1
|
Pashkov A, Filimonova E, Zaitsev B, Martirosyan A, Moysak G, Rzaev J. Thalamic changes in patients with chronic facial pain. Neuroradiology 2024:10.1007/s00234-024-03508-7. [PMID: 39644395 DOI: 10.1007/s00234-024-03508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
PURPOSE To investigate structural alterations in the thalamus in patients with primary trigeminal neuralgia and provide a detailed perspective on thalamic remodeling in response to chronic pain at the level of individual thalamic nuclei. METHODS: We analyzed a sample of 62 patients with primary trigeminal neuralgia who underwent surgical treatment, along with 28 healthy participants. Magnetic resonance imaging (MRI) data were acquired using a 3T system equipped with a 16-channel receiver head coil. Segmentation of the thalamic nuclei was performed using FreeSurfer 7.2.0. We divided the group of patients with trigeminal neuralgia into two subgroups: those with right-sided pain and those with left-sided pain. Each subgroup was compared to a control group by means of one-way ANOVA. Associations between morphometric and clinical variables were assessed with Spearman correlation coefficient. RESULTS Our results revealed significant gray matter volume changes in thalamic nuclei among patients with trigeminal neuralgia. Notably, the intralaminar nuclei (centromedian/parafascicular) and nuclei associated with visual and auditory signal processing (lateral and medial geniculate bodies) exhibited significant alterations, contrasting with the ventral group nuclei involved in nociceptive processing. Additionally, we found no substantial volume increase in any of the studied nuclei following successful surgical intervention 6 months later. The volumes of thalamic nuclei were negatively correlated with pain intensity and disease duration. CONCLUSION The results of this study, although preliminary, hold promise for clinical applications as they reveal previously unknown structural alterations in the thalamus that occur in patients with chronic trigeminal neuralgia.
Collapse
Affiliation(s)
- Anton Pashkov
- FSBI "Federal Center of Neurosurgery", Nemirovich-Danchenko street, 132/1, 630087, Novosibirsk, Russia.
- Department of neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia.
- Department of Data Collection and Processing Systems, Novosibirsk State Technical University, Novosibirsk, Russia.
| | - Elena Filimonova
- FSBI "Federal Center of Neurosurgery", Nemirovich-Danchenko street, 132/1, 630087, Novosibirsk, Russia
- Department of neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Boris Zaitsev
- FSBI "Federal Center of Neurosurgery", Nemirovich-Danchenko street, 132/1, 630087, Novosibirsk, Russia
| | - Azniv Martirosyan
- FSBI "Federal Center of Neurosurgery", Nemirovich-Danchenko street, 132/1, 630087, Novosibirsk, Russia
| | - Galina Moysak
- FSBI "Federal Center of Neurosurgery", Nemirovich-Danchenko street, 132/1, 630087, Novosibirsk, Russia
- Department of neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Jamil Rzaev
- FSBI "Federal Center of Neurosurgery", Nemirovich-Danchenko street, 132/1, 630087, Novosibirsk, Russia
- Department of neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
2
|
Alanazi FI, Bravo CAR, Moreno JSS, Botero-Posada LF, Ladino LD, Rios ALL, Hutchison WD. Modulation of neuronal activity in human centromedian nucleus during an auditory attention and working memory task. Neuroimage 2024; 296:120686. [PMID: 38871037 DOI: 10.1016/j.neuroimage.2024.120686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Centromedian nucleus (CM) is one of several intralaminar nuclei of the thalamus and is thought to be involved in consciousness, arousal, and attention. CM has been suggested to play a key role in the control of attention, by regulating the flow of information to different brain regions such as the ascending reticular system, basal ganglia, and cortex. While the neurophysiology of attention in visual and auditory systems has been studied in animal models, combined single unit and LFP recordings in human have not, to our knowledge, been reported. Here, we recorded neuronal activity in the CM nucleus in 11 patients prior to insertion of deep brain stimulation electrodes for the treatment of epilepsy while subjects performed an auditory attention task. Patients were requested to attend and count the infrequent (p = 0.2) odd or "deviant" tones, ignore the frequent standard tones and report the total number of deviant tones at trial completion. Spikes were discriminated, and LFPs were band pass filtered (5-45 Hz). Average peri‑stimulus time histograms and spectra were constructed by aligning on tone onsets and statistically compared. The firing rate of CM neurons showed selective, multi-phasic responses to deviant tones in 81% of the tested neurons. Local field potential analysis showed selective beta and low gamma (13-45 Hz) modulations in response to deviant tones, also in a multi-phasic pattern. The current study demonstrates that CM neurons are under top-down control and participate in the selective processing during auditory attention and working memory. These results, taken together, implicate the CM in selective auditory attention and working memory and support a role of beta and low gamma oscillatory activity in cognitive processes. It also has potential implications for DBS therapy for epilepsy and non-motor symptoms of PD, such as apathy and other disorders of attention.
