1
|
Magdoom KN, Avram AV, Witzel TE, Huang SY, Basser PJ. Water Diffusion in the Live Human Brain is Gaussian at the Mesoscale. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588939. [PMID: 38645264 PMCID: PMC11030434 DOI: 10.1101/2024.04.10.588939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Imaging the live human brain at the mesoscopic scale is a desideratum in basic and clinical neurosciences. Despite the promise of diffusion MRI, the lack of an accurate model relating the measured signal and the associated microstructure has hampered its success. The widely used diffusion tensor MRI (DTI) model assumes an anisotropic Gaussian diffusion process in each voxel, but lacks the ability to capture intravoxel heterogeneity. This study explores the extension of the DTI model to mesoscopic length scales by use of the diffusion tensor distribution (DTD) model, which assumes a Gaussian diffusion process in each subvoxel. DTD MRI has shown promise in addressing some limitations of DTI, particularly in distinguishing among different types of brain cancers and elucidating multiple fiber populations within a voxel. However, its validity in live brain tissue has never been established. Here, multiple diffusion-encoded (MDE) data were acquired in the living human brain using a 3 Tesla MRI scanner with large diffusion weighting factors. Two different diffusion times (Δ = 37, 74 ms) were employed, with other scanning parameters fixed to assess signal decay differences. In vivo diffusion-weighted signals in gray and white matter were nearly identical at the two diffusion times. Fitting the signals to the DTD model yielded indistinguishable results, except in the cerebrospinal fluid (CSF)-filled voxels likely due to pulsatile flow. Overall, the study supports the time invariance of water diffusion at the mesoscopic scale in live brain parenchyma, extending the validity of the anisotropic Gaussian diffusion model in clinical brain imaging.
Collapse
|
2
|
Lampinen B, Szczepankiewicz F, Lätt J, Knutsson L, Mårtensson J, Björkman-Burtscher IM, van Westen D, Sundgren PC, Ståhlberg F, Nilsson M. Probing brain tissue microstructure with MRI: principles, challenges, and the role of multidimensional diffusion-relaxation encoding. Neuroimage 2023; 282:120338. [PMID: 37598814 DOI: 10.1016/j.neuroimage.2023.120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue. Another challenge is that the tissue microstructure is wildly different within the gray and white matter of the brain. In this review, we use results from multidimensional diffusion encoding techniques to discuss these challenges and their tentative solutions. Multidimensional encoding increases the information content of the data by varying not only the b-value and the encoding direction but also additional experimental parameters such as the shape of the b-tensor and the echo time. Three main insights have emerged from such encoding. First, multidimensional data contradict common model assumptions on diffusion and T2 relaxation, and illustrates how the use of these assumptions cause erroneous interpretations in both healthy brain and pathology. Second, many model assumptions can be dispensed with if data are acquired with multidimensional encoding. The necessary data can be easily acquired in vivo using protocols optimized to minimize Cramér-Rao lower bounds. Third, microscopic diffusion anisotropy reflects the presence of axons but not dendrites. This insight stands in contrast to current 'neurite models' of brain tissue, which assume that axons in white matter and dendrites in gray matter feature highly similar diffusion. Nevertheless, as an axon-based contrast, microscopic anisotropy can differentiate gray and white matter when myelin alterations confound conventional MRI contrasts.
Collapse
Affiliation(s)
- Björn Lampinen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden.
| | | | - Jimmy Lätt
- Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Linda Knutsson
- Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Johan Mårtensson
- Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| | - Isabella M Björkman-Burtscher
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Danielle van Westen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Pia C Sundgren
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden; Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
| | - Freddy Ståhlberg
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Markus Nilsson
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Dai E, Zhu A, Yang GK, Quah K, Tan ET, Fiveland E, Foo TKF, McNab JA. Frequency-dependent diffusion kurtosis imaging in the human brain using an oscillating gradient spin echo sequence and a high-performance head-only gradient. Neuroimage 2023; 279:120328. [PMID: 37586445 PMCID: PMC10529993 DOI: 10.1016/j.neuroimage.2023.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023] Open
Abstract
Measuring the time/frequency dependence of diffusion MRI is a promising approach to distinguish between the effects of different tissue microenvironments, such as membrane restriction, tissue heterogeneity, and compartmental water exchange. In this study, we measure the frequency dependence of diffusivity (D) and kurtosis (K) with oscillating gradient diffusion encoding waveforms and a diffusion kurtosis imaging (DKI) model in human brains using a high-performance, head-only MAGNUS gradient system, with a combination of b-values, oscillating frequencies (f), and echo time that has not been achieved in human studies before. Frequency dependence of diffusivity and kurtosis are observed in both global and local white matter (WM) and gray matter (GM) regions and characterized with a power-law model ∼Λ*fθ. The frequency dependences of diffusivity and kurtosis (including changes between fmin and fmax, Λ, and θ) vary over different WM and GM regions, indicating potential microstructural differences between regions. A trend of decreasing kurtosis over frequency in the short-time limit is successfully captured for in vivo human brains. The effects of gradient nonlinearity (GNL) on frequency-dependent diffusivity and kurtosis measurements are investigated and corrected. Our results show that the GNL has prominent scaling effects on the measured diffusivity values (3.5∼5.5% difference in the global WM and 6∼8% difference in the global cortex) and subsequently affects the corresponding power-law parameters (Λ, θ) while having a marginal influence on the measured kurtosis values (<0.05% difference) and power-law parameters (Λ, θ). This study expands previous OGSE studies and further demonstrates the translatability of frequency-dependent diffusivity and kurtosis measurements to human brains, which may provide new opportunities to probe human brain microstructure in health and disease.
Collapse
Affiliation(s)
- Erpeng Dai
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | | | - Grant K Yang
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Kristin Quah
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Ek T Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | | | | | | |
Collapse
|
4
|
Maximov II, Westlye LT. Comparison of different neurite density metrics with brain asymmetry evaluation. Z Med Phys 2023:S0939-3889(23)00085-5. [PMID: 37562999 DOI: 10.1016/j.zemedi.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
The standard diffusion MRI model with intra- and extra-axonal water pools offers a set of microstructural parameters describing brain white matter architecture. However, non-linearities in the standard model and diffusion data contamination by noise and imaging artefacts make estimation of diffusion metrics challenging. In order to develop reliable diffusion approaches and to avoid computational model degeneracy, additional theoretical assumptions allowing stable numerical implementations are required. Advanced diffusion approaches allow for estimation of intra-axonal water fraction (AWF), describing a key structural characteristic of brain tissue. AWF can be interpreted as an indirect measure or proxy of neurite density and has a potential as useful clinical biomarker. Established diffusion approaches such as white matter tract integrity, neurite orientation dispersion and density imaging (NODDI), and spherical mean technique provide estimates of AWF within their respective theoretical frameworks. In the present study, we estimated AWF metrics using different diffusion approaches and compared measures of brain asymmetry between the different metrics in a sub-sample of 182 subjects from the UK Biobank. Multivariate decomposition by mean of linked independent component analysis revealed that the various AWF proxies derived from the different diffusion approaches reflect partly non-overlapping variance of independent components, with distinct anatomical distributions and sensitivity to age. Further, voxel-wise analysis revealed age-related differences in AWF-based brain asymmetry, indicating less apparent left-right hemisphere difference with higher age. Finally, we demonstrated that NODDI metrics suffer from a quite strong dependence on used numerical algorithms and post-processing pipeline. The analysis based on AWF metrics strongly depends on the used diffusion approach and leads to poorly reproducible results.
Collapse
Affiliation(s)
- Ivan I Maximov
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jensen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Rahman N, Xu K, Budde MD, Brown A, Baron CA. A longitudinal microstructural MRI dataset in healthy C57Bl/6 mice at 9.4 Tesla. Sci Data 2023; 10:94. [PMID: 36788251 PMCID: PMC9929084 DOI: 10.1038/s41597-023-01942-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023] Open
Abstract
Multimodal microstructural MRI has shown increased sensitivity and specificity to changes in various brain disease and injury models in the preclinical setting. Here, we present an in vivo longitudinal dataset, including a subset of ex vivo data, acquired as control data and to investigate microstructural changes in the healthy mouse brain. The dataset consists of structural T2-weighted imaging, magnetization transfer ratio and saturation imaging, and advanced quantitative diffusion MRI (dMRI) methods. The dMRI methods include oscillating gradient spin echo (OGSE) dMRI and microscopic anisotropy (μA) dMRI, which provide additional insight by increasing sensitivity to smaller spatial scales and disentangling fiber orientation dispersion from true microstructural changes, respectively. The technical skills required to analyze microstructural MRI data are complex and include MRI sequence development, acquisition, and computational neuroimaging expertise. Here, we share unprocessed and preprocessed data, and scalar maps of quantitative MRI metrics. We envision utility of this dataset in the microstructural MRI field to develop and test biophysical models, methods that model temporal brain dynamics, and registration and preprocessing pipelines.
