1
|
Zonca L, Bellier FC, Milior G, Aymard P, Visser J, Rancillac A, Rouach N, Holcman D. Unveiling the functional connectivity of astrocytic networks with AstroNet, a graph reconstruction algorithm coupled to image processing. Commun Biol 2025; 8:114. [PMID: 39856404 PMCID: PMC11759710 DOI: 10.1038/s42003-024-07390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025] Open
Abstract
Astrocytes form extensive networks with diverse calcium activity, yet the organization and connectivity of these networks across brain regions remain largely unknown. To address this, we developed AstroNet, a data-driven algorithm that uses two-photon calcium imaging to map temporal correlations in astrocyte activation. By organizing individual astrocyte activation events chronologically, our method reconstructs functional networks and extracts local astrocyte correlations. We create a graph of the astrocyte network by tallying direct co-activations between pairs of cells along these activation pathways. Applied to the CA1 hippocampus and motor cortex, AstroNet reveals notable differences: astrocytes in the hippocampus display stronger connectivity, while cortical astrocytes form sparser networks. In both regions, smaller, tightly connected sub-networks are embedded within a larger, loosely connected structure. This method not only identifies astrocyte activation paths and connectivity but also reveals distinct, region-specific network patterns, providing new insights into the functional organization of astrocytic networks in the brain.
Collapse
Affiliation(s)
- L Zonca
- Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, PSL University, Paris, France
- Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
| | - F C Bellier
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, PSL, Paris, France
| | - G Milior
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, PSL, Paris, France
| | - P Aymard
- Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, PSL University, Paris, France
| | - J Visser
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, PSL, Paris, France
| | - A Rancillac
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, PSL, Paris, France
| | - N Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, PSL, Paris, France
| | - D Holcman
- Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, PSL University, Paris, France.
| |
Collapse
|
2
|
Herzog R, Mediano PAM, Rosas FE, Luppi AI, Sanz-Perl Y, Tagliazucchi E, Kringelbach ML, Cofré R, Deco G. Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF. Netw Neurosci 2024; 8:1590-1612. [PMID: 39735506 PMCID: PMC11674928 DOI: 10.1162/netn_a_00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/20/2024] [Indexed: 12/31/2024] Open
Abstract
Different whole-brain computational models have been recently developed to investigate hypotheses related to brain mechanisms. Among these, the Dynamic Mean Field (DMF) model is particularly attractive, combining a biophysically realistic model that is scaled up via a mean-field approach and multimodal imaging data. However, an important barrier to the widespread usage of the DMF model is that current implementations are computationally expensive, supporting only simulations on brain parcellations that consider less than 100 brain regions. Here, we introduce an efficient and accessible implementation of the DMF model: the FastDMF. By leveraging analytical and numerical advances-including a novel estimation of the feedback inhibition control parameter and a Bayesian optimization algorithm-the FastDMF circumvents various computational bottlenecks of previous implementations, improving interpretability, performance, and memory use. Furthermore, these advances allow the FastDMF to increase the number of simulated regions by one order of magnitude, as confirmed by the good fit to fMRI data parcellated at 90 and 1,000 regions. These advances open the way to the widespread use of biophysically grounded whole-brain models for investigating the interplay between anatomy, function, and brain dynamics and to identify mechanistic explanations of recent results obtained from fine-grained neuroimaging recordings.
Collapse
Affiliation(s)
- Rubén Herzog
- Sorbonne Universite, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Pedro A. M. Mediano
- Department of Computing, Imperial College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E. Rosas
- Department of Informatics, University of Sussex, Brighton, UK
- Sussex Centre for Consciousness Science and Sussex AI, University of Sussex, Brighton, UK
- Centre for Psychedelic Research and Centre for Complexity Science, Department of Brain Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Andrea I. Luppi
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, UK
- St John’s College, University of Cambridge, Cambridge, UK
- Information Engineering Division, University of Cambridge, Cambridge, UK
| | - Yonatan Sanz-Perl
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- Universidad de San Andres, Buenos Aires, Argentina
- Institut du Cerveau et de la Moelle epiniere (ICM), Paris, France
- Institucio Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Enzo Tagliazucchi
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rodrigo Cofré
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| | - Gustavo Deco
- Institucio Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Escrichs A, Sanz Perl Y, Fisher PM, Martínez-Molina N, G-Guzman E, Frokjaer VG, Kringelbach ML, Knudsen GM, Deco G. Whole-brain turbulent dynamics predict responsiveness to pharmacological treatment in major depressive disorder. Mol Psychiatry 2024:10.1038/s41380-024-02690-7. [PMID: 39256549 DOI: 10.1038/s41380-024-02690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
Depression is a multifactorial clinical syndrome with a low pharmacological treatment response rate. Therefore, identifying predictors of treatment response capable of providing the basis for future developments of individualized therapies is crucial. Here, we applied model-free and model-based measures of whole-brain turbulent dynamics in resting-state functional magnetic resonance imaging (fMRI) in healthy controls and unmedicated depressed patients. After eight weeks of treatment with selective serotonin reuptake inhibitors (SSRIs), patients were classified as responders and non-responders according to the Hamilton Depression Rating Scale 6 (HAMD6). Using the model-free approach, we found that compared to healthy controls and responder patients, non-responder patients presented disruption of the information transmission across spacetime scales. Furthermore, our results revealed that baseline turbulence level is positively correlated with beneficial pharmacological treatment outcomes. Importantly, our model-free approach enabled prediction of which patients would turn out to be non-responders. Finally, our model-based approach provides mechanistic evidence that non-responder patients are less sensitive to stimulation and, consequently, less prone to respond to treatment. Overall, we demonstrated that different levels of turbulent dynamics are suitable for predicting response to SSRIs treatment in depression.
Collapse
Affiliation(s)
- Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Yonatan Sanz Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Paris Brain Institute (ICM), Paris, France
| | - Patrick M Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Noelia Martínez-Molina
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Elvira G-Guzman
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Vibe G Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medicine Sciences, University of Copenhagen, Copenhagen, Denmark
- Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, OX1 2JD, UK.
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medicine Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Coronel-Oliveros C, Medel V, Orellana S, Rodiño J, Lehue F, Cruzat J, Tagliazucchi E, Brzezicka A, Orio P, Kowalczyk-Grębska N, Ibáñez A. Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling. Neuroimage 2024; 293:120633. [PMID: 38704057 DOI: 10.1016/j.neuroimage.2024.120633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso‑scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs' simulated functional connectivity was characterized by a meso‑scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso‑scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.
