1
|
Lopes R, Kuchcinski G, Dondaine T, Duron L, Mendyk A, Hénon H, Cordonnier C, Pruvo J, Bordet R, Leclerc X. Long-Term Post-Stroke Cognition in Patients With Minor Ischemic Stroke is Related to Tract-Based Disconnection Induced by White Matter Hyperintensities. Hum Brain Mapp 2025; 46:e70138. [PMID: 39866092 PMCID: PMC11770330 DOI: 10.1002/hbm.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/16/2024] [Accepted: 01/05/2025] [Indexed: 01/28/2025] Open
Abstract
Over a third of minor stroke patients experience post-stroke cognitive impairment (PSCI), but no validated tools exist to identify at-risk patients early. This study investigated whether disconnection features derived from infarcts and white matter hyperintensities (WMH) could serve as markers for short- and long-term cognitive decline in first-ever minor ischemic stroke patients. First-ever minor ischemic stroke patients (NIHSS ≤ 7) were prospectively followed at 72-h, 6 months, and 36 months post-stroke with cognitive tests and brain MRI. Infarct and WMH volumes were semi-automatically assessed on DWI and FLAIR sequences. Bayesian tract-based disconnection models estimated remote pathological effects of infarcts and WMH. Associations between disconnection features and cognitive outcomes were analyzed using canonical correlation analyses, adjusted for age, education, and multiple comparisons. Among 105 patients (31% female, mean age 63 ± 12 years), infarct volume averaged 10.28 ± 17.10 cm3 and predominantly involved the middle cerebral artery territory (83%). WMH burden was higher in frontal periventricular white matter. Infarct-based features did not significantly relate to PCSI. However, a WMH-derived disconnection factor, involving commissural and frontal tracts, and the right superior longitudinal fasciculus, was significantly associated with PSCI at 6 months (OR = 9.96, p value = 0.02) and 36 months (OR = 12.27, p value = 0.006), particularly in executive/attention, language, and visuospatial domains. This factor, unrelated to WMH volume, outperformed demographic and clinical predictors of PSCI. WMH-induced disconnection may be associated with short- and long-term PSCI in minor stroke. Routine MR-derived features could identify at-risk patients for rehabilitation trials.
Collapse
Affiliation(s)
- Renaud Lopes
- U1172 – LilNCog (Lille Neuroscience & Cognition)Univ. Lille, Inserm, CHU LilleLilleFrance
- US 41 – UAR 2014 – PLBSUniv. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de LilleLilleFrance
- Department of Nuclear MedicineCHU LilleLilleFrance
| | - Grégory Kuchcinski
- U1172 – LilNCog (Lille Neuroscience & Cognition)Univ. Lille, Inserm, CHU LilleLilleFrance
- US 41 – UAR 2014 – PLBSUniv. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de LilleLilleFrance
- Department of NeuroradiologyCHU LilleLilleFrance
| | - Thibaut Dondaine
- U1172 – LilNCog (Lille Neuroscience & Cognition)Univ. Lille, Inserm, CHU LilleLilleFrance
| | - Loïc Duron
- Department of NeuroradiologyAlphonse de Rothschild Foundation HospitalParisFrance
- Faculté de MédecineUniversité de Paris, PARCC, INSERMParisFrance
| | - Anne‐Marie Mendyk
- U1172 – LilNCog (Lille Neuroscience & Cognition)Univ. Lille, Inserm, CHU LilleLilleFrance
| | - Hilde Hénon
- U1172 – LilNCog (Lille Neuroscience & Cognition)Univ. Lille, Inserm, CHU LilleLilleFrance
- Department of NeurologyCHU LilleLilleFrance
| | - Charlotte Cordonnier
- U1172 – LilNCog (Lille Neuroscience & Cognition)Univ. Lille, Inserm, CHU LilleLilleFrance
- Department of NeurologyCHU LilleLilleFrance
| | - Jean‐Pierre Pruvo
- U1172 – LilNCog (Lille Neuroscience & Cognition)Univ. Lille, Inserm, CHU LilleLilleFrance
- US 41 – UAR 2014 – PLBSUniv. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de LilleLilleFrance
- Department of NeuroradiologyCHU LilleLilleFrance
| | - Régis Bordet
- U1172 – LilNCog (Lille Neuroscience & Cognition)Univ. Lille, Inserm, CHU LilleLilleFrance
- Department of PharmacologyCHU LilleLilleFrance
| | - Xavier Leclerc
- U1172 – LilNCog (Lille Neuroscience & Cognition)Univ. Lille, Inserm, CHU LilleLilleFrance
- Department of NeuroradiologyCHU LilleLilleFrance
| |
Collapse
|
2
|
Okawa R, Hayashi N, Takahashi T, Atarashi R, Yasui G, Mihara B. Comparison of qualitative and fully automated quantitative tools for classifying severity of white matter hyperintensity. J Stroke Cerebrovasc Dis 2024; 33:107772. [PMID: 38761849 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/15/2024] [Indexed: 05/20/2024] Open
Abstract
OBJECTIVE In this study, we aimed to compare the Fazekas scoring system and quantitative white matter hyperintensity volume in the classification of white matter hyperintensity severity using a fully automated analysis software to investigate the reliability of quantitative evaluation. MATERIALS AND METHODS Patients with suspected cognitive impairment who underwent medical examinations at our institution between January 2010 and May 2021 were retrospectively examined. White matter hyperintensity volumes were analyzed using fully automated analysis software and Fazekas scoring (scores 0-3). Using one-way analysis of variance, white matter hyperintensity volume differences across Fazekas scores were assessed. We employed post-hoc pairwise comparisons to compare the differences in the mean white matter hyperintensity volume between each Fazekas score. Spearman's rank correlation test was used to investigate the association between Fazekas score and white matter hyperintensity volume. RESULTS Among the 839 patients included in this study, Fazekas scores 0, 1, 2, and 3 were assigned to 68, 198, 217, and 356 patients, respectively. White matter hyperintensity volumes significantly differed according to Fazekas score (F=623.5, p<0.001). Post-hoc pairwise comparisons revealed significant differences in mean white matter hyperintensity volume between all Fazekas scores (p<0.05). We observed a significantly positive correlation between the Fazekas scores and white matter hyperintensity volume (R=0.823, p<0.01). CONCLUSIONS Quantitative white matter hyperintensity volume and the Fazekas scores are highly correlated and may be used as indicators of white matter hyperintensity severity. In addition, quantitative analysis may be more effective in classifying advanced white matter hyperintensity lesions than the Fazekas classification.
Collapse
Affiliation(s)
- Ryuya Okawa
- Department of Diagnostic Imaging, Institute of Brain and Blood Vessels Mihara Memorial Hospital; Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences.
| | - Norio Hayashi
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences.
| | - Tetsuhiko Takahashi
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences.
| | - Ryo Atarashi
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences.
| | - Go Yasui
- Department of Diagnostic Imaging, Institute of Brain and Blood Vessels Mihara Memorial Hospital.
| | - Ban Mihara
- Department of Neurology, Institute of Brain and Blood Vessels Mihara Memorial Hospital.
| |
Collapse
|
3
|
Dao E, Barha CK, Zou J, Wei N, Liu-Ambrose T. Prevention of Vascular Contributions to Cognitive Impairment and Dementia: The Role of Physical Activity and Exercise. Stroke 2024; 55:812-821. [PMID: 38410973 DOI: 10.1161/strokeaha.123.044173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
Vascular contributions to cognitive impairment and dementia, specifically cerebral small vessel disease (CSVD), are the second most common cause of dementia. Currently, there are no specific pharmacological treatments for CSVD, and the use of conventional antidementia drugs is not recommended. Exercise has the potential to prevent and mitigate CSVD-related brain damage and improve cognitive function. Mechanistic pathways underlying the neurocognitive benefits of exercise include the control of vascular risk factors, improving endothelial function, and upregulating exerkines. Notably, the therapeutic efficacy of exercise may vary by exercise type (ie, aerobic versus resistance training) and biological sex; thus, studies designed specifically to examine these moderating factors within a CSVD context are needed. Furthermore, future research should prioritize resistance training interventions, given their tremendous therapeutic potential. Addressing these knowledge gaps will help us refine exercise recommendations to maximize their therapeutic impact in the prevention and mitigation of CSVD.
