1
|
Rubido N, Riedel G, Vuksanović V. Genetic basis of anatomical asymmetry and aberrant dynamic functional networks in Alzheimer's disease. Brain Commun 2023; 6:fcad320. [PMID: 38173803 PMCID: PMC10763534 DOI: 10.1093/braincomms/fcad320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/14/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Genetic associations with macroscopic brain networks can provide insights into healthy and aberrant cortical connectivity in disease. However, associations specific to dynamic functional connectivity in Alzheimer's disease are still largely unexplored. Understanding the association between gene expression in the brain and functional networks may provide useful information about the molecular processes underlying variations in impaired brain function. Given the potential of dynamic functional connectivity to uncover brain states associated with Alzheimer's disease, it is interesting to ask: How does gene expression associated with Alzheimer's disease map onto the dynamic functional brain connectivity? If genetic variants associated with neurodegenerative processes involved in Alzheimer's disease are to be correlated with brain function, it is essential to generate such a map. Here, we investigate how the relation between gene expression in the brain and dynamic functional connectivity arises from nodal interactions, quantified by their role in network centrality (i.e. the drivers of the metastability), and the principal component of genetic co-expression across the brain. Our analyses include genetic variations associated with Alzheimer's disease and also genetic variants expressed within the cholinergic brain pathways. Our findings show that contrasts in metastability of functional networks between Alzheimer's and healthy individuals can in part be explained by the two combinations of genetic co-variations in the brain with the confidence interval between 72% and 92%. The highly central nodes, driving the brain aberrant metastable dynamics in Alzheimer's disease, highly correlate with the magnitude of variations from two combinations of genes expressed in the brain. These nodes include mainly the white matter, parietal and occipital brain regions, each of which (or their combinations) are involved in impaired cognitive function in Alzheimer's disease. In addition, our results provide evidence of the role of genetic associations across brain regions in asymmetric changes in ageing. We validated our findings on the same cohort using alternative brain parcellation methods. This work demonstrates how genetic variations underpin aberrant dynamic functional connectivity in Alzheimer's disease.
Collapse
Affiliation(s)
- Nicolás Rubido
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Vesna Vuksanović
- Health Data Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| |
Collapse
|
2
|
Liu Z, Han F, Wang Q. Task-relevant brain dynamics among cognitive subsystems induced by regional stimulation in a whole-brain computational model. Phys Rev E 2023; 108:044402. [PMID: 37978611 DOI: 10.1103/physreve.108.044402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/11/2023] [Indexed: 11/19/2023]
Abstract
Cognition involves the global integration of distributed brain regions that are known to work cohesively as cognitive subsystems during brain functioning. Empirical evidence has suggested that spatiotemporal phase relationships between brain regions, measured as synchronization and metastability, may encode important task-relevant information. However, it remains largely unknown how phase relationships aggregate at the level of cognitive subsystems under different cognitive processing. Here, we probe this question by simulating task-relevant brain dynamics through regional stimulation of a whole-brain dynamical network model operating in the resting-state dynamical regime. The model is constructed with structurally embedded Stuart-Laudon oscillators and then fitted with human resting-state functional magnetic resonance imaging data. Based on this framework, we first demonstrate the plausibility of introducing the cognitive system partition into the modeling analysis framework by showing that the clustering of regions across functional networks is better circumscribed by the predefined partition. At the cognitive subsystem level, we focus on how task-relevant phase dynamics are organized in terms of synchronization and metastability. We found that patterns of cognitive synchronization are more task specific, whereas patterns of cognitive metastability are more consistent across different states, suggesting it may encode a more task-general property during cognitive processing, an inherent property conferred by brain organization. This consistent network architecture in cognitive metastability may be related to the distinct functional responses of realistic cognitive systems. We also provide empirical evidence to partially support our computational results. Our paper may provide insights for the mechanisms underlying task-relevant brain dynamics, and establish a model-based link between brain structure, dynamics, and cognition, a fundamental step for computationally aided brain interventions.
Collapse
Affiliation(s)
- Zilu Liu
- Department of Dynamics and Control, Beihang University, Beijing 100191, China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai 200051, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Mackay M, Huo S, Kaiser M. Spatial organisation of the mesoscale connectome: A feature influencing synchrony and metastability of network dynamics. PLoS Comput Biol 2023; 19:e1011349. [PMID: 37552650 PMCID: PMC10437862 DOI: 10.1371/journal.pcbi.1011349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/18/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
Significant research has investigated synchronisation in brain networks, but the bulk of this work has explored the contribution of brain networks at the macroscale. Here we explore the effects of changing network topology on functional dynamics in spatially constrained random networks representing mesoscale neocortex. We use the Kuramoto model to simulate network dynamics and explore synchronisation and critical dynamics of the system as a function of topology in randomly generated networks with a distance-related wiring probability and no preferential attachment term. We show networks which predominantly make short-distance connections smooth out the critical coupling point and show much greater metastability, resulting in a wider range of coupling strengths demonstrating critical dynamics and metastability. We show the emergence of cluster synchronisation in these geometrically-constrained networks with functional organisation occurring along structural connections that minimise the participation coefficient of the cluster. We show that these cohorts of internally synchronised nodes also behave en masse as weakly coupled nodes and show intra-cluster desynchronisation and resynchronisation events related to inter-cluster interaction. While cluster synchronisation appears crucial to healthy brain function, it may also be pathological if it leads to unbreakable local synchronisation which may happen at extreme topologies, with implications for epilepsy research, wider brain function and other domains such as social networks.
Collapse
Affiliation(s)
- Michael Mackay
- Newcastle University, School of Computing, Newcastle upon Tyne, United Kingdom
| | - Siyu Huo
- East China Normal University, School of Physics and Electronic Science, Shanghai, China
- University of Nottingham, NIHR Nottingham Biomedical Research Centre, School of Medicine, Nottingham, United Kingdom
| | - Marcus Kaiser
- University of Nottingham, NIHR Nottingham Biomedical Research Centre, School of Medicine, Nottingham, United Kingdom
- University of Nottingham, Sir Peter Mansfield Imaging Centre, School of Medicine, Nottingham, United Kingdom
- Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Yang L, Lu J, Li D, Xiang J, Yan T, Sun J, Wang B. Alzheimer's Disease: Insights from Large-Scale Brain Dynamics Models. Brain Sci 2023; 13:1133. [PMID: 37626490 PMCID: PMC10452161 DOI: 10.3390/brainsci13081133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative brain disease, and the condition is difficult to assess. In the past, numerous brain dynamics models have made remarkable contributions to neuroscience and the brain from the microcosmic to the macroscopic scale. Recently, large-scale brain dynamics models have been developed based on dual-driven multimodal neuroimaging data and neurodynamics theory. These models bridge the gap between anatomical structure and functional dynamics and have played an important role in assisting the understanding of the brain mechanism. Large-scale brain dynamics have been widely used to explain how macroscale neuroimaging biomarkers emerge from potential neuronal population level disturbances associated with AD. In this review, we describe this emerging approach to studying AD that utilizes a biophysically large-scale brain dynamics model. In particular, we focus on the application of the model to AD and discuss important directions for the future development and analysis of AD models. This will facilitate the development of virtual brain models in the field of AD diagnosis and treatment and add new opportunities for advancing clinical neuroscience.
