1
|
Wang W, Huang J, Cheng R, Liu X, Luo T. Concurrent brain structural and functional alterations related to cognition in patients with cerebral small vessel disease. Neuroradiology 2025:10.1007/s00234-025-03557-6. [PMID: 39937266 DOI: 10.1007/s00234-025-03557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/01/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE To investigate the concurrent brain structural and functional alterations related to cognition in patients with cerebral small vessel disease (CSVD). METHODS Thirty normal controls and 65 CSVD patients, including 33 patients with mild cognitive impairment and 32 patients with no cognitive impairment were included. Structural and resting-state functional MRI measures, including gray matter volume (GMV) and white matter volume (WMV) using voxel-based morphometry (VBM) analysis and amplitude of low-frequency fluctuation (ALFF), were obtained and compared among the three groups. Associations between cognitive scores and ALFF/VBM coupling in the co-altered regions were investigated in CSVD groups. RESULTS Multiple brain regions showed significant differences in GMV and WMV among the three groups (P < 0.01). Abnormal ALFF among the three groups was identified in the left putamen, Rolandic operculum, fusiform gyrus, caudate, parahippocampal gyrus, insula, middle cingulum, bilateral lingual gyrus, and right frontal lobe (P < 0.01). Importantly, a decrease in VBM and increase in ALFF in the left parahippocampal gyrus, caudate and Rolandic operculum, a reduction of the WMV and ALFF in the right superior frontal lobe, and a united rise of GMV and ALFF in the left caudate were detected in CSVD groups. In addition, abnormal ALFF/VBM coupling was significantly related to multiple cognitive assessments. CONCLUSION The study indicated a reversed pattern of the brain structural deficits and functional activation in the left parahippocampal gyrus, caudate, and Rolandic operculum, suggesting structure-function decoupling in CSVD groups. These might help further understand the pathophysiological mechanism of CSVD.
Collapse
Affiliation(s)
- Wenwen Wang
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Runtian Cheng
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoshuang Liu
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyou Luo
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Li XT, Zhong YL, Shu X, Chen JQ, Zhu D, Huang X. Disrupted topology of the functional white matter connectome in thyroid-associated ophthalmopathy. Neuroscience 2025; 569:133-146. [PMID: 39921024 DOI: 10.1016/j.neuroscience.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND This study aims to investigate the changes in the topological organization of WM functional connectivity in individuals with TAO, providing a novel and insightful perspective on the functional disruptions that characterize this condition. METHODS This study utilized resting-state functional Magnetic Resonance Imaging (rs-fMRI) to capture blood-oxygen-level-dependent (BOLD) signals and T1-weighted images from patients with TAO and healthy control subjects. Group-level masks for white matter were created to extract WM-related BOLD signals, facilitating the construction of a functional white matter network. Graph theory analysis was subsequently conducted to evaluate global metrics, nodal metrics, and modularity, alongside network-based analysis. Finally, support vector machines (SVM) were employed for classification. RESULTS A functional white matter network comprising 128 nodes and their respective connections was identified. The graph theory analysis revealed significant differences primarily in the sigma characteristic of the global small-world metrics, with a notable decrease in betweenness centrality observed in the splenium of the corpus callosum. Modularity analysis indicated significant intra-module variations in modules 03 and 05, while strong inter-module connections were observed between modules 01 and 03, as well as between modules 02 and 04. Furthermore, network-based statistics (NBS) highlighted 13 networks that exhibited significant alterations in the TAO group compared to healthy controls, underscoring the potential impact of TAO on the organization of white matter networks. CONCLUSION In our study, we found that patients with TAO exhibited abnormalities in the white matter functional network regarding small-world metrics and modularity, which are related to visual and cognitive functions.
Collapse
Affiliation(s)
- Xiao-Tong Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006,Jiangxi, China
| | - Yu-Lin Zhong
- Department of ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006 Jiangxi, China
| | - Xin Shu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006,Jiangxi, China
| | - Jia-Qi Chen
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006,Jiangxi, China
| | - Di Zhu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006,Jiangxi, China
| | - Xin Huang
- Department of ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006 Jiangxi, China.
| |
Collapse
|
3
|
Peng X, Trambaiolli LR, Choi EY, Lehman JF, Linn G, Russ BE, Schroeder CE, Haber SN, Liu H. Cross-species striatal hubs: Linking anatomy to resting-state connectivity. Neuroimage 2024; 301:120866. [PMID: 39322095 DOI: 10.1016/j.neuroimage.2024.120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/13/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024] Open
Abstract
Corticostriatal connections are essential for motivation, cognition, and behavioral flexibility. There is broad interest in using resting-state functional magnetic resonance imaging (rs-fMRI) to link circuit dysfunction in these connections with neuropsychiatric disorders. In this paper, we used tract-tracing data from non-human primates (NHPs) to assess the likelihood of monosynaptic connections being represented in rs-fMRI data of NHPs and humans. We also demonstrated that existing hub locations in the anatomical data can be identified in the rs-fMRI data from both species. To characterize this in detail, we mapped the complete striatal projection zones from 27 tract-tracer injections located in the orbitofrontal cortex (OFC), dorsal anterior cingulate cortex (dACC), ventromedial prefrontal cortex (vmPFC), ventrolateral PFC (vlPFC), and dorsal PFC (dPFC) of macaque monkeys. Rs-fMRI seeds at the same regions of NHP and homologous regions of human brains showed connectivity maps in the striatum mostly consistent with those observed in the tracer data. We then examined the location of overlap in striatal projection zones. The medial rostral dorsal caudate connected with all five frontocortical regions evaluated in this study in both modalities (tract-tracing and rs-fMRI) and species (NHP and human). Other locations in the caudate also presented an overlap of four frontocortical regions, suggesting the existence of different locations with lower levels of input diversity. Small retrograde tracer injections and rs-fMRI seeds in the striatum confirmed these cortical input patterns. This study sets the ground for future studies evaluating rs-fMRI in clinical samples to measure anatomical corticostriatal circuit dysfunction and identify connectional hubs to provide more specific treatment targets for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Xiaolong Peng
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, USA
| | - Lucas R Trambaiolli
- McLean Hospital, Harvard Medical School, Boston, USA; University of Rochester School of Medicine & Dentistry, Rochester, USA
| | - Eun Young Choi
- Department of Neurosurgery, Stanford University, Stanford, USA
| | - Julia F Lehman
- University of Rochester School of Medicine & Dentistry, Rochester, USA
| | - Gary Linn
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, USA
| | - Brian E Russ
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, USA
| | | | - Suzanne N Haber
- McLean Hospital, Harvard Medical School, Boston, USA; University of Rochester School of Medicine & Dentistry, Rochester, USA.