Collapse
Affiliation(s)
- Naila Rahman
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| | - Kathy Xu
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Arthur Brown
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Corey A Baron
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Jensen JH, Voltin J, Nie X, Dhiman S, McKinnon ET, Falangola MF. Comparison of two types of microscopic diffusion anisotropy in mouse brain. NMR IN BIOMEDICINE 2023; 36:e4816. [PMID: 35994169 PMCID: PMC9742172 DOI: 10.1002/nbm.4816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Two distinct types of microscopic diffusion anisotropy (MA) are compared in brain for both normal control and transgenic (3xTg-AD) mice, which develop Alzheimer's disease pathology. The first type of MA is the commonly used microscopic fractional anisotropy (μFA), and the second is a new MA measure referred to as μFA'. These two MA parameters have different symmetry properties that are central to their physical interpretations. Specifically, μFA is invariant with respect to local rotations of compartmental diffusion tensors while μFA' is invariant with respect to global diffusion tensor deformations. A key distinction between μFA and μFA' is that μFA is affected by the same type of orientationally coherent diffusion anisotropy as the conventional fractional anisotropy (FA) while μFA' is not. Furthermore, μFA can be viewed as having independent contributions from FA and μFA', as is quantified by an equation relating all three anisotropies. The normal control and transgenic mice are studied at ages ranging from 2 to 15 months, with double diffusion encoding MRI being used to estimate μFA and μFA'. μFA and μFA' are nearly identical in low FA brain regions, but they show notable differences when FA is large. In particular, μFA and FA are found to be strongly correlated in the fimbria, but μFA' and FA are not. In addition, both μFA and μFA' are seen to increase with age in the corpus callosum and external capsule, and modest differences between normal control and transgenic mice are observed for μFA and μFA' in the corpus callosum and for μFA in the fimbria. The triad of FA, μFA, and μFA' is proposed as a useful combination of parameters for assessing diffusion anisotropy in brain.
Collapse
Affiliation(s)
- Jens H. Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Josh Voltin
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Xingju Nie
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Siddhartha Dhiman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Emile T. McKinnon
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Maria F. Falangola
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
7
|
Rosenberg JT, Grant SC, Topgaard D. Nonparametric 5D D-R 2 distribution imaging with single-shot EPI at 21.1 T: Initial results for in vivo rat brain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 341:107256. [PMID: 35753184 PMCID: PMC9339475 DOI: 10.1016/j.jmr.2022.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In vivo human diffusion MRI is by default performed using single-shot EPI with greater than 50-ms echo times and associated signal loss from transverse relaxation. The individual benefits of the current trends of increasing B0 to boost SNR and employing more advanced signal preparation schemes to improve the specificity for selected microstructural properties eventually may be cancelled by increased relaxation rates at high B0 and echo times with advanced encoding. Here, initial attempts to translate state-of-the-art diffusion-relaxation correlation methods from 3 T to 21.1 T are made to identify hurdles that need to be overcome to fulfill the promises of both high SNR and readily interpretable microstructural information.
Collapse
Affiliation(s)
- Jens T Rosenberg
- National High Magnetic Field Laboratory, Florida State University, Tallahassee FL, United States.
| | - Samuel C Grant
- National High Magnetic Field Laboratory, Florida State University, Tallahassee FL, United States; Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States.
| | | |
Collapse
|
8
|
Novello L, Henriques RN, Ianuş A, Feiweier T, Shemesh N, Jovicich J. In vivo Correlation Tensor MRI reveals microscopic kurtosis in the human brain on a clinical 3T scanner. Neuroimage 2022; 254:119137. [PMID: 35339682 DOI: 10.1016/j.neuroimage.2022.119137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Diffusion MRI (dMRI) has become one of the most important imaging modalities for noninvasively probing tissue microstructure. Diffusional Kurtosis MRI (DKI) quantifies the degree of non-gaussian diffusion, which in turn has been shown to increase sensitivity towards, e.g., disease and orientation mapping in neural tissue. However, the specificity of DKI is limited as different sources can contribute to the total intravoxel diffusional kurtosis, including: variance in diffusion tensor magnitudes (Kiso), variance due to diffusion anisotropy (Kaniso), and microscopic kurtosis (μK) related to restricted diffusion, microstructural disorder, and/or exchange. Interestingly, μK is typically ignored in diffusion MRI signal modeling as it is assumed to be negligible in neural tissues. However, recently, Correlation Tensor MRI (CTI) based on Double-Diffusion-Encoding (DDE) was introduced for kurtosis source separation, revealing non negligible μK in preclinical imaging. Here, we implemented CTI for the first time on a clinical 3T scanner and investigated the sources of total kurtosis in healthy subjects. A robust framework for kurtosis source separation in humans is introduced, followed by estimation of μK (and the other kurtosis sources) in the healthy brain. Using this clinical CTI approach, we find that μK significantly contributes to total diffusional kurtosis both in gray and white matter tissue but, as expected, not in the ventricles. The first μK maps of the human brain are presented, revealing that the spatial distribution of μK provides a unique source of contrast, appearing different from isotropic and anisotropic kurtosis counterparts. Moreover, group average templates of these kurtosis sources have been generated for the first time, which corroborated our findings at the underlying individual-level maps. We further show that the common practice of ignoring μK and assuming the multiple gaussian component approximation for kurtosis source estimation introduces significant bias in the estimation of other kurtosis sources and, perhaps even worse, compromises their interpretation. Finally, a twofold acceleration of CTI is discussed in the context of potential future clinical applications. We conclude that CTI has much potential for future in vivo microstructural characterizations in healthy and pathological tissue.
Collapse
Affiliation(s)
- Lisa Novello
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.
| | | | - Andrada Ianuş
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Jorge Jovicich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| |
Collapse
|
9
|
Chen H, Zhang Z, Jin M, Wang F. Prediction of dMRI signals with neural architecture search. J Neurosci Methods 2022; 365:109389. [PMID: 34687797 DOI: 10.1016/j.jneumeth.2021.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND There is growing interest in the neuroscience community in estimating and mapping microscopic properties of brain tissue non-invasively using magnetic resonance measurements. Machine learning methods are actively investigated to predict the signals measured in diffusion magnetic resonance imaging (dMRI). NEW METHOD We applied the neural architecture search (NAS) to train a recurrent neural network to generate a multilayer perceptron to predict the dMRI data of unknown signals based on the different acquisition parameters and training data. The search space of NAS is the number of neurons in each layer of the multilayer perceptron network. To our best knowledge, this is the first time to apply NAS to solve the dMRI signal prediction problem. RESULTS The experimental results demonstrate that the proposed NAS method can achieve fast training and predict dMRI signals accurately. For dMRI signals with four acquisition strategies of double diffusion encoding (DDE), double oscillating diffusion encoding (DODE), multi-shell and DSI-like pulsed gradient spin-echo (PGSE), the mean squared errors of the multilayer perceptron network designed by NAS are 0.0043, 0.0034, 0.0147 and 0.0199, respectively. COMPARISON WITH EXISTING METHOD(S) We also compared NAS with other machine learning prediction methods, such as support vector regression (SVR), decision tree (DT) and random forest (RF), k-nearest neighbors (KNN), adaboost regressor (AR), gradient boosting regressor (GBR) and extra-trees regressor (ET). NAS achieved the better prediction performance in most cases. CONCLUSION In this study, NAS was developed for the prediction of dMRI signals and could become an effective prediction tool.
Collapse
Affiliation(s)
- Haoze Chen
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China; School of Instrument and Electronics, North University of China, Key Laboratory of Instrumentation Science & Dynamic Measurement (North University of China), Ministry of Education, Taiyuan 030051 China.
| | - Zhijie Zhang
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China; School of Instrument and Electronics, North University of China, Key Laboratory of Instrumentation Science & Dynamic Measurement (North University of China), Ministry of Education, Taiyuan 030051 China.
| | - Mingwu Jin
- Department of Physics, University of Texas at Arlington, 502 Yates Street, Box 19059, Arlington, TX 76019, United States.