Collapse
Affiliation(s)
- Lan Yang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| | - Jiayu Lu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| | - Dandan Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| | - Jie Xiang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| | - Ting Yan
- Teranslational Medicine Research Center, Shanxi Medical University, Taiyuan 030001, China;
| | - Jie Sun
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| | - Bin Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| |
Collapse
|
5
|
Herzog R, Rosas FE, Whelan R, Fittipaldi S, Santamaria-Garcia H, Cruzat J, Birba A, Moguilner S, Tagliazucchi E, Prado P, Ibanez A. Genuine high-order interactions in brain networks and neurodegeneration. Neurobiol Dis 2022; 175:105918. [PMID: 36375407 PMCID: PMC11195446 DOI: 10.1016/j.nbd.2022.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Brain functional networks have been traditionally studied considering only interactions between pairs of regions, neglecting the richer information encoded in higher orders of interactions. In consequence, most of the connectivity studies in neurodegeneration and dementia use standard pairwise metrics. Here, we developed a genuine high-order functional connectivity (HOFC) approach that captures interactions between 3 or more regions across spatiotemporal scales, delivering a more biologically plausible characterization of the pathophysiology of neurodegeneration. We applied HOFC to multimodal (electroencephalography [EEG], and functional magnetic resonance imaging [fMRI]) data from patients diagnosed with behavioral variant of frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and healthy controls. HOFC revealed large effect sizes, which, in comparison to standard pairwise metrics, provided a more accurate and parsimonious characterization of neurodegeneration. The multimodal characterization of neurodegeneration revealed hypo and hyperconnectivity on medium to large-scale brain networks, with a larger contribution of the former. Regions as the amygdala, the insula, and frontal gyrus were associated with both effects, suggesting potential compensatory processes in hub regions. fMRI revealed hypoconnectivity in AD between regions of the default mode, salience, visual, and auditory networks, while in bvFTD between regions of the default mode, salience, and somatomotor networks. EEG revealed hypoconnectivity in the γ band between frontal, limbic, and sensory regions in AD, and in the δ band between frontal, temporal, parietal and posterior areas in bvFTD, suggesting additional pathophysiological processes that fMRI alone can not capture. Classification accuracy was comparable with standard biomarkers and robust against confounders such as sample size, age, education, and motor artifacts (from fMRI and EEG). We conclude that high-order interactions provide a detailed, EEG- and fMRI compatible, biologically plausible, and psychopathological-specific characterization of different neurodegenerative conditions.
Collapse
Affiliation(s)
- Rubén Herzog
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Fundación para el Estudio de la Conciencia Humana (EcoH), Chile
| | - Fernando E Rosas
- Fundación para el Estudio de la Conciencia Humana (EcoH), Chile; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, UK; Data Science Institute, Imperial College London, UK; Centre for Complexity Science, Imperial College London, UK; Department of Informatics, University of Sussex, Brighton, UK
| | - Robert Whelan
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin 2, Ireland
| | - Sol Fittipaldi
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin 2, Ireland; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | | | - Josephine Cruzat
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Fundación para el Estudio de la Conciencia Humana (EcoH), Chile
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | - Sebastian Moguilner
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Enzo Tagliazucchi
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
| | - Pavel Prado
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
| | - Agustin Ibanez
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin 2, Ireland; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), CA, USA.
| |
Collapse
|
6
|
Yang S, Hwang HS, Zhu BH, Chen J, Enkhzaya G, Wang ZJ, Kim ES, Kim NY. Evaluating the Alterations Induced by Virtual Reality in Cerebral Small-World Networks Using Graph Theory Analysis with Electroencephalography. Brain Sci 2022; 12:brainsci12121630. [PMID: 36552090 PMCID: PMC9776076 DOI: 10.3390/brainsci12121630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Virtual reality (VR), a rapidly evolving technology that simulates three-dimensional virtual environments for users, has been proven to activate brain functions. However, the continuous alteration pattern of the functional small-world network in response to comprehensive three-dimensional stimulation rather than realistic two-dimensional media stimuli requires further exploration. Here, we aimed to validate the effect of VR on the pathways and network parameters of a small-world organization and interpret its mechanism of action. Fourteen healthy volunteers were selected to complete missions in an immersive VR game. The changes in the functional network in six different frequency categories were analyzed using graph theory with electroencephalography data measured during the pre-, VR, and post-VR stages. The mutual information matrix revealed that interactions between the frontal and posterior areas and those within the frontal and occipital lobes were strengthened. Subsequently, the betweenness centrality (BC) analysis indicated more robust and extensive pathways among hubs. Furthermore, a specific lateralized channel (O1 or O2) increment in the BC was observed. Moreover, the network parameters improved simultaneously in local segregation, global segregation, and global integration. The overall topological improvements of small-world organizations were in high-frequency bands and exhibited some degree of sustainability.
