1
|
Jallais M, Palombo M. Introducing µGUIDE for quantitative imaging via generalized uncertainty-driven inference using deep learning. eLife 2024; 13:RP101069. [PMID: 39589260 PMCID: PMC11594529 DOI: 10.7554/elife.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
This work proposes µGUIDE: a general Bayesian framework to estimate posterior distributions of tissue microstructure parameters from any given biophysical model or signal representation, with exemplar demonstration in diffusion-weighted magnetic resonance imaging. Harnessing a new deep learning architecture for automatic signal feature selection combined with simulation-based inference and efficient sampling of the posterior distributions, µGUIDE bypasses the high computational and time cost of conventional Bayesian approaches and does not rely on acquisition constraints to define model-specific summary statistics. The obtained posterior distributions allow to highlight degeneracies present in the model definition and quantify the uncertainty and ambiguity of the estimated parameters.
Collapse
Affiliation(s)
- Maëliss Jallais
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff UniversityCardiffUnited Kingdom
- School of Computer Science and Informatics, Cardiff UniversityCardiffUnited Kingdom
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff UniversityCardiffUnited Kingdom
- School of Computer Science and Informatics, Cardiff UniversityCardiffUnited Kingdom
| |
Collapse
|
2
|
Ligneul C, Najac C, Döring A, Beaulieu C, Branzoli F, Clarke WT, Cudalbu C, Genovese G, Jbabdi S, Jelescu I, Karampinos D, Kreis R, Lundell H, Marjańska M, Möller HE, Mosso J, Mougel E, Posse S, Ruschke S, Simsek K, Szczepankiewicz F, Tal A, Tax C, Oeltzschner G, Palombo M, Ronen I, Valette J. Diffusion-weighted MR spectroscopy: Consensus, recommendations, and resources from acquisition to modeling. Magn Reson Med 2024; 91:860-885. [PMID: 37946584 DOI: 10.1002/mrm.29877] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 11/12/2023]
Abstract
Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations. Despite its great potential, dMRS remains a challenging technique on all levels: from the data acquisition to the analysis, quantification, modeling, and interpretation of results. These challenges were the motivation behind the organization of the Lorentz Center workshop on "Best Practices & Tools for Diffusion MR Spectroscopy" held in Leiden, the Netherlands, in September 2021. During the workshop, the dMRS community established a set of recommendations to execute robust dMRS studies. This paper provides a description of the steps needed for acquiring, processing, fitting, and modeling dMRS data, and provides links to useful resources.
Collapse
Affiliation(s)
- Clémence Ligneul
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Chloé Najac
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - André Döring
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Christian Beaulieu
- Departments of Biomedical Engineering and Radiology, University of Alberta, Alberta, Edmonton, Canada
| | - Francesca Branzoli
- Paris Brain Institute-ICM, Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guglielmo Genovese
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minnesota, Minneapolis, USA
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ileana Jelescu
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dimitrios Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Roland Kreis
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager anf Hvidovre, Hvidovre, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minnesota, Minneapolis, USA
| | - Harald E Möller
- NMR Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jessie Mosso
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- LIFMET, EPFL, Lausanne, Switzerland
| | - Eloïse Mougel
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoires des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Stefan Posse
- Department of Neurology, University of New Mexico School of Medicine, New Mexico, Albuquerque, USA
- Department of Physics and Astronomy, University of New Mexico School of Medicine, New Mexico, Albuquerque, USA
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Kadir Simsek
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | | | - Assaf Tal
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot, Israel
| | - Chantal Tax
- University Medical Center Utrecht, Utrecht, The Netherlands
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Maryland, Baltimore, USA
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Maryland, Baltimore, USA
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, UK
| | - Julien Valette
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoires des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| |
Collapse
|
3
|