| | - Fengxiang Wang
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China; School of Instrument and Electronics, North University of China, Key Laboratory of Instrumentation Science & Dynamic Measurement (North University of China), Ministry of Education, Taiyuan 030051 China
| |
Collapse
|
10
|
Correlation Tensor MRI deciphers underlying kurtosis sources in stroke. Neuroimage 2021; 247:118833. [PMID: 34929382 DOI: 10.1016/j.neuroimage.2021.118833] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Noninvasively detecting and characterizing modulations in cellular scale micro-architecture remains a desideratum for contemporary neuroimaging. Diffusion MRI (dMRI) has become the mainstay methodology for probing microstructure, and, in ischemia, its contrasts have revolutionized stroke management. Diffusion kurtosis imaging (DKI) has been shown to significantly enhance the sensitivity of stroke detection compared to its diffusion tensor imaging (DTI) counterparts. However, the interpretation of DKI remains ambiguous as its contrast may arise from competing kurtosis sources related to the anisotropy of tissue components, diffusivity variance across components, and microscopic kurtosis (e.g., arising from cross-sectional variance, structural disorder, and restriction). Resolving these sources may be fundamental for developing more specific imaging techniques for stroke management, prognosis, and understanding its pathophysiology. In this study, we apply Correlation Tensor MRI (CTI) - a double diffusion encoding (DDE) methodology recently introduced for deciphering kurtosis sources based on the unique information captured in DDE's diffusion correlation tensors - to investigate the underpinnings of kurtosis measurements in acute ischemic lesions. Simulations for the different kurtosis sources revealed specific signatures for cross-sectional variance (representing neurite beading), edema, and cell swelling. Ex vivo CTI experiments at 16.4 T were then performed in an experimental photothrombotic stroke model 3 h post-stroke (N = 10), and successfully separated anisotropic, isotropic, and microscopic non-Gaussian diffusion sources in the ischemic lesions. Each of these kurtosis sources provided unique contrasts in the stroked area. Particularly, microscopic kurtosis was shown to be a primary "driver" of total kurtosis upon ischemia; its large increases, coupled with decreases in anisotropic kurtosis, are consistent with the expected elevation in cross-sectional variance, likely linked to beading effects in small objects such as neurites. In vivo experiments at 9.4 T at the same time point (3 h post ischemia, N = 5) demonstrated the stability and relevance of the findings and showed that fixation is not a dominant confounder in our findings. In future studies, the different CTI contrasts may be useful to address current limitations of stroke imaging, e.g., penumbra characterization, distinguishing lesion progression form tissue recovery, and elucidating pathophysiological correlates.
Collapse
|
11
|
Sarwar T, Ramamohanarao K, Zalesky A. A critical review of connectome validation studies. NMR IN BIOMEDICINE 2021; 34:e4605. [PMID: 34516016 DOI: 10.1002/nbm.4605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Diffusion MRI tractography is the most widely used macroscale method for mapping connectomes in vivo. However, tractography is prone to various errors and biases, and thus tractography-derived connectomes require careful validation. Here, we critically review studies that have developed or utilized phantoms and tracer maps to validate tractography-derived connectomes, either quantitatively or qualitatively. We identify key factors impacting connectome reconstruction accuracy, including streamline seeding, propagation and filtering methods, and consider the strengths and limitations of state-of-the-art connectome phantoms and associated validation studies. These studies demonstrate the inherent limitations of current fiber orientation models and tractography algorithms and their impact on connectome reconstruction accuracy. Reconstructing connectomes with both high sensitivity and high specificity is challenging, given that some tractography methods can generate an abundance of spurious connections, while others can overlook genuine fiber bundles. We argue that streamline filtering can minimize spurious connections and potentially improve the biological plausibility of connectomes derived from tractography. We find that algorithmic choices such as the tractography seeding methodology, angular threshold, and streamline propagation method can substantially impact connectome reconstruction accuracy. Hence, careful application of tractography is necessary to reconstruct accurate connectomes. Improvements in diffusion MRI acquisition techniques will not necessarily overcome current tractography limitations without accompanying modeling and algorithmic advances.
Collapse
Affiliation(s)
- Tabinda Sarwar
- School of Computing Technologies, RMIT University, Melbourne, Victoria, Australia
| | - Kotagiri Ramamohanarao
- Department of Computing and Information Systems, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Rahman N, Xu K, Omer M, Budde MD, Brown A, Baron CA. Test-retest reproducibility of in vivo oscillating gradient and microscopic anisotropy diffusion MRI in mice at 9.4 Tesla. PLoS One 2021; 16:e0255711. [PMID: 34739479 PMCID: PMC8570471 DOI: 10.1371/journal.pone.0255711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Microstructure imaging with advanced diffusion MRI (dMRI) techniques have shown increased sensitivity and specificity to microstructural changes in various disease and injury models. Oscillating gradient spin echo (OGSE) dMRI, implemented by varying the oscillating gradient frequency, and microscopic anisotropy (μA) dMRI, implemented via tensor valued diffusion encoding, may provide additional insight by increasing sensitivity to smaller spatial scales and disentangling fiber orientation dispersion from true microstructural changes, respectively. The aims of this study were to characterize the test-retest reproducibility of in vivo OGSE and μA dMRI metrics in the mouse brain at 9.4 Tesla and provide estimates of required sample sizes for future investigations. METHODS Twelve adult C57Bl/6 mice were scanned twice (5 days apart). Each imaging session consisted of multifrequency OGSE and μA dMRI protocols. Metrics investigated included μA, linear diffusion kurtosis, isotropic diffusion kurtosis, and the diffusion dispersion rate (Λ), which explores the power-law frequency dependence of mean diffusivity. The dMRI metric maps were analyzed with mean region-of-interest (ROI) and whole brain voxel-wise analysis. Bland-Altman plots and coefficients of variation (CV) were used to assess the reproducibility of OGSE and μA metrics. Furthermore, we estimated sample sizes required to detect a variety of effect sizes. RESULTS Bland-Altman plots showed negligible biases between test and retest sessions. ROI-based CVs revealed high reproducibility for most metrics (CVs < 15%). Voxel-wise CV maps revealed high reproducibility for μA (CVs ~ 10%), but low reproducibility for OGSE metrics (CVs ~ 50%). CONCLUSION Most of the μA dMRI metrics are reproducible in both ROI-based and voxel-wise analysis, while the OGSE dMRI metrics are only reproducible in ROI-based analysis. Given feasible sample sizes (10-15), μA metrics and OGSE metrics may provide sensitivity to subtle microstructural changes (4-8%) and moderate changes (> 6%), respectively.
Collapse
Affiliation(s)
- Naila Rahman
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kathy Xu
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mohammad Omer
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Arthur Brown
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Corey A. Baron
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
13
|
Huang SY, Witzel T, Keil B, Scholz A, Davids M, Dietz P, Rummert E, Ramb R, Kirsch JE, Yendiki A, Fan Q, Tian Q, Ramos-Llordén G, Lee HH, Nummenmaa A, Bilgic B, Setsompop K, Wang F, Avram AV, Komlosh M, Benjamini D, Magdoom KN, Pathak S, Schneider W, Novikov DS, Fieremans E, Tounekti S, Mekkaoui C, Augustinack J, Berger D, Shapson-Coe A, Lichtman J, Basser PJ, Wald LL, Rosen BR. Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome. Neuroimage 2021; 243:118530. [PMID: 34464739 PMCID: PMC8863543 DOI: 10.1016/j.neuroimage.2021.118530] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022] Open
Abstract
The first phase of the Human Connectome Project pioneered advances in MRI technology for mapping the macroscopic structural connections of the living human brain through the engineering of a whole-body human MRI scanner equipped with maximum gradient strength of 300 mT/m, the highest ever achieved for human imaging. While this instrument has made important contributions to the understanding of macroscale connectional topology, it has also demonstrated the potential of dedicated high-gradient performance scanners to provide unparalleled in vivo assessment of neural tissue microstructure. Building on the initial groundwork laid by the original Connectome scanner, we have now embarked on an international, multi-site effort to build the next-generation human 3T Connectome scanner (Connectome 2.0) optimized for the study of neural tissue microstructure and connectional anatomy across multiple length scales. In order to maximize the resolution of this in vivo microscope for studies of the living human brain, we will push the diffusion resolution limit to unprecedented levels by (1) nearly doubling the current maximum gradient strength from 300 mT/m to 500 mT/m and tripling the maximum slew rate from 200 T/m/s to 600 T/m/s through the design of a one-of-a-kind head gradient coil optimized to minimize peripheral nerve stimulation; (2) developing high-sensitivity multi-channel radiofrequency receive coils for in vivo and ex vivo human brain imaging; (3) incorporating dynamic field monitoring to minimize image distortions and artifacts; (4) developing new pulse sequences to integrate the strongest diffusion encoding and highest spatial resolution ever achieved in the living human brain; and (5) calibrating the measurements obtained from this next-generation instrument through systematic validation of diffusion microstructural metrics in high-fidelity phantoms and ex vivo brain tissue at progressively finer scales with accompanying diffusion simulations in histology-based micro-geometries. We envision creating the ultimate diffusion MRI instrument capable of capturing the complex multi-scale organization of the living human brain - from the microscopic scale needed to probe cellular geometry, heterogeneity and plasticity, to the mesoscopic scale for quantifying the distinctions in cortical structure and connectivity that define cyto- and myeloarchitectonic boundaries, to improvements in estimates of macroscopic connectivity.
