1
|
Yan X, Fu Y, Feng G, Li H, Su H, Liu X, Wu Y, Hua J, Cao F. Reading disability is characterized by reduced print-speech convergence. Child Dev 2024. [PMID: 39032033 DOI: 10.1111/cdev.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Reading disability (RD) may be characterized by reduced print-speech convergence, which is the extent to which neurocognitive processes for reading and hearing words overlap. We examined how print-speech convergence changes from children (mean age: 11.07+0.48) to adults (mean age: 21.33+1.80) in 86 readers with or without RD. The participants were recruited in elementary schools and associate degree colleges in China (from 2020 to 2021). Three patterns of abnormalities were revealed: (1) persistent reduction of print-speech convergence in the left inferior parietal cortex in both children and adults with RD, suggesting a neural signature of RD; (2) reduction of print-speech convergence in the left inferior frontal gyrus only evident in children but not adults with RD, suggesting a developmental delay; and (3) increased print-speech convergence in adults with RD than typical adults in the bilateral cerebella/fusiform, suggesting compensations. It provides insights into developmental differences in brain functional abnormalities in RD.
Collapse
Affiliation(s)
- Xiaohui Yan
- Department of Psychology, The University of Hong Kong, Hong Kong
- State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Yang Fu
- Department of Psychology, The University of Hong Kong, Hong Kong
- State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Guoyan Feng
- Guangzhou Xinhua University, Guangzhou, China
| | - Hui Li
- Anyang Preschool Education College, Anyang, China
| | - Haibin Su
- The Hong Kong University of Science and Technology, Hong Kong
| | - Xinhong Liu
- Department of Psychology, Sun Yat-Sen University, Guangzhou, China
| | - Yu Wu
- Department of Psychology, The University of Hong Kong, Hong Kong
- State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Jia Hua
- Instrumental Analysis and Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Fan Cao
- Department of Psychology, The University of Hong Kong, Hong Kong
- State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
2
|
Economou M, Vanden Bempt F, Van Herck S, Glatz T, Wouters J, Ghesquière P, Vanderauwera J, Vandermosten M. Cortical Structure in Pre-Readers at Cognitive Risk for Dyslexia: Baseline Differences and Response to Intervention. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:264-287. [PMID: 38832361 PMCID: PMC11093402 DOI: 10.1162/nol_a_00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/12/2023] [Indexed: 06/05/2024]
Abstract
Early childhood is a critical period for structural brain development as well as an important window for the identification and remediation of reading difficulties. Recent research supports the implementation of interventions in at-risk populations as early as kindergarten or first grade, yet the neurocognitive mechanisms following such interventions remain understudied. To address this, we investigated cortical structure by means of anatomical MRI before and after a 12-week tablet-based intervention in: (1) at-risk children receiving phonics-based training (n = 29; n = 16 complete pre-post datasets), (2) at-risk children engaging with AC training (n = 24; n = 15 complete pre-post datasets) and (3) typically developing children (n = 25; n = 14 complete pre-post datasets) receiving no intervention. At baseline, we found higher surface area of the right supramarginal gyrus in at-risk children compared to typically developing peers, extending previous evidence that early anatomical differences exist in children who may later develop dyslexia. Our longitudinal analysis revealed significant post-intervention thickening of the left supramarginal gyrus, present exclusively in the intervention group but not the active control or typical control groups. Altogether, this study contributes new knowledge to our understanding of the brain morphology associated with cognitive risk for dyslexia and response to early intervention, which in turn raises new questions on how early anatomy and plasticity may shape the trajectories of long-term literacy development.
Collapse
Affiliation(s)
| | | | | | - Toivo Glatz
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
3
|
Bonte M, Brem S. Unraveling individual differences in learning potential: A dynamic framework for the case of reading development. Dev Cogn Neurosci 2024; 66:101362. [PMID: 38447471 PMCID: PMC10925938 DOI: 10.1016/j.dcn.2024.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/02/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Children show an enormous capacity to learn during development, but with large individual differences in the time course and trajectory of learning and the achieved skill level. Recent progress in developmental sciences has shown the contribution of a multitude of factors including genetic variation, brain plasticity, socio-cultural context and learning experiences to individual development. These factors interact in a complex manner, producing children's idiosyncratic and heterogeneous learning paths. Despite an increasing recognition of these intricate dynamics, current research on the development of culturally acquired skills such as reading still has a typical focus on snapshots of children's performance at discrete points in time. Here we argue that this 'static' approach is often insufficient and limits advancements in the prediction and mechanistic understanding of individual differences in learning capacity. We present a dynamic framework which highlights the importance of capturing short-term trajectories during learning across multiple stages and processes as a proxy for long-term development on the example of reading. This framework will help explain relevant variability in children's learning paths and outcomes and fosters new perspectives and approaches to study how children develop and learn.
Collapse
Affiliation(s)
- Milene Bonte
- Department of Cognitive Neuroscience and Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Guerra G, Tijms J, Tierney A, Vaessen A, Dick F, Bonte M. Auditory attention influences trajectories of symbol-speech sound learning in children with and without dyslexia. J Exp Child Psychol 2024; 237:105761. [PMID: 37666181 DOI: 10.1016/j.jecp.2023.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/06/2023]
Abstract
The acquisition of letter-speech sound correspondences is a fundamental process underlying reading development, one that could be influenced by several linguistic and domain-general cognitive factors. In the current study, we mimicked the first steps of this process by examining behavioral trajectories of audiovisual associative learning in 110 7- to 12-year-old children with and without dyslexia. Children were asked to learn the associations between eight novel symbols and native speech sounds in a brief training and subsequently read words and pseudowords written in the artificial orthography. We then investigated the influence of auditory attention as one of the putative domain-general factors influencing associative learning. To this aim, we assessed children with experimental measures of auditory sustained selective attention and interference control. Our results showed shallower learning trajectories in children with dyslexia, especially during the later phases of the training blocks. Despite this, children with dyslexia performed similarly to typical readers on the post-training reading tests using the artificial orthography. Better auditory sustained selective attention and interference control skills predicted greater response accuracy during training. Sustained selective attention was also associated with the ability to apply these novel correspondences in the reading tests. Although this result has the limitations of a correlational design, it denotes that poor attentional skills may constitute a risk during the early stages of reading acquisition, when children start to learn letter-speech sound associations. Importantly, our findings underscore the importance of examining dynamics of learning in reading acquisition as well as individual differences in more domain-general attentional factors.