Collapse
Affiliation(s)
- Shan Yang
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- NDAC Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hyeon-Sik Hwang
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Bao-Hua Zhu
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- NDAC Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jian Chen
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- NDAC Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Ganbold Enkhzaya
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- NDAC Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Zhi-Ji Wang
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Department of Pediatrics, Severance Children’s Hospital, Yonsei University, Seoul 03722, Republic of Korea
- Correspondence: (Z.-J.W.); (E.-S.K.); (N.-Y.K.)
| | - Eun-Seong Kim
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- WAVEPIA Co., Ltd., 557, Dongtangiheung-ro, Hwaseong-si 18469, Republic of Korea
- Correspondence: (Z.-J.W.); (E.-S.K.); (N.-Y.K.)
| | - Nam-Young Kim
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- NDAC Center, Kwangwoon University, Seoul 01897, Republic of Korea
- Correspondence: (Z.-J.W.); (E.-S.K.); (N.-Y.K.)
| |
Collapse
|
7
|
Impaired Brain Information Transmission Efficiency and Flexibility in Parkinson’s Disease and Rapid Eye Movement Sleep Behavior Disorder: Evidence from Functional Connectivity and Functional Dynamics. PARKINSON'S DISEASE 2022; 2022:7495371. [PMID: 36160829 PMCID: PMC9499819 DOI: 10.1155/2022/7495371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder. Rapid eye movement sleep behavior disorder (RBD) is one of the prodromal symptoms of PD. Studies have shown that brain information transmission is affected in PD patients. Consequently, we hypothesized that brain information transmission is impaired in RBD and PD. To prove our hypothesis, we performed functional connectivity (FC) and functional dynamics analysis of three aspects—based on the whole brain, within the resting-state network (RSN), and the interaction between RSNs—using normal control (NC) (n = 21), RBD (n = 24), and PD (n = 45) resting-state functional magnetic resonance imaging (rs-fMRI) data sets. Furthermore, we tested the explanatory power of FC and functional dynamics for the clinical features. Our results found that the global functional dynamics and FC of RBD and PD were impaired. Within RSN, the impairment concentrated in the visual network (VIS) and sensorimotor network (SMN), and the impaired degree of SMN in RBD was higher than that in PD. On the interaction between RSNs, RBD showed a widespread decrease, and PD showed a focal decrease which concentrated in SMN and VIS. Finally, we proved FC and functional dynamics were related to clinical features. These differences confirmed that brain information transmission efficiency and flexibility are impaired in RBD and PD, and these impairments are associated with the clinical features of patients.
Collapse
|
8
|
A novelty detection approach to effectively predict conversion from mild cognitive impairment to Alzheimer’s disease. INT J MACH LEARN CYB 2022. [DOI: 10.1007/s13042-022-01570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractAccurately recognising patients with progressive mild cognitive impairment (pMCI) who will develop Alzheimer’s disease (AD) in subsequent years is very important, as early identification of those patients will enable interventions to potentially reduce the number of those transitioning from MCI to AD. Most studies in this area have concentrated on high-dimensional neuroimaging data with supervised binary/multi-class classification algorithms. However, neuroimaging data is more costly to obtain than non-imaging, and healthcare datasets are normally imbalanced which may reduce classification performance and reliability. To address these challenges, we proposed a new strategy that employs unsupervised novelty detection (ND) techniques to predict pMCI from the AD neuroimaging initiative non-imaging data. ND algorithms, including the k-nearest neighbours (kNN), k-means, Gaussian mixture model (GMM), isolation forest (IF) and extreme learning machine (ELM), were employed and compared with supervised binary support vector machine (SVM) and random forest (RF). We introduced optimisation with nested cross-validation and focused on maximising the adjusted F measure to ensure maximum generalisation of the proposed system by minimising false negative rates. Our extensive experimental results show that ND algorithms (0.727 ± 0.029 kNN, 0.7179 ± 0.0523 GMM, 0.7276 ± 0.0281 ELM) obtained comparable performance to supervised binary SVM (0.7359 ± 0.0451) with 20% stable MCI misclassification tolerance and were significantly better than RF (0.4771 ± 0.0167). Moreover, we found that the non-invasive, readily obtainable, and cost-effective cognitive and functional assessment was the most efficient predictor for predicting the pMCI within 2 years with ND techniques. Importantly, we presented an accessible and cost-effective approach to pMCI prediction, which does not require labelled data.
Collapse
|
9
|
Xiang J, Fan C, Wei J, Li Y, Wang B, Niu Y, Yang L, Lv J, Cui X. The Task Pre-Configuration Is Associated With Cognitive Performance Evidence From the Brain Synchrony. Front Comput Neurosci 2022; 16:883660. [PMID: 35603133 PMCID: PMC9120823 DOI: 10.3389/fncom.2022.883660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Although many resting state and task state characteristics have been studied, it is still unclear how the brain network switches from the resting state during tasks. The current theory shows that the brain is a complex dynamic system and synchrony is defined to measure brain activity. The study compared the changes of synchrony between the resting state and different task states in healthy young participants (N = 954). It also examined the ability to switch from the resting state to the task-general architecture of synchrony. We found that the synchrony increased significantly during the tasks. And the results showed that the brain has a task-general architecture of synchrony during different tasks. The main feature of task-based reasoning is that the increase in synchrony of high-order cognitive networks is significant, while the increase in synchrony of sensorimotor networks is relatively low. In addition, the high synchrony of high-order cognitive networks in the resting state can promote task switching effectively and the pre-configured participants have better cognitive performance, which shows that spontaneous brain activity and cognitive ability are closely related. These results revealed changes in the brain network configuration for switching between the resting state and task state, highlighting the consistent changes in the brain network between different tasks. Also, there was an important relationship between the switching ability and the cognitive performance.
Collapse
|
10
|
Wang J, Wang K, Liu T, Wang L, Suo D, Xie Y, Funahashi S, Wu J, Pei G. Abnormal Dynamic Functional Networks in Subjective Cognitive Decline and Alzheimer's Disease. Front Comput Neurosci 2022; 16:885126. [PMID: 35586480 PMCID: PMC9108158 DOI: 10.3389/fncom.2022.885126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Subjective cognitive decline (SCD) is considered to be the preclinical stage of Alzheimer's disease (AD) and has the potential for the early diagnosis and intervention of AD. It was implicated that CSF-tau, which increases very early in the disease process in AD, has a high sensitivity and specificity to differentiate AD from normal aging, and the highly connected brain regions behaved more tau burden in patients with AD. Thus, a highly connected state measured by dynamic functional connectivity may serve as the early changes of AD. In this study, forty-five normal controls (NC), thirty-six individuals with SCD, and thirty-five patients with AD were enrolled to obtain the resting-state functional magnetic resonance imaging scanning. Sliding windows, Pearson correlation, and clustering analysis were combined to investigate the different levels of information transformation states. Three states, namely, the low state, the middle state, and the high state, were characterized based on the strength of functional connectivity between each pair of brain regions. For the global dynamic functional connectivity analysis, statistically significant differences were found among groups in the three states, and the functional connectivity in the middle state was positively correlated with cognitive scales. Furthermore, the whole brain was parcellated into four networks, namely, default mode network (DMN), cognitive control network (CCN), sensorimotor network (SMN), and occipital-cerebellum network (OCN). For the local network analysis, statistically significant differences in CCN for low state and SMN for middle state and high state were found in normal controls and patients with AD. Meanwhile, the differences were also found in normal controls and individuals with SCD. In addition, the functional connectivity in SMN for high state was positively correlated with cognitive scales. Converging results showed the changes in dynamic functional states in individuals with SCD and patients with AD. In addition, the changes were mainly in the high strength of the functional connectivity state.