Collapse
Affiliation(s)
- Carlos Coronel-Oliveros
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres, Peñalolén, Santiago 2640, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California US and Trinity College Dublin, Ireland; Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington, Playa Ancha, Valparaíso 287, Chile
| | - Vicente Medel
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres, Peñalolén, Santiago 2640, Chile; Brain and Mind Centre, The University of Sydney, 94 Mallett St, Camperdown, NSW 2050, Australia; Department of Neuroscience, Universidad de Chile, Independencia 1027, Independencia, Santiago, Chile
| | - Sebastián Orellana
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington, Playa Ancha, Valparaíso 287, Chile
| | - Julio Rodiño
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington, Playa Ancha, Valparaíso 287, Chile; Brain Dynamics Laboratory, Facultad de Ingeniería, Universidad de Valparaíso, General Cruz 222, Valparaíso, Chile
| | - Fernando Lehue
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington, Playa Ancha, Valparaíso 287, Chile
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres, Peñalolén, Santiago 2640, Chile
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres, Peñalolén, Santiago 2640, Chile; Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Intendente Güiraldes 2160 - Ciudad Universitaria, Buenos Aires, Argentina
| | - Aneta Brzezicka
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, Warsaw, 03-815, Poland
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington, Playa Ancha, Valparaíso 287, Chile; Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1091, Playa Ancha, Valparaíso, Chile.
| | - Natalia Kowalczyk-Grębska
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, Warsaw, 03-815, Poland.
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres, Peñalolén, Santiago 2640, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California US and Trinity College Dublin, Ireland; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Vito Dumas 284, Provincia de Buenos Aires, Argentina; Trinity College Institute of Neuroscience, Trinity College Dublin, Lloyd Building, Dublin 2, Ireland.
| |
Collapse
|
5
|
Coronel‐Oliveros C, Gómez RG, Ranasinghe K, Sainz‐Ballesteros A, Legaz A, Fittipaldi S, Cruzat J, Herzog R, Yener G, Parra M, Aguillon D, Lopera F, Santamaria‐Garcia H, Moguilner S, Medel V, Orio P, Whelan R, Tagliazucchi E, Prado P, Ibañez A. Viscous dynamics associated with hypoexcitation and structural disintegration in neurodegeneration via generative whole-brain modeling. Alzheimers Dement 2024; 20:3228-3250. [PMID: 38501336 PMCID: PMC11095480 DOI: 10.1002/alz.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) lack mechanistic biophysical modeling in diverse, underrepresented populations. Electroencephalography (EEG) is a high temporal resolution, cost-effective technique for studying dementia globally, but lacks mechanistic models and produces non-replicable results. METHODS We developed a generative whole-brain model that combines EEG source-level metaconnectivity, anatomical priors, and a perturbational approach. This model was applied to Global South participants (AD, bvFTD, and healthy controls). RESULTS Metaconnectivity outperformed pairwise connectivity and revealed more viscous dynamics in patients, with altered metaconnectivity patterns associated with multimodal disease presentation. The biophysical model showed that connectome disintegration and hypoexcitability triggered altered metaconnectivity dynamics and identified critical regions for brain stimulation. We replicated the main results in a second subset of participants for validation with unharmonized, heterogeneous recording settings. DISCUSSION The results provide a novel agenda for developing mechanistic model-inspired characterization and therapies in clinical, translational, and computational neuroscience settings.
Collapse
Affiliation(s)
- Carlos Coronel‐Oliveros
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV)Universidad de ValparaísoValparaísoChile
| | - Raúl Gónzalez Gómez
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Center for Social and Cognitive NeuroscienceSchool of Psychology, Universidad Adolfo IbáñezSantiagoChile
| | - Kamalini Ranasinghe
- Memory and Aging CenterDepartment of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Agustina Legaz
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
| | - Rubén Herzog
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
| | - Gorsev Yener
- Izmir University of Economics, Faculty of Medicine, Fevzi Çakmak, Balçova/İzmirSakaryaTurkey
- Dokuz Eylül University, Brain Dynamics Multidisciplinary Research Center, KonakAlsancakTurkey
| | - Mario Parra
- School of Psychological Sciences and HealthUniversity of StrathclydeGlasgowScotland
| | - David Aguillon
- Neuroscience Research Group, University of AntioquiaBogotáColombia
| | - Francisco Lopera
- Neuroscience Research Group, University of AntioquiaBogotáColombia
| | - Hernando Santamaria‐Garcia
- Pontificia Universidad Javeriana, PhD Program of NeuroscienceBogotáColombia
- Hospital Universitario San Ignacio, Center for Memory and Cognition IntellectusBogotáColombia
| | - Sebastián Moguilner
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
| | - Vicente Medel
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Brain and Mind Centre, The University of SydneySydneyNew South WalesAustralia
- Department of NeuroscienceUniversidad de Chile, IndependenciaSantiagoChile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV)Universidad de ValparaísoValparaísoChile
- Instituto de NeurocienciaFacultad de Ciencias, Universidad de Valparaíso, Playa AnchaValparaísoChile
| | - Robert Whelan
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Buenos Aires Physics Institute and Physics DepartmentUniversity of Buenos Aires, Intendente Güiraldes 2160 – Ciudad UniversitariaBuenos AiresArgentina
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la RehabilitaciónUniversidad San Sebastián, Región MetropolitanaSantiagoChile
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| |
Collapse
|
6
|
Dagnino PC, Escrichs A, López-González A, Gosseries O, Annen J, Sanz Perl Y, Kringelbach ML, Laureys S, Deco G. Re-awakening the brain: Forcing transitions in disorders of consciousness by external in silico perturbation. PLoS Comput Biol 2024; 20:e1011350. [PMID: 38701063 PMCID: PMC11068192 DOI: 10.1371/journal.pcbi.1011350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/31/2024] [Indexed: 05/05/2024] Open
Abstract
A fundamental challenge in neuroscience is accurately defining brain states and predicting how and where to perturb the brain to force a transition. Here, we investigated resting-state fMRI data of patients suffering from disorders of consciousness (DoC) after coma (minimally conscious and unresponsive wakefulness states) and healthy controls. We applied model-free and model-based approaches to help elucidate the underlying brain mechanisms of patients with DoC. The model-free approach allowed us to characterize brain states in DoC and healthy controls as a probabilistic metastable substate (PMS) space. The PMS of each group was defined by a repertoire of unique patterns (i.e., metastable substates) with different probabilities of occurrence. In the model-based approach, we adjusted the PMS of each DoC group to a causal whole-brain model. This allowed us to explore optimal strategies for promoting transitions by applying off-line in silico probing. Furthermore, this approach enabled us to evaluate the impact of local perturbations in terms of their global effects and sensitivity to stimulation, which is a model-based biomarker providing a deeper understanding of the mechanisms underlying DoC. Our results show that transitions were obtained in a synchronous protocol, in which the somatomotor network, thalamus, precuneus and insula were the most sensitive areas to perturbation. This motivates further work to continue understanding brain function and treatments of disorders of consciousness.