| | - Hesheng Liu
- Changping Laboratory, Beijing, China; Biomedical Pioneering Innovation Center, Peking University, Beijing, China.
| |
Collapse
|
4
|
Chen K, Zhuang W, Zhang Y, Yin S, Liu Y, Chen Y, Kang X, Ma H, Zhang T. Alteration of the large-scale white-matter functional networks in autism spectrum disorder. Cereb Cortex 2023; 33:11582-11593. [PMID: 37851712 DOI: 10.1093/cercor/bhad392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Autism spectrum disorder is a neurodevelopmental disorder whose core deficit is social dysfunction. Previous studies have indicated that structural changes in white matter are associated with autism spectrum disorder. However, few studies have explored the alteration of the large-scale white-matter functional networks in autism spectrum disorder. Here, we identified ten white-matter functional networks on resting-state functional magnetic resonance imaging data using the K-means clustering algorithm. Compared with the white matter and white-matter functional network connectivity of the healthy controls group, we found significantly decreased white matter and white-matter functional network connectivity mainly located within the Occipital network, Middle temporo-frontal network, and Deep network in autism spectrum disorder. Compared with healthy controls, findings from white-matter gray-matter functional network connectivity showed the decreased white-matter gray-matter functional network connectivity mainly distributing in the Occipital network and Deep network. Moreover, we compared the spontaneous activity of white-matter functional networks between the two groups. We found that the spontaneous activity of Middle temporo-frontal and Deep network was significantly decreased in autism spectrum disorder. Finally, the correlation analysis showed that the white matter and white-matter functional network connectivity between the Middle temporo-frontal network and others networks and the spontaneous activity of the Deep network were significantly correlated with the Social Responsiveness Scale scores of autism spectrum disorder. Together, our findings indicate that changes in the white-matter functional networks are associated behavioral deficits in autism spectrum disorder.
Collapse
Affiliation(s)
- Kai Chen
- Mental Health Education Center and School of Big Health Management, Xihua University, Jinniu District, Chengdu, Sichuan, China
| | - Wenwen Zhuang
- Mental Health Education Center and School of Big Health Management, Xihua University, Jinniu District, Chengdu, Sichuan, China
| | - Yanfang Zhang
- Department of Ultrasonic Medicine, Baiyun Branch, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou City, Guangdong Province, China
| | - Shunjie Yin
- Mental Health Education Center and School of Big Health Management, Xihua University, Jinniu District, Chengdu, Sichuan, China
| | - Yinghua Liu
- Mental Health Education Center and School of Big Health Management, Xihua University, Jinniu District, Chengdu, Sichuan, China
| | - Yuan Chen
- Mental Health Education Center and School of Big Health Management, Xihua University, Jinniu District, Chengdu, Sichuan, China
| | - Xiaodong Kang
- The Department of Sichuan 81 Rehabilitation Center, Chengdu University of TCM, No. 81 Bayi Road, Yongning Street, Wenjiang District, Chengdu City 610075, China
| | - Hailin Ma
- Plateau Brain Science Research Center, Tibet University, 10 Zangda East Road, Lhasa City 510631, China
| | - Tao Zhang
- Mental Health Education Center and School of Big Health Management, Xihua University, Jinniu District, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zhang X, Li Y, Guan Q, Dong D, Zhang J, Meng X, Chen F, Luo Y, Zhang H. Distance-dependent reconfiguration of hubs in Alzheimer's disease: a cross-tissue functional network study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.532772. [PMID: 36993290 PMCID: PMC10055319 DOI: 10.1101/2023.03.24.532772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The hubs of the intra-grey matter (GM) network were sensitive to anatomical distance and susceptible to neuropathological damage. However, few studies examined the hubs of cross-tissue distance-dependent networks and their changes in Alzheimer's disease (AD). Using resting-state fMRI data of 30 AD patients and 37 normal older adults (NC), we constructed the cross-tissue networks based on functional connectivity (FC) between GM and white matter (WM) voxels. In the full-ranged and distance-dependent networks (characterized by gradually increased Euclidean distances between GM and WM voxels), their hubs were identified with weight degree metrics (frWD and ddWD). We compared these WD metrics between AD and NC; using the resultant abnormal WDs as the seeds, we performed seed-based FC analysis. With increasing distance, the GM hubs of distance-dependent networks moved from the medial to lateral cortices, and the WM hubs spread from the projection fibers to longitudinal fascicles. Abnormal ddWD metrics in AD were primarily located in the hubs of distance-dependent networks around 20-100mm. Decreased ddWDs were located in the left corona radiation (CR), which had decreased FCs with the executive network's GM regions in AD. Increased ddWDs were located in the posterior thalamic radiation (PTR) and the temporal-parietal-occipital junction (TPO), and their FCs were larger in AD. Increased ddWDs were shown in the sagittal striatum, which had larger FCs with the salience network's GM regions in AD. The reconfiguration of cross-tissue distance-dependent networks possibly reflected the disruption in the neural circuit of executive function and the compensatory changes in the neural circuits of visuospatial and social-emotional functions in AD.