Collapse
Affiliation(s)
- Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | | - Boris Keil
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | - Alina Scholz
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | - Mathias Davids
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - John E Kirsch
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Ramos-Llordén
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kawin Setsompop
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandru V Avram
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michal Komlosh
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Dan Benjamini
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kulam Najmudeen Magdoom
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sudhir Pathak
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Walter Schneider
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| | - Slimane Tounekti
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jean Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Berger
- Department of Molecular and Cell Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Alexander Shapson-Coe
- Department of Molecular and Cell Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeff Lichtman
- Department of Molecular and Cell Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Peter J Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
De Luca A, Ianus A, Leemans A, Palombo M, Shemesh N, Zhang H, Alexander DC, Nilsson M, Froeling M, Biessels GJ, Zucchelli M, Frigo M, Albay E, Sedlar S, Alimi A, Deslauriers-Gauthier S, Deriche R, Fick R, Afzali M, Pieciak T, Bogusz F, Aja-Fernández S, Özarslan E, Jones DK, Chen H, Jin M, Zhang Z, Wang F, Nath V, Parvathaneni P, Morez J, Sijbers J, Jeurissen B, Fadnavis S, Endres S, Rokem A, Garyfallidis E, Sanchez I, Prchkovska V, Rodrigues P, Landman BA, Schilling KG. On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge. Neuroimage 2021; 240:118367. [PMID: 34237442 PMCID: PMC7615259 DOI: 10.1016/j.neuroimage.2021.118367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022] Open
Abstract
Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings.
Collapse
Affiliation(s)
- Alberto De Luca
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Andrada Ianus
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Alexander Leemans
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marco Palombo
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Hui Zhang
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Markus Nilsson
- Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Geert-Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mauro Zucchelli
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France
| | - Matteo Frigo
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France
| | - Enes Albay
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France; Istanbul Technical University, Istanbul, Turkey
| | - Sara Sedlar
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France
| | - Abib Alimi
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France
| | | | - Rachid Deriche
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France
| | | | - Maryam Afzali
- Cardiff University Brain Research, Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Tomasz Pieciak
- AGH University of Science and Technology, Kraków, Poland; LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Fabian Bogusz
- AGH University of Science and Technology, Kraków, Poland
| | | | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Derek K Jones
- Cardiff University Brain Research, Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Haoze Chen
- School of Instruments and Electronics, North University of China, Taiyuan, China
| | - Mingwu Jin
- Department of Physics, University of Texas at Arlington, Arlington, USA
| | - Zhijie Zhang
- School of Instruments and Electronics, North University of China, Taiyuan, China
| | - Fengxiang Wang
- School of Instruments and Electronics, North University of China, Taiyuan, China
| | | | | | - Jan Morez
- Imec-Vision lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Jan Sijbers
- Imec-Vision lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Ben Jeurissen
- Imec-Vision lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Shreyas Fadnavis
- Intelligent Systems Engineering, Indiana University Bloomington, Indiana, USA
| | - Stefan Endres
- Leibniz Institute for Materials Engineering - IWT, Faculty of Production Engineering, University of Bremen, Bremen, Germany
| | - Ariel Rokem
- Department of Psychology and the eScience Institute, University of Washington, Seattle, WA USA
| | | | | | | | | | - Bennet A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, USA
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, USA; Department of Radiology and Radiological Science, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
15
|
Kerkelä L, Nery F, Callaghan R, Zhou F, Gyori NG, Szczepankiewicz F, Palombo M, Parker GJM, Zhang H, Hall MG, Clark CA. Comparative analysis of signal models for microscopic fractional anisotropy estimation using q-space trajectory encoding. Neuroimage 2021; 242:118445. [PMID: 34375753 DOI: 10.1016/j.neuroimage.2021.118445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/06/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Microscopic diffusion anisotropy imaging using diffusion-weighted MRI and multidimensional diffusion encoding is a promising method for quantifying clinically and scientifically relevant microstructural properties of neural tissue. Several methods for estimating microscopic fractional anisotropy (µFA), a normalized measure of microscopic diffusion anisotropy, have been introduced but the differences between the methods have received little attention thus far. In this study, the accuracy and precision of µFA estimation using q-space trajectory encoding and different signal models were assessed using imaging experiments and simulations. Three healthy volunteers and a microfibre phantom were imaged with five non-zero b-values and gradient waveforms encoding linear and spherical b-tensors. Since the ground-truth µFA was unknown in the imaging experiments, Monte Carlo random walk simulations were performed using axon-mimicking fibres for which the ground truth was known. Furthermore, parameter bias due to time-dependent diffusion was quantified by repeating the simulations with tuned waveforms, which have similar power spectra, and with triple diffusion encoding, which, unlike q-space trajectory encoding, is not based on the assumption of time-independent diffusion. The truncated cumulant expansion of the powder-averaged signal, gamma-distributed diffusivities assumption, and q-space trajectory imaging, a generalization of the truncated cumulant expansion to individual signals, were used to estimate µFA. The gamma-distributed diffusivities assumption consistently resulted in greater µFA values than the second order cumulant expansion, 0.1 greater when averaged over the whole brain. In the simulations, the generalized cumulant expansion provided the most accurate estimates. Importantly, although time-dependent diffusion caused significant overestimation of µFA using all the studied methods, the simulations suggest that the resulting bias in µFA is less than 0.1 in human white matter.
Collapse
Affiliation(s)
- Leevi Kerkelä
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Fabio Nery
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ross Callaghan
- UCL Centre for Medical Image Computing, University College London, London, UK
| | - Fenglei Zhou
- UCL Centre for Medical Image Computing, University College London, London, UK; UCL School of Pharmacy, University College London, London, UK
| | - Noemi G Gyori
- UCL Centre for Medical Image Computing, University College London, London, UK; UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Filip Szczepankiewicz
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, US; Harvard Medical School, Boston, Massachusetts, US; Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Marco Palombo
- UCL Centre for Medical Image Computing, University College London, London, UK
| | - Geoff J M Parker
- UCL Centre for Medical Image Computing, University College London, London, UK; Bioxydyn Limited, Manchester, UK; UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Hui Zhang
- UCL Centre for Medical Image Computing, University College London, London, UK
| | - Matt G Hall
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK; National Physical Laboratory, Teddington, UK
| | - Chris A Clark
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
16
|
Henriques RN, Jespersen SN, Shemesh N. Evidence for microscopic kurtosis in neural tissue revealed by correlation tensor MRI. Magn Reson Med 2021; 86:3111-3130. [PMID: 34329509 PMCID: PMC9290035 DOI: 10.1002/mrm.28938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The impact of microscopic diffusional kurtosis (µK), arising from restricted diffusion and/or structural disorder, remains a controversial issue in contemporary diffusion MRI (dMRI). Recently, correlation tensor imaging (CTI) was introduced to disentangle the sources contributing to diffusional kurtosis, without relying on a-priori multi-gaussian component (MGC) or other microstructural assumptions. Here, we investigated µK in in vivo rat brains and assessed its impact on state-of-the-art methods ignoring µK. THEORY AND METHODS CTI harnesses double diffusion encoding (DDE) experiments, which were here improved for speed and minimal bias using four different sets of acquisition parameters. The robustness of the improved CTI protocol was assessed via simulations. In vivo CTI acquisitions were performed in healthy rat brains using a 9.4T pre-clinical scanner equipped with a cryogenic coil, and targeted the estimation of µK, anisotropic kurtosis, and isotropic kurtosis. RESULTS The improved CTI acquisition scheme substantially reduces scan time and importantly, also minimizes higher-order-term biases, thus enabling robust µK estimation, alongside Kaniso and Kiso metrics. Our CTI experiments revealed positive µK both in white and gray matter of the rat brain in vivo; µK is the dominant kurtosis source in healthy gray matter tissue. The non-negligible µK substantially were found to bias prior MGC analyses of Kiso and Kaniso . CONCLUSIONS Correlation Tensor MRI offers a more accurate and robust characterization of kurtosis sources than its predecessors. µK is non-negligible in vivo in healthy white and gray matter tissues and could be an important biomarker for future studies. Our findings thus have both theoretical and practical implications for future dMRI research.
Collapse
Affiliation(s)
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Clinical Institute, Aarhus University, Aarhus, Denmark.,Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
17
|
Ianus A, Alexander DC, Zhang H, Palombo M. Mapping complex cell morphology in the grey matter with double diffusion encoding MR: A simulation study. Neuroimage 2021; 241:118424. [PMID: 34311067 PMCID: PMC8961003 DOI: 10.1016/j.neuroimage.2021.118424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023] Open
Abstract
This paper investigates the impact of cell body (namely soma) size and branching of cellular projections on diffusion MR imaging (dMRI) and spectroscopy (dMRS) signals for both standard single diffusion encoding (SDE) and more advanced double diffusion encoding (DDE) measurements using numerical simulations. The aim is to investigate the ability of dMRI/dMRS to characterize the complex morphology of brain cells focusing on these two distinctive features of brain grey matter. To this end, we employ a recently developed computational framework to create three dimensional meshes of neuron-like structures for Monte Carlo simulations, using diffusion coefficients typical of water and brain metabolites. Modelling the cellular structure as realistically connected spherical soma and cylindrical cellular projections, we cover a wide range of combinations of sphere radii and branching order of cellular projections, characteristic of various grey matter cells. We assess the impact of spherical soma size and branching order on the b-value dependence of the SDE signal as well as the time dependence of the mean diffusivity (MD) and mean kurtosis (MK). Moreover, we also assess the impact of spherical soma size and branching order on the angular modulation of DDE signal at different mixing times, together with the mixing time dependence of the apparent microscopic anisotropy (μA), a promising contrast derived from DDE measurements. The SDE results show that spherical soma size has a measurable impact on both the b-value dependence of the SDE signal and the MD and MK diffusion time dependence for both water and metabolites. On the other hand, we show that branching order has little impact on either, especially for water. In contrast, the DDE results show that spherical soma size has a measurable impact on the DDE signal's angular modulation at short mixing times and the branching order of cellular projections significantly impacts the mixing time dependence of the DDE signal's angular modulation as well as of the derived μA, for both water and metabolites. Our results confirm that SDE based techniques may be sensitive to spherical soma size, and most importantly, show for the first time that DDE measurements may be more sensitive to the dendritic tree complexity (as parametrized by the branching order of cellular projections), paving the way for new ways of characterizing grey matter morphology, non-invasively using dMRS and potentially dMRI.