Collapse
Affiliation(s)
- Paulina Clara Dagnino
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Ane López-González
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau 2, University Hospital of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau 2, University Hospital of Liège, Liège, Belgium
| | - Yonatan Sanz Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steven Laureys
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, University of Laval, Québec, Québec, Canada
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Ponce-Alvarez A, Deco G. The Hopf whole-brain model and its linear approximation. Sci Rep 2024; 14:2615. [PMID: 38297071 PMCID: PMC10831083 DOI: 10.1038/s41598-024-53105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/27/2024] [Indexed: 02/02/2024] Open
Abstract
Whole-brain models have proven to be useful to understand the emergence of collective activity among neural populations or brain regions. These models combine connectivity matrices, or connectomes, with local node dynamics, noise, and, eventually, transmission delays. Multiple choices for the local dynamics have been proposed. Among them, nonlinear oscillators corresponding to a supercritical Hopf bifurcation have been used to link brain connectivity and collective phase and amplitude dynamics in different brain states. Here, we studied the linear fluctuations of this model to estimate its stationary statistics, i.e., the instantaneous and lagged covariances and the power spectral densities. This linear approximation-that holds in the case of heterogeneous parameters and time-delays-allows analytical estimation of the statistics and it can be used for fast parameter explorations to study changes in brain state, changes in brain activity due to alterations in structural connectivity, and modulations of parameter due to non-equilibrium dynamics.
Collapse
Affiliation(s)
- Adrián Ponce-Alvarez
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain.
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08005, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| |
Collapse
|
8
|
Deco G, Lynn CW, Sanz Perl Y, Kringelbach ML. Violations of the fluctuation-dissipation theorem reveal distinct nonequilibrium dynamics of brain states. Phys Rev E 2023; 108:064410. [PMID: 38243472 DOI: 10.1103/physreve.108.064410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/16/2023] [Indexed: 01/21/2024]
Abstract
The brain is a nonequilibrium system whose dynamics change in different brain states, such as wakefulness and deep sleep. Thermodynamics provides the tools for revealing these nonequilibrium dynamics. We used violations of the fluctuation-dissipation theorem to describe the hierarchy of nonequilibrium dynamics associated with different brain states. Together with a whole-brain model fitted to empirical human neuroimaging data, and deriving the appropriate analytical expressions, we were able to capture the deviation from equilibrium in different brain states that arises from asymmetric interactions and hierarchical organization.
Collapse
Affiliation(s)
- Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Christopher W Lynn
- Initiative for the Theoretical Sciences, Graduate Center, City University of New York, New York, New York 10016, USA and Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Department of Physics, University of Buenos Aires, Buenos Aires 1428, Argentina and Paris Brain Institute (ICM), Paris 75013, France
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, United Kingdom; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom; and Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
9
|
Coronel-Oliveros C, Medel V, Orellana S, Rodiño J, Lehue F, Cruzat J, Tagliazucchi E, Brzezicka A, Orio P, Kowalczyk-Grębska N, Ibáñez A. Gaming expertise induces meso-scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling Gaming expertise, neuroplasticity and functional dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554072. [PMID: 38077041 PMCID: PMC10705274 DOI: 10.1101/2023.08.21.554072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlaying mechanisms related to plasticity-induced brain structural changes and their impact in brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso-scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, with the aim of generating simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs' simulated functional connectivity was characterized by a meso-scale integration, with increased local connectivity in frontal, parietal and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso-scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light into the mechanisms underlying structural neural plasticity triggered by video game experiences.
Collapse
Affiliation(s)
- Carlos Coronel-Oliveros
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Penalolen, Santiago (Chile)
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California US and Trinity College Dublin, Ireland
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington 287, Playa Ancha, Valparaíso (Chile)
| | - Vicente Medel
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Penalolen, Santiago (Chile)
- Brain and Mind Centre, The University of Sydney, 94 Mallett St, Camperdown NSW 2050 (Australia)
- Department of Neuroscience, Universidad de Chile, Independencia 1027, Independencia, Santiago (Chile)
| | - Sebastián Orellana
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington 287, Playa Ancha, Valparaíso (Chile)
| | - Julio Rodiño
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington 287, Playa Ancha, Valparaíso (Chile)
- Brain Dynamics Laboratory, Facultad de Ingeniería, Universidad de Valparaíso, General Cruz 222, Valparaíso (Chile)
| | - Fernando Lehue
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington 287, Playa Ancha, Valparaíso (Chile)
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Penalolen, Santiago (Chile)
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Penalolen, Santiago (Chile)
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Intendente Güiraldes 2160 - Ciudad Universitaria, Buenos Aires (Argentina)
| | - Aneta Brzezicka
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, 03-815 Warsaw (Poland)
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington 287, Playa Ancha, Valparaíso (Chile)
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1091, Playa Ancha, Valparaíso (Chile)
| | - Natalia Kowalczyk-Grębska
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, 03-815 Warsaw (Poland)
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Penalolen, Santiago (Chile)
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California US and Trinity College Dublin, Ireland
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Vito Dumas 284, Provincia de Buenos Aires (Argentina)
- Trinity College Institute of Neuroscience, Trinity College Dublin, Lloyd Building, Dublin 2 (Ireland)
| |
Collapse
|
10
|
Luppi AI, Cabral J, Cofre R, Mediano PAM, Rosas FE, Qureshi AY, Kuceyeski A, Tagliazucchi E, Raimondo F, Deco G, Shine JM, Kringelbach ML, Orio P, Ching S, Sanz Perl Y, Diringer MN, Stevens RD, Sitt JD. Computational modelling in disorders of consciousness: Closing the gap towards personalised models for restoring consciousness. Neuroimage 2023; 275:120162. [PMID: 37196986 PMCID: PMC10262065 DOI: 10.1016/j.neuroimage.2023.120162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/16/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state-of-the-art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Joana Cabral
- Life and Health Sciences Research Institute, University of Minho, Portugal
| | - Rodrigo Cofre
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile; Centre National de la Recherche Scientifique (CNRS), Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Gif-sur-Yvette, France
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Abid Y Qureshi
- University of Kansas Medical Center, Kansas City, MO, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | - Enzo Tagliazucchi
- Departamento de Física (UBA) e Instituto de Fisica de Buenos Aires (CONICET), Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Federico Raimondo
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso and Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - ShiNung Ching
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institut du Cerveau et de la Moelle épinière - Paris Brain Institute, ICM, Paris, France; National Scientific and Technical Research Council (CONICET), Godoy Cruz, CABA 2290, Argentina
| | - Michael N Diringer
- Department of Neurology and Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology, and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jacobo Diego Sitt
- Institut du Cerveau et de la Moelle épinière - Paris Brain Institute, ICM, Paris, France; Sorbonne Université, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
11
|
Perl YS, Zamora-Lopez G, Montbrió E, Monge-Asensio M, Vohryzek J, Fittipaldi S, Campo CG, Moguilner S, Ibañez A, Tagliazucchi E, Yeo BTT, Kringelbach ML, Deco G. The impact of regional heterogeneity in whole-brain dynamics in the presence of oscillations. Netw Neurosci 2023; 7:632-660. [PMID: 37397876 PMCID: PMC10312285 DOI: 10.1162/netn_a_00299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2023] Open
Abstract
Large variability exists across brain regions in health and disease, considering their cellular and molecular composition, connectivity, and function. Large-scale whole-brain models comprising coupled brain regions provide insights into the underlying dynamics that shape complex patterns of spontaneous brain activity. In particular, biophysically grounded mean-field whole-brain models in the asynchronous regime were used to demonstrate the dynamical consequences of including regional variability. Nevertheless, the role of heterogeneities when brain dynamics are supported by synchronous oscillating state, which is a ubiquitous phenomenon in brain, remains poorly understood. Here, we implemented two models capable of presenting oscillatory behavior with different levels of abstraction: a phenomenological Stuart-Landau model and an exact mean-field model. The fit of these models informed by structural- to functional-weighted MRI signal (T1w/T2w) allowed us to explore the implication of the inclusion of heterogeneities for modeling resting-state fMRI recordings from healthy participants. We found that disease-specific regional functional heterogeneity imposed dynamical consequences within the oscillatory regime in fMRI recordings from neurodegeneration with specific impacts on brain atrophy/structure (Alzheimer's patients). Overall, we found that models with oscillations perform better when structural and functional regional heterogeneities are considered, showing that phenomenological and biophysical models behave similarly at the brink of the Hopf bifurcation.