Collapse
Affiliation(s)
- Giada Guerra
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London WC1E 7HX, UK; Maastricht Brain Imaging Center and Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Jurgen Tijms
- RID Institute, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands; Rudolf Berlin Center, Department of Psychology, University of Amsterdam, 1018 WT Amsterdam, The Netherlands
| | - Adam Tierney
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Anniek Vaessen
- RID Institute, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
| | - Frederic Dick
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London WC1E 7HX, UK; Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London WC1H 0AP, UK
| | - Milene Bonte
- Maastricht Brain Imaging Center and Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
5
|
Economou M, Bempt FV, Van Herck S, Wouters J, Ghesquière P, Vanderauwera J, Vandermosten M. Myelin plasticity during early literacy training in at-risk pre-readers. Cortex 2023; 167:86-100. [PMID: 37542803 DOI: 10.1016/j.cortex.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/09/2023] [Accepted: 05/31/2023] [Indexed: 08/07/2023]
Abstract
A growing body of neuroimaging evidence shows that white matter can change as a result of experience and structured learning. Although the majority of previous work has used diffusion MRI to characterize such changes in white matter, diffusion metrics offer limited biological specificity about which microstructural features may be driving white matter plasticity. Recent advances in myelin-specific MRI techniques offer a promising opportunity to assess the specific contribution of myelin in learning-related plasticity. Here we describe the application of such an approach to examine structural plasticity during an early intervention in preliterate children at risk for dyslexia. To this end, myelin water imaging data were collected before and after a 12-week period in (1) at-risk children following early literacy training (n = 13-24), (2) at-risk children engaging with other non-literacy games (n = 10-17) and (3) children without a risk receiving no training (n = 11-22). Before the training, regional risk-related differences were identified, showing higher myelin water fraction (MWF) in right dorsal white matter in at-risk children compared to the typical control group. Concerning intervention-specific effects, our results revealed an increase across left-hemispheric and right ventral MWF over the course of training in the at-risk children receiving early literacy training, but not in the at-risk active control group or the no-risk typical control group. Overall, our results provide support for the use of myelin water imaging as a sensitive tool to investigate white matter and offer a first indication of myelin plasticity in young children at the onset of literacy acquisition.
Collapse
Affiliation(s)
- Maria Economou
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium
| | - Femke Vanden Bempt
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium
| | - Shauni Van Herck
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium
| | - Jan Wouters
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium
| | - Jolijn Vanderauwera
- Psychological Sciences Research Institute, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium; Institute of Neuroscience, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Maaike Vandermosten
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium.
| |
Collapse
|
6
|
Di Pietro SV, Karipidis II, Pleisch G, Brem S. Neurodevelopmental trajectories of letter and speech sound processing from preschool to the end of elementary school. Dev Cogn Neurosci 2023; 61:101255. [PMID: 37196374 DOI: 10.1016/j.dcn.2023.101255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
Learning to read alphabetic languages starts with learning letter-speech-sound associations. How this process changes brain function during development is still largely unknown. We followed 102 children with varying reading skills in a mixed-longitudinal/cross-sectional design from the prereading stage to the end of elementary school over five time points (n = 46 with two and more time points, of which n = 16 fully-longitudinal) to investigate the neural trajectories of letter and speech sound processing using fMRI. Children were presented with letters and speech sounds visually, auditorily, and audiovisually in kindergarten (6.7yo), at the middle (7.3yo) and end of first grade (7.6yo), and in second (8.4yo) and fifth grades (11.5yo). Activation of the ventral occipitotemporal cortex for visual and audiovisual processing followed a complex trajectory, with two peaks in first and fifth grades. The superior temporal gyrus (STG) showed an inverted U-shaped trajectory for audiovisual letter processing, a development that in poor readers was attenuated in middle STG and absent in posterior STG. Finally, the trajectories for letter-speech-sound integration were modulated by reading skills and showed differing directionality in the congruency effect depending on the time point. This unprecedented study captures the development of letter processing across elementary school and its neural trajectories in children with varying reading skills.
Collapse
Affiliation(s)
- S V Di Pietro
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - I I Karipidis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - G Pleisch
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - S Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Chyl K, Gentile F, Dębska A, Dynak A, Łuniewska M, Wójcik M, Bonte M, Jednoróg K. Early reading skills and the ventral occipito-temporal cortex organization. Cortex 2023; 160:134-151. [PMID: 36841094 DOI: 10.1016/j.cortex.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/31/2022] [Accepted: 01/03/2023] [Indexed: 02/09/2023]
Abstract
Learning to read impacts the way the ventral occipitotemporal cortex (VOT) reorganizes. The postulated underlying mechanism of neuronal recycling was recently revisited. Neuroimaging data showed that voxels weakly specialized for visual processing keep their initial category selectivity (i.e., object or face processing) while acquiring an additional and stronger responsivity to written words. Here, we examined a large and diverse group of six-year-olds prior to formal literacy training (N = 72) using various data analysis techniques (univariate, multivariate, rapid adaptation) and types of stimuli (print, false fonts, houses, faces) to further explore how VOT changes and adapts to the novel skill of reading. We found that among several visual stimuli categories only print activated a wide network of language related areas outside of the bilateral visual cortex, and the level of reading skill was related to the strength of this activation, showing the development of the reading circuit. Rapid adaptation was not directly related to the level of reading skill in the young children studied here, but it clearly revealed the emergence of the reading network in readers. Most importantly, we found that the reorganization of the VOT is not in fact an "invasion" by reading acquisition-voxels previously activated for faces started to respond more for print, while at the same time keeping their previous function. We can thus conclude that the revised hypothesis of neuronal recycling is supported by our data.
Collapse
Affiliation(s)
- Katarzyna Chyl
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; The International Studies Unit, The Educational Research Institute, Warsaw, Poland; Maastricht Brain Imaging Center and Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Francesco Gentile
- Maastricht Brain Imaging Center and Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Agnieszka Dębska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Dynak
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Magdalena Łuniewska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Marta Wójcik
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Milene Bonte
- Maastricht Brain Imaging Center and Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Di Pietro SV, Willinger D, Frei N, Lutz C, Coraj S, Schneider C, Stämpfli P, Brem S. Disentangling influences of dyslexia, development, and reading experience on effective brain connectivity in children. Neuroimage 2023; 268:119869. [PMID: 36639004 DOI: 10.1016/j.neuroimage.2023.119869] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Altered brain connectivity between regions of the reading network has been associated with reading difficulties. However, it remains unclear whether connectivity differences between children with dyslexia (DYS) and those with typical reading skills (TR) are specific to reading impairments or to reading experience. In this functional MRI study, 132 children (M = 10.06 y, SD = 1.46) performed a phonological lexical decision task. We aimed to disentangle (1) disorder-specific from (2) experience-related differences in effective connectivity and to (3) characterize the development of DYS and TR. We applied dynamic causal modeling to age-matched (ndys = 25, nTR = 35) and reading-level-matched (ndys = 25, nTR = 22) groups. Developmental effects were assessed in beginning and advanced readers (TR: nbeg = 48, nadv = 35, DYS: nbeg = 24, nadv = 25). We show that altered feedback connectivity between the inferior parietal lobule and the visual word form area (VWFA) during print processing can be specifically attributed to reading impairments, because these alterations were found in DYS compared to both the age-matched and reading-level-matched TR. In contrast, feedforward connectivity from the VWFA to parietal and frontal regions characterized experience in TR and increased with age and reading skill. These directed connectivity findings pinpoint disorder-specific and experience-dependent alterations in the brain's reading network.