Collapse
Affiliation(s)
- Jue Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kexin Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Tiantian Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yunyan Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shintaro Funahashi
- Kokoro Research Center, Kyoto University, Kyoto, Japan
- Laboratory of Cognitive Brain Science, Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
- *Correspondence: Jinglong Wu
| | - Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing, China
- Guangying Pei
| |
Collapse
|
11
|
Wei J, Wang B, Yang Y, Niu Y, Yang L, Guo Y, Xiang J. Effects of virtual lesions on temporal dynamics in cortical networks based on personalized dynamic models. Neuroimage 2022; 254:119087. [PMID: 35364277 DOI: 10.1016/j.neuroimage.2022.119087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022] Open
Abstract
The human brain dynamically shifts between a predominantly integrated state and a predominantly segregated state, each with different roles in supporting cognition and behavior. However, no studies to date have investigated lesions placed in different regions of the cerebral cortex to determine the effects on the temporal balance of integration and segregation. Here, we used the integrated state occurrence rate to measure the temporal balance of integration and segregation in the resting brain. Based on dynamic mean-field models coupled through the individual's structural white matter connections, neural activity was modeled. By lesioning different individual nodes from the model, our results implied that the impact of lesions reaches far beyond focal damage and could impair cognition by affecting system-level dynamics. Lesions in a portion of the nodes in the visual, somatomotor, limbic, and default networks significantly compromised the temporal balance of integration and segregation. Crucially, the effects of lesions in different regions could be predicted based on the hierarchical axis inferred from the T1w/T2w map and specific graph measures of structural brain networks. Taken together, our findings indicate the possibility of significant contributions of anatomical heterogeneity to the dynamics of functional network topology. Although still in its infancy, computational modeling may provide an entry point for understanding brain disorders at a causal mechanistic level, possibly leading to novel, more effective therapeutic interventions.
Collapse
Affiliation(s)
- Jing Wei
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China; School of Information, Shanxi University of Finance and Economics, Taiyuan, China
| | - Bin Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China; Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanli Yang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yan Niu
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Lan Yang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yuxiang Guo
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jie Xiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China.
| |
Collapse
|
12
|
Kotlarz P, Nino JC, Febo M. Connectomic analysis of Alzheimer's disease using percolation theory. Netw Neurosci 2022; 6:213-233. [PMID: 36605889 PMCID: PMC9810282 DOI: 10.1162/netn_a_00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder that affects a growing worldwide elderly population. Identification of brain functional biomarkers is expected to help determine preclinical stages for targeted mechanistic studies and development of therapeutic interventions to deter disease progression. Connectomic analysis, a graph theory-based methodology used in the analysis of brain-derived connectivity matrices was used in conjunction with percolation theory targeted attack model to investigate the network effects of AD-related amyloid deposition. We used matrices derived from resting-state functional magnetic resonance imaging collected on mice with extracellular amyloidosis (TgCRND8 mice, n = 17) and control littermates (n = 17). Global, nodal, spatial, and percolation-based analysis was performed comparing AD and control mice. These data indicate a short-term compensatory response to neurodegeneration in the AD brain via a strongly connected core network with highly vulnerable or disconnected hubs. Targeted attacks demonstrated a greater vulnerability of AD brains to all types of attacks and identified progression models to mimic AD brain functional connectivity through betweenness centrality and collective influence metrics. Furthermore, both spatial analysis and percolation theory identified a key disconnect between the anterior brain of the AD mice to the rest of the brain network.
Collapse
Affiliation(s)
- Parker Kotlarz
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA,* Corresponding Author:
| | - Juan C. Nino
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Yang L, Wei J, Li Y, Wang B, Guo H, Yang Y, Xiang J. Test–Retest Reliability of Synchrony and Metastability in Resting State fMRI. Brain Sci 2021; 12:brainsci12010066. [PMID: 35053813 PMCID: PMC8773904 DOI: 10.3390/brainsci12010066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, interest has been growing in dynamic characteristic of brain signals from resting-state functional magnetic resonance imaging (rs-fMRI). Synchrony and metastability, as neurodynamic indexes, are considered as one of methods for analyzing dynamic characteristics. Although much research has studied the analysis of neurodynamic indices, few have investigated its reliability. In this paper, the datasets from the Human Connectome Project have been used to explore the test–retest reliabilities of synchrony and metastability from multiple angles through intra-class correlation (ICC). The results showed that both of these indexes had fair test–retest reliability, but they are strongly affected by the field strength, the spatial resolution, and scanning interval, less affected by the temporal resolution. Denoising processing can help improve their ICC values. In addition, the reliability of neurodynamic indexes was affected by the node definition strategy, but these effects were not apparent. In particular, by comparing the test–retest reliability of different resting-state networks, we found that synchrony of different networks was basically stable, but the metastability varied considerably. Among these, DMN and LIM had a relatively higher test–retest reliability of metastability than other networks. This paper provides a methodological reference for exploring the brain dynamic neural activity by using synchrony and metastability in fMRI signals.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie Xiang
- Correspondence: ; Tel.: +86-186-0351-1178
| |
Collapse
|
14
|
Wang L, Zhou C, Cheng W, Rolls ET, Huang P, Ma N, Liu Y, Zhang Y, Guan X, Guo T, Wu J, Gao T, Xuan M, Gu Q, Xu X, Zhang B, Gong W, Du J, Zhang W, Feng J, Zhang M. Dopamine depletion and subcortical dysfunction disrupt cortical synchronization and metastability affecting cognitive function in Parkinson's disease. Hum Brain Mapp 2021; 43:1598-1610. [PMID: 34904766 PMCID: PMC8886656 DOI: 10.1002/hbm.25745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/28/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is primarily characterized by the loss of dopaminergic cells and atrophy in subcortical regions. However, the impact of these pathological changes on large-scale dynamic integration and segregation of the cortex are not well understood. In this study, we investigated the effect of subcortical dysfunction on cortical dynamics and cognition in PD. Spatiotemporal dynamics of the phase interactions of resting-state blood-oxygen-level-dependent signals in 159 PD patients and 152 normal control (NC) individuals were estimated. The relationships between subcortical atrophy, subcortical-cortical fiber connectivity impairment, cortical synchronization/metastability, and cognitive performance were then assessed. We found that cortical synchronization and metastability in PD patients were significantly decreased. To examine whether this is an effect of dopamine depletion, we investigated 45 PD patients both ON and OFF dopamine replacement therapy, and found that cortical synchronization and metastability are significantly increased in the ON state. The extent of cortical synchronization and metastability in the OFF state reflected cognitive performance and mediates the difference in cognitive performance between the PD and NC groups. Furthermore, both the thalamic volume and thalamocortical fiber connectivity had positive relationships with cortical synchronization and metastability in the dopaminergic OFF state, and mediate the difference in cortical synchronization between the PD and NC groups. In addition, thalamic volume also reflected cognitive performance, and cortical synchronization/metastability mediated the relationship between thalamic volume and cognitive performance in PD patients. Together, these results highlight that subcortical dysfunction and reduced dopamine levels are responsible for decreased cortical synchronization and metastability, further affecting cognitive performance in PD. This might lead to biomarkers being identified that can predict if a patient is at risk of developing dementia.