Collapse
Affiliation(s)
- Xingxing Zhang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yingjia Li
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Qing Guan
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Jianfeng Zhang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xianghong Meng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Fuyong Chen
- Department of Neurosurgery, Shenzhen Hospital of University of Hong Kong, Shenzhen, China
| | - Yuejia Luo
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Haobo Zhang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | | |
Collapse
|
6
|
Gao Y, Lawless RD, Li M, Zhao Y, Schilling KG, Xu L, Shafer AT, Beason-Held LL, Resnick SM, Rogers BP, Ding Z, Anderson AW, Landman BA, Gore JC. Automatic Preprocessing Pipeline for White Matter Functional Analyses of Large-Scale Databases. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12464:124640U. [PMID: 37600506 PMCID: PMC10437151 DOI: 10.1117/12.2653132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Recently, increasing evidence suggests that fMRI signals in white matter (WM), conventionally ignored as nuisance, are robustly detectable using appropriate processing methods and are related to neural activity, while changes in WM with aging and degeneration are also well documented. These findings suggest variations in patterns of BOLD signals in WM should be investigated. However, existing fMRI analysis tools, which were designed for processing gray matter signals, are not well suited for large-scale processing of WM signals in fMRI data. We developed an automatic pipeline for high-performance preprocessing of fMRI images with emphasis on quantifying changes in BOLD signals in WM in an aging population. At the image processing level, the pipeline integrated existing software modules with fine parameter tunings and modifications to better extract weaker WM signals. The preprocessing results primarily included whole-brain time-courses, functional connectivity, maps and tissue masks in a common space. At the job execution level, this pipeline exploited a local XNAT to store datasets and results, while using DAX tool to automatic distribute batch jobs that run on high-performance computing clusters. Through the pipeline, 5,034 fMRI/T1 scans were preprocessed. The intraclass correlation coefficient (ICC) of test-retest experiment based on the preprocessed data is 0.52 - 0.86 (N=1000), indicating a high reliability of our pipeline, comparable to previously reported ICC in gray matter experiments. This preprocessing pipeline highly facilitates our future analyses on WM functional alterations in aging and may be of benefit to a larger community interested in WM fMRI studies.
Collapse
Affiliation(s)
- Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Richard D Lawless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lyuan Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Andrea T Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lori L Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
7
|
Liu N, Lencer R, Yang Z, Zhang W, Yang C, Zeng J, Sweeney JA, Gong Q, Lui S. Altered functional synchrony between gray and white matter as a novel indicator of brain system dysconnectivity in schizophrenia. Psychol Med 2022; 52:2540-2548. [PMID: 33436114 DOI: 10.1017/s0033291720004420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND There is increasing evidence that blood oxygenation level-dependent signaling in white matter (WM) reflects WM functional activity. Whether this activity is altered in schizophrenia remains uncertain, as does whether it is related to established alterations of gray matter (GM) or the microstructure of WM tracts. METHODS A total of 153 antipsychotic-naïve schizophrenia patients and 153 healthy comparison subjects were assessed by resting-state functional magnetic resonance imaging, diffusion tensor imaging, and high-resolution T1-weighted imaging. We tested for case-control differences in the functional activity of WM, and examined their relation to the functional activity of GM and WM microstructure. The relations between fractional anisotropy (FA) in WM and GM-WM functional synchrony were investigated as well. Then, we examined the associations of identified abnormalities to age, duration of untreated psychosis (DUP), and symptom severity. RESULTS Schizophrenia patients displayed reductions of the amplitude of low-frequency fluctuations (ALFF), GM-WM functional synchrony, and FA in widespread regions. Specifically, the genu of corpus callosum not only had weakening in the synchrony of functional activity but also had reduced ALFF and FA. Positive associations were found between FA and functional synchrony in the genu of corpus callosum as well. No significant association was found between identified abnormalities and DUP, and symptom severity. CONCLUSIONS The widespread weakening in the synchrony of functional activity of GM and WM provided novel evidence for functional alterations in schizophrenia. Regarding the WM function as a component of brain systems and investigating its alternation represent a promising direction for future research.