Collapse
Affiliation(s)
- Elizabeth Dao
- Department of Radiology (E.D.)
- Department of Physical Therapy, Aging, Mobility, and Cognitive Health Laboratory (E.D., J.Z., N.W., T.L.-A.), Faculty of Medicine, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada (E.D., J.Z., N.W., T.L.-A.)
| | - Cindy K Barha
- Faculty of Kinesiology (C.K.B.), University of Calgary, AB, Canada
- Hotchkiss Brain Institute (C.K.B.), University of Calgary, AB, Canada
| | - Jammy Zou
- Department of Physical Therapy (J.Z., N.W., T.L.-A.)
- Department of Physical Therapy, Aging, Mobility, and Cognitive Health Laboratory (E.D., J.Z., N.W., T.L.-A.), Faculty of Medicine, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada (E.D., J.Z., N.W., T.L.-A.)
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, BC, Canada (J.Z., N.W., T.L.-A.)
| | - Nathan Wei
- Department of Physical Therapy (J.Z., N.W., T.L.-A.)
- Department of Physical Therapy, Aging, Mobility, and Cognitive Health Laboratory (E.D., J.Z., N.W., T.L.-A.), Faculty of Medicine, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada (E.D., J.Z., N.W., T.L.-A.)
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, BC, Canada (J.Z., N.W., T.L.-A.)
| | - Teresa Liu-Ambrose
- Department of Physical Therapy (J.Z., N.W., T.L.-A.)
- Department of Physical Therapy, Aging, Mobility, and Cognitive Health Laboratory (E.D., J.Z., N.W., T.L.-A.), Faculty of Medicine, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada (E.D., J.Z., N.W., T.L.-A.)
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, BC, Canada (J.Z., N.W., T.L.-A.)
| |
Collapse
|
4
|
Iandolo R, Avci E, Bommarito G, Sandvig I, Rohweder G, Sandvig A. Characterizing upper extremity fine motor function in the presence of white matter hyperintensities: A 7 T MRI cross-sectional study in older adults. Neuroimage Clin 2024; 41:103569. [PMID: 38281363 PMCID: PMC10839532 DOI: 10.1016/j.nicl.2024.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND White matter hyperintensities (WMH) are a prevalent radiographic finding in the aging brain studies. Research on WMH association with motor impairment is mostly focused on the lower-extremity function and further investigation on the upper-extremity is needed. How different degrees of WMH burden impact the network of activation recruited during upper limb motor performance could provide further insight on the complex mechanisms of WMH pathophysiology and its interaction with aging and neurological disease processes. METHODS 40 healthy elderly subjects without a neurological/psychiatric diagnosis were included in the study (16F, mean age 69.3 years). All subjects underwent ultra-high field 7 T MRI including structural and finger tapping task-fMRI. First, we quantified the WMH lesion load and its spatial distribution. Secondly, we performed a data-driven stratification of the subjects according to their periventricular and deep WMH burdens. Thirdly, we investigated the distribution of neural recruitment and the corresponding activity assessed through BOLD signal changes among different brain regions for groups of subjects. We clustered the degree of WMH based on location, numbers, and volume into three categories; ranging from mild, moderate, and severe. Finally, we explored how the spatial distribution of WMH, and activity elicited during task-fMRI relate to motor function, measured with the 9-Hole Peg Test. RESULTS Within our population, we found three subgroups of subjects, partitioned according to their periventricular and deep WMH lesion load. We found decreased activity in several frontal and cingulate cortex areas in subjects with a severe WMH burden. No statistically significant associations were found when performing the brain-behavior statistical analysis for structural or functional data. CONCLUSION WMH burden has an effect on brain activity during fine motor control and the activity changes are associated with varying degrees of the total burden and distributions of WMH lesions. Collectively, our results shed new light on the potential impact of WMH on motor function in the context of aging and neurodegeneration.
Collapse
Affiliation(s)
- Riccardo Iandolo
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Esin Avci
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Giulia Bommarito
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Gitta Rohweder
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Stroke Unit, Department of Medicine, St Olav's University Hospital, Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway; Department of Clinical Neurosciences, Division of Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden; Department of Community Medicine and Rehabilitation, Umeå University Hospital, Umeå, Sweden.
| |
Collapse
|
5
|
Atarashi R, Takahashi T, Hayashi N, Okawa R. [Echo Train Length (ETL) of Fluid-attenuated Inversion Recovery (FLAIR) and Extraction Volume of White Matter Hyperintensity Volume in Automated White Matter Signal Analysis]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023; 79:1158-1167. [PMID: 37612045 DOI: 10.6009/jjrt.2023-1359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
PURPOSE To investigate whether the volume of white matter hyperintensity (WMH) extracted from FLAIR images changes when the imaging parameters of the original images are changed. METHODS Seven healthy volunteers were imaged by changing the imaging parameter ETL of FLAIR images, and WMHs were extracted and their volumes were calculated by the automatic extraction software. The results were statistically analyzed to examine the relationship (Experiment 1). Simulated images with different SNRs were created by adding white noise to four examples of healthy volunteer images. The SNR of the simulated images simulated the SNR of the measured images of different ETLs. The WMH was extracted from the simulated images and its volume was calculated using the automatic extraction software (Experiment 2). RESULTS Experiment 1 showed that there was no significant difference between FLAIR imaging parameters and WMH volume in automatic white matter signal analysis, except for some conditions. Experiment 2 showed that as the SNR of the original image decreased, the volume of high white matter signal extracted decreased. CONCLUSION In automatic white matter signal analysis, WMH was shown to be small when the ETL of the FLAIR sequence was larger than normal and/or the SNR of the image was low.