Collapse
Affiliation(s)
- Sarah V Di Pietro
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - David Willinger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Department of Psychology and Psychodynamics, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Nada Frei
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Christina Lutz
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Seline Coraj
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Chiara Schneider
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - Philipp Stämpfli
- MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland; MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
ERP Indicators of Phonological Awareness Development in Children: A Systematic Review. Brain Sci 2023; 13:brainsci13020290. [PMID: 36831833 PMCID: PMC9954228 DOI: 10.3390/brainsci13020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Phonological awareness is the ability to correctly recognize and manipulate phonological structures. The role of phonological awareness in reading development has become evident in behavioral research showing that it is inherently tied to measures of phonological processing and reading ability. This has also been shown with ERP research that examined how phonological processing training can benefit reading skills. However, there have not been many attempts to systematically review how phonological awareness itself is developed neurocognitively. In the present review, we screened 224 papers and systematically reviewed 40 papers that have explored phonological awareness and phonological processing using ERP methodology with both typically developing and children with reading problems. This review highlights ERP components that can be used as neurocognitive predictors of early developmental dyslexia and reading disorders in young children. Additionally, we have presented how phonological processing is developed neurocognitively throughout childhood, as well as which phonological tasks can be used to predict the development of phonological awareness prior to developing reading skills. Neurocognitive measures of early phonological processing can serve as supplemental diagnostic sources to behavioral measures of reading abilities because they show different aspects of phonological sensitivity when compared to behavioral measures.
Collapse
|
10
|
Conrad BN, Pollack C, Yeo DJ, Price GR. Structural and functional connectivity of the inferior temporal numeral area. Cereb Cortex 2022; 33:6152-6170. [PMID: 36587366 PMCID: PMC10183753 DOI: 10.1093/cercor/bhac492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 01/02/2023] Open
Abstract
A growing body of evidence suggests that in adults, there is a spatially consistent "inferior temporal numeral area" (ITNA) in the occipitotemporal cortex that appears to preferentially process Arabic digits relative to non-numerical symbols and objects. However, very little is known about why the ITNA is spatially segregated from regions that process other orthographic stimuli such as letters, and why it is spatially consistent across individuals. In the present study, we used diffusion-weighted imaging and functional magnetic resonance imaging to contrast structural and functional connectivity between left and right hemisphere ITNAs and a left hemisphere letter-preferring region. We found that the left ITNA had stronger structural and functional connectivity than the letter region to inferior parietal regions involved in numerical magnitude representation and arithmetic. Between hemispheres, the left ITNA showed stronger structural connectivity with the left inferior frontal gyrus (Broca's area), while the right ITNA showed stronger structural connectivity to the ipsilateral inferior parietal cortex and stronger functional coupling with the bilateral IPS. Based on their relative connectivity, our results suggest that the left ITNA may be more readily involved in mapping digits to verbal number representations, while the right ITNA may support the mapping of digits to quantity representations.
Collapse
Affiliation(s)
- Benjamin N Conrad
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA
| | - Courtney Pollack
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA
| | - Darren J Yeo
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA.,Division of Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, Singapore, 639818
| | - Gavin R Price
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA.,Department of Psychology, University of Exeter, Washington Singer Building Perry Road, Exeter, EX4 4QG, United Kingdom
| |
Collapse
|
11
|
Valdois S. The visual-attention span deficit in developmental dyslexia: Review of evidence for a visual-attention-based deficit. DYSLEXIA (CHICHESTER, ENGLAND) 2022; 28:397-415. [PMID: 35903834 DOI: 10.1002/dys.1724] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The visual attention span (VAS) deficit hypothesis in developmental dyslexia posits that a subset of dyslexic individuals shows a multielement parallel processing deficit due to reduced visual attention capacity. However, the attention-based interpretation of poor performance on VAS tasks is hotly debated. The purpose of the present paper is to clarify this issue through a critical review of relevant behavioural and neurobiological findings. We first examine the plausibility of alternative verbal interpretations of VAS performance, evaluating whether performance on VAS tasks might reflect verbal short-term memory, verbal coding or visual-to-verbal mapping skills. We then focus on the visual dimensions of VAS tasks to question whether VAS primarily reflects visuo-attentional rather than more basic visual skills. Scrutiny of the available behavioural and neurobiological findings not only points to a deficit of visual attention in dyslexic individuals with impaired VAS but further suggests a selective endogenous attentional system deficit that relates to atypical functioning of the brain dorsal attentional network. The overview clarifies the debate on what is being measured through VAS tasks and provides insights on how to interpret the VAS deficit in developmental dyslexia.
Collapse
|
12
|
Fraga-González G, Di Pietro SV, Pleisch G, Walitza S, Brandeis D, Karipidis II, Brem S. Visual Occipito-Temporal N1 Sensitivity to Digits Across Elementary School. Front Hum Neurosci 2022; 16:887413. [PMID: 35959243 PMCID: PMC9360418 DOI: 10.3389/fnhum.2022.887413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Number processing abilities are important for academic and personal development. The course of initial specialization of ventral occipito-temporal cortex (vOTC) sensitivity to visual number processing is crucial for the acquisition of numeric and arithmetic skills. We examined the visual N1, the electrophysiological correlate of vOTC activation across five time points in kindergarten (T1, mean age 6.60 years), middle and end of first grade (T2, 7.38 years; T3, 7.68 years), second grade (T4, 8.28 years), and fifth grade (T5, 11.40 years). A combination of cross-sectional and longitudinal EEG data of a total of 62 children (35 female) at varying familial risk for dyslexia were available to form groups of 23, 22, 27, 27, and 42 participants for each of the five time points. The children performed a target detection task which included visual presentation of single digits (DIG), false fonts (FF), and letters (LET) to derive measures for coarse (DIG vs. FF) and fine (DIG vs. LET) digit sensitive processing across development. The N1 amplitude analyses indicated coarse and fine sensitivity characterized by a stronger N1 to digits than false fonts across all five time points, and stronger N1 to digits than letters at all but the second (T2) time point. In addition, lower arithmetic skills were associated with stronger coarse N1 digit sensitivity over the left hemisphere in second grade (T4), possibly reflecting allocation of more attentional resources or stronger reliance on the verbal system in children with poorer arithmetic skills. To summarize, our results show persistent visual N1 sensitivity to digits that is already present early on in pre-school and remains stable until fifth grade. This pattern of digit sensitivity development clearly differs from the relatively sharp rise and fall of the visual N1 sensitivity to words or letters between kindergarten and middle of elementary school and suggests unique developmental trajectories for visual processing of written characters that are relevant to numeracy and literacy.
Collapse
Affiliation(s)
- Gorka Fraga-González
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sarah V. Di Pietro
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Georgette Pleisch
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- MR-Center, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Iliana I. Karipidis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- MR-Center, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- *Correspondence: Silvia Brem,
| |
Collapse
|
13
|
Panda EJ, Kember J, Emami Z, Nayman C, Valiante TA, Pang EW. Dynamic functional brain network connectivity during pseudoword processing relates to children's reading skill. Neuropsychologia 2022; 168:108181. [PMID: 35167858 DOI: 10.1016/j.neuropsychologia.2022.108181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
Learning to read requires children to link print (orthography) with its corresponding speech sounds (phonology). Yet, most EEG studies of reading development focus on emerging functional specialization (e.g., developing increasingly refined orthographic representations), rather than directly measuring the functional connectivity that links orthography and phonology in real time. In this proof-of-concept study we relate children's reading skill to both orthographic specialization for print (via the N170, also called the N1, event related potential, ERP) and orthographic-phonological integration (via dynamic/event-related EEG phase synchronization - an index of functional brain network connectivity). Typically developing English speaking children (n = 24; 4-14 years) and control adults (n = 20; 18-35 years) viewed pseudowords, consonants and unfamiliar false fonts during a 1-back memory task while 64-channel EEG was recorded. Orthographic specialization (larger N170 for pseudowords vs. false fonts) became more left-lateralized with age, but not with reading skill. Conversely, children's reading skill correlated with functional brain network connectivity during pseudoword processing that requires orthography-phonology linking. This was seen during two periods of simultaneous low frequency synchronization/high frequency desynchronization of posterior-occipital brain network activity. Specifically, in stronger readers, left posterior-occipital activity showed more delta (1-3Hz) synchronization around 300-500 ms (simultaneous with gamma 30-80 Hz desynchronization) and more gamma desynchronization around 600-1000 ms (simultaneous with theta 3-7Hz synchronization) during pseudoword vs. false font processing. These effects were significant even when controlling for age (moderate - large effect sizes). Dynamic functional brain network connectivity measures the brain's real-time sound-print linking. It may offer an under-explored, yet sensitive, index of the neural plasticity associated with reading development.
