the satisfaction of each node and the overall satisfaction (P < 0.05). The results of the regression model showed that the satisfaction of five nodes determined the overall satisfaction and that “admission service at the higher-level hospital” exerted the greatest impact on overall satisfaction (β = 0.312), while “referral appointment registration” had the lowest influence on overall satisfaction (β = 0.177). The peak-end model also revealed that “admission service at the higher-level hospital” had a greater effect on overall satisfaction. Conclusion Our study showed that the key nodes affecting patient satisfaction were “transferring service at the primary-level hospital” and “admission service at the higher-level hospital”. Furthermore, the efficacy of the referral services is determined by the gatekeepers’ management of the referral system at the primary-level hospital and the allocation and management of bed resources at the higher-level hospital. These findings can serve as a science-based guidance for them to improve their performance in inter-regional healthcare collaborations in the referral service process.
Collapse
Affiliation(s)
- Xinli Zhang
- Business School of Sichuan University, Chengdu, 610065, China
| | - Tianjin Wang
- Business School of Sichuan University, Chengdu, 610065, China
| | - Yu Yu
- Business School of Sichuan University, Chengdu, 610065, China
| | - Shuzhen Zhao
- West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
42
|
Mioton LM, Dumanian GA. Discussion: Measuring Success in Complex Abdominal Wall Reconstruction: The Role of Validated Outcome Scales. Plast Reconstr Surg 2018; 142:171S-172S. [PMID: 30138286 DOI: 10.1097/prs.0000000000004874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Lauren M Mioton
- From the Division of Plastic and Reconstructive Surgery, Feinberg School of Medicine, Northwestern University
| | - Gregory A Dumanian
- From the Division of Plastic and Reconstructive Surgery, Feinberg School of Medicine, Northwestern University
| |
Collapse
|
43
|
Duan C, Sun JH, Li Y, Wang KZ, Dai Z, Fu H, Pu FF, Liu XM, Qian TX, Wang XY. Zhengtian Pills accelerated long term potentiation both in Schaffer collateral -CA1 and perforant path-dentate gyrus synapses. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|