Collapse
Affiliation(s)
- Yonatan Sanz Perl
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gorka Zamora-Lopez
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ernest Montbrió
- Neuronal Dynamics Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Martí Monge-Asensio
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jakub Vohryzek
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
| | - Sol Fittipaldi
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, CA, USA; and Trinity College Dublin, Dublin, Ireland
| | - Cecilia González Campo
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Sebastián Moguilner
- Global Brain Health Institute, University of California, San Francisco, CA, USA; and Trinity College Dublin, Dublin, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Agustín Ibañez
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, CA, USA; and Trinity College Dublin, Dublin, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - B. T. Thomas Yeo
- Centre for Sleep and Cognition, Centre for Translational MR Research, Department of Electrical and Computer Engineering, N.1 Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore
| | - Morten L. Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Perl YS, Pallavicini C, Piccinini J, Demertzi A, Bonhomme V, Martial C, Panda R, Alnagger N, Annen J, Gosseries O, Ibañez A, Laufs H, Sitt JD, Jirsa VK, Kringelbach ML, Laureys S, Deco G, Tagliazucchi E. Low-dimensional organization of global brain states of reduced consciousness. Cell Rep 2023; 42:112491. [PMID: 37171963 PMCID: PMC11220841 DOI: 10.1016/j.celrep.2023.112491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/19/2023] [Accepted: 04/24/2023] [Indexed: 05/14/2023] Open
Abstract
Brain states are frequently represented using a unidimensional scale measuring the richness of subjective experience (level of consciousness). This description assumes a mapping between the high-dimensional space of whole-brain configurations and the trajectories of brain states associated with changes in consciousness, yet this mapping and its properties remain unclear. We combine whole-brain modeling, data augmentation, and deep learning for dimensionality reduction to determine a mapping representing states of consciousness in a low-dimensional space, where distances parallel similarities between states. An orderly trajectory from wakefulness to patients with brain injury is revealed in a latent space whose coordinates represent metrics related to functional modularity and structure-function coupling, increasing alongside loss of consciousness. Finally, we investigate the effects of model perturbations, providing geometrical interpretation for the stability and reversibility of states. We conclude that conscious awareness depends on functional patterns encoded as a low-dimensional trajectory within the vast space of brain configurations.
Collapse
Affiliation(s)
- Yonatan Sanz Perl
- Department of Physics, University of Buenos Aires, Intendente Guiraldes 2160 (Ciudad Universitaria), Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain; Paris Brain Institute (ICM), Paris, France.
| | - Carla Pallavicini
- Department of Physics, University of Buenos Aires, Intendente Guiraldes 2160 (Ciudad Universitaria), Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Juan Piccinini
- Department of Physics, University of Buenos Aires, Intendente Guiraldes 2160 (Ciudad Universitaria), Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
| | - Athena Demertzi
- Physiology of Cognition Research Lab, GIGA CRC-In Vivo Imaging Center, GIGA Institute, University of Liège, Liège, Belgium
| | - Vincent Bonhomme
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium; University Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Régional de la Citadelle (CHR Citadelle), Liège, Belgium; Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Rajanikant Panda
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Naji Alnagger
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Agustin Ibañez
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Global Brain Health Institute (GBHI), University of California-San Francisco (UCSF), San Francisco, CA, USA; Trinity College, Dublin, Ireland
| | - Helmut Laufs
- Department of Neurology and Brain Imaging Center, Goethe University, Frankfurt am Main, Germany; Department of Neurology, Christian Albrechts University, Kiel, Germany
| | - Jacobo D Sitt
- Paris Brain Institute (ICM), Paris, France; INSERM U 1127, Paris, France; CNRS UMR 7225, Paris, France
| | - Viktor K Jirsa
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Århus, Denmark; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain; Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Intendente Guiraldes 2160 (Ciudad Universitaria), Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina; Centre du Cerveau(2), Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium.
| |
Collapse
|
13
|
Sanz Perl Y, Fittipaldi S, Gonzalez Campo C, Moguilner S, Cruzat J, Fraile-Vazquez ME, Herzog R, Kringelbach ML, Deco G, Prado P, Ibanez A, Tagliazucchi E. Model-based whole-brain perturbational landscape of neurodegenerative diseases. eLife 2023; 12:e83970. [PMID: 36995213 PMCID: PMC10063230 DOI: 10.7554/elife.83970] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
The treatment of neurodegenerative diseases is hindered by lack of interventions capable of steering multimodal whole-brain dynamics towards patterns indicative of preserved brain health. To address this problem, we combined deep learning with a model capable of reproducing whole-brain functional connectivity in patients diagnosed with Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). These models included disease-specific atrophy maps as priors to modulate local parameters, revealing increased stability of hippocampal and insular dynamics as signatures of brain atrophy in AD and bvFTD, respectively. Using variational autoencoders, we visualized different pathologies and their severity as the evolution of trajectories in a low-dimensional latent space. Finally, we perturbed the model to reveal key AD- and bvFTD-specific regions to induce transitions from pathological to healthy brain states. Overall, we obtained novel insights on disease progression and control by means of external stimulation, while identifying dynamical mechanisms that underlie functional alterations in neurodegeneration.