Collapse
Affiliation(s)
- Erin J Panda
- Department of Child and Youth Studies, Brock University, 1812, Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Ontario, Canada; Epilepsy Research Program of the Ontario Brain Institute, Toronto, Ontario, Canada; Division of Neurology / Neurosciences and Mental Health, The Hospital for Sick Children / SickKids Research Institute, Toronto, Ontario, Canada.
| | - Jonah Kember
- Department of Child and Youth Studies, Brock University, 1812, Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Ontario, Canada.
| | - Zahra Emami
- Division of Neurology / Neurosciences and Mental Health, The Hospital for Sick Children / SickKids Research Institute, Toronto, Ontario, Canada.
| | - Candace Nayman
- Division of Neurology / Neurosciences and Mental Health, The Hospital for Sick Children / SickKids Research Institute, Toronto, Ontario, Canada.
| | - Taufik A Valiante
- Epilepsy Research Program of the Ontario Brain Institute, Toronto, Ontario, Canada; Krembil Brain Institute, University Health Network and Toronto Western Hospital, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Institute of Biomedical Engineering, University of Toronto, Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Elizabeth W Pang
- Epilepsy Research Program of the Ontario Brain Institute, Toronto, Ontario, Canada; Division of Neurology / Neurosciences and Mental Health, The Hospital for Sick Children / SickKids Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Wilson AT, Den Ottelander BK, Van Veelen MC, Dremmen MHG, Persing JA, Vrooman HA, Mathijssen IMJ, Tasker RC. Cerebral cortex maldevelopment in syndromic craniosynostosis. Dev Med Child Neurol 2022; 64:118-124. [PMID: 34265076 PMCID: PMC9290542 DOI: 10.1111/dmcn.14984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/04/2022]
Abstract
AIM To assess the relationship of surface area of the cerebral cortex to intracranial volume (ICV) in syndromic craniosynostosis. METHOD Records of 140 patients (64 males, 76 females; mean age 8y 6mo [SD 5y 6mo], range 1y 2mo-24y 2mo) with syndromic craniosynostosis were reviewed to include clinical and imaging data. Two hundred and three total magnetic resonance imaging (MRI) scans were evaluated in this study (148 patients with fibroblast growth factor receptor [FGFR], 19 patients with TWIST1, and 36 controls). MRIs were processed via FreeSurfer pipeline to determine total ICV and cortical surface area (CSA). Scaling coefficients were calculated from log-transformed data via mixed regression to account for multiple measurements, sex, syndrome, and age. Educational outcomes were reported by syndrome. RESULTS Mean ICV was greater in patients with FGFR (1519cm3 , SD 269cm3 , p=0.016) than in patients with TWIST1 (1304cm3 , SD 145cm3 ) or controls (1405cm3 , SD 158cm3 ). CSA was related to ICV by a scaling law with an exponent of 0.68 (95% confidence interval [CI] 0.61-0.76) in patients with FGFR compared to 0.81 (95% CI 0.50-1.12) in patients with TWIST1 and 0.77 (95% CI 0.61-0.93) in controls. Lobar analysis revealed reduced scaling in the parietal (0.50, 95% CI 0.42-0.59) and occipital (0.67, 95% CI 0.54-0.80) lobes of patients with FGFR compared with controls. Modified learning environments were needed more often in patients with FGFR. INTERPRETATION Despite adequate ICV in FGFR-mediated craniosynostosis, CSA development is reduced, indicating maldevelopment, particularly in parietal and occipital lobes. Modified education is also more common in patients with FGFR.
Collapse
Affiliation(s)
- Alexander T Wilson
- Department of Plastic and Reconstructive and Hand SurgeryErasmus University Medical CenterRotterdamthe Netherlands,Section of Plastic SurgeryYale School of MedicineNew HavenCTUSA
| | - Bianca K Den Ottelander
- Department of Plastic and Reconstructive and Hand SurgeryErasmus University Medical CenterRotterdamthe Netherlands
| | | | - Marjolein HG Dremmen
- Department of Radiology and Nuclear MedicineErasmus University Medical CenterRotterdamthe Netherlands
| | - John A Persing
- Section of Plastic SurgeryYale School of MedicineNew HavenCTUSA
| | - Henri A Vrooman
- Department of Radiology and Nuclear MedicineErasmus University Medical CenterRotterdamthe Netherlands
| | - Irene MJ Mathijssen
- Department of Plastic and Reconstructive and Hand SurgeryErasmus University Medical CenterRotterdamthe Netherlands
| | - Robert C Tasker
- Department of AnesthesiologyCritical Care and Pain MedicineHarvard Medical SchoolBoston Children’s HospitalBostonMAUSA
| |
Collapse
|
15
|
Romanovska L, Bonte M. How Learning to Read Changes the Listening Brain. Front Psychol 2021; 12:726882. [PMID: 34987442 PMCID: PMC8721231 DOI: 10.3389/fpsyg.2021.726882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/23/2021] [Indexed: 01/18/2023] Open
Abstract
Reading acquisition reorganizes existing brain networks for speech and visual processing to form novel audio-visual language representations. This requires substantial cortical plasticity that is reflected in changes in brain activation and functional as well as structural connectivity between brain areas. The extent to which a child's brain can accommodate these changes may underlie the high variability in reading outcome in both typical and dyslexic readers. In this review, we focus on reading-induced functional changes of the dorsal speech network in particular and discuss how its reciprocal interactions with the ventral reading network contributes to reading outcome. We discuss how the dynamic and intertwined development of both reading networks may be best captured by approaching reading from a skill learning perspective, using audio-visual learning paradigms and longitudinal designs to follow neuro-behavioral changes while children's reading skills unfold.
Collapse
Affiliation(s)
| | - Milene Bonte
- *Correspondence: Linda Romanovska, ; Milene Bonte,
| |
Collapse
|
16
|
Karipidis II, Pleisch G, Di Pietro SV, Fraga-González G, Brem S. Developmental Trajectories of Letter and Speech Sound Integration During Reading Acquisition. Front Psychol 2021; 12:750491. [PMID: 34867636 PMCID: PMC8636811 DOI: 10.3389/fpsyg.2021.750491] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
Reading acquisition in alphabetic languages starts with learning the associations between speech sounds and letters. This learning process is related to crucial developmental changes of brain regions that serve visual, auditory, multisensory integration, and higher cognitive processes. Here, we studied the development of audiovisual processing and integration of letter-speech sound pairs with an audiovisual target detection functional MRI paradigm. Using a longitudinal approach, we tested children with varying reading outcomes before the start of reading acquisition (T1, 6.5 yo), in first grade (T2, 7.5 yo), and in second grade (T3, 8.5 yo). Early audiovisual integration effects were characterized by higher activation for incongruent than congruent letter-speech sound pairs in the inferior frontal gyrus and ventral occipitotemporal cortex. Audiovisual processing in the left superior temporal gyrus significantly increased from the prereading (T1) to early reading stages (T2, T3). Region of interest analyses revealed that activation in left superior temporal gyrus (STG), inferior frontal gyrus and ventral occipitotemporal cortex increased in children with typical reading fluency skills, while poor readers did not show the same development in these regions. The incongruency effect bilaterally in parts of the STG and insular cortex at T1 was significantly associated with reading fluency skills at T3. These findings provide new insights into the development of the brain circuitry involved in audiovisual processing of letters, the building blocks of words, and reveal early markers of audiovisual integration that may be predictive of reading outcomes.