Collapse
Affiliation(s)
- A Ianus
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom; Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - D C Alexander
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - H Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - M Palombo
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom.
| |
Collapse
|
18
|
Arezza NJJ, Tse DHY, Baron CA. Rapid microscopic fractional anisotropy imaging via an optimized linear regression formulation. Magn Reson Imaging 2021; 80:132-143. [PMID: 33945859 DOI: 10.1016/j.mri.2021.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
Water diffusion anisotropy in the human brain is affected by disease, trauma, and development. Microscopic fractional anisotropy (μFA) is a diffusion MRI (dMRI) metric that can quantify water diffusion anisotropy independent of neuron fiber orientation dispersion. However, there are several different techniques to estimate μFA and few have demonstrated full brain imaging capabilities within clinically viable scan times and resolutions. Here, we present an optimized spherical tensor encoding (STE) technique to acquire μFA directly from the 2nd order cumulant expansion of the powder averaged dMRI signal obtained from direct linear regression (i.e. diffusion kurtosis) which requires fewer powder-averaged signals than other STE fitting techniques and can be rapidly computed. We found that the optimal dMRI parameters for white matter μFA imaging were a maximum b-value of 2000 s/mm2 and a ratio of STE to LTE tensor encoded acquisitions of 1.7 for our system specifications. We then compared two implementations of the direct regression approach to the well-established gamma model in 4 healthy volunteers on a 3 Tesla system. One implementation used mean diffusivity (D) obtained from a 2nd order fit of the cumulant expansion, while the other used a linear estimation of D from the low b-values. Both implementations of the direct regression approach showed strong linear correlations with the gamma model (ρ = 0.97 and ρ = 0.90) but mean biases of -0.11 and - 0.02 relative to the gamma model were also observed, respectively. All three μFA measurements showed good test-retest reliability (ρ ≥ 0.79 and bias = 0). To demonstrate the potential scan time advantage of the direct approach, 2 mm isotropic resolution μFA was demonstrated over a 10 cm slab using a subsampled data set with fewer powder-averaged signals that would correspond to a 3.3-min scan. Accordingly, our results introduce an optimization procedure that has enabled nearly full brain μFA in only several minutes.
Collapse
Affiliation(s)
- N J J Arezza
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.
| | - D H Y Tse
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Canada
| | - C A Baron
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| |
Collapse
|
19
|
Lundell H, Najac C, Bulk M, Kan HE, Webb AG, Ronen I. Compartmental diffusion and microstructural properties of human brain gray and white matter studied with double diffusion encoding magnetic resonance spectroscopy of metabolites and water. Neuroimage 2021; 234:117981. [PMID: 33757904 PMCID: PMC8204266 DOI: 10.1016/j.neuroimage.2021.117981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 03/13/2021] [Indexed: 02/02/2023] Open
Abstract
Double diffusion encoding (DDE) of the water signal offers a unique ability to separate the effect of microscopic anisotropic diffusion in structural units of tissue from the overall macroscopic orientational distribution of cells. However, the specificity in detected microscopic anisotropy is limited as the signal is averaged over different cell types and across tissue compartments. Performing side-by-side water and metabolite DDE spectroscopic (DDES) experiments provides complementary measures from which intracellular and extracellular microscopic fractional anisotropies (μFA) and diffusivities can be estimated. Metabolites are largely confined to the intracellular space and therefore provide a benchmark for intracellular μFA and diffusivities of specific cell types. By contrast, water DDES measurements allow examination of the separate contributions to water μFA and diffusivity from the intra- and extracellular spaces, by using a wide range of b values to gradually eliminate the extracellular contribution. Here, we aimed to estimate tissue and compartment specific human brain microstructure by combining water and metabolites DDES experiments. We performed our DDES measurements in two brain regions that contain widely different amounts of white matter (WM) and gray matter (GM): parietal white matter (PWM) and occipital gray matter (OGM) in a total of 20 healthy volunteers at 7 Tesla. Metabolite DDES measurements were performed at b = 7199 s/mm2, while water DDES measurements were performed with a range of b values from 918 to 7199 s/mm2. The experimental framework we employed here resulted in a set of insights pertaining to the morphology of the intracellular and extracellular spaces in both gray and white matter. Results of the metabolite DDES experiments in both PWM and OGM suggest a highly anisotropic intracellular space within neurons and glia, with the possible exception of gray matter glia. The water μFA obtained from the DDES results at high b values in both regions converged with that of the metabolite DDES, suggesting that the signal from the extracellular space is indeed effectively suppressed at the highest b value. The μFA measured in the OGM significantly decreased at lower b values, suggesting a considerably lower anisotropy of the extracellular space in GM compared to WM. In PWM, the water μFA remained high even at the lowest b value, indicating a high degree of organization in the interstitial space in WM. Tortuosity values in the cytoplasm for water and tNAA, obtained with correlation analysis of microscopic parallel diffusivity with respect to GM/WM tissue fraction in the volume of interest, are remarkably similar for both molecules, while exhibiting a clear difference between gray and white matter, suggesting a more crowded cytoplasm and more complex cytomorphology of neuronal cell bodies and dendrites in GM than those found in long-range axons in WM.
Collapse
Affiliation(s)
- Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Centre for Functional and Diagnostic Imaging and Research, Kettegaards Allé 30, 2650 Hvidovre, Denmark.
| | - Chloé Najac
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Marjolein Bulk
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Hermien E Kan
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Itamar Ronen
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
20
|
Olesen JL, Østergaard L, Shemesh N, Jespersen SN. Beyond the diffusion standard model in fixed rat spinal cord with combined linear and planar encoding. Neuroimage 2021; 231:117849. [PMID: 33582270 DOI: 10.1016/j.neuroimage.2021.117849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022] Open
Abstract
Information about tissue on the microscopic and mesoscopic scales can be accessed by modelling diffusion MRI signals, with the aim of extracting microstructure-specific biomarkers. The standard model (SM) of diffusion, currently the most broadly adopted microstructural model, describes diffusion in white matter (WM) tissues by two Gaussian components, one of which has zero radial diffusivity, to represent diffusion in intra- and extra-axonal water, respectively. Here, we reappraise these SM assumptions by collecting comprehensive double diffusion encoded (DDE) MRI data with both linear and planar encodings, which was recently shown to substantially enhance the ability to estimate SM parameters. We find however, that the SM is unable to account for data recorded in fixed rat spinal cord at an ultrahigh field of 16.4 T, suggesting that its underlying assumptions are violated in our experimental data. We offer three model extensions to mitigate this problem: first, we generalize the SM to accommodate finite radii (axons) by releasing the constraint of zero radial diffusivity in the intra-axonal compartment. Second, we include intracompartmental kurtosis to account for non-Gaussian behaviour. Third, we introduce an additional (third) compartment. The ability of these models to account for our experimental data are compared based on parameter feasibility and Bayesian information criterion. Our analysis identifies the three-compartment description as the optimal model. The third compartment exhibits slow diffusion with a minor but non-negligible signal fraction (∼12%). We demonstrate how failure to take the presence of such a compartment into account severely misguides inferences about WM microstructure. Our findings bear significance for microstructural modelling at large and can impact the interpretation of biomarkers extracted from the standard model of diffusion.