Collapse
Affiliation(s)
- Yonatan Sanz Perl
- Department of Physics, University of Buenos AiresBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu FabraBarcelonaSpain
| | - Sol Fittipaldi
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
| | - Cecilia Gonzalez Campo
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
| | - Sebastián Moguilner
- Global Brain Health Institute, University of California, San FranciscoSan FranciscoUnited States
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| | - Josephine Cruzat
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu FabraBarcelonaSpain
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| | | | - Rubén Herzog
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| | - Morten L Kringelbach
- Department of Psychiatry, University of OxfordOxfordUnited Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus UniversityÅrhusDenmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBragaPortugal
- Centre for Eudaimonia and Human Flourishing, University of OxfordOxfordUnited Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu FabraBarcelonaSpain
- Department of Information and Communication Technologies, Universitat Pompeu FabraBarcelonaSpain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA)BarcelonaSpain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- School of Psychological Sciences, Monash UniversityClaytonAustralia
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San SebastiánSantiagoChile
| | - Agustin Ibanez
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
- Global Brain Health Institute, University of California, San FranciscoSan FranciscoUnited States
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
- Trinity College Institute of Neuroscience (TCIN), Trinity College DublinDublinIreland
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos AiresBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| |
Collapse
|
14
|
Gilson M, Tagliazucchi E, Cofré R. Entropy production of multivariate Ornstein-Uhlenbeck processes correlates with consciousness levels in the human brain. Phys Rev E 2023; 107:024121. [PMID: 36932548 DOI: 10.1103/physreve.107.024121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Consciousness is supported by complex patterns of brain activity which are indicative of irreversible nonequilibrium dynamics. While the framework of stochastic thermodynamics has facilitated the understanding of physical systems of this kind, its application to infer the level of consciousness from empirical data remains elusive. We faced this challenge by calculating entropy production in a multivariate Ornstein-Uhlenbeck process fitted to Functional magnetic resonance imaging brain activity recordings. To test this approach, we focused on the transition from wakefulness to deep sleep, revealing a monotonous relationship between entropy production and the level of consciousness. Our results constitute robust signatures of consciousness while also advancing our understanding of the link between consciousness and complexity from the fundamental perspective of statistical physics.
Collapse
Affiliation(s)
- Matthieu Gilson
- Institut de Neurosciences des Systèmes INSERM-AMU, Marseille 13005, France
| | - Enzo Tagliazucchi
- Physics Department University of Buenos Aires and Buenos Aires Physics Institute Argentina, Buenos Aires 1428, Argentina
- Latin American Brain Health Institute (BrainLat) Universidad Adolfo Ibañez, Santiago 7941169, Chile
| | - Rodrigo Cofré
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso 2340000, Chile
- Institute of Neuroscience (NeuroPSI-CNRS) Paris-Saclay University, Gif sur Yvette 91400, France
| |
Collapse
|
15
|
Escrichs A, Sanz Perl Y, Martínez-Molina N, Biarnes C, Garre-Olmo J, Fernández-Real JM, Ramos R, Martí R, Pamplona R, Brugada R, Serena J, Ramió-Torrentà L, Coll-De-Tuero G, Gallart L, Barretina J, Vilanova JC, Mayneris-Perxachs J, Saba L, Pedraza S, Kringelbach ML, Puig J, Deco G. The effect of external stimulation on functional networks in the aging healthy human brain. Cereb Cortex 2022; 33:235-245. [PMID: 35311898 DOI: 10.1093/cercor/bhac064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the brain changes occurring during aging can provide new insights for developing treatments that alleviate or reverse cognitive decline. Neurostimulation techniques have emerged as potential treatments for brain disorders and to improve cognitive functions. Nevertheless, given the ethical restrictions of neurostimulation approaches, in silico perturbation protocols based on causal whole-brain models are fundamental to gaining a mechanistic understanding of brain dynamics. Furthermore, this strategy could serve to identify neurophysiological biomarkers differentiating between age groups through an exhaustive exploration of the global effect of all possible local perturbations. Here, we used a resting-state fMRI dataset divided into middle-aged (N =310, <65 years) and older adults (N =310, $\geq $65) to characterize brain states in each group as a probabilistic metastable substate (PMS) space. We showed that the older group exhibited a reduced capability to access a metastable substate that overlaps with the rich club. Then, we fitted the PMS to a whole-brain model and applied in silico stimulations in each node to force transitions from the brain states of the older- to the middle-aged group. We found that the precuneus was the best stimulation target. Overall, these findings could have important implications for designing neurostimulation interventions for reversing the effects of aging on whole-brain dynamics.
Collapse
Affiliation(s)
- Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Yonatan Sanz Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Noelia Martínez-Molina
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Carles Biarnes
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Josep Garre-Olmo
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Institut d'Assistència Sanitària, Salt, Girona, Spain
| | - José Manuel Fernández-Real
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Department of Diabetes, Endocrinology and Nutrition, IDIBGI, Hospital Universitari de Girona Dr Josep Trueta, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Girona, Spain
| | - Rafel Ramos
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Vascular Health Research Group of Girona (ISV-Girona), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Spain.,Primary Care Services, Catalan Institute of Health (ICS), Girona, Spain
| | - Ruth Martí
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Vascular Health Research Group of Girona (ISV-Girona), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Spain.,Primary Care Services, Catalan Institute of Health (ICS), Girona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Ramon Brugada
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Cardiovascular Genetics Center, IDIBGI, CIBER-CV, Girona, Spain
| | - Joaquin Serena
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Department of Neurology, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Lluís Ramió-Torrentà
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Department of Neurology, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Gabriel Coll-De-Tuero
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Vascular Health Research Group of Girona (ISV-Girona), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Luís Gallart
- Biobanc, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jordi Barretina
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Joan C Vilanova
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Jordi Mayneris-Perxachs
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Diabetes, Endocrinology and Nutrition, IDIBGI, Hospital Universitari de Girona Dr Josep Trueta, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Girona, Spain
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Italy
| | - Salvador Pedraza
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK.,Department of Psychiatry, University of Oxford, Oxford, UK.,Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Josep Puig
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Institut d'Assistència Sanitària, Salt, Girona, Spain
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia, Spain.,Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences, Leipzig, Germany.,Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Tian X, Chen Y, Majka P, Szczupak D, Perl YS, Yen CCC, Tong C, Feng F, Jiang H, Glen D, Deco G, Rosa MGP, Silva AC, Liang Z, Liu C. An integrated resource for functional and structural connectivity of the marmoset brain. Nat Commun 2022; 13:7416. [PMID: 36456558 PMCID: PMC9715556 DOI: 10.1038/s41467-022-35197-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Comprehensive integration of structural and functional connectivity data is required to model brain functions accurately. While resources for studying the structural connectivity of non-human primate brains already exist, their integration with functional connectivity data has remained unavailable. Here we present a comprehensive resource that integrates the most extensive awake marmoset resting-state fMRI data available to date (39 marmoset monkeys, 710 runs, 12117 mins) with previously published cellular-level neuronal tracing data (52 marmoset monkeys, 143 injections) and multi-resolution diffusion MRI datasets. The combination of these data allowed us to (1) map the fine-detailed functional brain networks and cortical parcellations, (2) develop a deep-learning-based parcellation generator that preserves the topographical organization of functional connectivity and reflects individual variabilities, and (3) investigate the structural basis underlying functional connectivity by computational modeling. This resource will enable modeling structure-function relationships and facilitate future comparative and translational studies of primate brains.