Collapse
Affiliation(s)
- Iliana I Karipidis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Georgette Pleisch
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Sarah V Di Pietro
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Gorka Fraga-González
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,MR-Center of the University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Yamasaki BL, McGregor KK, Booth JR. Early Phonological Neural Specialization Predicts Later Growth in Word Reading Skills. Front Hum Neurosci 2021; 15:674119. [PMID: 34720902 PMCID: PMC8551603 DOI: 10.3389/fnhum.2021.674119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
According to the Interactive Specialization Theory, cognitive skill development is facilitated by a process of neural specialization. In line with this theory, the current study investigated whether neural specialization for phonological and semantic processing at 5-to-6 years old was predictive of growth in word reading skills 2 years later. Specifically, four regression models were estimated in which reading growth was predicted from: (1) an intercept-only model; (2) measures of semantic and phonological neural specialization; (3) performance on semantic and phonological behavioral tasks; or (4) a combination of neural specialization and behavioral performance. Results from the preregistered analyses revealed little evidence in favor of the hypothesis that early semantic and phonological skills are predictive of growth in reading. However, results from the exploratory analyses, which included a larger sample, added age at Time 1 as a covariate, and investigated relative growth in reading, demonstrated decisive evidence that variability in phonological processing is predictive of reading growth. The best fitting model included both measures of specialization within the posterior superior temporal gyrus (pSTG) and behavioral performance. This work provides important evidence in favor of the Interactive Specialization Theory and, more specifically, for the role of phonological neural specialization in the development of early word reading skills.
Collapse
Affiliation(s)
- Brianna L. Yamasaki
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, United States,*Correspondence: Brianna L. Yamasaki
| | | | - James R. Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
18
|
Brain-behavior dynamics between the left fusiform and reading. Brain Struct Funct 2021; 227:587-597. [PMID: 34510280 DOI: 10.1007/s00429-021-02372-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023]
Abstract
The visual word form area (VWFA) plays a significant role in the development of reading skills. However, the developmental course and anatomical properties of the VWFA have only limitedly been investigated. The aim of the current longitudinal MRI study was to investigate dynamic, bidirectional relations between reading, and the structure of the left fusiform gyrus at the early-to-advanced reading stage. More specifically, by means of bivariate correlations and a cross-lagged panel model (CLPM), the interrelations between the size of the left fusiform gyrus and reading skills (an average score of a word and pseudo-word reading task) were studied in a longitudinal cohort of 43 Flemish children (29M, 14F) with variable reading skills in grade 2 (the early stage of reading) and grade 5 (the advanced stage of reading) of primary school. Results revealed that better reading skills at grade 2 lead to a larger size of the left fusiform gyrus at grade 5, whereas there are no directional effects between the size of the left fusiform gyrus at grade 2 and reading skills at grade 5. Hence, according to our results, there is behavior-driven brain plasticity and no brain-driven reading change between the early and advanced stage of reading. Together with pre-reading brain studies showing predictive relations to later reading scores, our results suggest that the direction of brain-behavioral influences changes throughout the course of reading development.
Collapse
|
19
|
Coch D, Mahoney MR. When two vowels go walking: An ERP study of the vowel team rule. Psychophysiology 2021; 58:e13870. [PMID: 34086295 DOI: 10.1111/psyp.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/31/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
In an event-related potential (ERP) study of the vowel team rule in American English ("when two vowels go walking, the first does the talking"), we used a visual lexical decision task to determine whether words that do (e.g., braid) and do not (e.g., cloud) follow the rule elicit different processing, and to determine if this extends to nonwords (e.g., braip, cloup). In 32 young adults, N1 amplitude distinguished between rule-following and rule-breaking items: N1 amplitude was more negative to rule-breaking words and nonwords. In contrast, there were no significant effects of vowel team rule adherence on N400 amplitude. Behaviorally, participants responded more quickly and accurately to rule-following words, a pattern not observed for nonwords. These findings demonstrate that adherence to the vowel team rule can be indexed by both neural and behavioral measures in fluently reading young adults.
Collapse
Affiliation(s)
- Donna Coch
- Department of Education, Reading Brains Lab, Dartmouth College, Hanover, NH, USA
| | | |
Collapse
|
20
|
The rise and fall of rapid occipito-temporal sensitivity to letters: Transient specialization through elementary school. Dev Cogn Neurosci 2021; 49:100958. [PMID: 34010761 PMCID: PMC8141525 DOI: 10.1016/j.dcn.2021.100958] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 12/13/2022] Open
Abstract
Letters, foundational units of alphabetic writing systems, are quintessential to human culture. The ability to read, indispensable to perform in today’s society, necessitates a reorganization of visual cortex for fast letter recognition, but the developmental course of this process has not yet been characterized. Here, we show the emergence of visual sensitivity to letters across five electroencephalography measurements from kindergarten and throughout elementary school and relate this development to emerging reading skills. We examined the visual N1, the electrophysiological correlate of ventral occipito-temporal cortex activation in 65 children at varying familial risk for dyslexia. N1 letter sensitivity emerged in first grade, when letter sound knowledge gains were most pronounced and decayed shortly after when letter knowledge is consolidated, showing an inverted U-shaped development. This trajectory can be interpreted within an interactive framework that underscores the influence of top-down predictions. While the N1 amplitudes to letters correlated with letter sound knowledge at the beginning of learning, no association between the early N1 letter response and later reading skills was found. In summary, the current findings provide an important reference point for our neuroscientific understanding of learning trajectories and the process of visual specialization during skill learning.
Collapse
|
21
|
Liebig J, Froehlich E, Sylvester T, Braun M, Heekeren HR, Ziegler JC, Jacobs AM. Neural processing of vision and language in kindergarten is associated with prereading skills and predicts future literacy. Hum Brain Mapp 2021; 42:3517-3533. [PMID: 33942958 PMCID: PMC8249894 DOI: 10.1002/hbm.25449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
The main objective of this longitudinal study was to investigate the neural predictors of reading acquisition. For this purpose, we followed a sample of 54 children from the end of kindergarten to the end of second grade. Preliterate children were tested for visual symbol (checkerboards, houses, faces, written words) and auditory language processing (spoken words) using a passive functional magnetic resonance imaging paradigm. To examine brain-behavior relationships, we also tested cognitive-linguistic prereading skills at kindergarten age and reading performance of 48 of the same children 2 years later. Face-selective response in the bilateral fusiform gyrus was positively associated with rapid automatized naming (RAN). Response to both spoken and written words at preliterate age was negatively associated with RAN in the dorsal temporo-parietal language system. Longitudinally, neural response to faces in the ventral stream predicted future reading fluency. Here, stronger neural activity in inferior and middle temporal gyri at kindergarten age was associated with higher reading performance. Our results suggest that interindividual differences in the neural system of language and reading affect literacy acquisition and thus might serve as a marker for successful reading acquisition in preliterate children.