Collapse
Affiliation(s)
- Ryo Atarashi
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences
| | - Tetsuhiko Takahashi
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences
| | - Norio Hayashi
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences
| | - Ryuya Okawa
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences
- Department of Diagnostic Imaging, Mihara Memorial Hospital
| |
Collapse
|
6
|
Lee H, Mackenzie IRA, Beg MF, Popuri K, Rademakers R, Wittenberg D, Hsiung GYR. White-matter abnormalities in presymptomatic GRN and C9orf72 mutation carriers. Brain Commun 2022; 5:fcac333. [PMID: 36632182 PMCID: PMC9825756 DOI: 10.1093/braincomms/fcac333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/26/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022] Open
Abstract
A large proportion of familial frontotemporal dementia is caused by TAR DNA-binding protein 43 (transactive response DNA-binding protein 43 kDa) proteinopathies. Accordingly, carriers of autosomal dominant mutations in the genes associated with TAR DNA-binding protein 43 aggregation, such as Chromosome 9 open reading frame 72 (C9orf72) or progranulin (GRN), are at risk of later developing frontotemporal dementia. Brain imaging abnormalities that develop before dementia onset in mutation carriers may serve as proxies for the presymptomatic stages of familial frontotemporal dementia due to a genetic cause. Our study objective was to investigate brain MRI-based white-matter changes in predementia participants carrying mutations in C9orf72 or GRN genes. We analysed mutation carriers and their family member controls (noncarriers) from the University of British Columbia familial frontotemporal dementia study. First, a total of 42 participants (8 GRN carriers; 11 C9orf72 carriers; 23 noncarriers) had longitudinal T1-weighted MRI over ∼2 years. White-matter signal hypointensities were segmented and volumes were calculated for each participant. General linear models were applied to compare the baseline burden and the annualized rate of accumulation of signal abnormalities among mutation carriers and noncarriers. Second, a total of 60 participants (9 GRN carriers; 17 C9orf72 carriers; 34 noncarriers) had cross-sectional diffusion tensor MRI available. For each participant, we calculated the average fractional anisotropy and mean, radial and axial diffusivity parameter values within the normal-appearing white-matter tissues. General linear models were applied to compare whether mutation carriers and noncarriers had different trends in diffusion tensor imaging parameter values as they neared the expected age of onset. Baseline volumes of white-matter signal abnormalities were not significantly different among mutation carriers and noncarriers. Longitudinally, GRN carriers had significantly higher annualized rates of accumulation (estimated mean: 15.87%/year) compared with C9orf72 carriers (3.69%/year) or noncarriers (2.64%/year). A significant relationship between diffusion tensor imaging parameter values and increasing expected age of onset was found in the periventricular normal-appearing white-matter region. Specifically, GRN carriers had a tendency of a faster increase of mean and radial diffusivity values and C9orf72 carriers had a tendency of a faster decline of fractional anisotropy values as they reached closer to the expected age of dementia onset. These findings suggest that white-matter changes may represent early markers of familial frontotemporal dementia due to genetic causes. However, GRN and C9orf72 mutation carriers may have different mechanisms leading to tissue abnormalities.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Correspondence to: Hyunwoo Lee S154-2211 Wesbrook Mall Vancouver, B.C., Canada V6T 2B5 E-mail:
| | - Ian R A Mackenzie
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver V6T2B5, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby V5A1S6, Canada
| | - Karteek Popuri
- Department of Computer Science, Memorial University of Newfoundland, St John’s A1B3X5, Canada
| | - Rosa Rademakers
- Applied and Translational Neurogenomics, VIB Center for Molecular Neurology, VIB, Antwerp 2610, Belgium,Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium,Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dana Wittenberg
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver V6T2B5, Canada
| | - Ging-Yuek Robin Hsiung
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver V6T2B5, Canada
| |
Collapse
|
7
|
Austin TR, Jensen PN, Nasrallah IM, Habes M, Rashid T, Ware JB, Chen LY, Greenland P, Hughes TM, Post WS, Shea SJ, Watson KE, Sitlani CM, Floyd JS, Kronmal RA, Longstreth WT, Bertoni AG, Shah SJ, Bryan RN, Heckbert SR. Left Atrial Function and Arrhythmias in Relation to Small Vessel Disease on Brain MRI: The Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc 2022; 11:e026460. [PMID: 36250665 PMCID: PMC9673671 DOI: 10.1161/jaha.122.026460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Background Atrial fibrillation (AF) is associated with increased stroke risk and accelerated cognitive decline, but the association of early manifestations of left atrial (LA) impairment with subclinical changes in brain structure is unclear. We investigated whether abnormal LA structure and function, greater supraventricular ectopy, and intermittent AF are associated with small vessel disease on magnetic resonance imaging of the brain. Methods and Results In the Multi-Ethnic Study of Atherosclerosis, 967 participants completed 14-day ambulatory electrocardiographic monitoring, speckle tracking echocardiography and, a median 17 months later, magnetic resonance imaging of the brain. We assessed associations of LA volume index and reservoir strain, supraventricular ectopy, and prevalent AF with brain magnetic resonance imaging measures of small vessel disease and atrophy. The mean age of participants was 72 years; 53% were women. In multivariable models, LA enlargement was associated with lower white matter fractional anisotropy and greater prevalence of microbleeds; reduced LA strain, indicating worse LA function, was associated with more microbleeds. More premature atrial contractions were associated with lower total gray matter volume. Compared with no AF, intermittent AF (prevalent AF with <100% AF during electrocardiographic monitoring) was associated with lower white matter fractional anisotropy (-0.25 SDs [95% CI, -0.44 to -0.07]) and greater prevalence of microbleeds (prevalence ratio: 1.42 [95% CI, 1.12-1.79]). Conclusions In individuals without a history of stroke or transient ischemic attack, alterations of LA structure and function, including enlargement, reduced strain, frequent premature atrial contractions, and intermittent AF, were associated with increased markers of small vessel disease. Detailed assessment of LA structure and function and extended ECG monitoring may enable early identification of individuals at greater risk of small vessel disease.
Collapse
Affiliation(s)
| | | | - Ilya M. Nasrallah
- Center for Biomedical Image Computing and Analytics, Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPA
| | - Mohamad Habes
- Neuroimage Analytics Laboratory and the Biggs Institute Neuroimaging CoreGlenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San AntonioTX
| | - Tanweer Rashid
- Neuroimage Analytics Laboratory and the Biggs Institute Neuroimaging CoreGlenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San AntonioTX
| | - Jeffrey B. Ware
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPA
| | - Lin Yee Chen
- Cardiovascular Division, Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMN
| | - Philip Greenland
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIL
- Division of Cardiology, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Timothy M. Hughes
- Department of Internal MedicineWake Forest School of MedicineWinston‐SalemNC
| | - Wendy S. Post
- Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreMD
| | - Steven J. Shea
- Departments of Medicine and EpidemiologyColumbia UniversityNew YorkNY
| | - Karol E. Watson
- Department of Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCA
| | | | - James S. Floyd
- Department of EpidemiologyUniversity of WashingtonSeattleWA
- Department of MedicineUniversity of WashingtonSeattleWA
| | | | - W. T. Longstreth
- Department of EpidemiologyUniversity of WashingtonSeattleWA
- Department of NeurologyUniversity of WashingtonSeattleWA
| | - Alain G. Bertoni
- Department of Epidemiology and PreventionWake Forest School of MedicineWinston‐SalemNC
| | - Sanjiv J. Shah
- Division of Cardiology, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - R. Nick Bryan
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPA
| | | |
Collapse
|
8
|
Alzaid H, Ethofer T, Kardatzki B, Erb M, Scheffler K, Berg D, Maetzler W, Hobert MA. Gait decline while dual-tasking is an early sign of white matter deterioration in middle-aged and older adults. Front Aging Neurosci 2022; 14:934241. [PMID: 36247983 PMCID: PMC9558904 DOI: 10.3389/fnagi.2022.934241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Loss of white matter integrity (WMI) is associated with gait deficits in middle-aged and older adults. However, these deficits are often only apparent under cognitively demanding situations, such as walking and simultaneously performing a secondary cognitive task. Moreover, evidence suggests that declining executive functions (EF) are linked to gait decline, and their co-occurrence may point to a common underlying pathology, i.e., degeneration of shared brain regions. In this study, we applied diffusion tensor imaging (DTI) and a standardized gait assessment under single- and dual-tasking (DT) conditions (walking and subtracting) in 74 middle-aged and older adults without any significant gait or cognitive impairments to detect subtle WM alterations associated with gait decline under DT conditions. Additionally, the Trail Making Test (TMT) was used to assess EF, classify participants into three groups based on their performance, and examine a possible interaction between gait, EF, and WMI. Gait speed and subtracting speed while dual-tasking correlated significantly with the fractional anisotropy (FA) in the bilateral anterior corona radiata (highest r = 0.51/p < 0.0125 FWE-corrected). Dual-task costs (DTC) of gait speed correlated significantly with FA in widespread pathways, including the corpus callosum, bilateral anterior and superior corona radiata, as well as the left superior longitudinal fasciculus (highest r = −0.47/p < 0.0125 FWE-corrected). EF performance was associated with FA in the left anterior corona radiata (p < 0.05); however, EF did not significantly mediate the effects of WMI on DTC of gait speed. There were no significant correlations between TMT and DTC of gait and subtracting speed, respectively. Our findings indicate that gait decline under DT conditions is associated with widespread WM deterioration even in middle-aged and older adults without any significant gait or cognitive impairments. However, this relationship was not mediated by EF.