Martinho RP, Jain MG, Frydman L. High-field ex vivo and in vivo two-dimensional nuclear magnetic resonance spectroscopy in murine brain: Resolving and exploring the molecular environment. NMR IN BIOMEDICINE 2023; 36:e4833. [PMID: 36114827 PMCID: PMC10077987 DOI: 10.1002/nbm.4833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
The structural and chemical complexities within the brain pose a challenge that few noninvasive techniques can tackle with the dexterity of nuclear magnetic resonance (NMR) spectroscopy. Still, even with the advent of ultrahigh fields and of cryogenically cooled coils for in vivo research, the superposition of metabolic resonances arising from the brain remains a challenge. The present study explores the potential to tackle this milieu using a combination of two-dimensional (2D) NMR techniques, implemented on murine brains in vivo at 15.2 T and ex vivo at 14.1 T. While both experiments were affected by substantial inhomogeneous broadenings conveying distinct elongated lineshapes to the cross-peaks, the ability of increased fields to resolve off-diagonal resonances was clear. A comparison between the corresponding conventional and double quantum-filtered correlated spectroscopy traces enabled an improved assignment of in vivo resonances on the basis of more sensitive ex vivo 2D acquisitions, foremost on the basis of homonuclear cross-relaxation-driven correlations for peaks resonating downfield from water, and of heteronuclear correlations at natural abundance for the upfield protons. With the aid of such 2D correlations approximately 29 metabolites could be resolved and identified. This enhanced resolution was used to explore features related to the metabolites' diffusivities, their exposure to water, and their facility to undergo magnetization transfers to amide/amine/hydroxyl resonances. Cross-peaks from main murine brain biomolecules, including choline, creatine, γ-aminobutyric acid, N-acetyl aspartate, glutamine, and glutamate, showed enhancements in several of these various features, opening interesting vistas about metabolite compartmentalization as viewed by these 2D NMR experiments.
Collapse
Affiliation(s)
- Ricardo P. Martinho
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Mukul G. Jain
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Lucio Frydman
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
4
|
Novello L, Henriques RN, Ianuş A, Feiweier T, Shemesh N, Jovicich J. In vivo Correlation Tensor MRI reveals microscopic kurtosis in the human brain on a clinical 3T scanner. Neuroimage 2022; 254:119137. [PMID: 35339682 DOI: 10.1016/j.neuroimage.2022.119137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Diffusion MRI (dMRI) has become one of the most important imaging modalities for noninvasively probing tissue microstructure. Diffusional Kurtosis MRI (DKI) quantifies the degree of non-gaussian diffusion, which in turn has been shown to increase sensitivity towards, e.g., disease and orientation mapping in neural tissue. However, the specificity of DKI is limited as different sources can contribute to the total intravoxel diffusional kurtosis, including: variance in diffusion tensor magnitudes (Kiso), variance due to diffusion anisotropy (Kaniso), and microscopic kurtosis (μK) related to restricted diffusion, microstructural disorder, and/or exchange. Interestingly, μK is typically ignored in diffusion MRI signal modeling as it is assumed to be negligible in neural tissues. However, recently, Correlation Tensor MRI (CTI) based on Double-Diffusion-Encoding (DDE) was introduced for kurtosis source separation, revealing non negligible μK in preclinical imaging. Here, we implemented CTI for the first time on a clinical 3T scanner and investigated the sources of total kurtosis in healthy subjects. A robust framework for kurtosis source separation in humans is introduced, followed by estimation of μK (and the other kurtosis sources) in the healthy brain. Using this clinical CTI approach, we find that μK significantly contributes to total diffusional kurtosis both in gray and white matter tissue but, as expected, not in the ventricles. The first μK maps of the human brain are presented, revealing that the spatial distribution of μK provides a unique source of contrast, appearing different from isotropic and anisotropic kurtosis counterparts. Moreover, group average templates of these kurtosis sources have been generated for the first time, which corroborated our findings at the underlying individual-level maps. We further show that the common practice of ignoring μK and assuming the multiple gaussian component approximation for kurtosis source estimation introduces significant bias in the estimation of other kurtosis sources and, perhaps even worse, compromises their interpretation. Finally, a twofold acceleration of CTI is discussed in the context of potential future clinical applications. We conclude that CTI has much potential for future in vivo microstructural characterizations in healthy and pathological tissue.