Collapse
Affiliation(s)
- Johanna Liebig
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Eva Froehlich
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Teresa Sylvester
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Mario Braun
- Centre for Cognitive Neuroscience, Universität Salzburg, Salzburg, Austria
| | - Hauke R Heekeren
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany.,Deparment of Biological Psychology and Cognitive Neuroscience, Freie Universität Berlin, Berlin, Germany
| | - Johannes C Ziegler
- Aix-Marseille Université and Centre National de la Recherche Scientifique, Laboratoire de Psychologie Cognitive, Marseille, France
| | - Arthur M Jacobs
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
22
|
Yan X, Perkins K, Cao F. A hierarchical deficit model of reading disability: Evidence from dynamic causal modelling analysis. Neuropsychologia 2021; 154:107777. [PMID: 33549584 DOI: 10.1016/j.neuropsychologia.2021.107777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
Deficits have been documented in visuo-orthographic processing as well as phonological retrieval/manipulation during visual word reading in individuals with reading disability (RD); however, the relationship between these deficits remains unclear. Previously, we found that during word reading, visuo-orthographic deficit appears to be a neural signature of RD, but deficits in phonological retrieval/manipulation appears to be a consequence of being RD (Cao et al., 2020). Therefore, in the current study, we directly tested the hypothesis that during visual word reading, deficit in phonological retrieval/manipulation may result from weakened input from visuo-orthographic regions, and that this relationship tends to be universal across languages. We conducted a dynamic causal modelling analysis of fMRI data from Chinese-English bilingual children (9-11 years, N = 78) with or without RD during a visual word rhyming judgment task. We found a weaker connection from the left inferior temporal gyrus (ITG) to the left dorsal inferior frontal gyrus (dIFG) in children with RD and reading controls than the connection found in age controls for both Chinese and English. This finding suggests that the phonological deficit at the dIFG may result from weak input from the visuo-orthographic region and this connection appears to be responsive to reading level rather than RD, because the reading-control children were similar to children with RD. We also found that the left ITG was selectively connected with language-specific regions (i.e., the left inferior parietal lobe (IPL) for Chinese and the left ventral inferior frontal gyrus (vIFG) for English) depending on the language being processed; however, this language selectivity was reduced in children with RD, suggesting that decreased language specialization is associated with RD. Using a double control design, our study suggests that during reading, the visuo-orthographic deficit of RD constrains the development of the connection from orthography to phonology and to other language-specific processing due to distorted quantity and quality of reading.
Collapse
Affiliation(s)
- Xiaohui Yan
- Department of Psychology, Sun Yat-Sen University, China
| | | | - Fan Cao
- Department of Psychology, Sun Yat-Sen University, China.
| |
Collapse
|
23
|
van de Walle de Ghelcke A, Rossion B, Schiltz C, Lochy A. Developmental changes in neural letter-selectivity: A 1-year follow-up of beginning readers. Dev Sci 2021; 24:e12999. [PMID: 32452594 PMCID: PMC7816260 DOI: 10.1111/desc.12999] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 03/23/2020] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
Abstract
The developmental course of neural tuning to visual letter strings is unclear. Here we tested 39 children longitudinally, at the beginning of grade 1 (6.45 ± 0.33 years old) and 1 year after, with fast periodic visual stimulation in electroencephalography to assess the evolution of selective neural responses to letter strings and their relationship with emerging reading abilities. At both grades, frequency-tagged letter strings were discriminated from pseudofont strings (i.e. letter-selectivity) over the left occipito-temporal cortex, with effects observed at the individual level in 62% of children. However, visual words were not discriminated from pseudowords (lexical access) at either grade. Following 1 year of schooling, letter-selective responses showed a specific increase in amplitude, a more complex pattern of harmonics, and were located more anteriorly over the left occipito-temporal cortex. Remarkably, at both grades, neural responses were highly significant at the individual level and correlated with individual reading scores. The amplitude increase in letter-selective responses between grades was not found for discrimination responses of familiar keyboard symbols from pseudosymbols, and was not related to a general increase in visual stimulation responses. These findings demonstrate a rapid onset of left hemispheric letter selectivity, with 1 year of reading instruction resulting in increased emerging reading abilities and a clear quantitative and qualitative evolution within left hemispheric neural circuits for reading.
Collapse
Affiliation(s)
- Alice van de Walle de Ghelcke
- Psychological Sciences Research Institute and Institute of NeuroscienceUniversité Catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Bruno Rossion
- Psychological Sciences Research Institute and Institute of NeuroscienceUniversité Catholique de LouvainLouvain‐la‐NeuveBelgium
- CNRS‐CRANUniversité de LorraineNancyFrance
- Service de NeurologieCHRU‐NancyUniversité de LorraineNancyFrance
| | - Christine Schiltz
- Department of Behavioral and Cognitive SciencesInstitute of Cognitive Science and AssessmentUniversité du LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Aliette Lochy
- Department of Behavioral and Cognitive SciencesInstitute of Cognitive Science and AssessmentUniversité du LuxembourgEsch‐sur‐AlzetteLuxembourg
| |
Collapse
|
24
|
Brem S, Maurer U, Kronbichler M, Schurz M, Richlan F, Blau V, Reithler J, van der Mark S, Schulz E, Bucher K, Moll K, Landerl K, Martin E, Goebel R, Schulte-Körne G, Blomert L, Wimmer H, Brandeis D. Visual word form processing deficits driven by severity of reading impairments in children with developmental dyslexia. Sci Rep 2020; 10:18728. [PMID: 33127943 PMCID: PMC7603304 DOI: 10.1038/s41598-020-75111-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
The visual word form area (VWFA) in the left ventral occipito-temporal (vOT) cortex is key to fluent reading in children and adults. Diminished VWFA activation during print processing tasks is a common finding in subjects with severe reading problems. Here, we report fMRI data from a multicentre study with 140 children in primary school (7.9-12.2 years; 55 children with dyslexia, 73 typical readers, 12 intermediate readers). All performed a semantic task on visually presented words and a matched control task on symbol strings. With this large group of children, including the entire spectrum from severely impaired to highly fluent readers, we aimed to clarify the association of reading fluency and left vOT activation during visual word processing. The results of this study confirm reduced word-sensitive activation within the left vOT in children with dyslexia. Interestingly, the association of reading skills and left vOT activation was especially strong and spatially extended in children with dyslexia. Thus, deficits in basic visual word form processing increase with the severity of reading disability but seem only weakly associated with fluency within the typical reading range suggesting a linear dependence of reading scores with VFWA activation only in the poorest readers.