Collapse
Affiliation(s)
- Jonas L Olesen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
21
|
Reymbaut A, Caron AV, Gilbert G, Szczepankiewicz F, Nilsson M, Warfield SK, Descoteaux M, Scherrer B. Magic DIAMOND: Multi-fascicle diffusion compartment imaging with tensor distribution modeling and tensor-valued diffusion encoding. Med Image Anal 2021; 70:101988. [PMID: 33611054 DOI: 10.1016/j.media.2021.101988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 01/05/2023]
Abstract
Diffusion tensor imaging provides increased sensitivity to microstructural tissue changes compared to conventional anatomical imaging but also presents limited specificity. To tackle this problem, the DIAMOND model subdivides the voxel content into diffusion compartments and draws from diffusion-weighted data to estimate compartmental non-central matrix-variate Gamma distributions of diffusion tensors. It models each sub-voxel fascicle separately, resolving crossing white-matter pathways and allowing for a fascicle-element (fixel) based analysis of microstructural features. Alternatively, specific features of the intra-voxel diffusion tensor distribution can be selectively measured using tensor-valued diffusion-weighted acquisition schemes. However, the impact of such schemes on estimating brain microstructural features has only been studied in a handful of parametric single-fascicle models. In this work, we derive a general Laplace transform for the non-central matrix-variate Gamma distribution, which enables the extension of DIAMOND to tensor-valued encoded data. We then evaluate this "Magic DIAMOND" model in silico and in vivo on various combinations of tensor-valued encoded data. Assessing uncertainty on parameter estimation via stratified bootstrap, we investigate both voxel-based and fixel-based metrics by carrying out multi-peak tractography. We demonstrate using in silico evaluations that tensor-valued diffusion encoding significantly improves Magic DIAMOND's accuracy. Most importantly, we show in vivo that our estimated metrics can be robustly mapped along tracks across regions of fiber crossing, which opens new perspectives for tractometry and microstructure mapping along specific white-matter tracts.
Collapse
Affiliation(s)
| | | | - Guillaume Gilbert
- MR Clinical Science, Philips Healthcare Canada, Markham, ON L6C 2S3, Canada
| | - Filip Szczepankiewicz
- Department of Clinical Sciences, Lund University, 22184, Lund, Sweden; Random Walk Imaging AB, 22224, Lund, Sweden
| | - Markus Nilsson
- Department of Clinical Sciences, Lund University, 22184, Lund, Sweden
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, United States
| | | | - Benoit Scherrer
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, United States
| |
Collapse
|
22
|
Szczepankiewicz F, Westin CF, Nilsson M. Gradient waveform design for tensor-valued encoding in diffusion MRI. J Neurosci Methods 2021; 348:109007. [PMID: 33242529 PMCID: PMC8443151 DOI: 10.1016/j.jneumeth.2020.109007] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
Diffusion encoding along multiple spatial directions per signal acquisition can be described in terms of a b-tensor. The benefit of tensor-valued diffusion encoding is that it unlocks the 'shape of the b-tensor' as a new encoding dimension. By modulating the b-tensor shape, we can control the sensitivity to microscopic diffusion anisotropy which can be used as a contrast mechanism; a feature that is inaccessible by conventional diffusion encoding. Since imaging methods based on tensor-valued diffusion encoding are finding an increasing number of applications we are prompted to highlight the challenge of designing the optimal gradient waveforms for any given application. In this review, we first establish the basic design objectives in creating field gradient waveforms for tensor-valued diffusion MRI. We also survey additional design considerations related to limitations imposed by hardware and physiology, potential confounding effects that cannot be captured by the b-tensor, and artifacts related to the diffusion encoding waveform. Throughout, we discuss the expected compromises and tradeoffs with an aim to establish a more complete understanding of gradient waveform design and its impact on accurate measurements and interpretations of data.
Collapse
Affiliation(s)
- Filip Szczepankiewicz
- Radiology, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Clinical Sciences, Lund University, Lund, Sweden.
| | - Carl-Fredrik Westin
- Radiology, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
23
|
Afzali M, Pieciak T, Newman S, Garyfallidis E, Özarslan E, Cheng H, Jones DK. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods 2021; 347:108951. [PMID: 33017644 PMCID: PMC7762827 DOI: 10.1016/j.jneumeth.2020.108951] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Diffusion MRI is a non-invasive technique to study brain microstructure. Differences in the microstructural properties of tissue, including size and anisotropy, can be represented in the signal if the appropriate method of acquisition is used. However, to depict the underlying properties, special care must be taken when designing the acquisition protocol as any changes in the procedure might impact on quantitative measurements. This work reviews state-of-the-art methods for studying brain microstructure using diffusion MRI and their sensitivity to microstructural differences and various experimental factors. Microstructural properties of the tissue at a micrometer scale can be linked to the diffusion signal at a millimeter-scale using modeling. In this paper, we first give an introduction to diffusion MRI and different encoding schemes. Then, signal representation-based methods and multi-compartment models are explained briefly. The sensitivity of the diffusion MRI signal to the microstructural components and the effects of curvedness of axonal trajectories on the diffusion signal are reviewed. Factors that impact on the quality (accuracy and precision) of derived metrics are then reviewed, including the impact of random noise, and variations in the acquisition parameters (i.e., number of sampled signals, b-value and number of acquisition shells). Finally, yet importantly, typical approaches to deal with experimental factors are depicted, including unbiased measures and harmonization. We conclude the review with some future directions and recommendations on this topic.
Collapse
Affiliation(s)
- Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Tomasz Pieciak
- AGH University of Science and Technology, Kraków, Poland; LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain.
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Eleftherios Garyfallidis
- Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
24
|
Reymbaut A, Mezzani P, de Almeida Martins JP, Topgaard D. Accuracy and precision of statistical descriptors obtained from multidimensional diffusion signal inversion algorithms. NMR IN BIOMEDICINE 2020; 33:e4267. [PMID: 32067322 DOI: 10.1002/nbm.4267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 05/22/2023]
Abstract
In biological tissues, typical MRI voxels comprise multiple microscopic environments, the local organization of which can be captured by microscopic diffusion tensors. The measured diffusion MRI signal can, therefore, be written as the multidimensional Laplace transform of an intravoxel diffusion tensor distribution (DTD). Tensor-valued diffusion encoding schemes have been designed to probe specific features of the DTD, and several algorithms have been introduced to invert such data and estimate statistical descriptors of the DTD, such as the mean diffusivity, the variance of isotropic diffusivities, and the mean squared diffusion anisotropy. However, the accuracy and precision of these estimations have not been assessed systematically and compared across methods. In this article, we perform and compare such estimations in silico for a one-dimensional Gamma fit, a generalized two-term cumulant approach, and two-dimensional and four-dimensional Monte-Carlo-based inversion techniques, using a clinically feasible tensor-valued acquisition scheme. In particular, we compare their performance at different signal-to-noise ratios (SNRs) for voxel contents varying in terms of the aforementioned statistical descriptors, orientational order, and fractions of isotropic and anisotropic components. We find that all inversion techniques share similar precision (except for a lower precision of the two-dimensional Monte Carlo inversion) but differ in terms of accuracy. While the Gamma fit exhibits infinite-SNR biases when the signal deviates strongly from monoexponentiality and is unaffected by orientational order, the generalized cumulant approach shows infinite-SNR biases when this deviation originates from the variance in isotropic diffusivities or from the low orientational order of anisotropic diffusion components. The two-dimensional Monte Carlo inversion shows remarkable accuracy in all systems studied, given that the acquisition scheme possesses enough directions to yield a rotationally invariant powder average. The four-dimensional Monte Carlo inversion presents no infinite-SNR bias, but suffers significantly from noise in the data, while preserving good contrast in most systems investigated.
Collapse
Affiliation(s)
- Alexis Reymbaut
- Physical Chemistry Department, Lund University, Lund, Sweden
- Random Walk Imaging AB, Lund, Sweden
| | - Paolo Mezzani
- Physical Chemistry Department, Lund University, Lund, Sweden
- Physics Department, Università degli Studi di Milano, Milan, Italy
| | | | - Daniel Topgaard
- Physical Chemistry Department, Lund University, Lund, Sweden
- Random Walk Imaging AB, Lund, Sweden
| |
Collapse
|
25
|
Henriques RN, Palombo M, Jespersen SN, Shemesh N, Lundell H, Ianuş A. Double diffusion encoding and applications for biomedical imaging. J Neurosci Methods 2020; 348:108989. [PMID: 33144100 DOI: 10.1016/j.jneumeth.2020.108989] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Diffusion Magnetic Resonance Imaging (dMRI) is one of the most important contemporary non-invasive modalities for probing tissue structure at the microscopic scale. The majority of dMRI techniques employ standard single diffusion encoding (SDE) measurements, covering different sequence parameter ranges depending on the complexity of the method. Although many signal representations and biophysical models have been proposed for SDE data, they are intrinsically limited by a lack of specificity. Advanced dMRI methods have been proposed to provide additional microstructural information beyond what can be inferred from SDE. These enhanced contrasts can play important roles in characterizing biological tissues, for instance upon diseases (e.g. neurodegenerative, cancer, stroke), aging, learning, and development. In this review we focus on double diffusion encoding (DDE), which stands out among other advanced acquisitions for its versatility, ability to probe more specific diffusion correlations, and feasibility for preclinical and clinical applications. Various DDE methodologies have been employed to probe compartment sizes (Section 3), decouple the effects of microscopic diffusion anisotropy from orientation dispersion (Section 4), probe displacement correlations, study exchange, or suppress fast diffusing compartments (Section 6). DDE measurements can also be used to improve the robustness of biophysical models (Section 5) and study intra-cellular diffusion via magnetic resonance spectroscopy of metabolites (Section 7). This review discusses all these topics as well as important practical aspects related to the implementation and contrast in preclinical and clinical settings (Section 9) and aims to provide the readers a guide for deciding on the right DDE acquisition for their specific application.