Collapse
Affiliation(s)
- Haidar Alzaid
- Department of Biomedical Magnetic Resonance, Tübingen University Hospital, Tübingen, Germany
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Haidar Alzaid,
| | - Thomas Ethofer
- Department of Biomedical Magnetic Resonance, Tübingen University Hospital, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, Tübingen University Hospital, Tübingen, Germany
| | - Bernd Kardatzki
- Department of Biomedical Magnetic Resonance, Tübingen University Hospital, Tübingen, Germany
| | - Michael Erb
- Department of Biomedical Magnetic Resonance, Tübingen University Hospital, Tübingen, Germany
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, Tübingen University Hospital, Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, Kiel University Hospital, Kiel, Germany
| | - Walter Maetzler
- Department of Neurology, Kiel University Hospital, Kiel, Germany
| | - Markus A. Hobert
- Department of Neurology, Kiel University Hospital, Kiel, Germany
| |
Collapse
|
9
|
Shen X, Raghavan S, Przybelski SA, Lesnick TG, Ma S, Reid RI, Graff-Radford J, Mielke MM, Knopman DS, Petersen RC, Jack CR, Simon GJ, Vemuri P. Causal structure discovery identifies risk factors and early brain markers related to evolution of white matter hyperintensities. Neuroimage Clin 2022; 35:103077. [PMID: 35696810 PMCID: PMC9194644 DOI: 10.1016/j.nicl.2022.103077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/25/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Abstract
Our goal was to understand the complex relationship between age, sex, midlife risk factors, and early white matter changes measured by diffusion tensor imaging (DTI) and their role in the evolution of longitudinal white matter hyperintensities (WMH). We identified 1564 participants (1396 cognitively unimpaired, 151 mild cognitive impairment and 17 dementia participants) with age ranges of 30-90 years from the population-based sample of Mayo Clinic Study of Aging. We used computational causal structure discovery and regression analyses to evaluate the predictors of WMH and DTI, and to ascertain the mediating effect of DTI on WMH. We further derived causal graphs to understand the complex interrelationships between midlife protective factors, vascular risk factors, diffusion changes, and WMH. Older age, female sex, and hypertension were associated with higher baseline and progression of WMH as well as DTI measures (P ≤ 0.003). The effects of hypertension and sex on WMH were partially mediated by microstructural changes measured on DTI. Higher midlife physical activity was predictive of lower WMH through a direct impact on better white matter tract integrity as well as an indirect effect through reducing the risk of hypertension by lowering BMI. This study identified key risks factors, early brain changes, and pathways that may lead to the evolution of WMH.
Collapse
Affiliation(s)
- Xinpeng Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA; Departments of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Robert I Reid
- Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | - Michelle M Mielke
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA; Departments of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - György J Simon
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
10
|
Aamodt EB, Lydersen S, Alnæs D, Schellhorn T, Saltvedt I, Beyer MK, Håberg A. Longitudinal Brain Changes After Stroke and the Association With Cognitive Decline. Front Neurol 2022; 13:856919. [PMID: 35720079 PMCID: PMC9204010 DOI: 10.3389/fneur.2022.856919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCognitive impairment is common after stroke. So is cortical- and subcortical atrophy, with studies reporting more atrophy in the ipsilesional hemisphere than the contralesional hemisphere. The current study aimed to investigate the longitudinal associations between (I) lateralization of brain atrophy and stroke hemisphere, and (II) cognitive impairment and brain atrophy after stroke. We expected to find that (I) cortical thickness and hippocampal-, thalamic-, and caudate nucleus volumes declined more in the ipsilesional than the contralesional hemisphere up to 36 months after stroke. Furthermore, we predicted that (II) cognitive decline was associated with greater stroke volumes, and with greater cortical thickness and subcortical structural volume atrophy across the 36 months.MethodsStroke survivors from five Norwegian hospitals were included from the multisite-prospective “Norwegian Cognitive Impairment After Stroke” (Nor-COAST) study. Analyses were run with clinical, neuropsychological and structural magnetic resonance imaging (MRI) data from baseline, 18- and 36 months. Cortical thicknesses and subcortical volumes were obtained via FreeSurfer segmentations and stroke lesion volumes were semi-automatically derived using ITK-SNAP. Cognition was measured using MoCA.ResultsFindings from 244 stroke survivors [age = 72.2 (11.3) years, women = 55.7%, stroke severity NIHSS = 4.9 (5.0)] were included at baseline. Of these, 145 (59.4%) had an MRI scan at 18 months and 72 (49.7% of 18 months) at 36 months. Most cortices and subcortices showed a higher ipsi- compared to contralesional atrophy rate, with the effect being more prominent in the right hemisphere. Next, greater degrees of atrophy particularly in the medial temporal lobe after left-sided strokes and larger stroke lesion volumes after right-sided strokes were associated with cognitive decline over time.ConclusionAtrophy in the ipsilesional hemisphere was greater than in the contralesional hemisphere over time. This effect was found to be more prominent in the right hemisphere, pointing to a possible higher resilience to stroke of the left hemisphere. Lastly, greater atrophy of the cortex and subcortex, as well as larger stroke volume, were associated with worse cognition over time and should be included in risk assessments of cognitive decline after stroke.