Collapse
Affiliation(s)
- Xiaoguang Tian
- grid.21925.3d0000 0004 1936 9000Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Yuyan Chen
- grid.9227.e0000000119573309Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Piotr Majka
- grid.419305.a0000 0001 1943 2944Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland ,grid.1002.30000 0004 1936 7857Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800 Australia
| | - Diego Szczupak
- grid.21925.3d0000 0004 1936 9000Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Yonatan Sanz Perl
- grid.5612.00000 0001 2172 2676Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018 Spain ,grid.441741.30000 0001 2325 2241Universidad de San Andrés, Vito Dumas 284 (B1644BID), Buenos Aires, Argentina
| | - Cecil Chern-Chyi Yen
- grid.94365.3d0000 0001 2297 5165Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD 20892 USA
| | - Chuanjun Tong
- grid.9227.e0000000119573309Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Furui Feng
- grid.9227.e0000000119573309Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Haiteng Jiang
- grid.13402.340000 0004 1759 700XDepartment of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Zhe Jiang Sheng, China ,grid.13402.340000 0004 1759 700XMOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Daniel Glen
- grid.94365.3d0000 0001 2297 5165Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892 USA
| | - Gustavo Deco
- grid.5612.00000 0001 2172 2676Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018 Spain ,grid.425902.80000 0000 9601 989XInstitució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010 Spain ,grid.419524.f0000 0001 0041 5028Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103 Germany ,grid.1002.30000 0004 1936 7857School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC 3800 Australia
| | - Marcello G. P. Rosa
- grid.1002.30000 0004 1936 7857Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800 Australia
| | - Afonso C. Silva
- grid.21925.3d0000 0004 1936 9000Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Zhifeng Liang
- grid.9227.e0000000119573309Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China ,grid.511008.dShanghai Center for Brain Science and Brain-Inspired Intelligence Technology Shanghai, Shanghai, China
| | - Cirong Liu
- grid.9227.e0000000119573309Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China ,grid.511008.dShanghai Center for Brain Science and Brain-Inspired Intelligence Technology Shanghai, Shanghai, China ,Lingang Laboratory, Shanghai, 200031 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Strength-dependent perturbation of whole-brain model working in different regimes reveals the role of fluctuations in brain dynamics. PLoS Comput Biol 2022; 18:e1010662. [PMID: 36322525 PMCID: PMC9629648 DOI: 10.1371/journal.pcbi.1010662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/17/2022] [Indexed: 01/15/2023] Open
Abstract
Despite decades of research, there is still a lack of understanding of the role and generating mechanisms of the ubiquitous fluctuations and oscillations found in recordings of brain dynamics. Here, we used whole-brain computational models capable of presenting different dynamical regimes to reproduce empirical data's turbulence level. We showed that the model's fluctuations regime fitted to turbulence more faithfully reproduces the empirical functional connectivity compared to oscillatory and noise regimes. By applying global and local strength-dependent perturbations and subsequently measuring the responsiveness of the model, we revealed each regime's computational capacity demonstrating that brain dynamics is shifted towards fluctuations to provide much-needed flexibility. Importantly, fluctuation regime stimulation in a brain region within a given resting state network modulates that network, aligned with previous empirical and computational studies. Furthermore, this framework generates specific, testable empirical predictions for human stimulation studies using strength-dependent rather than constant perturbation. Overall, the whole-brain models fitted to the level of empirical turbulence together with functional connectivity unveil that the fluctuation regime best captures empirical data, and the strength-dependent perturbative framework demonstrates how this regime provides maximal flexibility to the human brain.
Collapse
|
18
|
Piccinini J, Deco G, Kringelbach M, Laufs H, Sanz Perl Y, Tagliazucchi E. Data-driven discovery of canonical large-scale brain dynamics. Cereb Cortex Commun 2022; 3:tgac045. [PMID: 36479448 PMCID: PMC9721525 DOI: 10.1093/texcom/tgac045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 09/23/2023] Open
Abstract
Human behavior and cognitive function correlate with complex patterns of spatio-temporal brain dynamics, which can be simulated using computational models with different degrees of biophysical realism. We used a data-driven optimization algorithm to determine and classify the types of local dynamics that enable the reproduction of different observables derived from functional magnetic resonance recordings. The phase space analysis of the resulting equations revealed a predominance of stable spiral attractors, which optimized the similarity to the empirical data in terms of the synchronization, metastability, and functional connectivity dynamics. For stable limit cycles, departures from harmonic oscillations improved the fit in terms of functional connectivity dynamics. Eigenvalue analyses showed that proximity to a bifurcation improved the accuracy of the simulation for wakefulness, whereas deep sleep was associated with increased stability. Our results provide testable predictions that constrain the landscape of suitable biophysical models, while supporting noise-driven dynamics close to a bifurcation as a canonical mechanism underlying the complex fluctuations that characterize endogenous brain activity.
Collapse
Affiliation(s)
- Juan Piccinini
- Department of Physics, University of Buenos Aires, Intendente Guiraldes 2160 Ciudad Universitaria, CABA, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, CABA, Argentina
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra Plaça de la Mercè, 10-12, 08002 Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), Passeig Lluís Companys 23 08010 Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- School of Psychological Sciences, Monash University, Wellington Rd, Clayton VIC 3800, Australia
| | - Morten Kringelbach
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Ln, Headington, Oxford OX3 7JX, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Building 1710, Universitetsbyen 3, 8000 Aarhus C, Denmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- Centre for Eudaimonia and Human Flourishing, University of Oxford, 7 Stoke Pl, Headington, Oxford OX3 9BX, United Kingdom
| | - Helmut Laufs
- Neurology Department, Schleswig-Holstein University Hospital, University of Kiel, Haus D, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Yonatan Sanz Perl
- Department of Physics, University of Buenos Aires, Intendente Guiraldes 2160 Ciudad Universitaria, CABA, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, CABA, Argentina
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Vito Dumas 284 Victoria, Buenos Aires, Argentina
- Paris Brain Institute (ICM), Hôpital Pitié, 47 Bd de l'Hôpital, 75013 Paris, France
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Intendente Guiraldes 2160 Ciudad Universitaria, CABA, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, CABA, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Diagonal las Torres 2640, Peñalolén Av. Presidente Errázuriz 3485, Las Condes, Santiago, Chile
| |
Collapse
|
19
|
Escrichs A, Perl YS, Uribe C, Camara E, Türker B, Pyatigorskaya N, López-González A, Pallavicini C, Panda R, Annen J, Gosseries O, Laureys S, Naccache L, Sitt JD, Laufs H, Tagliazucchi E, Kringelbach ML, Deco G. Unifying turbulent dynamics framework distinguishes different brain states. Commun Biol 2022; 5:638. [PMID: 35768641 PMCID: PMC9243255 DOI: 10.1038/s42003-022-03576-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/10/2022] [Indexed: 12/21/2022] Open
Abstract
Significant advances have been made by identifying the levels of synchrony of the underlying dynamics of a given brain state. This research has demonstrated that non-conscious dynamics tend to be more synchronous than in conscious states, which are more asynchronous. Here we go beyond this dichotomy to demonstrate that different brain states are underpinned by dissociable spatiotemporal dynamics. We investigated human neuroimaging data from different brain states (resting state, meditation, deep sleep and disorders of consciousness after coma). The model-free approach was based on Kuramoto's turbulence framework using coupled oscillators. This was extended by a measure of the information cascade across spatial scales. Complementarily, the model-based approach used exhaustive in silico perturbations of whole-brain models fitted to these measures. This allowed studying of the information encoding capabilities in given brain states. Overall, this framework demonstrates that elements from turbulence theory provide excellent tools for describing and differentiating between brain states.