Collapse
Affiliation(s)
- Frhan I Alanazi
- Department of Physiology, University of Toronto, Canada; Krembil Brain Institute, Leonard St, Toronto Ontario, Canada; Department of Basic Sciences, Prince Sultan bin Abdulaziz College for Emergency Medical Services, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | - Juan Sebastián Saavedra Moreno
- Hospital Universitario San Vicente Fundación, Medellín, Colombia; Hospital San Vicente Fundación, Rionegro, Colombia; Department of Neurology, University of Antioquia, Medellín, Colombia
| | - Luis Fernando Botero-Posada
- Hospital Universitario San Vicente Fundación, Medellín, Colombia; Hospital San Vicente Fundación, Rionegro, Colombia
| | - Lady Diana Ladino
- Hospital Universitario San Vicente Fundación, Medellín, Colombia; Hospital San Vicente Fundación, Rionegro, Colombia; Department of Neurology, University of Antioquia, Medellín, Colombia
| | - Adriana Lucia Lopez Rios
- Hospital Universitario San Vicente Fundación, Medellín, Colombia; Hospital San Vicente Fundación, Rionegro, Colombia
| | - William D Hutchison
- Department of Physiology, University of Toronto, Canada; Krembil Brain Institute, Leonard St, Toronto Ontario, Canada; Hospital San Vicente Fundación, Rionegro, Colombia; Department of Surgery, University of Toronto, Canada
| |
Collapse
|
3
|
Abdulbaki A, Wöhrle JC, Blahak C, Weigel R, Kollewe K, Capelle HH, Bäzner H, Krauss JK. Somatosensory evoked potentials recorded from DBS electrodes: the origin of subcortical N18. J Neural Transm (Vienna) 2024; 131:359-367. [PMID: 38456947 DOI: 10.1007/s00702-024-02752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
The different peaks of somatosensory-evoked potentials (SEP) originate from a variety of anatomical sites in the central nervous system. The origin of the median nerve subcortical N18 SEP has been studied under various conditions, but the exact site of its generation is still unclear. While it has been claimed to be located in the thalamic region, other studies indicated its possible origin below the pontomedullary junction. Here, we scrutinized and compared SEP recordings from median nerve stimulation through deep brain stimulation (DBS) electrodes implanted in various subcortical targets. We studied 24 patients with dystonia, Parkinson's disease, and chronic pain who underwent quadripolar electrode implantation for chronic DBS and recorded median nerve SEPs from globus pallidus internus (GPi), subthalamic nucleus (STN), thalamic ventral intermediate nucleus (Vim), and ventral posterolateral nucleus (VPL) and the centromedian-parafascicular complex (CM-Pf). The largest amplitude of the triphasic potential of the N18 complex was recorded in Vim. Bipolar recordings confirmed the origin to be close to Vim electrodes (and VPL/CM-Pf) and less close to STN electrodes. GPi recorded only far-field potentials in unipolar derivation. Recordings from DBS electrodes located in different subcortical areas allow determining the origin of certain subcortical SEP waves more precisely. The subcortical N18 of the median nerve SEP-to its largest extent-is generated ventral to the Vim in the region of the prelemniscal radiation/ zona incerta.