Collapse
Affiliation(s)
- Naici Liu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Zhipeng Yang
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, PR, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chengmin Yang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jiaxin Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Zhang X. Effects of Anesthesia on Cerebral Blood Flow and Functional Connectivity of Nonhuman Primates. Vet Sci 2022; 9:516. [PMID: 36288129 PMCID: PMC9609818 DOI: 10.3390/vetsci9100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nonhuman primates (NHPs) are the closest living relatives of humans and play a critical and unique role in neuroscience research and pharmaceutical development. General anesthesia is usually required in neuroimaging studies of NHPs to keep the animal from stress and motion. However, the adverse effects of anesthesia on cerebral physiology and neural activity are pronounced and can compromise the data collection and interpretation. Functional connectivity is frequently examined using resting-state functional MRI (rsfMRI) to assess the functional abnormality in the animal brain under anesthesia. The fMRI signal can be dramatically suppressed by most anesthetics in a dose-dependent manner. In addition, rsfMRI studies may be further compromised by inter-subject variations when the sample size is small (as seen in most neuroscience studies of NHPs). Therefore, proper use of anesthesia is strongly demanded to ensure steady and consistent physiology maintained during rsfMRI data collection of each subject. The aim of this review is to summarize typical anesthesia used in rsfMRI scans of NHPs and the effects of anesthetics on cerebral physiology and functional connectivity. Moreover, the protocols with optimal rsfMRI data acquisition and anesthesia procedures for functional connectivity study of macaque monkeys are introduced.
Collapse
Affiliation(s)
- Xiaodong Zhang
- EPC Imaging Center and Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, 954 Gatewood RD, Atlanta, GA 30329, USA
| |
Collapse
|
9
|
Li J, Li J, Huang P, Huang LN, Ding QG, Zhan L, Li M, Zhang J, Zhang H, Cheng L, Li H, Liu DQ, Zhou HY, Jia XZ. Increased functional connectivity of white-matter in myotonic dystrophy type 1. Front Neurosci 2022; 16:953742. [PMID: 35979335 PMCID: PMC9377538 DOI: 10.3389/fnins.2022.953742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Myotonic dystrophy type 1 (DM1) is the most common and dominant inherited neuromuscular dystrophy disease in adults, involving multiple organs, including the brain. Although structural measurements showed that DM1 is predominantly associated with white-matter damage, they failed to reveal the dysfunction of the white-matter. Recent studies have demonstrated that the functional activity of white-matter is of great significance and has given us insights into revealing the mechanisms of brain disorders. Materials and methods Using resting-state fMRI data, we adopted a clustering analysis to identify the white-matter functional networks and calculated functional connectivity between these networks in 16 DM1 patients and 18 healthy controls (HCs). A two-sample t-test was conducted between the two groups. Partial correlation analyzes were performed between the altered white-matter FC and clinical MMSE or HAMD scores. Results We identified 13 white-matter functional networks by clustering analysis. These white-matter functional networks can be divided into a three-layer network (superficial, middle, and deep) according to their spatial distribution. Compared to HCs, DM1 patients showed increased FC within intra-layer white-matter and inter-layer white-matter networks. For intra-layer networks, the increased FC was mainly located in the inferior longitudinal fasciculus, prefrontal cortex, and corpus callosum networks. For inter-layer networks, the increased FC of DM1 patients is mainly located in the superior corona radiata and deep networks. Conclusion Results demonstrated the abnormalities of white-matter functional connectivity in DM1 located in both intra-layer and inter-layer white-matter networks and suggested that the pathophysiology mechanism of DM1 may be related to the white-matter functional dysconnectivity. Furthermore, it may facilitate the treatment development of DM1.
Collapse
Affiliation(s)
- Jing Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jie Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Pei Huang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Na Huang
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Qing-Guo Ding
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jiaxi Zhang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum, Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Dong-Qiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Hai-Yan Zhou
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Ze Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
10
|
Jiang Y, Yao D, Zhou J, Tan Y, Huang H, Wang M, Chang X, Duan M, Luo C. Characteristics of disrupted topological organization in white matter functional connectome in schizophrenia. Psychol Med 2022; 52:1333-1343. [PMID: 32880241 DOI: 10.1017/s0033291720003141] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Neuroimaging characteristics have demonstrated disrupted functional organization in schizophrenia (SZ), involving large-scale networks within grey matter (GM). However, previous studies have ignored the role of white matter (WM) in supporting brain function. METHODS Using resting-state functional MRI and graph theoretical approaches, we investigated global topological disruptions of large-scale WM and GM networks in 93 SZ patients and 122 controls. Six global properties [clustering coefficient (Cp), shortest path length (Lp), local efficiency (Eloc), small-worldness (σ), hierarchy (β) and synchronization (S) and three nodal metrics [nodal degree (Knodal), nodal efficiency (Enodal) and nodal betweenness (Bnodal)] were utilized to quantify the topological organization in both WM and GM networks. RESULTS At the network level, both WM and GM networks exhibited reductions in Eloc, Cp and S in SZ. The SZ group showed reduced σ and β only for the WM network. Furthermore, the Cp, Eloc and S of the WM network were negatively correlated with negative symptoms in SZ. At the nodal level, the SZ showed nodal disturbances in the corpus callosum, optic radiation, posterior corona radiata and tempo-occipital WM tracts. For GM, the SZ manifested increased nodal centralities in frontoparietal regions and decreased nodal centralities in temporal regions. CONCLUSIONS These findings provide the first evidence for abnormal global topological properties in SZ from the perspective of a substantial whole brain, including GM and WM. Nodal centralities enhance GM areas, along with a reduction in adjacent WM, suggest that WM functional alterations may be compensated for adjacent GM impairments in SZ.