Collapse
Affiliation(s)
- Linbo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Zhangjiang Fudan International Innovation Center, Shanghai, China.,Department of Computer Science, University of Warwick, Coventry, UK
| | - Edmund T Rolls
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Zhangjiang Fudan International Innovation Center, Shanghai, China.,Department of Computer Science, University of Warwick, Coventry, UK
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ningning Ma
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Yuchen Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Yajuan Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weikang Gong
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Jingnan Du
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Zhangjiang Fudan International Innovation Center, Shanghai, China.,Department of Computer Science, University of Warwick, Coventry, UK
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
du Bois N, Bigirimana AD, Korik A, Kéthina LG, Rutembesa E, Mutabaruka J, Mutesa L, Prasad G, Jansen S, Coyle DH. Neurofeedback with low-cost, wearable electroencephalography (EEG) reduces symptoms in chronic Post-Traumatic Stress Disorder. J Affect Disord 2021; 295:1319-1334. [PMID: 34706446 DOI: 10.1016/j.jad.2021.08.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The study examines the effectiveness of both neurofeedback and motor-imagery brain-computer interface (BCI) training, which promotes self-regulation of brain activity, using low-cost electroencephalography (EEG)-based wearable neurotechnology outside a clinical setting, as a potential treatment for post-traumatic stress disorder (PTSD) in Rwanda. METHODS Participants received training/treatment sessions along with a pre- and post- intervention clinical assessment, (N = 29; control n = 9, neurofeedback (NF, 7 sessions) n = 10, and motor-imagery (MI, 6 sessions) n = 10). Feedback was presented visually via a videogame. Participants were asked to regulate (NF) or intentionally modulate (MI) brain activity to affect/control the game. RESULTS The NF group demonstrated an increase in resting-state alpha 8-12 Hz bandpower following individual training sessions, termed alpha 'rebound' (Pz channel, p = 0.025, all channels, p = 0.024), consistent with previous research findings. This alpha 'rebound', unobserved in the MI group, produced a clinically relevant reduction in symptom severity in NF group, as revealed in three of seven clinical outcome measures: PCL-5 (p = 0.005), PTSD screen (p = 0.005), and HTQ (p = 0.005). LIMITATIONS Data collection took place in environments that posed difficulties in controlling environmental factors. Nevertheless, this limitation improves ecological validity, as neurotechnology treatments must be deployable outside controlled environments, to be a feasible technological treatment. CONCLUSIONS The study produced the first evidence to support a low-cost, neurotechnological solution for neurofeedback as an effective treatment of PTSD for victims of acute trauma in conflict zones in a developing country.
Collapse
Affiliation(s)
- N du Bois
- Intelligent Systems Research Centre, Ulster University (UU), Magee Campus, NI, United Kingdom
| | - A D Bigirimana
- Intelligent Systems Research Centre, Ulster University (UU), Magee Campus, NI, United Kingdom
| | - A Korik
- Intelligent Systems Research Centre, Ulster University (UU), Magee Campus, NI, United Kingdom
| | - L Gaju Kéthina
- Department of Clinical Psychology, College of Medicine and Health Sciences, University of Rwanda (UR), Huye, Rwanda
| | - E Rutembesa
- Department of Clinical Psychology, College of Medicine and Health Sciences, University of Rwanda (UR), Huye, Rwanda
| | - J Mutabaruka
- Department of Clinical Psychology, College of Medicine and Health Sciences, University of Rwanda (UR), Huye, Rwanda
| | - L Mutesa
- Centre for Human Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda (UR), Huye, Rwanda
| | - G Prasad
- Intelligent Systems Research Centre, Ulster University (UU), Magee Campus, NI, United Kingdom
| | - S Jansen
- Department of Clinical Psychology, College of Medicine and Health Sciences, University of Rwanda (UR), Huye, Rwanda
| | - D H Coyle
- Intelligent Systems Research Centre, Ulster University (UU), Magee Campus, NI, United Kingdom.
| |
Collapse
|
16
|
Naskar A, Vattikonda A, Deco G, Roy D, Banerjee A. Multiscale dynamic mean field (MDMF) model relates resting-state brain dynamics with local cortical excitatory-inhibitory neurotransmitter homeostasis. Netw Neurosci 2021; 5:757-782. [PMID: 34746626 PMCID: PMC8567829 DOI: 10.1162/netn_a_00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/19/2021] [Indexed: 11/24/2022] Open
Abstract
Previous computational models have related spontaneous resting-state brain activity with local excitatory–inhibitory balance in neuronal populations. However, how underlying neurotransmitter kinetics associated with E–I balance govern resting-state spontaneous brain dynamics remains unknown. Understanding the mechanisms by virtue of which fluctuations in neurotransmitter concentrations, a hallmark of a variety of clinical conditions, relate to functional brain activity is of critical importance. We propose a multiscale dynamic mean field (MDMF) model—a system of coupled differential equations for capturing the synaptic gating dynamics in excitatory and inhibitory neural populations as a function of neurotransmitter kinetics. Individual brain regions are modeled as population of MDMF and are connected by realistic connection topologies estimated from diffusion tensor imaging data. First, MDMF successfully predicts resting-state functional connectivity. Second, our results show that optimal range of glutamate and GABA neurotransmitter concentrations subserve as the dynamic working point of the brain, that is, the state of heightened metastability observed in empirical blood-oxygen-level-dependent signals. Third, for predictive validity the network measures of segregation (modularity and clustering coefficient) and integration (global efficiency and characteristic path length) from existing healthy and pathological brain network studies could be captured by simulated functional connectivity from an MDMF model. How changes in neurotransmitter kinetics impact the organization of large-scale neurocognitive networks is an open question in neuroscience. Here, we propose a multiscale dynamic mean field (MDMF) model that incorporates biophysically realistic kinetic parameters of receptor binding in a dynamic mean field model and captures brain dynamics from the “whole brain.” MDMF could reliably reproduce the resting-state brain functional connectivity patterns. Further employing graph theoretic methods, MDMF could qualitatively explain the idiosyncrasies of network integration and segregation measures reported by previous clinical studies.