Collapse
Grants
- A.E and Y.S.P. are supported by the HBP SGA3 Human Brain Project Specific Grant Agreement 3 (grant agreement no. 945539), funded by the EU H2020 FET Flagship programme. Y.S.P is supported by European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant 896354. G.D. is supported Spanish national research project (ref. PID2019-105772GB-I00 MCIU AEI) funded by the Spanish Ministry of Science, Innovation and Universities (MCIU), State Research Agency (AEI); HBP SGA3 Human Brain Project Specific Grant Agreement 3 (grant agreement no. 945539), funded by the EU H2020 FET Flagship programme; SGR Research Support Group support (ref. 2017 SGR 1545), funded by the Catalan Agency for Management of University and Research Grants (AGAUR); Neurotwin Digital twins for model-driven non-invasive electrical brain stimulation (grant agreement ID: 101017716) funded by the EU H2020 FET Proactive programme; euSNN European School of Network Neuroscience (grant agreement ID: 860563) funded by the EU H2020 MSCA-ITN Innovative Training Networks; CECH The Emerging Human Brain Cluster (Id. 001-P-001682) within the framework of the European Research Development Fund Operational Program of Catalonia 2014-2020; Brain-Connects: Brain Connectivity during Stroke Recovery and Rehabilitation (id. 201725.33) funded by the Fundacio La Marato TV3; Corticity, FLAG–ERA JTC 2017 (ref. PCI2018-092891) funded by the Spanish Ministry of Science, Innovation and Universities (MCIU), State Research Agency (AEI). MLK is supported by the Center for Music in the Brain, funded by the Danish National Research Foundation (DNRF117), and Centre for Eudaimonia and Human Flourishing at Linacre College funded by the Pettit and Carlsberg Foundations. The study was supported by the University and University Hospital of Liège, the Belgian National Funds for Scientific Research (FRS-FNRS), the European Space Agency (ESA) and the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Programme, the BIAL Foundation, the Mind Science Foundation, the fund Generet of the King Baudouin Foundation, the Mind-Care foundation and AstraZeneca Foundation, the National Natural Science Foundation of China (Joint Research Project 81471100) and the European Foundation of Biomedical Research FERB Onlus. RP is research fellow, OG is research associate, and SL is research director at FRS-FNRS. The authors thank all the patients and participants, the whole staff from the Radiodiagnostic and Nuclear departments of the University Hospital of Liège.
Collapse
Affiliation(s)
- Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| | - Yonatan Sanz Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Universidad de San Andrés, Buenos Aires, Argentina.
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.
| | - Carme Uribe
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Estela Camara
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
| | - Basak Türker
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Nadya Pyatigorskaya
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
- Department of Neuroradiology, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Ane López-González
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Carla Pallavicini
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Rajanikant Panda
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, U Laval CANADA, Québec, QC, Canada
- International Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Lionel Naccache
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Jacobo D Sitt
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Helmut Laufs
- Department of Neurology, Christian Albrechts University, Kiel, Germany
- Department of Neurology and Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, DK, Jutland, Denmark.
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK.
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia, Spain.
- Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences, Leipzig, Germany.
- School of Psychological Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
20
|
Meditation-induced effects on whole-brain structural and effective connectivity. Brain Struct Funct 2022; 227:2087-2102. [PMID: 35524072 PMCID: PMC9232427 DOI: 10.1007/s00429-022-02496-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/04/2022] [Indexed: 12/26/2022]
Abstract
In the past decades, there has been a growing scientific interest in characterizing neural correlates of meditation training. Nonetheless, the mechanisms underlying meditation remain elusive. In the present work, we investigated meditation-related changes in functional dynamics and structural connectivity (SC). For this purpose, we scanned experienced meditators and control (naive) subjects using magnetic resonance imaging (MRI) to acquire structural and functional data during two conditions, resting-state and meditation (focused attention on breathing). In this way, we aimed to characterize and distinguish both short-term and long-term modifications in the brain’s structure and function. First, to analyze the fMRI data, we calculated whole-brain effective connectivity (EC) estimates, relying on a dynamical network model to replicate BOLD signals’ spatio-temporal structure, akin to functional connectivity (FC) with lagged correlations. We compared the estimated EC, FC, and SC links as features to train classifiers to predict behavioral conditions and group identity. Then, we performed a network-based analysis of anatomical connectivity. We demonstrated through a machine-learning approach that EC features were more informative than FC and SC solely. We showed that the most informative EC links that discriminated between meditators and controls involved several large-scale networks mainly within the left hemisphere. Moreover, we found that differences in the functional domain were reflected to a smaller extent in changes at the anatomical level as well. The network-based analysis of anatomical pathways revealed strengthened connectivity for meditators compared to controls between four areas in the left hemisphere belonging to the somatomotor, dorsal attention, subcortical and visual networks. Overall, the results of our whole-brain model-based approach revealed a mechanism underlying meditation by providing causal relationships at the structure-function level.