Collapse
Affiliation(s)
- Arif Abdulbaki
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Johannes C Wöhrle
- Department of Neurology, Katholisches Klinikum Koblenz Montabaur, Koblenz, Germany
| | - Christian Blahak
- Department of Neurology, Ortenau Klinikum Lahr-Ettenheim, Lahr, Germany
- Department of Neurology, Medical Faculty Mannheim, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ralf Weigel
- Department of Neurosurgery, Sankt Katharinen Hospital, Frankfurt, Germany
| | - Katja Kollewe
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - H Holger Capelle
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Hansjörg Bäzner
- Department of Neurology, Katharinenhospital Stuttgart, Stuttgart, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
4
|
Arnts H, Coolen SE, Fernandes FW, Schuurman R, Krauss JK, Groenewegen HJ, van den Munckhof P. The intralaminar thalamus: a review of its role as a target in functional neurosurgery. Brain Commun 2023; 5:fcad003. [PMID: 37292456 PMCID: PMC10244065 DOI: 10.1093/braincomms/fcad003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/06/2022] [Accepted: 01/03/2023] [Indexed: 09/29/2023] Open
Abstract
The intralaminar thalamus, in particular the centromedian-parafascicular complex, forms a strategic node between ascending information from the spinal cord and brainstem and forebrain circuitry that involves the cerebral cortex and basal ganglia. A large body of evidence shows that this functionally heterogeneous region regulates information transmission in different cortical circuits, and is involved in a variety of functions, including cognition, arousal, consciousness and processing of pain signals. Not surprisingly, the intralaminar thalamus has been a target area for (radio)surgical ablation and deep brain stimulation (DBS) in different neurological and psychiatric disorders. Historically, ablation and stimulation of the intralaminar thalamus have been explored in patients with pain, epilepsy and Tourette syndrome. Moreover, DBS has been used as an experimental treatment for disorders of consciousness and a variety of movement disorders. In this review, we provide a comprehensive analysis of the underlying mechanisms of stimulation and ablation of the intralaminar nuclei, historical clinical evidence, and more recent (experimental) studies in animals and humans to define the present and future role of the intralaminar thalamus as a target in the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Hisse Arnts
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stan E Coolen
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | | | - Rick Schuurman
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Henk J Groenewegen
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Elaborating humanness: a direct comparison between mindful and mindless entities. Curr Opin Behav Sci 2023. [DOI: 10.1016/j.cobeha.2022.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
6
|
Abdallat M, Saryyeva A, Blahak C, Wolf ME, Weigel R, Loher TJ, Runge J, Heissler HE, Kinfe TM, Krauss JK. Centromedian-Parafascicular and Somatosensory Thalamic Deep Brain Stimulation for Treatment of Chronic Neuropathic Pain: A Contemporary Series of 40 Patients. Biomedicines 2021; 9:731. [PMID: 34202202 PMCID: PMC8301341 DOI: 10.3390/biomedicines9070731] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 02/05/2023] Open
Abstract
Introduction: The treatment of neuropathic and central pain still remains a major challenge. Thalamic deep brain stimulation (DBS) involving various target structures is a therapeutic option which has received increased re-interest. Beneficial results have been reported in several more recent smaller studies, however, there is a lack of prospective studies on larger series providing long term outcomes. Methods: Forty patients with refractory neuropathic and central pain syndromes underwent stereotactic bifocal implantation of DBS electrodes in the centromedian-parafascicular (CM-Pf) and the ventroposterolateral (VPL) or ventroposteromedial (VPM) nucleus contralateral to the side of pain. Electrodes were externalized for test stimulation for several days. Outcome was assessed with five specific VAS pain scores (maximum, minimum, average pain, pain at presentation, allodynia). Results: The mean age at surgery was 53.5 years, and the mean duration of pain was 8.2 years. During test stimulation significant reductions of all five pain scores was achieved with either CM-Pf or VPL/VPM stimulation. Pacemakers were implanted in 33/40 patients for chronic stimulation for whom a mean follow-up of 62.8 months (range 3-180 months) was available. Of these, 18 patients had a follow-up beyond four years. Hardware related complications requiring secondary surgeries occurred in 11/33 patients. The VAS maximum pain score was improved by ≥50% in 8/18, and by ≥30% in 11/18 on long term follow-up beyond four years, and the VAS average pain score by ≥50% in 10/18, and by ≥30% in 16/18. On a group level, changes in pain scores remained statistically significant over time, however, there was no difference when comparing the efficacy of CM-Pf versus VPL/VPM stimulation. The best results were achieved in patients with facial pain, poststroke/central pain (except thalamic pain), or brachial plexus injury, while patients with thalamic lesions had the least benefit. Conclusion: Thalamic DBS is a useful treatment option in selected patients with severe and medically refractory pain.
Collapse
Affiliation(s)
- Mahmoud Abdallat
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany; (M.A.); (R.W.); (J.R.); (H.E.H.); (J.K.K.)