Collapse
Affiliation(s)
- Amit Naskar
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, Gurgaon, India
| | - Anirudh Vattikonda
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, Gurgaon, India
| | - Gustavo Deco
- Computational Neuroscience Research Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Dipanjan Roy
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, Gurgaon, India
| | - Arpan Banerjee
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, Gurgaon, India
| |
Collapse
|
17
|
Zhou C, Guo T, Wu J, Wang L, Bai X, Gao T, Guan X, Gu L, Huang P, Xuan M, Gu Q, Xu X, Zhang B, Cheng W, Feng J, Zhang M. Locus Coeruleus Degeneration Correlated with Levodopa Resistance in Parkinson's Disease: A Retrospective Analysis. JOURNAL OF PARKINSONS DISEASE 2021; 11:1631-1640. [PMID: 34366373 PMCID: PMC8609680 DOI: 10.3233/jpd-212720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: The widely divergent responsiveness of Parkinson’s disease (PD) patients to levodopa is an important clinical issue because of its relationship with quality of life and disease prognosis. Preliminary animal experiments have suggested that degeneration of the locus coeruleus (LC) attenuates the efficacy of levodopa treatment. Objective: To explore the relationship between LC degeneration and levodopa responsiveness in PD patients in vivo. Methods: Neuromelanin-sensitive magnetic resonance imaging (NM-MRI), a good indicator of LC and substantia nigra (SN) degeneration, and levodopa challenge tests were conducted in 57 PD patients. Responsiveness to levodopa was evaluated by the rates of change of the Unified Parkinson’s Disease Rating Scale Part III score and somatomotor network synchronization calculated from resting-state functional MRI before and after levodopa administration. Next, we assessed the relationship between the contrast-to-noise ratio of LC (CNRLC) and levodopa responsiveness. Multiple linear regression analysis was conducted to rule out the potential influence of SN degeneration on levodopa responsiveness. Results: A significant positive correlation was found between CNRLC and the motor improvement after levodopa administration (R = 0.421, p = 0.004). CNRLC also correlated with improvement in somatomotor network synchronization (R = –0.323, p = 0.029). Furthermore, the relationship between CNRLC and levodopa responsiveness was independent of SN degeneration. Conclusion: LC degeneration might be an essential factor for levodopa resistance. LC evaluation using NM-MRI might be an alternative tool for predicting levodopa responsiveness and for helping to stratify patients into clinical trials aimed at improving the efficacy of levodopa.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - JingJing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linbo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xueqin Bai
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyan Gu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.,Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
On a Quantitative Approach to Clinical Neuroscience in Psychiatry: Lessons from the Kuramoto Model. Harv Rev Psychiatry 2021; 29:318-326. [PMID: 34049338 DOI: 10.1097/hrp.0000000000000301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human brain is a complex system comprising subregions that dynamically exchange information between its various parts through synchronization. These dynamic, complex interactions ultimately play a role in perception, emotion, cognition, and behavior, as well as in various maladaptive neurologic and psychiatric processes. It is therefore important to understand how brain dynamics might be implicated in these processes. Over the past few years, network neuroscience and computational neuroscience have highlighted the importance of measures such as metastability (a property whereby members of an oscillating system tend to linger at the edge of synchronicity without permanently becoming synchronized) in quantifying brain dynamics. Altered metastability has been implicated in various psychiatric illnesses, such as traumatic brain injury and Alzheimer's disease. Computational models, which range in complexity, have been used to assess how various parameters affect metastability, synchronization, and functional connectivity. These models, though limited, can act as heuristics in understanding brain dynamics. This article (aimed at the clinical psychiatrist who might not possess an extensive mathematical background) is intended to provide a brief and qualitative summary of studies that have used a specific, highly simplified computational model of coupled oscillators (Kuramoto model) for understanding brain dynamics-which might bear some relevance to clinical psychiatry.
Collapse
|
19
|
Kelso JAS. Unifying Large- and Small-Scale Theories of Coordination. ENTROPY 2021; 23:e23050537. [PMID: 33925736 PMCID: PMC8146522 DOI: 10.3390/e23050537] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Coordination is a ubiquitous feature of all living things. It occurs by virtue of informational coupling among component parts and processes and can be quite specific (as when cells in the brain resonate to signals in the environment) or nonspecific (as when simple diffusion creates a source–sink dynamic for gene networks). Existing theoretical models of coordination—from bacteria to brains to social groups—typically focus on systems with very large numbers of elements (N→∞) or systems with only a few elements coupled together (typically N = 2). Though sharing a common inspiration in Nature’s propensity to generate dynamic patterns, both approaches have proceeded largely independent of each other. Ideally, one would like a theory that applies to phenomena observed on all scales. Recent experimental research by Mengsen Zhang and colleagues on intermediate-sized ensembles (in between the few and the many) proves to be the key to uniting large- and small-scale theories of coordination. Disorder–order transitions, multistability, order–order phase transitions, and especially metastability are shown to figure prominently on multiple levels of description, suggestive of a basic Coordination Dynamics that operates on all scales. This unified coordination dynamics turns out to be a marriage of two well-known models of large- and small-scale coordination: the former based on statistical mechanics (Kuramoto) and the latter based on the concepts of Synergetics and nonlinear dynamics (extended Haken–Kelso–Bunz or HKB). We show that models of the many and the few, previously quite unconnected, are thereby unified in a single formulation. The research has led to novel topological methods to handle the higher-dimensional dynamics of coordination in complex systems and has implications not only for understanding coordination but also for the design of (biorhythm inspired) computers.