Collapse
Affiliation(s)
- Rafael N Henriques
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Marco Palombo
- Centre for Medical Image Computing and Dept. of Computer Science, University College London, London, UK
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Andrada Ianuş
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
26
|
Kamiya K, Kamagata K, Ogaki K, Hatano T, Ogawa T, Takeshige-Amano H, Murata S, Andica C, Murata K, Feiweier T, Hori M, Hattori N, Aoki S. Brain White-Matter Degeneration Due to Aging and Parkinson Disease as Revealed by Double Diffusion Encoding. Front Neurosci 2020; 14:584510. [PMID: 33177985 PMCID: PMC7594529 DOI: 10.3389/fnins.2020.584510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
Microstructure imaging by means of multidimensional diffusion encoding is increasingly applied in clinical research, with expectations that it yields a parameter that better correlates with clinical disability than current methods based on single diffusion encoding. Under the assumption that diffusion within a voxel can be well described by a collection of diffusion tensors, several parameters of this diffusion tensor distribution can be derived, including mean size, variance of sizes, orientational dispersion, and microscopic anisotropy. The information provided by multidimensional diffusion encoding also enables us to decompose the sources of the conventional fractional anisotropy and mean kurtosis. In this study, we explored the utility of the diffusion tensor distribution approach for characterizing white-matter degeneration in aging and in Parkinson disease by using double diffusion encoding. Data from 23 healthy older subjects and 27 patients with Parkinson disease were analyzed. Advanced age was associated with greater mean size and size variances, as well as smaller microscopic anisotropy. By analyzing the parameters underlying diffusion kurtosis, we found that the reductions of kurtosis in aging and Parkinson disease reported in the literature are likely driven by the reduction in microscopic anisotropy. Furthermore, microscopic anisotropy correlated with the severity of motor impairment in the patients with Parkinson disease. The present results support the use of multidimensional diffusion encoding in clinical studies and are encouraging for its future clinical implementation.
Collapse
Affiliation(s)
- Kouhei Kamiya
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Radiology, Toho University, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kotaro Ogaki
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Ogawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Syo Murata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Radiology, Toho University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Henriques RN, Jespersen SN, Shemesh N. Correlation tensor magnetic resonance imaging. Neuroimage 2020; 211:116605. [DOI: 10.1016/j.neuroimage.2020.116605] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/23/2020] [Accepted: 02/02/2020] [Indexed: 12/17/2022] Open
|
28
|
Cottaar M, Szczepankiewicz F, Bastiani M, Hernandez-Fernandez M, Sotiropoulos SN, Nilsson M, Jbabdi S. Improved fibre dispersion estimation using b-tensor encoding. Neuroimage 2020; 215:116832. [PMID: 32283273 DOI: 10.1016/j.neuroimage.2020.116832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Measuring fibre dispersion in white matter with diffusion magnetic resonance imaging (MRI) is limited by an inherent degeneracy between fibre dispersion and microscopic diffusion anisotropy (i.e., the diffusion anisotropy expected for a single fibre orientation). This means that estimates of fibre dispersion rely on strong assumptions, such as constant microscopic anisotropy throughout the white matter or specific biophysical models. Here we present a simple approach for resolving this degeneracy using measurements that combine linear (conventional) and spherical tensor diffusion encoding. To test the accuracy of the fibre dispersion when our microstructural model is only an approximation of the true tissue structure, we simulate multi-compartment data and fit this with a single-compartment model. For such overly simplistic tissue assumptions, we show that the bias in fibre dispersion is greatly reduced (~5x) for single-shell linear and spherical tensor encoding data compared with single-shell or multi-shell conventional data. In in-vivo data we find a consistent estimate of fibre dispersion as we reduce the b-value from 3 to 1.5 ms/μm2, increase the repetition time, increase the echo time, or increase the diffusion time. We conclude that the addition of spherical tensor encoded data to conventional linear tensor encoding data greatly reduces the sensitivity of the estimated fibre dispersion to the model assumptions of the tissue microstructure.
Collapse
Affiliation(s)
- Michiel Cottaar
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional Magnetic Resonance, Imaging of the Brain (FMRIB), University of Oxford, UK.
| | - Filip Szczepankiewicz
- Harvard Medical School, Boston, MA, USA; Radiology, Brigham and Women's Hospital, Boston, MA, USA; Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Matteo Bastiani
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK; NIHR Biomedical Research Centre, University of Nottingham, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional Magnetic Resonance, Imaging of the Brain (FMRIB), University of Oxford, UK
| | - Moises Hernandez-Fernandez
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional Magnetic Resonance, Imaging of the Brain (FMRIB), University of Oxford, UK; NVIDIA, Santa Clara, CA, USA
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK; NIHR Biomedical Research Centre, University of Nottingham, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional Magnetic Resonance, Imaging of the Brain (FMRIB), University of Oxford, UK
| | | | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional Magnetic Resonance, Imaging of the Brain (FMRIB), University of Oxford, UK
| |
Collapse
|
29
|
Vincent M, Palombo M, Valette J. Revisiting double diffusion encoding MRS in the mouse brain at 11.7T: Which microstructural features are we sensitive to? Neuroimage 2020; 207:116399. [PMID: 31778817 PMCID: PMC7014823 DOI: 10.1016/j.neuroimage.2019.116399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
Brain metabolites, such as N-acetylaspartate or myo-inositol, are constantly probing their local cellular environment under the effect of diffusion. Diffusion-weighted NMR spectroscopy therefore presents unparalleled potential to yield cell-type specific microstructural information. Double diffusion encoding (DDE) consists in applying two diffusion blocks, where gradient's direction in the second block is varied during the course of the experiment. Unlike single diffusion encoding, DDE measurements at long mixing time display some angular modulation of the signal amplitude which reflects microscopic anisotropy (μA), while requiring relatively low gradient strength. This angular dependence has been formerly used to quantify cell fiber diameter using a model of isotropically oriented infinite cylinders. However, how additional features of the cell microstructure (such as cell body diameter, fiber length and branching) may also influence the DDE signal has been little explored. Here, we used a cryoprobe as well as state-of-the-art post-processing to perform DDE acquisitions with high accuracy and precision in the mouse brain at 11.7 T. We then compared our results to simulated DDE datasets obtained in various 3D cell models in order to pinpoint which features of cell morphology may influence the most the angular dependence of the DDE signal. While the infinite cylinder model poorly fits our experimental data, we show that incorporating branched fiber structure in our model allows more realistic interpretation of the DDE signal. Lastly, data acquired in the short mixing time regime suggest that some sensitivity to cell body diameter might be retrieved, although additional experiments would be required to further support this statement.
Collapse
Affiliation(s)
- Mélissa Vincent
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), MIRCen, F-92260, Fontenay-aux-Roses, France; Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, F-92260, Fontenay-aux-Roses, France
| | - Marco Palombo
- Department of Computer Science and Centre for Medical Image Computing, University College of London, London, WC1E 6BT, United Kingdom
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), MIRCen, F-92260, Fontenay-aux-Roses, France; Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, F-92260, Fontenay-aux-Roses, France.
| |
Collapse
|
30
|
Anaby D, Morozov D, Seroussi I, Hametner S, Sochen N, Cohen Y. Single- and double-Diffusion encoding MRI for studying ex vivo apparent axon diameter distribution in spinal cord white matter. NMR IN BIOMEDICINE 2019; 32:e4170. [PMID: 31573745 DOI: 10.1002/nbm.4170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Mapping average axon diameter (AAD) and axon diameter distribution (ADD) in neuronal tissues non-invasively is a challenging task that may have a tremendous effect on our understanding of the normal and diseased central nervous system (CNS). Water diffusion is used to probe microstructure in neuronal tissues, however, the different water populations and barriers that are present in these tissues turn this into a complex task. Therefore, it is not surprising that recently we have witnessed a burst in the development of new approaches and models that attempt to obtain, non-invasively, detailed microstructural information in the CNS. In this work, we aim at challenging and comparing the microstructural information obtained from single diffusion encoding (SDE) with double diffusion encoding (DDE) MRI. We first applied SDE and DDE MR spectroscopy (MRS) on microcapillary phantoms and then applied SDE and DDE MRI on an ex vivo porcine spinal cord (SC), using similar experimental conditions. The obtained diffusion MRI data were fitted by the same theoretical model, assuming that the signal in every voxel can be approximated as the superposition of a Gaussian-diffusing component and a series of restricted components having infinite cylindrical geometries. The diffusion MRI results were then compared with histological findings. We found a good agreement between the fittings and the experimental data in white matter (WM) voxels of the SC in both diffusion MRI methods. The microstructural information and apparent AADs extracted from SDE MRI were found to be similar or somewhat larger than those extracted from DDE MRI especially when the diffusion time was set to 40 ms. The apparent ADDs extracted from SDE and DDE MRI show reasonable agreement but somewhat weaker correspondence was observed between the diffusion MRI results and histology. The apparent subtle differences between the microstructural information obtained from SDE and DDE MRI are briefly discussed.