Collapse
Affiliation(s)
- Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, P. R. China
| | - Jingyu Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yue Tan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Huan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - MeiLin Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xin Chang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Department of Psychiatry, Chengdu Mental Health Center, Chengdu, P. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
| |
Collapse
|
11
|
Li M, Gao Y, Anderson AW, Ding Z, Gore JC. Dynamic variations of resting-state BOLD signal spectra in white matter. Neuroimage 2022; 250:118972. [PMID: 35131432 PMCID: PMC8915948 DOI: 10.1016/j.neuroimage.2022.118972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/03/2022] Open
Abstract
Recent studies have demonstrated that the mathematical model used for analyzing and interpreting fMRI data in gray matter (GM) is inappropriate for detecting or describing blood-oxygenation-level-dependent (BOLD) signals in white matter (WM). In particular the hemodynamic response function (HRF) which serves as the regressor in general linear models is different in WM compared to GM. We recently reported measurements of the frequency contents of resting-state signal time courses in WM that showed distinct power spectra which depended on local structural-vascular-functional associations. In addition, multiple studies of GM have revealed how functional connectivity between regions, as measured by the correlation between BOLD time series, varies dynamically over time. We therefore investigated whether and how BOLD signals from WM in a resting state varied over time. We measured voxel-wise spectrograms, which reflect the time-varying spectral patterns of WM time courses. The results suggest that the spectral patterns are non-stationary but could be categorized into five modes that recurred over time. These modes showed distinct spatial distributions of their occurrences and durations, and the distributions were highly consistent across individuals. In addition, one of the modes exhibited a strong coupling of its occurrence between GM and WM across individuals, and two communities of WM voxels were identified according to the hierarchical structures of transitions among modes. Moreover, these modes are coupled to the shape of instantaneous HRFs. Our findings extend previous studies and reveal the non-stationary nature of spectral patterns of BOLD signals over time, providing a spatial-temporal-frequency characterization of resting-state signals in WM.
Collapse
Affiliation(s)
- Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, 1161 21st Ave. S, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, United States.
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, 1161 21st Ave. S, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Adam W. Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, 1161 21st Ave. S, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, United States,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, 1161 21st Ave. S, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, United States,Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, 1161 21st Ave. S, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, United States,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, United States,Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, United State
| |
Collapse
|
12
|
Li X, Fischer H, Manzouri A, Månsson KNT, Li TQ. A Quantitative Data-Driven Analysis Framework for Resting-State Functional Magnetic Resonance Imaging: A Study of the Impact of Adult Age. Front Neurosci 2021; 15:768418. [PMID: 34744623 PMCID: PMC8565286 DOI: 10.3389/fnins.2021.768418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
The objective of this study is to introduce a new quantitative data-driven analysis (QDA) framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI measurements were conducted on a 3T clinical MRI scanner in 227 healthy adult volunteers (N = 227, aged 18-76 years old, male/female = 99/128). With the proposed QDA framework we derived two types of voxel-wise RFC metrics: the connectivity strength index and connectivity density index utilizing the convolutions of the cross-correlation histogram with different kernels. Furthermore, we assessed the negative and positive portions of these metrics separately. With the QDA framework we found age-related declines of RFC metrics in the superior and middle frontal gyri, posterior cingulate cortex (PCC), right insula and inferior parietal lobule of the default mode network (DMN), which resembles previously reported results using other types of RFC data processing methods. Importantly, our new findings complement previously undocumented results in the following aspects: (1) the PCC and right insula are anti-correlated and tend to manifest simultaneously declines of both the negative and positive connectivity strength with subjects' age; (2) separate assessment of the negative and positive RFC metrics provides enhanced sensitivity to the aging effect; and (3) the sensorimotor network depicts enhanced negative connectivity strength with the adult age. The proposed QDA framework can produce threshold-free and voxel-wise RFC metrics from R-fMRI data. The detected adult age effect is largely consistent with previously reported studies using different R-fMRI analysis approaches. Moreover, the separate assessment of the negative and positive contributions to the RFC metrics can enhance the RFC sensitivity and clarify some of the mixed results in the literature regarding to the DMN and sensorimotor network involvement in adult aging.
Collapse
Affiliation(s)
- Xia Li
- Institute of Informatics Engineering, China Jiliang University, Hangzhou, China
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, Sweden.,Stockholm University Brain Imaging Centre, Stockholm, Sweden
| | | | - Kristoffer N T Månsson
- Department of Psychology, Stockholm University, Stockholm, Sweden.,Centre of Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tie-Qiang Li
- Institute of Informatics Engineering, China Jiliang University, Hangzhou, China.,Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Solna, Sweden.,Department of Medical Radiation and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
13
|
Power spectra reveal distinct BOLD resting-state time courses in white matter. Proc Natl Acad Sci U S A 2021; 118:2103104118. [PMID: 34716261 DOI: 10.1073/pnas.2103104118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Accurate characterization of the time courses of blood-oxygen-level-dependent (BOLD) signal changes is crucial for the analysis and interpretation of functional MRI data. While several studies have shown that white matter (WM) exhibits distinct BOLD responses evoked by tasks, there have been no comprehensive investigations into the time courses of spontaneous signal fluctuations in WM. We measured the power spectra of the resting-state time courses in a set of regions within WM identified as showing synchronous signals using independent components analysis. In each component, a clear separation between voxels into two categories was evident, based on their power spectra: one group exhibited a single peak, and the other had an additional peak at a higher frequency. Their groupings are location specific, and their distributions reflect unique neurovascular and anatomical configurations. Importantly, the two categories of voxels differed in their engagement in functional integration, revealed by differences in the number of interregional connections based on the two categories separately. Taken together, these findings suggest WM signals are heterogeneous in nature and depend on local structural-vascular-functional associations.