Collapse
Affiliation(s)
- Eva B. Aamodt
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- *Correspondence: Eva B. Aamodt
| | - Stian Lydersen
- Regional Centre for Child and Youth Mental Health and Child Welfare, Department of Mental Health, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Till Schellhorn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
- Department of Geriatrics, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Mona K. Beyer
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Asta Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
11
|
Thyreau B, Tatewaki Y, Chen L, Takano Y, Hirabayashi N, Furuta Y, Hata J, Nakaji S, Maeda T, Noguchi‐Shinohara M, Mimura M, Nakashima K, Mori T, Takebayashi M, Ninomiya T, Taki Y. Higher-resolution quantification of white matter hypointensities by large-scale transfer learning from 2D images on the JPSC-AD cohort. Hum Brain Mapp 2022; 43:3998-4012. [PMID: 35524684 PMCID: PMC9374893 DOI: 10.1002/hbm.25899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022] Open
Abstract
White matter lesions (WML) commonly occur in older brains and are quantifiable on MRI, often used as a biomarker in Aging research. Although algorithms are regularly proposed that identify these lesions from T2‐fluid‐attenuated inversion recovery (FLAIR) sequences, none so far can estimate lesions directly from T1‐weighted images with acceptable accuracy. Since 3D T1 is a polyvalent and higher‐resolution sequence, it could be beneficial to obtain the distribution of WML directly from it. However a serious difficulty, both for algorithms and human, can be found in the ambiguities of brain signal intensity in T1 images. This manuscript shows that a cross‐domain ConvNet (Convolutional Neural Network) approach can help solve this problem. Still, this is non‐trivial, as it would appear to require a large and varied dataset (for robustness) labelled at the same high resolution (for spatial accuracy). Instead, our model was taught from two‐dimensional FLAIR images with a loss function designed to handle the super‐resolution need. And crucially, we leveraged a very large training set for this task, the recently assembled, multi‐sites Japan Prospective Studies Collaboration for Aging and Dementia (JPSC‐AD) cohort. We describe the two‐step procedure that we followed to handle such a large number of imperfectly labeled samples. A large‐scale accuracy evaluation conducted against FreeSurfer 7, and a further visual expert rating revealed that WML segmentation from our ConvNet was consistently better. Finally, we made a directly usable software program based on that trained ConvNet model, available at https://github.com/bthyreau/deep-T1-WMH.
Collapse
Affiliation(s)
- Benjamin Thyreau
- Smart‐Aging Research Center, Institute of Development, Aging, and CancerTohoku UniversitySendaiJapan
| | - Yasuko Tatewaki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging, and CancerTohoku UniversitySendaiJapan
- Department of Geriatric Medicine and NeuroimagingTohoku University HospitalSendaiJapan
| | - Liying Chen
- Smart‐Aging Research Center, Institute of Development, Aging, and CancerTohoku UniversitySendaiJapan
| | - Yuji Takano
- Smart‐Aging Research Center, Institute of Development, Aging, and CancerTohoku UniversitySendaiJapan
- Department of Psychological SciencesUniversity of Human EnvironmentsMatsuyamaJapan
| | - Naoki Hirabayashi
- Department of Epidemiology and Public Health, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshihiko Furuta
- Department of Epidemiology and Public Health, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Jun Hata
- Department of Epidemiology and Public Health, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Graduate School of MedicineHirosaki UniversityHirosakiJapan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of MedicineIwate Medical UniversityIwateJapan
| | - Moeko Noguchi‐Shinohara
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | | | - Kenji Nakashima
- National Hospital Organization, Matsue Medical CenterShimaneJapan
| | - Takaaki Mori
- Department of Neuropsychiatry, Ehime University Graduate School of MedicineEhime UniversityEhimeJapan
| | - Minoru Takebayashi
- Faculty of Life Sciences, Department of NeuropsychiatryKumamoto UniversityKumamotoJapan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yasuyuki Taki
- Smart‐Aging Research Center, Institute of Development, Aging, and CancerTohoku UniversitySendaiJapan
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging, and CancerTohoku UniversitySendaiJapan
- Department of Geriatric Medicine and NeuroimagingTohoku University HospitalSendaiJapan
| | | |
Collapse
|
12
|
Fleischman DA, Arfanakis K, Leurgans SE, Zhang S, Poole VN, Han SD, Yu L, Lamar M, Kim N, Bennett DA, Barnes LL. Associations of deformation-based brain morphometry with cognitive level and decline within older Blacks without dementia. Neurobiol Aging 2022; 111:35-43. [PMID: 34963062 PMCID: PMC9070546 DOI: 10.1016/j.neurobiolaging.2021.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/04/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Blacks are at higher risk of developing cognitive impairment with age than non-Hispanic Whites, yet most brain morphometry and cognition research is performed with White samples or with mixed samples that control for race or compare across racial groups. A deeper understanding of the within-group variability in associations between brain structure and cognitive decline in Blacks is critically important for designing appropriate outcomes for clinical trials, predicting adverse outcomes, and developing interventions to preserve cognitive function, but no studies have examined these associations longitudinally within Blacks. We performed deformation-based morphometry in 376 older Black participants without dementia and examined associations of deformation-based morphometry with cognitive level and decline for global cognition and five cognitive domains. After correcting for widespread age-associated effects, there remained regions with less tissue and more cerebrospinal fluid associated with level and rate of decline in global cognition, memory, and perceptual speed. Further study is needed to examine the moderators of these associations, identify adverse outcomes predicted by brain morphometry, and deepen knowledge of underlying biological mechanisms.
Collapse
Affiliation(s)
- Debra A Fleischman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago IL, USA; Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago IL, USA.
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago IL, USA; Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago IL, USA; Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago IL, USA; Department of Preventive Medicine, Rush University Medical Center, Chicago IL, USA
| | - Shengwei Zhang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago IL, USA
| | - Victoria N Poole
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago IL, USA; Department of Orthopedic Surgery, Rush University Medical Center, Chicago IL, USA
| | - S Duke Han
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago IL, USA; Departments of Family Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Psychology, University of Southern California, Los Angeles, CA, USA; School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago IL, USA
| | - Melissa Lamar
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago IL, USA; Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago IL, USA
| | - Namhee Kim
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago IL, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago IL, USA; Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago IL, USA
| |
Collapse
|
13
|
Five years of exercise intervention at different intensities and development of white matter hyperintensities in community dwelling older adults, a Generation 100 sub-study. Aging (Albany NY) 2022; 14:596-622. [PMID: 35042832 PMCID: PMC8833118 DOI: 10.18632/aging.203843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
We investigated if a five-year supervised exercise intervention with moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) versus control; physical activity according to national guidelines, attenuated the growth of white matter hyperintensities (WMH). We hypothesized that supervised exercise, in particular HIIT, reduced WMH growth. Older adults from the general population participating in the RCT Generation 100 Study were scanned at 3T MRI at baseline (age 70–77), and after 1-, 3- and 5-years. At each follow-up, cardiorespiratory fitness was measured with ergospirometry, and physical activity plus clinical data collected. Manually delineated total WMH, periventricular (PWMH), deep (DWMH), and automated total white matter hypointensity volumes were obtained. No group by time interactions were present in linear mixed model analyses with the different WMH measurements as outcomes. In the combined exercise (MICT&HIIT) group, a significant group by time interaction was uncovered for PWMH volume, with a larger increase in the MICT&HIIT group. Cardiorespiratory fitness at the follow-ups or change in cardiorespiratory fitness over time were not associated with any WMH measure. Contrary to our hypothesis, taking part in MICT or HIIT over a five-year period did not attenuate WMH growth compared to being in a control group following national physical activity guidelines.