Collapse
Affiliation(s)
- Lisa Novello
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.
| | | | - Andrada Ianuş
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Jorge Jovicich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| |
Collapse
|
5
|
Afzali M, Nilsson M, Palombo M, Jones DK. SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI. Neuroimage 2021; 237:118183. [PMID: 34020013 PMCID: PMC8285594 DOI: 10.1016/j.neuroimage.2021.118183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/25/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022] Open
Abstract
The Soma and Neurite Density Imaging (SANDI) three-compartment model was recently proposed to disentangle cylindrical and spherical geometries, attributed to neurite and soma compartments, respectively, in brain tissue. There are some recent advances in diffusion-weighted MRI signal encoding and analysis (including the use of multiple so-called 'b-tensor' encodings and analysing the signal in the frequency-domain) that have not yet been applied in the context of SANDI. In this work, using: (i) ultra-strong gradients; (ii) a combination of linear, planar, and spherical b-tensor encodings; and (iii) analysing the signal in the frequency domain, three main challenges to robust estimation of sphere size were identified: First, the Rician noise floor in magnitude-reconstructed data biases estimates of sphere properties in a non-uniform fashion. It may cause overestimation or underestimation of the spherical compartment size and density. This can be partly ameliorated by accounting for the noise floor in the estimation routine. Second, even when using the strongest diffusion-encoding gradient strengths available for human MRI, there is an empirical lower bound on the spherical signal fraction and radius that can be detected and estimated robustly. For the experimental setup used here, the lower bound on the sphere signal fraction was approximately 10%. We employed two different ways of establishing the lower bound for spherical radius estimates in white matter. The first, examining power-law relationships between the DW-signal and diffusion weighting in empirical data, yielded a lower bound of 7μm, while the second, pure Monte Carlo simulations, yielded a lower limit of 3μm and in this low radii domain, there is little differentiation in signal attenuation. Third, if there is sensitivity to the transverse intra-cellular diffusivity in cylindrical structures, e.g., axons and cellular projections, then trying to disentangle two diffusion-time-dependencies using one experimental parameter (i.e., change in frequency-content of the encoding waveform) makes spherical radii estimates particularly challenging. We conclude that due to the aforementioned challenges spherical radii estimates may be biased when the corresponding sphere signal fraction is low, which must be considered.
Collapse
Affiliation(s)
- Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Markus Nilsson
- Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden.
| | - Marco Palombo
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
6
|
Ianus A, Alexander DC, Zhang H, Palombo M. Mapping complex cell morphology in the grey matter with double diffusion encoding MR: A simulation study. Neuroimage 2021; 241:118424. [PMID: 34311067 PMCID: PMC8961003 DOI: 10.1016/j.neuroimage.2021.118424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023] Open
Abstract
This paper investigates the impact of cell body (namely soma) size and branching of cellular projections on diffusion MR imaging (dMRI) and spectroscopy (dMRS) signals for both standard single diffusion encoding (SDE) and more advanced double diffusion encoding (DDE) measurements using numerical simulations. The aim is to investigate the ability of dMRI/dMRS to characterize the complex morphology of brain cells focusing on these two distinctive features of brain grey matter. To this end, we employ a recently developed computational framework to create three dimensional meshes of neuron-like structures for Monte Carlo simulations, using diffusion coefficients typical of water and brain metabolites. Modelling the cellular structure as realistically connected spherical soma and cylindrical cellular projections, we cover a wide range of combinations of sphere radii and branching order of cellular projections, characteristic of various grey matter cells. We assess the impact of spherical soma size and branching order on the b-value dependence of the SDE signal as well as the time dependence of the mean diffusivity (MD) and mean kurtosis (MK). Moreover, we also assess the impact of spherical soma size and branching order on the angular modulation of DDE signal at different mixing times, together with the mixing time dependence of the apparent microscopic anisotropy (μA), a promising contrast derived from DDE measurements. The SDE results show that spherical soma size has a measurable impact on both the b-value dependence of the SDE signal and the MD and MK diffusion time dependence for both water and metabolites. On the other hand, we show that branching order has little impact on either, especially for water. In contrast, the DDE results show that spherical soma size has a measurable impact on the DDE signal's angular modulation at short mixing times and the branching order of cellular projections significantly impacts the mixing time dependence of the DDE signal's angular modulation as well as of the derived μA, for both water and metabolites. Our results confirm that SDE based techniques may be sensitive to spherical soma size, and most importantly, show for the first time that DDE measurements may be more sensitive to the dendritic tree complexity (as parametrized by the branching order of cellular projections), paving the way for new ways of characterizing grey matter morphology, non-invasively using dMRS and potentially dMRI.