Collapse
|
14
|
Jiang Y, Duan M, Li X, Huang H, Zhao G, Li X, Li S, Song X, He H, Yao D, Luo C. Function-structure coupling: White matter functional magnetic resonance imaging hyper-activation associates with structural integrity reductions in schizophrenia. Hum Brain Mapp 2021; 42:4022-4034. [PMID: 34110075 PMCID: PMC8288085 DOI: 10.1002/hbm.25536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 01/12/2023] Open
Abstract
White matter (WM) microstructure deficit may be an underlying factor in the brain dysconnectivity hypothesis of schizophrenia using diffusion tensor imaging (DTI). However, WM dysfunction is unclear in schizophrenia. This study aimed to investigate the association between structural deficits and functional disturbances in major WM tracts in schizophrenia. Using functional magnetic resonance imaging (fMRI) and DTI, we developed the skeleton-based WM functional analysis, which could achieve voxel-wise function-structure coupling by projecting the fMRI signals onto a skeleton in WM. We measured the fractional anisotropy (FA) and WM low-frequency oscillation (LFO) and their couplings in 93 schizophrenia patients and 122 healthy controls (HCs). An independent open database (62 schizophrenia patients and 71 HCs) was used to test the reproducibility. Finally, associations between WM LFO and five behaviour assessment categories (cognition, emotion, motor, personality and sensory) were examined. This study revealed a reversed pattern of structure and function in frontotemporal tracts, as follows. (a) WM hyper-LFO was associated with reduced FA in schizophrenia. (b) The function-structure association was positive in HCs but negative in schizophrenia patients. Furthermore, function-structure dissociation was exacerbated by long illness duration and severe negative symptoms. (c) WM activations were significantly related to cognition and emotion. This study indicated function-structure dys-coupling, with higher LFO and reduced structural integration in frontotemporal WM, which may reflect a potential mechanism in WM neuropathologic processing of schizophrenia.
Collapse
Affiliation(s)
- Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Department of Psychiatry, Chengdu Mental Health CenterInstitute of Chengdu Brain Science in University of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Xiangkui Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Huan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Guocheng Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Department of Radiology, Chengdu Mental Health CenterInstitute of Chengdu Brain Science in University of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Xuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Shicai Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Department of Psychiatry, Chengdu Mental Health CenterInstitute of Chengdu Brain Science in University of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Xufeng Song
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Department of Psychiatry, Chengdu Mental Health CenterInstitute of Chengdu Brain Science in University of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical SciencesChengduPeople's Republic of China
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouPeople's Republic of China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical SciencesChengduPeople's Republic of China
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouPeople's Republic of China
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer HospitalChengduPeople's Republic of China
| |
Collapse
|
15
|
Gao Y, Li M, Huang AS, Anderson AW, Ding Z, Heckers SH, Woodward ND, Gore JC. Lower functional connectivity of white matter during rest and working memory tasks is associated with cognitive impairments in schizophrenia. Schizophr Res 2021; 233:101-110. [PMID: 34215467 PMCID: PMC8442250 DOI: 10.1016/j.schres.2021.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Schizophrenia can be understood as a disturbance of functional connections within brain networks. However, functional alterations that involve white matter (WM) specifically, or their cognitive correlates, have seldomly been investigated, especially during tasks. METHODS Resting state and task fMRI images were acquired on 84 patients and 67 controls. Functional connectivities (FC) between 46 WM bundles and 82 cortical regions were compared between the groups under two conditions (i.e., resting state and during working memory retention period). The FC density of each WM bundle was then compared between groups. Associations of FC with cognitive scores were evaluated. RESULTS FC measures were lower in schizophrenia relative to controls for external capsule, cingulum (cingulate and hippocampus), uncinate fasciculus, as well as corpus callosum (genu and body) under the rest or the task condition, and were higher in the posterior corona radiata and posterior thalamic radiation during the task condition. FC for specific WM bundles was correlated with cognitive performance assessed by working memory and processing speed metrics. CONCLUSIONS The findings suggest that the functional abnormalities in patients' WM are heterogeneous, possibly reflecting several underlying mechanisms such as structural damage, functional compensation and excessive effort on task, and that WM FC disruption may contribute to the impairments of working memory and processing speed. This is the first report on WM FC abnormalities in schizophrenia relative to controls and their cognitive associates during both rest and task and highlights the need to consider WM functions as components of brain functional networks in schizophrenia.
Collapse
Affiliation(s)
- Yurui Gao
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Muwei Li
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna S Huang
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W Anderson
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhaohua Ding
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Stephan H Heckers
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil D Woodward
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
16
|
Abnormal white matter functional connectivity density in antipsychotic-naive adolescents with schizophrenia. Clin Neurophysiol 2021; 132:1025-1032. [PMID: 33743297 DOI: 10.1016/j.clinph.2020.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES This study aimed to assess the white matter (WM) functional hubs and abnormal functional connectivity pattern in adolescents with schizophrenia (AOS) and to explore the potential mechanisms. METHODS Based on resting-state fMRI data, we measured the WM functional connectivity density (FCD) at local- and long- ranges in 39 AOS and 31 healthy controls (HCs). Group comparison was conducted between the two groups. Spearman rank correlation analysis between the altered WM FCD and clinical PANSS scores was performed. RESULTS In the local scale, the functional hubs of the WM were mainly located in the corona radiata and cerebellum. Compared with HCs, AOS patients exhibited decreased FCD in the superior corona radiata. In the long-range, the functional hubs of the WM were mainly located in the external capsule and pons. AOS patients exhibited increased FCD in the cingulum but decreased FCD in the right dorsal raphe nuclei (DR). Furthermore, the aberrant long-range FCD in the right DR was inversely proportional to the clinical symptoms. CONCLUSION These findings indicated that the pathophysiology of schizophrenia may also lie in WM functional dysconnectivity. SIGNIFICANCE The current results provided initial evidence for the hypothesis of abnormal WM functional connectivity in schizophrenia.