Collapse
|
14
|
Shao Y, Ruan J, Xu Y, Shu Z, He X. Comparing the Performance of Two Radiomic Models to Predict Progression and Progression Speed of White Matter Hyperintensities. Front Neuroinform 2021; 15:789295. [PMID: 34924990 PMCID: PMC8671609 DOI: 10.3389/fninf.2021.789295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: The aim of this study was to compare two radiomic models in predicting the progression of white matter hyperintensity (WMH) and the speed of progression from conventional magnetic resonance images. Methods: In this study, 232 people were retrospectively analyzed at Medical Center A (training and testing groups) and Medical Center B (external validation group). A visual rating scale was used to divide all patients into WMH progression and non-progression groups. Two regions of interest (ROIs)—ROI whole-brain white matter (WBWM) and ROI WMH penumbra (WMHp)—were segmented from the baseline image. For predicting WMH progression, logistic regression was applied to create radiomic models in the two ROIs. Then, age, sex, clinical course, vascular risk factors, and imaging factors were incorporated into a stepwise regression analysis to construct the combined diagnosis model. Finally, the presence of a correlation between radiomic findings and the speed of progression was analyzed. Results: The area under the curve (AUC) was higher for the WMHp-based radiomic model than the WBWM-based radiomic model in training, testing, and validation groups (0.791, 0.768, and 0.767 vs. 0.725, 0.693, and 0.691, respectively). The WBWM-based combined model was established by combining age, hypertension, and rad-score of the ROI WBWM. Also, the WMHp-based combined model is built by combining the age and rad-score of the ROI WMHp. Compared with the WBWM-based model (AUC = 0.779, 0.716, 0.673 in training, testing, and validation groups, respectively), the WMHp-based combined model has higher diagnostic efficiency and better generalization ability (AUC = 0.793, 0.774, 0.777 in training, testing, and validation groups, respectively). The speed of WMH progression was related to the rad-score from ROI WMHp (r = 0.49) but not from ROI WBWM. Conclusion: The heterogeneity of the penumbra could help identify the individuals at high risk of WMH progression and the rad-score of it was correlated with the speed of progression.
Collapse
Affiliation(s)
- Yuan Shao
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | | | - Yuyun Xu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaodong He
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
15
|
Porcu M, Cocco L, Cocozza S, Pontillo G, Operamolla A, Defazio G, Suri JS, Brunetti A, Saba L. The association between white matter hyperintensities, cognition and regional neural activity in healthy subjects. Eur J Neurosci 2021; 54:5427-5443. [PMID: 34327745 DOI: 10.1111/ejn.15403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 07/03/2021] [Accepted: 07/24/2021] [Indexed: 11/29/2022]
Abstract
White matter hyperintensities (WMH) are common findings that can be found in physiological ageing. Several studies suggest that the disruption of white matter tracts included in WMH could induce abnormal functioning of the respective linked cortical structures, with consequent repercussion on the cerebral functions, included the cognitive sphere. In this cross-sectional research, we analysed the effects of the total WMH burden (tWMHb) on resting-state functional magnetic resonance imaging (rs-fMRI) and cognition. Functional and structural MR data, as well as the scores of the trail making test subtests A (TMT-A) and B (TMT-B) of 75 healthy patients, were extracted from the public available Leipzig Study for Mind-Body-Emotion Interactions dataset. tWMHb was extracted from structural data. Spearman's correlation analyses were made for investigating correlations between WMHb and the scores of the cognitive tests. The fractional amplitude of low-frequency fluctuations (fALFF) method was applied for analysing the rs-fMRI data, adopting a multiple regression model for studying the effects of tWMHb on brain activity. Three different subanalyses were conducted using different statistical methods. We observed statistically significant correlations between WMHb and the scores of the cognitive tests. The fALFF analysis revealed that tWMHb is associated with the reduction of regional neural activity of several brain areas (in particular the prefrontal cortex, precuneus and cerebellar crus I/II). We conclude that our findings clarify better the relationships between WMH and cognitive impairment, evidencing that tWMHb is associated with impairments of the neurocognitive function in healthy subjects by inducing a diffuse reduction of the neural activity.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Luigi Cocco
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Sirio Cocozza
- Department of Neuroradiology, University of Napoli "Federico II", Napoli, Italy
| | - Giuseppe Pontillo
- Department of Neuroradiology, University of Napoli "Federico II", Napoli, Italy
| | | | - Giovanni Defazio
- Department of Neurology, University of Cagliari, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, California, USA
| | - Arturo Brunetti
- Department of Neuroradiology, University of Napoli "Federico II", Napoli, Italy
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
16
|
Hoagey DA, Lazarus LTT, Rodrigue KM, Kennedy KM. The effect of vascular health factors on white matter microstructure mediates age-related differences in executive function performance. Cortex 2021; 141:403-420. [PMID: 34130048 PMCID: PMC8319097 DOI: 10.1016/j.cortex.2021.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/11/2020] [Accepted: 04/08/2021] [Indexed: 01/03/2023]
Abstract
Even within healthy aging, vascular risk factors can detrimentally influence cognition, with executive functions (EF) particularly vulnerable. Fronto-parietal white matter (WM) connectivity in part, supports EF and may be particularly sensitive to vascular risk. Here, we utilized structural equation modeling in 184 healthy adults (aged 20-94 years of age) to test the hypotheses that: 1) fronto-parietal WM microstructure mediates age effects on EF; 2) higher blood pressure (BP) and white matter hyperintensity (WMH) burden influences this association. All participants underwent comprehensive cognitive and neuropsychological testing including tests of processing speed, executive function (with a focus on tasks that require switching and inhibition) and completed an MRI scanning session that included FLAIR imaging for semi-automated quantification of white matter hyperintensity burden and diffusion-weighted imaging for tractography. Structural equation models were specified with age (as a continuous variable) and blood pressure predicting within-tract WMH burden and fractional anisotropy predicting executive function and processing speed. Results indicated that fronto-parietal white matter of the genu of the corpus collosum, superior longitudinal fasciculus, and the inferior frontal occipital fasciculus (but not cortico-spinal tract) mediated the association between age and EF. Additionally, increased systolic blood pressure and white matter hyperintensity burden within these white matter tracts contribute to worsening white matter health and are important factors underlying age-brain-behavior associations. These findings suggest that aging brings about increases in both BP and WMH burden, which may be involved in the degradation of white matter connectivity and in turn, negatively impact executive functions as we age.
Collapse
Affiliation(s)
- David A Hoagey
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Center for Vital Longevity, Dallas, TX, USA
| | - Linh T T Lazarus
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Karen M Rodrigue
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Center for Vital Longevity, Dallas, TX, USA
| | - Kristen M Kennedy
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Center for Vital Longevity, Dallas, TX, USA.
| |
Collapse
|
17
|
Effect of white matter hyperintensity on dopamine transporter availability of striatum measured by F-18 FP-CIT PET. Jpn J Radiol 2021; 39:1097-1102. [PMID: 34142306 DOI: 10.1007/s11604-021-01152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE We aimed to evaluate the white matter hyperintensity (WMH) effect on dopamine transporter availability (DAT) of striatum. MATERIALS AND METHODS A total of 48 patients who showed visually normal F-18 FP-CIT uptake were included in this study. Each FP-CIT image were pre-processed using SPM12. Co-registration and spatial normalization of FP-CIT image conducted using T1-weighted magnetic resonance imaging (MRI). And then smoothing of normalized FP-CIT image was performed. Intensity normalization was performed using cerebellum as a reference region. With pre-defined volume of interest template, the specific binding ratio (SBR) of both side of caudate nucleus and putamen was calculated. Fluid attenuated inversion recovery MRI scans were used to evaluate WMH number and volume. RESULTS SBRs of left and right caudate nucleus were correlated with age (r = - 0.615; p < 0.0001; n = 48, r = - 0.607; p < 0.0001; n = 48, respectively), high density lipoprotein cholesterol (r = 0.296; p = 0.041; n = 48, r = 0.29; p = 0.0455; n = 48, respectively), and WMH number (r = - 0.459; p = 0.001; n = 48, r = - 0.481; p = 0.0005; n = 48, respectively) and volume (r = - 0.407; p = 0.0041; n = 48, r = - 0.428; p = 0.0024; n = 48, respectively). CONCLUSION DAT availability of patients who showed visually normal F-18 FP-CIT uptake was correlated with number and volume of WMH.