- Department of Neurosurgery, University of Jordan, Amman 11183, Jordan
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany; (M.A.); (R.W.); (J.R.); (H.E.H.); (J.K.K.)
| | - Christian Blahak
- Department of Neurology, University Hospital Mannheim, 68167 Mannheim, Germany; (C.B.); (M.E.W.)
- Department of Neurology, Ortenau-Klinikum Lahr-Ettenheim, 77933 Lahr Ettenheim, Germany
| | - Marc E. Wolf
- Department of Neurology, University Hospital Mannheim, 68167 Mannheim, Germany; (C.B.); (M.E.W.)
- Department of Neurology, Katharinenhospital, 70174 Stuttgart, Germany
| | - Ralf Weigel
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany; (M.A.); (R.W.); (J.R.); (H.E.H.); (J.K.K.)
- Department of Neurosurgery, St. Katharinen Krankenhaus, 60389 Frankfurt, Germany
| | | | - Joachim Runge
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany; (M.A.); (R.W.); (J.R.); (H.E.H.); (J.K.K.)
| | - Hans E. Heissler
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany; (M.A.); (R.W.); (J.R.); (H.E.H.); (J.K.K.)
| | - Thomas M. Kinfe
- Department of Neurosurgery, Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University, 91054 Erlangen-Nürnberg, Germany;
| | - Joachim K. Krauss
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany; (M.A.); (R.W.); (J.R.); (H.E.H.); (J.K.K.)
- Center for Systems Neuroscience, 30559 Hannover, Germany
| |
Collapse
|
7
|
Cagle JN, Eisinger RS, Holland MT, Foote KD, Okun MS, Gunduz A. A novel local field potential-based functional approach for targeting the centromedian-parafascicular complex for deep brain stimulation. Neuroimage Clin 2021; 30:102644. [PMID: 33845353 PMCID: PMC8064020 DOI: 10.1016/j.nicl.2021.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The centromedian-parafascicular (Cm-Pf) complex of the thalamus is a common deep brain stimulation (DBS) target for treatment of Tourette syndrome (TS). Currently, there are no standardized functional intraoperative neurosurgical targeting approaches. Collectively, these issues have led to variability in DBS lead placement. Therefore, more defined methods are needed to improve targeting accuracy. OBJECTIVE The objective of this observational study was to develop and to verify a functional mapping task capable of differentiating the Cm-Pf region from the nearby ventral intermediate (Vim) nucleus region of the thalamus. The overarching goal was to improve the reproducibility of DBS targeting in the Cm-Pf region. METHODS Seven TS patients completed a modified Go/NoGo task (five in the post-operative setting and two in the intra-operative setting). Post-operative neural signals from Cm-Pf region were collected using sensing-enabled implanted neural stimulators, and intraoperative neural signals from the Cm-Pf region were collected using an external amplifier. Event-related potential (ERP) features were identified by using the grand-average of stimulus onset signals derived from the postoperative participants. These features were correlated with anatomical locations for the specific electrode recordings. The same features were extracted from the intraoperative patients in order to verify electrode positions in the operating room environment. RESULTS Two features - a positive and a negative deflection - were identified in the average ERP from the post-operative participants. The peak amplitudes of both features were significantly correlated with the electrode depth position (p = 0.025 for positive deflection and p = 0.039 for negative deflection). The same result was reproduced intra-operatively in the two most recent patients, where more ventral electrode contacts revealed stronger peak amplitudes in comparison to the dorsal electrode contacts. CONCLUSION This process was used to physiologically confirm accurate lead placement in the operating room setting. The modified Go/NoGo task elicited robust neural responses in the Cm-Pf region however the signal was not present in the Vim nucleus region of thalamus along the DBS electrode trajectory. We conclude that the differences in ERP responses may be a potentially novel LFP based functional approach for future targeting of the Cm-Pf complex for TS DBS.
Collapse
Affiliation(s)
- Jackson N Cagle
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville FL, United States
| | - Robert S Eisinger
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Marshall T Holland
- Department of Neurosurgery, University of Florida Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States; Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - Kelly D Foote
- Department of Neurosurgery, University of Florida Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neuroscience, University of Florida, Gainesville, FL, United States; Department of Neurology, University of Florida Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
| | - Aysegul Gunduz
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville FL, United States
| |
Collapse
|