Collapse
Affiliation(s)
- A Ianus
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom; Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - D C Alexander
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - H Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - M Palombo
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom.
| |
Collapse
|
7
|
Lundell H, Ingo C, Dyrby TB, Ronen I. Cytosolic diffusivity and microscopic anisotropy of N-acetyl aspartate in human white matter with diffusion-weighted MRS at 7 T. NMR IN BIOMEDICINE 2021; 34:e4304. [PMID: 32232909 PMCID: PMC8244075 DOI: 10.1002/nbm.4304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Metabolite diffusion measurable in humans in vivo with diffusion-weighted spectroscopy (DW-MRS) provides a window into the intracellular morphology and state of specific cell types. Anisotropic diffusion in white matter is governed by the microscopic properties of the individual cell types and their structural units (axons, soma, dendrites). However, anisotropy is also markedly affected by the macroscopic orientational distribution over the imaging voxel, particularly in DW-MRS, where the dimensions of the volume of interest (VOI) are much larger than those typically used in diffusion-weighted imaging. One way to address the confound of macroscopic structural features is to average the measurements acquired with uniformly distributed gradient directions to mimic a situation where fibers present in the VOI are orientationally uniformly distributed. This situation allows the extraction of relevant microstructural features such as transverse and longitudinal diffusivities within axons and the related microscopic fractional anisotropy. We present human DW-MRS data acquired at 7 T in two different white matter regions, processed and analyzed as described above, and find that intra-axonal diffusion of the neuronal metabolite N-acetyl aspartate is in good correspondence to simple model interpretations, such as multi-Gaussian diffusion from disperse fibers where the transverse diffusivity can be neglected. We also discuss the implications of our approach for current and future applications of DW-MRS for cell-specific measurements.
Collapse
Affiliation(s)
- Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital HvidovreDenmark
| | - Carson Ingo
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinois
- Department of NeurologyNorthwestern UniversityChicagoIllinois
| | - Tim B. Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital HvidovreDenmark
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
| | - Itamar Ronen
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
8
|
Vincent M, Gaudin M, Lucas‐Torres C, Wong A, Escartin C, Valette J. Characterizing extracellular diffusion properties using diffusion-weighted MRS of sucrose injected in mouse brain. NMR IN BIOMEDICINE 2021; 34:e4478. [PMID: 33506506 PMCID: PMC7988537 DOI: 10.1002/nbm.4478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/04/2021] [Indexed: 06/01/2023]
Abstract
Brain water and some critically important energy metabolites, such as lactate or glucose, are present in both intracellular and extracellular spaces (ICS/ECS) at significant levels. This ubiquitous nature makes diffusion MRI/MRS data sometimes difficult to interpret and model. While it is possible to glean information on the diffusion properties in ICS by measuring the diffusion of purely intracellular endogenous metabolites (such as NAA), the absence of endogenous markers specific to ECS hampers similar analyses in this compartment. In past experiments, exogenous probes have therefore been injected into the brain to assess their apparent diffusion coefficient (ADC) and thus estimate tortuosity in ECS. Here, we use a similar approach in mice by injecting sucrose, a well-known ECS marker, in either the lateral ventricles or directly in the prefrontal cortex. For the first time, we propose a thorough characterization of ECS diffusion properties encompassing (1) short-range restriction by looking at signal attenuation at high b values, (2) tortuosity and long-range restriction by measuring ADC time-dependence at long diffusion times and (3) microscopic anisotropy by performing double diffusion encoding (DDE) measurements. Overall, sucrose diffusion behavior is strikingly different from that of intracellular metabolites. Acquisitions at high b values not only reveal faster sucrose diffusion but also some sensitivity to restriction, suggesting that the diffusion in ECS is not fully Gaussian at high b. The time evolution of the ADC at long diffusion times shows that the tortuosity regime is not reached yet in the case of sucrose, while DDE experiments suggest that it is not trapped in elongated structures. No major difference in sucrose diffusion properties is reported between the two investigated routes of injection and brain regions. These original experimental insights should be useful to better interpret and model the diffusion signal of molecules that are distributed between ICS and ECS compartments.