Collapse
|
17
|
Huang J, Li M, Li Q, Yang Z, Xin B, Qi Z, Liu Z, Dong H, Li K, Ding Z, Lu J. Altered Functional Connectivity in White and Gray Matter in Patients With Multiple Sclerosis. Front Hum Neurosci 2020; 14:563048. [PMID: 33343314 PMCID: PMC7738428 DOI: 10.3389/fnhum.2020.563048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/29/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Functional magnetic resonance imaging (fMRI) has been widely used to assess neural activity changes in gray matter (GM) in patients with multiple sclerosis (MS); however, brain function alterations in white matter (WM) relatively remain under-explored. Purpose: This work aims to identify the functional connectivity in both the WM and the GM of patients with MS using fMRI and the correlations between these functional changes and cumulative disability as well as the lesion ratio. Materials and Methods: For this retrospective study, 37 patients with clinically definite MS and 43 age-matched healthy controls were included between 2010 and 2014. Resting-state fMRI was performed. The WFU Pick and JHU Eve atlases were used to define 82 GM and 48 WM regions in common spaces, respectively. The time courses of blood oxygen level-dependent (BOLD) signals were averaged over each GM or WM region. The averaged time courses for each pair of GM and WM regions were correlated. All 82 × 48 correlations for each subject formed a functional correlation matrix. Results: Compared with the healthy controls, the MS patients had a decreased temporal correlation between the WM and the GM regions. Five WM bundles and four GM regions had significantly decreased mean correlation coefficients (CCs). More specifically, the WM functional alterations were negatively correlated with the lesion volume in the bilateral fornix, and the mean GM-averaged CCs of the WM bundles were inversely correlated with the lesion ratio (r = -0.36, P = 0.012). No significant correlation was found between WM functional alterations and the paced auditory serial addition test score, Expanded Disease Severity Scale score, and Multiple Sclerosis Severity Score (MSSS) in MS. Conclusions: These findings highlight current gaps in our knowledge of the WM functional alterations in patients with MS and may link WM function with pathological mechanisms.
Collapse
Affiliation(s)
- Jing Huang
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Muwei Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
| | - Qiongge Li
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Yang
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, China
| | - Bowen Xin
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Zhigang Qi
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zheng Liu
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huiqing Dong
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kuncheng Li
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhaohua Ding
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
| | - Jie Lu
- Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Post-learning micro- and macro-structural neuroplasticity changes with time and sleep. Biochem Pharmacol 2020; 191:114369. [PMID: 33338474 DOI: 10.1016/j.bcp.2020.114369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Neuroplasticity refers to the fact that our brain can partially modify both structure and function to adequately respond to novel environmental stimulations. Neuroplasticity mechanisms are not only operating during the acquisition of novel information (i.e., online) but also during the offline periods that take place after the end of the actual learning episode. Structural brain changes as a consequence of learning have been consistently demonstrated on the long term using non-invasive neuroimaging methods, but short-term changes remained more elusive. Fortunately, the swift development of advanced MR methods over the last decade now allows tracking fine-grained cerebral changes on short timescales beyond gross volumetric modifications stretching over several days or weeks. Besides a mere effect of time, post-learning sleep mechanisms have been shown to play an important role in memory consolidation and promote long-lasting changes in neural networks. Sleep was shown to contribute to structural modifications over weeks of prolonged training, but studies evidencing more rapid post-training sleep structural effects linked to memory consolidation are still scarce in human. On the other hand, animal studies convincingly show how sleep might modulate synaptic microstructure. We aim here at reviewing the literature establishing a link between different types of training/learning and the resulting structural changes, with an emphasis on the role of post-training sleep and time in tuning these modifications. Open questions are raised such as the role of post-learning sleep in macrostructural changes, the links between different MR structural measurement-related modifications and the underlying microstructural brain processes, and bidirectional influences between structural and functional brain changes.
Collapse
|
19
|
Li M, Gao Y, Gao F, Anderson AW, Ding Z, Gore JC. Functional engagement of white matter in resting-state brain networks. Neuroimage 2020; 220:117096. [PMID: 32599266 PMCID: PMC7594260 DOI: 10.1016/j.neuroimage.2020.117096] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 01/12/2023] Open
Abstract
The topological characteristics of functional networks, derived from measurements of resting-state connectivity in gray matter (GM), are associated with individual cognitive abilities or specific dysfunctions. However, blood oxygen level-dependent (BOLD) signals in white matter (WM) are usually ignored or even regressed out as nuisance factors in the data analyses that underlie network models. Recent studies have demonstrated reliable detection of WM BOLD signals and imply these reflect associated neural activities. Here we evaluate quantitatively the contributions of individual WM voxels to the identification of functional networks, which we term their engagement (or conceptually, their importance). We quantify the engagement by measuring the reductions of connectivity, produced by ignoring the signal fluctuations within each WM voxel, with respect to both the entire network (global) or a single GM node (local). We observed highly reproducible spatial distributions of global engagement maps, as well as a trend toward increased relevance of deep WM voxels at delayed times. Local engagement maps exhibit homogeneous spatial distributions with respect to internal nodes that constitute a well-recognized sub-functional network, but inhomogeneous distributions with respect to other nodes. WM voxels show distinct distributions of engagement depending on their anatomical locations. These findings demonstrate the important role of WM in network modeling, thus supporting the need for changes of conventional views that WM signal variations represent only physiological noise.