Collapse
Affiliation(s)
- J. A. Scott Kelso
- Human Brain & Behavior Laboratory (HBBL), Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33432, USA;
- Intelligent Systems Research Centre, Magee Campus, Ulster University, Derry~Londonderry BT48 7JL, UK
| |
Collapse
|
20
|
Wang Q, Zhang B, Yue Z. Disentangling the Molecular Pathways of Parkinson's Disease using Multiscale Network Modeling. Trends Neurosci 2021; 44:182-188. [PMID: 33358606 PMCID: PMC10942661 DOI: 10.1016/j.tins.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/28/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder. The identification of genetic variants has shed light on the molecular pathways for inherited PD, while the disease mechanism for idiopathic PD remains elusive, partly due to a lack of robust tools. The complexity of PD arises from the heterogeneity of clinical symptoms, pathologies, environmental insults contributing to the disease, and disease comorbidities. Molecular networks have been increasingly used to identify molecular pathways and drug targets in complex human diseases. Here, we review recent advances in molecular network approaches and their application to PD. We discuss how network modeling can predict functions of PD genetic risk factors through network context and assist in the discovery of network-based therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029-6501, USA; Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029-6501, USA.
| | - Zhenyu Yue
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029, USA.
| |
Collapse
|
21
|
Wong-Lin K, Sanchez-Bornot JM, McCombe N, Kaur D, McClean PL, Zou X, Youssofzadeh V, Ding X, Bucholc M, Yang S, Prasad G, Coyle D, Maguire LP, Wang H, Wang H, Atiya NA, Joshi A. Computational Neurology: Computational Modeling Approaches in Dementia. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11588-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Wong-Lin K, McClean PL, McCombe N, Kaur D, Sanchez-Bornot JM, Gillespie P, Todd S, Finn DP, Joshi A, Kane J, McGuinness B. Shaping a data-driven era in dementia care pathway through computational neurology approaches. BMC Med 2020; 18:398. [PMID: 33323116 PMCID: PMC7738245 DOI: 10.1186/s12916-020-01841-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/03/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Dementia is caused by a variety of neurodegenerative diseases and is associated with a decline in memory and other cognitive abilities, while inflicting an enormous socioeconomic burden. The complexity of dementia and its associated comorbidities presents immense challenges for dementia research and care, particularly in clinical decision-making. MAIN BODY Despite the lack of disease-modifying therapies, there is an increasing and urgent need to make timely and accurate clinical decisions in dementia diagnosis and prognosis to allow appropriate care and treatment. However, the dementia care pathway is currently suboptimal. We propose that through computational approaches, understanding of dementia aetiology could be improved, and dementia assessments could be more standardised, objective and efficient. In particular, we suggest that these will involve appropriate data infrastructure, the use of data-driven computational neurology approaches and the development of practical clinical decision support systems. We also discuss the technical, structural, economic, political and policy-making challenges that accompany such implementations. CONCLUSION The data-driven era for dementia research has arrived with the potential to transform the healthcare system, creating a more efficient, transparent and personalised service for dementia.
Collapse
Affiliation(s)
- KongFatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, Londonderry, Northern Ireland, UK.
| | - Paula L McClean
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Magee Campus, Londonderry, Northern Ireland, UK
| | - Niamh McCombe
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, Londonderry, Northern Ireland, UK
| | - Daman Kaur
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Magee Campus, Londonderry, Northern Ireland, UK
| | - Jose M Sanchez-Bornot
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, Londonderry, Northern Ireland, UK
| | - Paddy Gillespie
- Health Economics and Policy Analysis Centre, Discipline of Economics, National University of Ireland, Galway, Ireland
| | - Stephen Todd
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Londonderry, Northern Ireland, UK
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Alok Joshi
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, Londonderry, Northern Ireland, UK
| | - Joseph Kane
- School of Medicine, Dentistry and Biomedical Sciences, Institute for Health Sciences, Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Bernadette McGuinness
- School of Medicine, Dentistry and Biomedical Sciences, Institute for Health Sciences, Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
23
|
Zhuang Y, Zhang Z, Tivarus M, Qiu X, Zhong J, Schifitto G. Whole-brain computational modeling reveals disruption of microscale brain dynamics in HIV infected individuals. Hum Brain Mapp 2020; 42:95-109. [PMID: 32941693 PMCID: PMC7721235 DOI: 10.1002/hbm.25207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 01/07/2023] Open
Abstract
MRI‐based neuroimaging techniques have been used to investigate brain injury associated with HIV‐infection. Whole‐brain cortical mean‐field dynamic modeling provides a way to integrate structural and functional imaging outcomes, allowing investigation of microscale brain dynamics. In this study, we adopted the relaxed mean‐field dynamic modeling to investigate structural and functional connectivity in 42 HIV‐infected subjects before and after 12‐week of combination antiretroviral therapy (cART) and compared them with 46 age‐matched healthy subjects. Microscale brain dynamics were modeled by a set of parameters including two region‐specific microscale brain properties, recurrent connection strengths, and subcortical inputs. We also analyzed the relationship between the model parameters (i.e., the recurrent connection and subcortical inputs) and functional network topological characterizations, including smallworldness, clustering coefficient, and network efficiency. The results show that untreated HIV‐infected individuals have disrupted local brain dynamics that in part correlate with network topological measurements. Notably, after 12 weeks of cART, both the microscale brain dynamics and the network topological measurements improved and were closer to those in the healthy brain. This was also associated with improved cognitive performance, suggesting that improvement in local brain dynamics translates into clinical improvement.