Collapse
|
18
|
Iriondo A, García-Sebastian M, Arrospide A, Arriba M, Aurtenetxe S, Barandiaran M, Clerigue M, Ecay-Torres M, Estanga A, Gabilondo A, Izagirre A, Saldias J, Tainta M, Villanua J, Mar J, Goñi FM, Martínez-Lage P. Plasma lipids are associated with white matter microstructural changes and axonal degeneration. Brain Imaging Behav 2021; 15:1043-1057. [PMID: 32748320 DOI: 10.1007/s11682-020-00311-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dislipidemia is a risk factor for cognitive impairment. We studied the association between interindividual variability of plasma lipids and white matter (WM) microstructure, using diffusion tensor imaging (DTI) in 273 healthy adults. Special focus was placed on 7 regions of interest (ROI) which are structural components of cognitive neurocircuitry. We also investigated the effect of plasma lipids on cerebrospinal fluid (CSF) neurofilament light chain (NfL), an axonal degeneration marker. Low density lipoprotein (LDL) and triglyceride (TG) levels showed a negative association with axial diffusivity (AxD) in multiple regions. High density lipoproteins (HDL) showed a positive correlation. The association was independent of Apolipoprotein E (APOE) genotype, blood pressure or use of statins. LDL moderated the relation between NfL and AxD in the body of the corpus callosum (p = 0.041), right cingulum gyrus (p = 0.041), right fornix/stria terminalis (p = 0.025) and right superior longitudinal fasciculus (p = 0.020) and TG in the right inferior longitudinal fasciculus (p = 0.004) and left fornix/stria terminalis (p = 0.001). We conclude that plasma lipids are associated to WM microstructural changes and axonal degeneration and might represent a risk factor in the transition from healthy aging to disease.
Collapse
Affiliation(s)
- Ane Iriondo
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Maite García-Sebastian
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Arantzazu Arrospide
- Gipuzkoa Primary Care - Integrated Health Care Organizations Research Unit. Alto Deba Integrated Health Care Organisation, Arrasate, Spain.,Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Maria Arriba
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Sara Aurtenetxe
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Myriam Barandiaran
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Montserrat Clerigue
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Mirian Ecay-Torres
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Ainara Estanga
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Alazne Gabilondo
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Andrea Izagirre
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain.,Department of Nursing II, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Saldias
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Mikel Tainta
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Jorge Villanua
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Javier Mar
- Gipuzkoa Primary Care - Integrated Health Care Organizations Research Unit. Alto Deba Integrated Health Care Organisation, Arrasate, Spain.,Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Felix M Goñi
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) and Instituto Biofisika (CSIC, UPV/EHU), Leioa, Spain
| | - Pablo Martínez-Lage
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain.
| |
Collapse
|
19
|
Huang Z, Tu X, Lin Q, Zhan Z, Tang L, Liu J. Increased internal cerebral vein diameter is associated with age. Clin Imaging 2021; 78:187-193. [PMID: 33962184 DOI: 10.1016/j.clinimag.2021.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/21/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE A recent study described the relationship between cerebral venous diameter and white matter hyperintensity (WMH) volume. However, the adults were not further grouped; therefore, we aimed to compare across age groups and use susceptibility-weighted imaging (SWI) to explore whether there is also a relationship between a larger cerebral draining venous diameter and age, which could provide evidence of a temporal relationship. METHODS We retrospectively analysed data collected from 405 subjects (90 youths, 166 middle-aged participants, and 149 elderly subjects) and respectively used T2-weighted fluid-attenuated inversion recovery (FLAIR) and SWI to assess WMHs and venous diameter. RESULTS An increased internal cerebral vein (ICV) diameter was associated with age in different WMH groups (F = 3.453, 10.437, 11.746, and 21.723, respectively, all p < 0.001; multiple comparisons all p < 0.05), whereas the effect of the anterior septal vein (ASV) was opposite (F = 1.046, 1.210, 0.530, and 0.078, respectively, p > 0.05). There was a positive correlation between the ICV diameter and age with increasing WMH severity (R = 0.727, 0.709, 0.754, and 0.830, respectively, all p < 0.001). A statistically significant relationship between the thalamostriate vein (TSV) diameter and age was observed only in the moderate and severe WMH groups (F = 4.070 and 3.427, respectively, all p < 0.05; multiple comparisons all p < 0.05). CONCLUSIONS Our study demonstrates that increased TSV and ICV diameters are associated with age with increasing WMH severity, especially the ICV diameter using SWI.
Collapse
Affiliation(s)
- Zhenhuan Huang
- Department of Radiology, Longyan First Hospital, Fujian Medical University, No. 105 North 91 Road, Xinluo District, Fujian 364000, China.
| | - Xuezhao Tu
- Department of Orthopedics, Longyan First Hospital, Fujian Medical University, No. 105 North 91 Road, Xinluo District, Fujian 364000, China
| | - Qi Lin
- Department of Radiology, Longyan First Hospital, Fujian Medical University, No. 105 North 91 Road, Xinluo District, Fujian 364000, China
| | - Zejuan Zhan
- Department of Radiology, Longyan First Hospital, Fujian Medical University, No. 105 North 91 Road, Xinluo District, Fujian 364000, China
| | - Langlang Tang
- Department of Radiology, Longyan First Hospital, Fujian Medical University, No. 105 North 91 Road, Xinluo District, Fujian 364000, China
| | - Jinkai Liu
- Department of Radiology, Longyan First Hospital, Fujian Medical University, No. 105 North 91 Road, Xinluo District, Fujian 364000, China
| |
Collapse
|
20
|
Melazzini L, Vitali P, Olivieri E, Bolchini M, Zanardo M, Savoldi F, Di Leo G, Griffanti L, Baselli G, Sardanelli F, Codari M. White Matter Hyperintensities Quantification in Healthy Adults: A Systematic Review and Meta-Analysis. J Magn Reson Imaging 2020; 53:1732-1743. [PMID: 33345393 DOI: 10.1002/jmri.27479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Although white matter hyperintensities (WMH) volumetric assessment is now customary in research studies, inconsistent WMH measures among homogenous populations may prevent the clinical usability of this biomarker. PURPOSE To determine whether a point estimate and reference standard for WMH volume in the healthy aging population could be determined. STUDY TYPE Systematic review and meta-analysis. POPULATION In all, 9716 adult subjects from 38 studies reporting WMH volume were retrieved following a systematic search on EMBASE. FIELD STRENGTH/SEQUENCE 1.0T, 1.5T, or 3.0T/fluid-attenuated inversion recovery (FLAIR) and/or proton density/T2 -weighted fast spin echo sequences or gradient echo T1 -weighted sequences. ASSESSMENT After a literature search, sample size, demographics, magnetic field strength, MRI sequences, level of automation in WMH assessment, study population, and WMH volume were extracted. STATISTICAL TESTS The pooled WMH volume with 95% confidence interval (CI) was calculated using the random-effect model. The I2 statistic was calculated as a measure of heterogeneity across studies. Meta-regression analysis of WMH volume on age was performed. RESULTS Of the 38 studies analyzed, 17 reported WMH volume as the mean and standard deviation (SD) and were included in the meta-analysis. Mean and SD of age was 66.11 ± 10.92 years (percentage of men 50.45% ± 21.48%). Heterogeneity was very high (I2 = 99%). The pooled WMH volume was 4.70 cm3 (95% CI: 3.88-5.53 cm3 ). At meta-regression analysis, WMH volume was positively associated with subjects' age (β = 0.358 cm3 per year, P < 0.05, R2 = 0.27). DATA CONCLUSION The lack of standardization in the definition of WMH together with the high technical variability in assessment may explain a large component of the observed heterogeneity. Currently, volumes of WMH in healthy subjects are not comparable between studies and an estimate and reference interval could not be determined. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Luca Melazzini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Paolo Vitali
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Emanuele Olivieri
- Medicine and Surgery Medical School, Università degli Studi di Milano, Milano, Italy
| | - Marco Bolchini
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Moreno Zanardo
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Filippo Savoldi
- Postgraduate School in Radiology, Università degli Studi di Milano, Milano, Italy
| | - Giovanni Di Leo
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Ludovica Griffanti
- Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Francesco Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Marina Codari
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
21
|
Eldin AESAMT, Bahnasy WS, Dabees NL, Fayed HAER. Cognitive and balance impairments in people with incidental white matter hyperintensities. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-00228-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
White matter hyperintensities (WMHs) is the most frequent type of cerebral small vessel diseases and a common incidental finding in MRI films of the geriatric population. The objectives of this work were to study the existence of occult cognitive and balance impairments in subjects with accidentally discovered WMHs.