Collapse
Affiliation(s)
- S Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Neumuensterallee 9, 8032, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - U Maurer
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Neumuensterallee 9, 8032, Zurich, Switzerland
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - M Kronbichler
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria
| | - M Schurz
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - F Richlan
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - V Blau
- Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J Reithler
- Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - S van der Mark
- MR-Center, University Children's Hospital, University of Zürich, Zurich, Switzerland
| | - E Schulz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - K Bucher
- MR-Center, University Children's Hospital, University of Zürich, Zurich, Switzerland
| | - K Moll
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - K Landerl
- Department of Psychology, University of Salzburg, Salzburg, Austria
- Institute of Psychology, University of Graz, Graz, Austria
| | - E Martin
- MR-Center, University Children's Hospital, University of Zürich, Zurich, Switzerland
| | - R Goebel
- Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - G Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - L Blomert
- Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - H Wimmer
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - D Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Neumuensterallee 9, 8032, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
25
|
Wang F, Karipidis II, Pleisch G, Fraga-González G, Brem S. Development of Print-Speech Integration in the Brain of Beginning Readers With Varying Reading Skills. Front Hum Neurosci 2020; 14:289. [PMID: 32922271 PMCID: PMC7457077 DOI: 10.3389/fnhum.2020.00289] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Learning print-speech sound correspondences is a crucial step at the beginning of reading acquisition and often impaired in children with developmental dyslexia. Despite increasing insight into audiovisual language processing, it remains largely unclear how integration of print and speech develops at the neural level during initial learning in the first years of schooling. To investigate this development, 32 healthy, German-speaking children at varying risk for developmental dyslexia (17 typical readers and 15 poor readers) participated in a longitudinal study including behavioral and fMRI measurements in first (T1) and second (T2) grade. We used an implicit audiovisual (AV) non-word target detection task aimed at characterizing differential activation to congruent (AVc) and incongruent (AVi) audiovisual non-word pairs. While children’s brain activation did not differ between AVc and AVi pairs in first grade, an incongruency effect (AVi > AVc) emerged in bilateral inferior temporal and superior frontal gyri in second grade. Of note, pseudoword reading performance improvements with time were associated with the development of the congruency effect (AVc > AVi) in the left posterior superior temporal gyrus (STG) from first to second grade. Finally, functional connectivity analyses indicated divergent development and reading expertise dependent coupling from the left occipito-temporal and superior temporal cortex to regions of the default mode (precuneus) and fronto-temporal language networks. Our results suggest that audiovisual integration areas as well as their functional coupling to other language areas and areas of the default mode network show a different development in poor vs. typical readers at varying familial risk for dyslexia.
Collapse
Affiliation(s)
- Fang Wang
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Iliana I Karipidis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Georgette Pleisch
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Gorka Fraga-González
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| |
Collapse
|
26
|
Fernández-López M, Marcet A, Perea M. Does orthographic processing emerge rapidly after learning a new script? Br J Psychol 2020; 112:52-91. [PMID: 32780425 DOI: 10.1111/bjop.12469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/18/2020] [Indexed: 11/28/2022]
Abstract
Orthographic processing is characterized by location-invariant and location-specific processing (Grainger, 2018): (1) strings of letters are more vulnerable to transposition effects than the strings of symbols in same-different tasks (location-invariant processing); and (2) strings of letters, but not strings of symbols, show an initial position advantage in target-in-string identification tasks (location-specific processing). To examine the emergence of these two markers of orthographic processing, we conducted a same-different task and a target-in-string identification task with two unfamiliar scripts (pre-training experiments). Across six training sessions, participants learned to fluently read and write one of these scripts. The post-training experiments were parallel to the pre-training experiments. Results showed that the magnitude of the transposed-letter effect in the same-different task and the serial function in the target-in-string identification tasks were remarkably similar for the trained and untrained scripts. Thus, location-invariant and location-specific processing does not emerge rapidly after learning a new script; instead, they may require thorough experience with specific orthographic structures.
Collapse
Affiliation(s)
| | | | - Manuel Perea
- Universitat de València, Spain.,Basque Center on Brain, Cognition, and Language, Donostia, Spain.,Universidad Nebrija, Spain
| |
Collapse
|
27
|
Tijms J, Fraga-González G, Karipidis II, Brem S. Editorial: The Role of Letter-Speech Sound Integration in Normal and Abnormal Reading Development. Front Psychol 2020; 11:1441. [PMID: 32733324 PMCID: PMC7358608 DOI: 10.3389/fpsyg.2020.01441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jurgen Tijms
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Gorka Fraga-González
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Iliana I Karipidis
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford Medicine, Stanford University, Stanford, CA, United States
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
The “Inferior Temporal Numeral Area” distinguishes numerals from other character categories during passive viewing: A representational similarity analysis. Neuroimage 2020; 214:116716. [DOI: 10.1016/j.neuroimage.2020.116716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/28/2022] Open
|
29
|
Xu W, Kolozsvari OB, Oostenveld R, Hämäläinen JA. Rapid changes in brain activity during learning of grapheme-phoneme associations in adults. Neuroimage 2020; 220:117058. [PMID: 32561476 DOI: 10.1016/j.neuroimage.2020.117058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Learning to associate written letters with speech sounds is crucial for the initial phase of acquiring reading skills. However, little is known about the cortical reorganization for supporting letter-speech sound learning, particularly the brain dynamics during the learning of grapheme-phoneme associations. In the present study, we trained 30 Finnish participants (mean age: 24.33 years, SD: 3.50 years) to associate novel foreign letters with familiar Finnish speech sounds on two consecutive days (first day ~ 50 min; second day ~ 25 min), while neural activity was measured using magnetoencephalography (MEG). Two sets of audiovisual stimuli were used for the training in which the grapheme-phoneme association in one set (Learnable) could be learned based on the different learning cues provided, but not in the other set (Control). The learning progress was tracked at a trial-by-trial basis and used to segment different learning stages for the MEG source analysis. The learning-related changes were examined by comparing the brain responses to Learnable and Control uni/multi-sensory stimuli, as well as the brain responses to learning cues at different learning stages over the two days. We found dynamic changes in brain responses related to multi-sensory processing when grapheme-phoneme associations were learned. Further, changes were observed in the brain responses to the novel letters during the learning process. We also found that some of these learning effects were observed only after memory consolidation the following day. Overall, the learning process modulated the activity in a large network of brain regions, including the superior temporal cortex and the dorsal (parietal) pathway. Most interestingly, middle- and inferior-temporal regions were engaged during multi-sensory memory encoding after the cross-modal relationship was extracted from the learning cues. Our findings highlight the brain dynamics and plasticity related to the learning of letter-speech sound associations and provide a more refined model of grapheme-phoneme learning in reading acquisition.
Collapse
Affiliation(s)
- Weiyong Xu
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Orsolya Beatrix Kolozsvari
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands; NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Jarmo Arvid Hämäläinen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
30
|
Perdue MV, Mednick J, Pugh KR, Landi N. Gray Matter Structure Is Associated with Reading Skill in Typically Developing Young Readers. Cereb Cortex 2020; 30:5449-5459. [PMID: 32488230 DOI: 10.1093/cercor/bhaa126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Research using functional and structural magnetic resonance imaging has identified areas of reduced brain activation and gray matter volume in children and adults with reading disability, but associations between cortical structure and individual differences in reading in typically developing children remain underexplored. Furthermore, the majority of research linking gray matter structure to reading ability quantifies gray matter in terms of volume, and cannot specify unique contributions of cortical surface area and thickness to these relationships. Here, we applied a continuous analytic approach to investigate associations between distinct surface-based properties of cortical structure and individual differences in reading-related skills in a sample of typically developing young children. Correlations between cortical structure and reading-related skills were conducted using a surface-based vertex-wise approach. Cortical thickness in the left superior temporal cortex was positively correlated with word and pseudoword reading performance. The observed positive correlation between cortical thickness in the left superior temporal cortex and reading may have implications for the patterns of brain activation that support reading.