Collapse
Affiliation(s)
- Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| | - Zhengwu Zhang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA.,Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
| | - Madalina Tivarus
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, USA.,Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jianhui Zhong
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Giovanni Schifitto
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA.,Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
24
|
Alderson TH, Bokde ALW, Kelso JAS, Maguire L, Coyle D. Metastable neural dynamics underlies cognitive performance across multiple behavioural paradigms. Hum Brain Mapp 2020; 41:3212-3234. [PMID: 32301561 PMCID: PMC7375112 DOI: 10.1002/hbm.25009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 01/20/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
Despite resting state networks being associated with a variety of cognitive abilities, it remains unclear how these local areas act in concert to express particular cognitive operations. Theoretical and empirical accounts indicate that large-scale resting state networks reconcile dual tendencies towards integration and segregation by operating in a metastable regime of their coordination dynamics. Metastability may confer important behavioural qualities by binding distributed local areas into large-scale neurocognitive networks. We tested this hypothesis by analysing fMRI data in a large cohort of healthy individuals (N = 566) and comparing the metastability of the brain's large-scale resting network architecture at rest and during the performance of several tasks. Metastability was estimated using a well-defined collective variable capturing the level of 'phase-locking' between large-scale networks over time. Task-based reasoning was principally characterised by high metastability in cognitive control networks and low metastability in sensory processing areas. Although metastability between resting state networks increased during task performance, cognitive ability was more closely linked to spontaneous activity. High metastability in the intrinsic connectivity of cognitive control networks was linked to novel problem solving or fluid intelligence, but was less important in tasks relying on previous experience or crystallised intelligence. Crucially, subjects with resting architectures similar or 'pre-configured' to a task-general arrangement demonstrated superior cognitive performance. Taken together, our findings support a key linkage between the spontaneous metastability of large-scale networks in the cerebral cortex and cognition.
Collapse
Affiliation(s)
- Thomas H. Alderson
- Intelligent Systems Research CentreUlster UniversityAntrimUnited Kingdom
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUnited States
| | - Arun L. W. Bokde
- Trinity College Institute of Neuroscience and Cognitive Systems Group, Discipline of Psychiatry, School of MedicineTrinity College DublinDublinIreland
| | - J. A. Scott Kelso
- Intelligent Systems Research CentreUlster UniversityAntrimUnited Kingdom
- Center for Complex Systems and Brain SciencesFlorida Atlantic UniversityBoca RatonFloridaUnited States
| | - Liam Maguire
- Intelligent Systems Research CentreUlster UniversityAntrimUnited Kingdom
| | - Damien Coyle
- Intelligent Systems Research CentreUlster UniversityAntrimUnited Kingdom
| |
Collapse
|
25
|
Li D, Puglia MP, Lapointe AP, Ip KI, Zierau M, McKinney A, Vlisides PE. Age-Related Changes in Cortical Connectivity During Surgical Anesthesia. Front Aging Neurosci 2020; 11:371. [PMID: 31998118 PMCID: PMC6967734 DOI: 10.3389/fnagi.2019.00371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 11/13/2022] Open
Abstract
An advanced understanding of the neurophysiologic changes that occur with aging may help improve care for older, vulnerable surgical patients. The objective of this study was to determine age-related changes in cortical connectivity patterns during surgical anesthesia. This was a substudy analysis of a prospective, observational study characterizing cortical connectivity during surgical anesthesia in adult patients (n = 45) via whole-scalp (16-channel) electroencephalography. Functional connectivity was estimated using a weighted phase lag index (wPLI), which was classified into a discrete set of states through k-means analysis. Temporal dynamics were quantified by occurrence rate and state transition probabilities. The mean global connectivity state transition probability [13.4% (±8.1)] was not correlated with age (ρ = 0.100, p = 0.513). Increasing age was inversely correlated with prefrontal-frontal alpha-beta connectivity (ρ = -0.446, p = 0.002) and positively correlated with frontal-parietal theta connectivity (ρ = 0.414, p = 0.005). After adjusting for anesthetic-related confounders, prefrontal-frontal alpha-beta connectivity remained significantly associated with age (β = -0.625, 95% CI -0.99 to -0.26; p = 0.001), while frontal-parietal theta connectivity was no longer significant (β = 0.436, 95% CI -0.03 to 0.90; p = 0.066). Specific transition states were also examined. Between frontal-parietal connectivity states, transitioning from theta-alpha to theta-dominated connectivity positively correlated with age (ρ = 0.545, p = 0.001). Dynamic connectivity states during surgical anesthesia, particularly involving alpha and theta bandwidths, maybe an informative measure to assess neurophysiologic changes that occur with aging.
Collapse
Affiliation(s)
- Duan Li
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mike P Puglia
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrew P Lapointe
- Department of Radiology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Ka I Ip
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Mackenzie Zierau
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Amy McKinney
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Phillip E Vlisides
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
26
|
Valsasina P, Hidalgo de la Cruz M, Filippi M, Rocca MA. Characterizing Rapid Fluctuations of Resting State Functional Connectivity in Demyelinating, Neurodegenerative, and Psychiatric Conditions: From Static to Time-Varying Analysis. Front Neurosci 2019; 13:618. [PMID: 31354402 PMCID: PMC6636554 DOI: 10.3389/fnins.2019.00618] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/29/2019] [Indexed: 01/27/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) at resting state (RS) has been widely used to characterize the main brain networks. Functional connectivity (FC) has been mostly assessed assuming that FC is static across the whole fMRI examination. However, FC is highly variable at a very fast time-scale, as demonstrated by neurophysiological techniques. Time-varying functional connectivity (TVC) is a novel approach that allows capturing reoccurring patterns of interaction among functional brain networks. Aim of this review is to provide a description of the methods currently used to assess TVC on RS fMRI data, and to summarize the main results of studies applying TVC in healthy controls and patients with multiple sclerosis (MS). An overview of the main results obtained in neurodegenerative and psychiatric conditions is also provided. The most popular TVC approach is based on the so-called “sliding windows,” in which the RS fMRI acquisition is divided in small temporal segments (windows). A window of fixed length is shifted over RS fMRI time courses, and data within each window are used to calculate FC and its variability over time. Sliding windows can be combined with clustering techniques to identify recurring FC states or used to assess global TVC properties of large-scale functional networks or specific brain regions. TVC studies have used heterogeneous methodologies so far. Despite this, similar results have been obtained across investigations. In healthy subjects, the default-mode network (DMN) exhibited the highest degree of connectivity dynamism. In MS patients, abnormal global TVC properties and TVC strengths were found mainly in sensorimotor, DMN and salience networks, and were associated with more severe structural MRI damage and with more severe physical and cognitive disability. Conversely, abnormal TVC measures of the temporal network were correlated with better cognitive performances and less severe fatigue. In patients with neurodegenerative and psychiatric conditions, TVC abnormalities of the DMN, attention and executive networks were associated to more severe clinical manifestations. TVC helps to provide novel insights into fundamental properties of functional networks, and improves the understanding of brain reorganization mechanisms. Future technical advances might help to clarify TVC association with disease prognosis and response to treatment.
Collapse
Affiliation(s)
- Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Milagros Hidalgo de la Cruz
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|