Methods
The study was conducted on 44 subjects with accidentally discovered WMHs and 24 non-WMHs subjects submitted to the advanced activity of daily living scale (AADLs), a neurocognitive battery assessing different cognitive domains, Berg balance test (BBT), computerized dynamic posturography (CDP), and brain MRI diffusion tensor tractography (DTT).
Results
WMHs subjects showed a significant decrease in AADLs as well as visual and vestibular ratios of CDP. Regarding the neurocognitive battery, there were significant decreases in MoCA as well as arithmetic test and block design of Wechsler adult intelligence scale-IV in WMHs compared to non-WMHs subjects’ groups (p value < 0.001). Concerning Wisconsin Card Sorting subtests, each preservative response, preservative errors, non-preservative errors and trials to complete the 1st category showed a highly significant increase in WMHs compared to non-WMHs subjects (p values < 0.001). DTT showed a substantial reduction in fractional anisotropy (FA) of each corticospinal tract, thalamocortical connectivity, and arcuate fasciculi.
Conclusion
Subjects with WMHs have lower cognitive performance and subtle balance impairment which greatly impair their ADLs.
Collapse
|
22
|
Dykan IM, Golovchenko YI, Loganovsky KM, Semonova OV, Myronyak LA, Babkina TM, Kuts KV, Kobzar IO, Gresko MV, Loganovska TK, Fedkiv SV. DIFFUSION TENSOR MAGNETIC RESONANCE IMAGING IN EARLY DIAGNOSIS OF STRUCTURAL CHANGES IN BRAIN WHITE MATTER IN SMALL VESSEL DISEASE ASSOCIATED WITH ARTERIAL HYPERTENSION AND IONIZING RADIATION. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 25:558-568. [PMID: 33361861 DOI: 10.33145/2304-8336-2020-25-558-568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE to determine the early signs of structural changes in brain white matter in small vessel disease associated with arterial hypertension and exposure to ionizing radiation using DTI-MRI. MATERIALS AND METHODS 45 patients (mean age (57.56 ± 6.34) years) with small vessel disease (SVD) associatedwith arterial hypertension (AH) were examined: group I - 20 patients, participants of liquidation of the accident atthe Chornobyl nuclear power plant (Chornobyl clean-up workers); group II - 25 patients not exposed to ionizingradiation. MRI was performed on an Ingenia 3T tomograph («Philips»). The fractional anisotropy (FA) was determined in the main associative and commissural pathways, periventricular prefrontal areas (fasciculus fronto-occipitalis superior / anterior - f. FO ant., corona radiata anterior - CR ant.) and semioval centers (SC). RESULTS No signs of cerebral cortex or brain white matter (WM) atrophy, intracerebral microhemorrhages, and widespread areas of leukoaraiosis consolidation were observed in the examined patients. In the Chornobyl clean-up workers a larger number of foci of subcortical leukoaraiosis was visualized (80 %) on MRI images including multiple -8 (40 %), > 0.5 cm - 10 (50 %), with signs of consolidation - 5 (25 %). The results of the FA analysis in semiovalcenters showed its significant decrease in the patients of groups I and II (p < 0,007), regardless of the presence orabsence of visual signs of subcortical leukoaraiosis (ScLA) (III gr.: 253-317, p < 0.00001; IV gr.: 287- 375,p < 0.001). FA indicators in f. FO ant. and CR ant. in the patients of groups I and II differed insignificantly but weresubstantially lower than controls (p < 0.05). FA was significantly lower, compared to reference levels, in visuallyunchanged f. FO ant. (0.389-0.425; p = 0.015) and CR ant. (0.335-0.403; p = 0.05). In patients with AH-associated SVD of middle age, regardless of the effects of ionizing radiation, no significant changes in FA in the mainWM associative and commissural pathways were found (p > 0.05). CONCLUSIONS DTI-MRI allows to detect early signs of structural changes in the white matter of the brain - a significant decrease in fractional anisotropy indicators in visually unchanged periventricular and subcortical areas. Themain associative and commissural pathways of the brain remain intact in the absence of widespread consolidatedfoci of leukoaraiosis and lacunar infarctions. The negative impact of ionizing radiation on the course of SVD associated with arterial hypertension is manifested by more active processes of WM disorganization: the prevalence andtendency to the consolidation of periventricular and subcortical leukoaraiosis foci, a significant FA decrease in semioval centers.
Collapse
Affiliation(s)
- I M Dykan
- State Institution «Institute Nuclear Medicine and Diagnostic Radiology of National Academy of Medical Sciences of Ukraine», 32 Platona Maiborody St., Kyiv, 04050, Ukraine
| | - Y I Golovchenko
- Shupyk National Medical Academy of Postgraduate Education, 9 Dorogozhytska St., 04112, Kyiv, Ukraine
| | - K M Loganovsky
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - O V Semonova
- Shupyk National Medical Academy of Postgraduate Education, 9 Dorogozhytska St., 04112, Kyiv, Ukraine
| | - L A Myronyak
- State Institution «Institute Nuclear Medicine and Diagnostic Radiology of National Academy of Medical Sciences of Ukraine», 32 Platona Maiborody St., Kyiv, 04050, Ukraine
| | - T M Babkina
- Shupyk National Medical Academy of Postgraduate Education, 9 Dorogozhytska St., 04112, Kyiv, Ukraine
| | - K V Kuts
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - I O Kobzar
- State Institution «Institute Nuclear Medicine and Diagnostic Radiology of National Academy of Medical Sciences of Ukraine», 32 Platona Maiborody St., Kyiv, 04050, Ukraine
| | - M V Gresko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - T K Loganovska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - S V Fedkiv
- State Institution «Institute Nuclear Medicine and Diagnostic Radiology of National Academy of Medical Sciences of Ukraine», 32 Platona Maiborody St., Kyiv, 04050, UkraineState Institution «Amosov National Institute of Cardiovascular Surgery of National Academy of Medical Sciences of Ukraine», 6 Mykoly Amosova St., 02000, Kyiv, Ukraine
| |
Collapse
|