Collapse
Affiliation(s)
- Mélissa Vincent
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Molecular Imaging Research Center (MIRCen)Fontenay‐aux‐RosesFrance
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris‐SaclayUMR 9199 (Neurodegenerative Diseases Laboratory)Fontenay‐aux‐RosesFrance
| | - Mylène Gaudin
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Molecular Imaging Research Center (MIRCen)Fontenay‐aux‐RosesFrance
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris‐SaclayUMR 9199 (Neurodegenerative Diseases Laboratory)Fontenay‐aux‐RosesFrance
| | - Covadonga Lucas‐Torres
- Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris‐SaclayNanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (NIMBE)Gif‐sur‐YvetteFrance
| | - Alan Wong
- Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris‐SaclayNanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (NIMBE)Gif‐sur‐YvetteFrance
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Molecular Imaging Research Center (MIRCen)Fontenay‐aux‐RosesFrance
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris‐SaclayUMR 9199 (Neurodegenerative Diseases Laboratory)Fontenay‐aux‐RosesFrance
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Molecular Imaging Research Center (MIRCen)Fontenay‐aux‐RosesFrance
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris‐SaclayUMR 9199 (Neurodegenerative Diseases Laboratory)Fontenay‐aux‐RosesFrance
| |
Collapse
|
9
|
Lundell H, Najac C, Bulk M, Kan HE, Webb AG, Ronen I. Compartmental diffusion and microstructural properties of human brain gray and white matter studied with double diffusion encoding magnetic resonance spectroscopy of metabolites and water. Neuroimage 2021; 234:117981. [PMID: 33757904 PMCID: PMC8204266 DOI: 10.1016/j.neuroimage.2021.117981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 03/13/2021] [Indexed: 02/02/2023] Open
Abstract
Double diffusion encoding (DDE) of the water signal offers a unique ability to separate the effect of microscopic anisotropic diffusion in structural units of tissue from the overall macroscopic orientational distribution of cells. However, the specificity in detected microscopic anisotropy is limited as the signal is averaged over different cell types and across tissue compartments. Performing side-by-side water and metabolite DDE spectroscopic (DDES) experiments provides complementary measures from which intracellular and extracellular microscopic fractional anisotropies (μFA) and diffusivities can be estimated. Metabolites are largely confined to the intracellular space and therefore provide a benchmark for intracellular μFA and diffusivities of specific cell types. By contrast, water DDES measurements allow examination of the separate contributions to water μFA and diffusivity from the intra- and extracellular spaces, by using a wide range of b values to gradually eliminate the extracellular contribution. Here, we aimed to estimate tissue and compartment specific human brain microstructure by combining water and metabolites DDES experiments. We performed our DDES measurements in two brain regions that contain widely different amounts of white matter (WM) and gray matter (GM): parietal white matter (PWM) and occipital gray matter (OGM) in a total of 20 healthy volunteers at 7 Tesla. Metabolite DDES measurements were performed at b = 7199 s/mm2, while water DDES measurements were performed with a range of b values from 918 to 7199 s/mm2. The experimental framework we employed here resulted in a set of insights pertaining to the morphology of the intracellular and extracellular spaces in both gray and white matter. Results of the metabolite DDES experiments in both PWM and OGM suggest a highly anisotropic intracellular space within neurons and glia, with the possible exception of gray matter glia. The water μFA obtained from the DDES results at high b values in both regions converged with that of the metabolite DDES, suggesting that the signal from the extracellular space is indeed effectively suppressed at the highest b value. The μFA measured in the OGM significantly decreased at lower b values, suggesting a considerably lower anisotropy of the extracellular space in GM compared to WM. In PWM, the water μFA remained high even at the lowest b value, indicating a high degree of organization in the interstitial space in WM. Tortuosity values in the cytoplasm for water and tNAA, obtained with correlation analysis of microscopic parallel diffusivity with respect to GM/WM tissue fraction in the volume of interest, are remarkably similar for both molecules, while exhibiting a clear difference between gray and white matter, suggesting a more crowded cytoplasm and more complex cytomorphology of neuronal cell bodies and dendrites in GM than those found in long-range axons in WM.