Collapse
Affiliation(s)
- Muwei Li
- Vanderbilt University Institute of Imaging Science, 1161 21st Ave. S, Medical Center North, AA-1105, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, 37232, USA.
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, 1161 21st Ave. S, Medical Center North, AA-1105, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN, 37235, USA
| | - Fei Gao
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, 1161 21st Ave. S, Medical Center North, AA-1105, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN, 37235, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, 1161 21st Ave. S, Medical Center North, AA-1105, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN, 37235, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN, 37235, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, 1161 21st Ave. S, Medical Center North, AA-1105, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN, 37235, USA
| |
Collapse
|
20
|
Li M, Ding Z, Gore JC. Identification of White Matter Networks Engaged in Object (Face) Recognition Showing Differential Responses to Modulated Stimulus Strength. Cereb Cortex Commun 2020; 1:tgaa067. [PMID: 33134929 PMCID: PMC7580301 DOI: 10.1093/texcom/tgaa067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022] Open
Abstract
Blood-oxygenation-level-dependent (BOLD) signals in magnetic resonance imaging indirectly reflect neural activity in cortex, but they are also detectable in white matter (WM). BOLD signals in WM exhibit strong correlations with those in gray matter (GM) in a resting state, but their interpretation and relationship to GM activity in a task are unclear. We performed a parametric visual object recognition task designed to modulate the BOLD signal response in GM regions engaged in higher order visual processing, and measured corresponding changes in specific WM tracts. Human faces embedded in different levels of random noise have previously been shown to produce graded changes in BOLD activation in for example, the fusiform gyrus, as well as in electrophysiological (N170) evoked potentials. The magnitudes of BOLD responses in both GM regions and selected WM tracts varied monotonically with the stimulus strength (noise level). In addition, the magnitudes and temporal profiles of signals in GM and WM regions involved in the task coupled strongly across different task parameters. These findings reveal the network of WM tracts engaged in object (face) recognition and confirm that WM BOLD signals may be directly affected by neural activity in GM regions to which they connect.
Collapse
Affiliation(s)
- Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232-2310, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232-2310, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232-2310, USA
| |
Collapse
|
21
|
Wang X, Lu F, Duan X, Han S, Guo X, Yang M, Zhang Y, Xiao J, Sheng W, Zhao J, Chen H. Frontal white matter abnormalities reveal the pathological basis underlying negative symptoms in antipsychotic-naïve, first-episode patients with adolescent-onset schizophrenia: Evidence from multimodal brain imaging. Schizophr Res 2020; 222:258-266. [PMID: 32461088 DOI: 10.1016/j.schres.2020.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/20/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022]
Abstract
A major challenge in schizophrenia is to uncover the pathophysiological basis of its negative symptoms. Recent neuroimaging studies revealed that disrupted structural properties of frontal white matter (FWM) are associated with the negative symptoms of schizophrenia. However, there is little direct functional evidence of FWM for negative symptoms in schizophrenia. To address this issue, we combined resting-state connectome-wide functional connectivity (FC) and diffusion tensor imaging tractography to investigate the alteration of FWM underlying the negative symptoms in 39 drug-naive patients with adolescent-onset schizophrenia (AOS) and 31 age- and sex- matched healthy controls (HCs). Results revealed that the intrinsic FC and structural properties (fraction anisotropy and fibers) of the left FWM correspond to individual negative symptoms in AOS. Moreover, the serotonin network (raphe nuclei, anterior and posterior cingulate cortices, and prefrontal and inferior parietal cortices) and FWM-cingulum network were found to contributed to the negative symptom severity in AOS. Furthermore, the patients showed abnormal functional and structural connectivities between the interhemispheric FWM compared with HCs. Importantly, the decreased fiber counts between the interhemispheric FWM were inversely correlated with the negative symptoms in AOS. Our findings demonstrated the association between FWM and negative symptoms, and offered initial evidence by using WM connectome to uncover WM functional information in schizophrenia.
Collapse
Affiliation(s)
- Xiao Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Shaoqiang Han
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Mi Yang
- Department of Stomatology, The Fourth People's Hospital of Chengdu, Chengdu 610036, PR China
| | - Yan Zhang
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, PR China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jingping Zhao
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
22
|
Li J, Biswal BB, Wang P, Duan X, Cui Q, Chen H, Liao W. Exploring the functional connectome in white matter. Hum Brain Mapp 2019; 40:4331-4344. [PMID: 31276262 PMCID: PMC6865787 DOI: 10.1002/hbm.24705] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 02/03/2023] Open
Abstract
A major challenge in neuroscience is understanding how brain function emerges from the connectome. Most current methods have focused on quantifying functional connectomes in gray-matter (GM) signals obtained from functional magnetic resonance imaging (fMRI), while signals from white-matter (WM) have generally been excluded as noise. In this study, we derived a functional connectome from WM resting-state blood-oxygen-level-dependent (BOLD)-fMRI signals from a large cohort (n = 488). The WM functional connectome exhibited weak small-world topology and nonrandom modularity. We also found a long-term (i.e., over 10 months) topological reliability, with topological reproducibility within different brain parcellation strategies, spatial distance effect, global and cerebrospinal fluid signals regression or not. Furthermore, the small-worldness was positively correlated with individuals' intelligence values (r = .17, pcorrected = .0009). The current findings offer initial evidence using WM connectome and present additional measures by which to uncover WM functional information in both healthy individuals and in cases of clinical disease.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew Jersey
| | - Pan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Qian Cui
- School of Public AdministrationUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|