Collapse
Affiliation(s)
- Meaghan V Perdue
- University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT, 06269, USA.,Haskins Laboratories, 300 George St #900, New Haven, CT 06511, USA
| | - Joshua Mednick
- University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT, 06269, USA
| | - Kenneth R Pugh
- University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT, 06269, USA.,Haskins Laboratories, 300 George St #900, New Haven, CT 06511, USA
| | - Nicole Landi
- University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT, 06269, USA.,Haskins Laboratories, 300 George St #900, New Haven, CT 06511, USA
| |
Collapse
|
31
|
Karipidis II, Hong DS. Specific learning disorders in sex chromosome aneuploidies: Neural circuits of literacy and mathematics. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:518-530. [DOI: 10.1002/ajmg.c.31801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Iliana I. Karipidis
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesSchool of Medicine, Stanford University Stanford California USA
| | - David S. Hong
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesSchool of Medicine, Stanford University Stanford California USA
| |
Collapse
|
32
|
van de Walle de Ghelcke A, Rossion B, Schiltz C, Lochy A. Impact of Learning to Read in a Mixed Approach on Neural Tuning to Words in Beginning Readers. Front Psychol 2020; 10:3043. [PMID: 32038406 PMCID: PMC6989560 DOI: 10.3389/fpsyg.2019.03043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
The impact of learning to read in a mixed approach using both the global and phonics teaching methods on the emergence of left hemisphere neural specialization for word recognition is yet unknown in children. Taking advantage of a natural school context with such a mixed approach, we tested 42 first graders behaviorally and with Fast Periodic Visual Stimulation using electroencephalographic recordings (FPVS-EEG) to measure selective neural responses to letter strings. Letter strings were inserted periodically (1/5) in pseudofonts in 40 s sequences displayed at 6 Hz and were either words globally taught at school, that could therefore be processed by visual whole-word form recognition (global method), or control words/pseudowords eliciting grapheme-phoneme (GP) mappings (phonics method). Results show that selective responses (F/5, 1.2 Hz) were left lateralized for control stimuli that triggered GP mappings but bilateral for globally taught words. It implies that neural mechanisms recruited during visual word processing are influenced by the nature of the mapping between written and spoken word forms. GP mappings induce left hemisphere discrimination responses, and visual recognition of whole-word forms induce bilateral responses, probably because the right hemisphere is relatively more involved in holistic visual object recognition. Splitting the group as a function of the mastery of GP mappings into "good" and "poor" readers strongly suggests that good readers actually processed all stimuli (including global words) predominantly with their left hemisphere, while poor readers showed bilateral responses for global words. These results show that in a mixed approach of teaching to read, global method instruction may induce neural processes that differ from those specialized for reading in the left hemisphere. Furthermore, given their difficulties in automatizing GP mappings, poor readers are especially prone to rely on this alternative visual strategy. A preprint of this paper has been released on Biorxiv (van de Walle de Ghelcke et al., 2018).
Collapse
Affiliation(s)
- Alice van de Walle de Ghelcke
- Psychological Sciences Research Institute and Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Bruno Rossion
- Psychological Sciences Research Institute and Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- CNRS-CRAN, Université de Lorraine, Nancy, France
- Service de Neurologie, CHRU-Nancy, Université de Lorraine, Nancy, France
| | - Christine Schiltz
- Department of Behavioral and Cognitive Sciences, Faculty of Humanities, Social and Educational Sciences, Institute of Cognitive Science and Assessment, Université du Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Aliette Lochy
- Department of Behavioral and Cognitive Sciences, Faculty of Humanities, Social and Educational Sciences, Institute of Cognitive Science and Assessment, Université du Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
33
|
Seghier ML, Fahim MA, Habak C. Educational fMRI: From the Lab to the Classroom. Front Psychol 2019; 10:2769. [PMID: 31866920 PMCID: PMC6909003 DOI: 10.3389/fpsyg.2019.02769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022] Open
Abstract
Functional MRI (fMRI) findings hold many potential applications for education, and yet, the translation of fMRI findings to education has not flowed. Here, we address the types of fMRI that could better support applications of neuroscience to the classroom. This 'educational fMRI' comprises eight main challenges: (1) collecting artifact-free fMRI data in school-aged participants and in vulnerable young populations, (2) investigating heterogenous cohorts with wide variability in learning abilities and disabilities, (3) studying the brain under natural and ecological conditions, given that many practical topics of interest for education can be addressed only in ecological contexts, (4) depicting complex age-dependent associations of brain and behaviour with multi-modal imaging, (5) assessing changes in brain function related to developmental trajectories and instructional intervention with longitudinal designs, (6) providing system-level mechanistic explanations of brain function, so that useful individualized predictions about learning can be generated, (7) reporting negative findings, so that resources are not wasted on developing ineffective interventions, and (8) sharing data and creating large-scale longitudinal data repositories to ensure transparency and reproducibility of fMRI findings for education. These issues are of paramount importance to the development of optimal fMRI practices for educational applications.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| | - Mohamed A Fahim
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| | - Claudine Habak
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| |
Collapse
|
34
|
Pleisch G, Karipidis II, Brem A, Röthlisberger M, Roth A, Brandeis D, Walitza S, Brem S. Simultaneous EEG and fMRI reveals stronger sensitivity to orthographic strings in the left occipito-temporal cortex of typical versus poor beginning readers. Dev Cogn Neurosci 2019; 40:100717. [PMID: 31704655 PMCID: PMC6974919 DOI: 10.1016/j.dcn.2019.100717] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/23/2019] [Accepted: 10/01/2019] [Indexed: 01/18/2023] Open
Abstract
The level of reading skills in children and adults is reflected in the strength of preferential neural activation to print. Such preferential activation appears in the N1 event-related potential (ERP) over the occipitotemporal scalp after around 150–250 ms and the corresponding blood oxygen level dependent (BOLD) signal in the ventral occipitotemporal (vOT) cortex. Here, orthography-sensitive (print vs. false font) processing was examined using simultaneous EEG-fMRI in 38 first grade children with poor and typical reading skills, and at varying familial risk for developmental dyslexia. Coarse orthographic sensitivity was observed as an increased activation to print in the N1 ERP and in the BOLD signal of individually varying vOT regions in 57% of beginning readers. Finer differentiation in processing orthographic strings (words vs. nonwords) further occurred in specific vOT clusters. Neither method alone showed robust differences in orthography-sensitive processing between typical and poor reading children. Importantly, using single-trial N1 ERP-informed fMRI analysis, we found differential modulation of the orthography-sensitive BOLD response in the left vOT for typical readers only. This result, thus, confirms subtle functional alterations in a brain structure known to be critical for fluent reading at the very beginning of reading instruction.
Collapse
Affiliation(s)
- Georgette Pleisch
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Iliana I Karipidis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - Martina Röthlisberger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - Alexander Roth
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany; Center for Integrative Human Physiology Zurich, University of Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Center for Integrative Human Physiology Zurich, University of Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; MR-Center of the University Hospital of Psychiatry and the Department of Child and Adolescent Psychiatry and Psychotherapy, University of Zurich, Switzerland.
| |
Collapse
|