Collapse
Affiliation(s)
- Debbie Anaby
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
| | - Darya Morozov
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Seroussi
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Simon Hametner
- Neuroimmunology Department, Center of Brain Research, Medical University of Vienna, Vienna, Austria
| | - Nir Sochen
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yoram Cohen
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Arbabi A, Kai J, Khan AR, Baron CA. Diffusion dispersion imaging: Mapping oscillating gradient spin-echo frequency dependence in the human brain. Magn Reson Med 2019; 83:2197-2208. [PMID: 31762110 DOI: 10.1002/mrm.28083] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Oscillating gradient spin-echo (OGSE) diffusion MRI provides information about the microstructure of biological tissues by means of the frequency dependence of the apparent diffusion coefficient (ADC). ADC dependence on OGSE frequency has been explored in numerous rodent studies, but applications in the human brain have been limited and have suffered from low contrast between different frequencies, long scan times, and a limited exploration of the nature of the ADC dependence on frequency. THEORY AND METHODS Multiple frequency OGSE acquisitions were acquired in healthy subjects at 7T to explore the power-law frequency dependence of ADC, the "diffusion dispersion." Furthermore, a method for optimizing the estimation of the ADC difference between different OGSE frequencies was developed, which enabled the design of a highly efficient protocol for mapping diffusion dispersion. RESULTS For the first time, evidence of a linear dependence of ADC on the square root of frequency in healthy human white matter was obtained. Using the optimized protocol, high-quality, full-brain maps of apparent diffusion dispersion rate were also demonstrated at an isotropic resolution of 2 mm in a scan time of 6 min. CONCLUSIONS This work sheds light on the nature of diffusion dispersion in the healthy human brain and introduces full-brain diffusion dispersion mapping at clinically relevant scan times. These advances may lead to new biomarkers of pathology or improved microstructural modeling.
Collapse
Affiliation(s)
- Aidin Arbabi
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Jason Kai
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Ali R Khan
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Corey A Baron
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
32
|
Ikenouchi Y, Kamagata K, Andica C, Hatano T, Ogawa T, Takeshige-Amano H, Kamiya K, Wada A, Suzuki M, Fujita S, Hagiwara A, Irie R, Hori M, Oyama G, Shimo Y, Umemura A, Hattori N, Aoki S. Evaluation of white matter microstructure in patients with Parkinson's disease using microscopic fractional anisotropy. Neuroradiology 2019; 62:197-203. [PMID: 31680195 DOI: 10.1007/s00234-019-02301-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Micro fractional anisotropy (μFA) is more accurate than conventional fractional anisotropy (FA) for assessing microscopic tissue properties and can overcome limitations related to crossing white matter fibres. We compared μFA and FA for evaluating white matter changes in patients with Parkinson's disease (PD). METHODS We compared FA and μFA measures between 25 patients with PD and 25 age- and gender-matched healthy controls using tract-based spatial statistics (TBSS) analysis. We also examined potential correlations between changes, revealed by conventional FA or μFA, and disease duration or Unified Parkinson's Disease Rating Scale (UPDRS)-III scores. RESULTS Compared with healthy controls, patients with PD had significantly reduced μFA values, mainly in the anterior corona radiata (ACR). In the PD group, μFA values (primarily those from the ACR) were significantly negatively correlated with UPDRS-III motor scores. No significant changes or correlations with disease duration or UPDRS-III scores with tissue properties were detected using conventional FA. CONCLUSION μFA can evaluate microstructural changes that occur during white matter degeneration in patients with PD and may overcome a key limitation of FA.
Collapse
Affiliation(s)
- Yutaka Ikenouchi
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takashi Ogawa
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Haruka Takeshige-Amano
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kouhei Kamiya
- Department of Radiology, The University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Michimasa Suzuki
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ryusuke Irie
- Department of Radiology, The University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Genko Oyama
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yashushi Shimo
- Department of Neurology, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Atsushi Umemura
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
33
|
Kerkelä L, Henriques RN, Hall MG, Clark CA, Shemesh N. Validation and noise robustness assessment of microscopic anisotropy estimation with clinically feasible double diffusion encoding MRI. Magn Reson Med 2019; 83:1698-1710. [DOI: 10.1002/mrm.28048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/03/2019] [Accepted: 10/02/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Leevi Kerkelä
- UCL Great Ormond Street Institute of Child Health University College London London United Kingdom
| | - Rafael Neto Henriques
- Champalimaud Neuroscience Programme Champalimaud Research Champalimaud Centre for the Unknown Lisbon Portugal
| | - Matt G. Hall
- UCL Great Ormond Street Institute of Child Health University College London London United Kingdom
- National Physical Laboratory Teddington United Kingdom
| | - Chris A. Clark
- UCL Great Ormond Street Institute of Child Health University College London London United Kingdom
| | - Noam Shemesh
- Champalimaud Neuroscience Programme Champalimaud Research Champalimaud Centre for the Unknown Lisbon Portugal
| |
Collapse
|
34
|
Nilsson M, Szczepankiewicz F, Brabec J, Taylor M, Westin CF, Golby A, van Westen D, Sundgren PC. Tensor-valued diffusion MRI in under 3 minutes: an initial survey of microscopic anisotropy and tissue heterogeneity in intracranial tumors. Magn Reson Med 2019; 83:608-620. [PMID: 31517401 PMCID: PMC6900060 DOI: 10.1002/mrm.27959] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/05/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE To evaluate the feasibility of a 3-minutes protocol for assessment of the microscopic anisotropy and tissue heterogeneity based on tensor-valued diffusion MRI in a wide range of intracranial tumors. METHODS B-tensor encoding was performed in 42 patients with intracranial tumors (gliomas, meningiomas, adenomas, and metastases). Microscopic anisotropy and tissue heterogeneity were evaluated by estimating the anisotropic kurtosis (MKA ) and isotropic kurtosis (MKI ), respectively. An extensive imaging protocol was compared with a 3-minutes protocol. RESULTS The fast imaging protocol yielded parameters with characteristics in terms of bias and precision similar to the full protocol. Glioblastomas had lower microscopic anisotropy than meningiomas (MKA = 0.29 ± 0.06 vs. 0.45 ± 0.08, P = 0.003). Metastases had higher tissue heterogeneity (MKI = 0.57 ± 0.07) than both the glioblastomas (0.44 ± 0.06, P < 0.001) and meningiomas (0.46 ± 0.06, P = 0.03). CONCLUSION Evaluation of the microscopic anisotropy and tissue heterogeneity in intracranial tumor patients is feasible in clinically relevant times frames.
Collapse
Affiliation(s)
- Markus Nilsson
- Department of Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| | | | - Jan Brabec
- Department of Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Marie Taylor
- Department of Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| | | | - Alexandra Golby
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Danielle van Westen
- Department of Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| | - Pia C Sundgren
- Department of Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden.,Lund University Bioimaging Center (LBIC), Lund University, Lund, Sweden
| |
Collapse
|
35
|
Henriques RN, Jespersen SN, Shemesh N. Microscopic anisotropy misestimation in spherical-mean single diffusion encoding MRI. Magn Reson Med 2019; 81:3245-3261. [PMID: 30648753 PMCID: PMC6519215 DOI: 10.1002/mrm.27606] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 12/03/2022]
Abstract
Purpose Microscopic fractional anisotropy (µFA) can disentangle microstructural information from orientation dispersion. While double diffusion encoding (DDE) MRI methods are widely used to extract accurate µFA, it has only recently been proposed that powder‐averaged single diffusion encoding (SDE) signals, when coupled with the diffusion standard model (SM) and a set of constraints, could be used for µFA estimation. This study aims to evaluate µFA as derived from the spherical mean technique (SMT) set of constraints, as well as more generally for powder‐averaged SM signals. Methods SDE experiments were performed at 16.4 T on an ex vivo mouse brain (Δ/δ = 12/1.5 ms). The µFA maps obtained from powder‐averaged SDE signals were then compared to maps obtained from DDE‐MRI experiments (Δ/τ/δ = 12/12/1.5 ms), which allow a model‐free estimation of µFA. Theory and simulations that consider different types of heterogeneity are presented for corroborating the experimental findings. Results µFA, as well as other estimates derived from powder‐averaged SDE signals produced large deviations from the ground truth in both gray and white matter. Simulations revealed that these misestimations are likely a consequence of factors not considered by the underlying microstructural models (such as intercomponent and intracompartmental kurtosis). Conclusion Powder‐averaged SMT and (2‐component) SM are unable to accurately report µFA and other microstructural parameters in ex vivo tissues. Improper model assumptions and constraints can significantly compromise parameter specificity. Further developments and validations are required prior to implementation of these models in clinical or preclinical research.
Collapse
Affiliation(s)
- Rafael Neto Henriques
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Clinical Institute, Aarhus University, Aarhus, Denmark.,Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|