Collapse
Affiliation(s)
- Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Centre for Functional and Diagnostic Imaging and Research, Kettegaards Allé 30, 2650 Hvidovre, Denmark.
| | - Chloé Najac
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Marjolein Bulk
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Hermien E Kan
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Itamar Ronen
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
10
|
Henriques RN, Palombo M, Jespersen SN, Shemesh N, Lundell H, Ianuş A. Double diffusion encoding and applications for biomedical imaging. J Neurosci Methods 2020; 348:108989. [PMID: 33144100 DOI: 10.1016/j.jneumeth.2020.108989] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Diffusion Magnetic Resonance Imaging (dMRI) is one of the most important contemporary non-invasive modalities for probing tissue structure at the microscopic scale. The majority of dMRI techniques employ standard single diffusion encoding (SDE) measurements, covering different sequence parameter ranges depending on the complexity of the method. Although many signal representations and biophysical models have been proposed for SDE data, they are intrinsically limited by a lack of specificity. Advanced dMRI methods have been proposed to provide additional microstructural information beyond what can be inferred from SDE. These enhanced contrasts can play important roles in characterizing biological tissues, for instance upon diseases (e.g. neurodegenerative, cancer, stroke), aging, learning, and development. In this review we focus on double diffusion encoding (DDE), which stands out among other advanced acquisitions for its versatility, ability to probe more specific diffusion correlations, and feasibility for preclinical and clinical applications. Various DDE methodologies have been employed to probe compartment sizes (Section 3), decouple the effects of microscopic diffusion anisotropy from orientation dispersion (Section 4), probe displacement correlations, study exchange, or suppress fast diffusing compartments (Section 6). DDE measurements can also be used to improve the robustness of biophysical models (Section 5) and study intra-cellular diffusion via magnetic resonance spectroscopy of metabolites (Section 7). This review discusses all these topics as well as important practical aspects related to the implementation and contrast in preclinical and clinical settings (Section 9) and aims to provide the readers a guide for deciding on the right DDE acquisition for their specific application.
Collapse
Affiliation(s)
- Rafael N Henriques
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Marco Palombo
- Centre for Medical Image Computing and Dept. of Computer Science, University College London, London, UK
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Andrada Ianuş
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
11
|
Jelescu IO, Palombo M, Bagnato F, Schilling KG. Challenges for biophysical modeling of microstructure. J Neurosci Methods 2020; 344:108861. [PMID: 32692999 PMCID: PMC10163379 DOI: 10.1016/j.jneumeth.2020.108861] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The biophysical modeling efforts in diffusion MRI have grown considerably over the past 25 years. In this review, we dwell on the various challenges along the journey of bringing a biophysical model from initial design to clinical implementation, identifying both hurdles that have been already overcome and outstanding issues. First, we describe the critical initial task of selecting which features of tissue microstructure can be estimated using a model and which acquisition protocol needs to be implemented to make the estimation possible. The model performance should necessarily be tested in realistic numerical simulations and in experimental data - adapting the fitting strategy accordingly, and parameter estimates should be validated against complementary techniques, when/if available. Secondly, the model performance and validity should be explored in pathological conditions, and, if appropriate, dedicated models for pathology should be developed. We build on examples from tumors, ischemia and demyelinating diseases. We then discuss the challenges associated with clinical translation and added value. Finally, we single out four major unresolved challenges that are related to: the availability of a microstructural ground truth, the validation of model parameters which cannot be accessed with complementary techniques, the development of a generalized standard model for any brain region and pathology, and the seamless communication between different parties involved in the development and application of biophysical models of diffusion.
Collapse
|