Collapse
|
21
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard JD, Williams GB, Craig MM, Finoia P, Peattie ARD, Coppola P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. Whole-brain modelling identifies distinct but convergent paths to unconsciousness in anaesthesia and disorders of consciousness. Commun Biol 2022; 5:384. [PMID: 35444252 PMCID: PMC9021270 DOI: 10.1038/s42003-022-03330-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
The human brain entertains rich spatiotemporal dynamics, which are drastically reconfigured when consciousness is lost due to anaesthesia or disorders of consciousness (DOC). Here, we sought to identify the neurobiological mechanisms that explain how transient pharmacological intervention and chronic neuroanatomical injury can lead to common reconfigurations of neural activity. We developed and systematically perturbed a neurobiologically realistic model of whole-brain haemodynamic signals. By incorporating PET data about the cortical distribution of GABA receptors, our computational model reveals a key role of spatially-specific local inhibition for reproducing the functional MRI activity observed during anaesthesia with the GABA-ergic agent propofol. Additionally, incorporating diffusion MRI data obtained from DOC patients reveals that the dynamics that characterise loss of consciousness can also emerge from randomised neuroanatomical connectivity. Our results generalise between anaesthesia and DOC datasets, demonstrating how increased inhibition and connectome perturbation represent distinct neurobiological paths towards the characteristic activity of the unconscious brain.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK.
- The Alan Turing Institute, London, UK.
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Data Science Institute, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Cambridge, UK
| | - John D Pickard
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Paola Finoia
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Coppola
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- The Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Cakan C, Dimulescu C, Khakimova L, Obst D, Flöel A, Obermayer K. Spatiotemporal Patterns of Adaptation-Induced Slow Oscillations in a Whole-Brain Model of Slow-Wave Sleep. Front Comput Neurosci 2022; 15:800101. [PMID: 35095451 PMCID: PMC8790481 DOI: 10.3389/fncom.2021.800101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
During slow-wave sleep, the brain is in a self-organized regime in which slow oscillations (SOs) between up- and down-states travel across the cortex. While an isolated piece of cortex can produce SOs, the brain-wide propagation of these oscillations are thought to be mediated by the long-range axonal connections. We address the mechanism of how SOs emerge and recruit large parts of the brain using a whole-brain model constructed from empirical connectivity data in which SOs are induced independently in each brain area by a local adaptation mechanism. Using an evolutionary optimization approach, good fits to human resting-state fMRI data and sleep EEG data are found at values of the adaptation strength close to a bifurcation where the model produces a balance between local and global SOs with realistic spatiotemporal statistics. Local oscillations are more frequent, last shorter, and have a lower amplitude. Global oscillations spread as waves of silence across the undirected brain graph, traveling from anterior to posterior regions. These traveling waves are caused by heterogeneities in the brain network in which the connection strengths between brain areas determine which areas transition to a down-state first, and thus initiate traveling waves across the cortex. Our results demonstrate the utility of whole-brain models for explaining the origin of large-scale cortical oscillations and how they are shaped by the connectome.
Collapse
Affiliation(s)
- Caglar Cakan
- Department of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Cristiana Dimulescu
- Department of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Liliia Khakimova
- Department of Neurology, University Medicine, Greifswald, Germany
| | - Daniela Obst
- Department of Neurology, University Medicine, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine, Greifswald, Germany
- German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Klaus Obermayer
- Department of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
23
|
Sanz Perl Y, Bocaccio H, Pallavicini C, Pérez-Ipiña I, Laureys S, Laufs H, Kringelbach M, Deco G, Tagliazucchi E. Nonequilibrium brain dynamics as a signature of consciousness. Phys Rev E 2021; 104:014411. [PMID: 34412335 DOI: 10.1103/physreve.104.014411] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
The cognitive functions of human and nonhuman primates rely on the dynamic interplay of distributed neural assemblies. As such, it seems unlikely that cognition can be supported by macroscopic brain dynamics at the proximity of equilibrium. We confirmed this hypothesis by investigating electrocorticography data from nonhuman primates undergoing different states of unconsciousness (sleep, and anesthesia with propofol, ketamine, and ketamine plus medetomidine), and functional magnetic resonance imaging data from humans, both during deep sleep and under propofol anesthesia. Systematically, all states of reduced consciousness unfolded at higher proximity to equilibrium compared to conscious wakefulness, as demonstrated by the computation of entropy production and the curl of probability flux in phase space. Our results establish nonequilibrium macroscopic brain dynamics as a robust signature of consciousness, opening the way for the characterization of cognition and awareness using tools from statistical mechanics.
Collapse
Affiliation(s)
- Yonatan Sanz Perl
- Universidad de San Andrés, Buenos Aires, B1644BID, Argentina.,Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina.,Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Hernán Bocaccio
- Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
| | - Carla Pallavicini
- Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
| | - Ignacio Pérez-Ipiña
- Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, 4000 Liège, Belgium
| | - Helmut Laufs
- Department of Neurology, Christian Albrechts University Kiel, 24118 Kiel, Germany
| | - Morten Kringelbach
- Department of Psychiatry, University of Oxford, Oxford OX12JD, United Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Enzo Tagliazucchi
- Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago 7910000, Chile
| |
Collapse
|
24
|
Sanz Perl Y, Pallavicini C, Pérez Ipiña I, Demertzi A, Bonhomme V, Martial C, Panda R, Annen J, Ibañez A, Kringelbach M, Deco G, Laufs H, Sitt J, Laureys S, Tagliazucchi E. Perturbations in dynamical models of whole-brain activity dissociate between the level and stability of consciousness. PLoS Comput Biol 2021; 17:e1009139. [PMID: 34314430 PMCID: PMC8315553 DOI: 10.1371/journal.pcbi.1009139] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 06/01/2021] [Indexed: 01/07/2023] Open
Abstract
Consciousness transiently fades away during deep sleep, more stably under anesthesia, and sometimes permanently due to brain injury. The development of an index to quantify the level of consciousness across these different states is regarded as a key problem both in basic and clinical neuroscience. We argue that this problem is ill-defined since such an index would not exhaust all the relevant information about a given state of consciousness. While the level of consciousness can be taken to describe the actual brain state, a complete characterization should also include its potential behavior against external perturbations. We developed and analyzed whole-brain computational models to show that the stability of conscious states provides information complementary to their similarity to conscious wakefulness. Our work leads to a novel methodological framework to sort out different brain states by their stability and reversibility, and illustrates its usefulness to dissociate between physiological (sleep), pathological (brain-injured patients), and pharmacologically-induced (anesthesia) loss of consciousness.
Collapse
Affiliation(s)
- Yonatan Sanz Perl
- Department of Physics, University of Buenos Aires, Intendente Güiraldes 2160—Ciudad Universitaria—Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (YSP); (ET)
| | - Carla Pallavicini
- Department of Physics, University of Buenos Aires, Intendente Güiraldes 2160—Ciudad Universitaria—Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Ignacio Pérez Ipiña
- Department of Physics, University of Buenos Aires, Intendente Güiraldes 2160—Ciudad Universitaria—Buenos Aires, Argentina
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Athena Demertzi
- Physiology of Cognition Research Lab, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium
| | - Vincent Bonhomme
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium
- University Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Régional de la Citadelle (CHR Citadelle), Liège, Belgium
- Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau², Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Rajanikant Panda
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau², Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau², Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Agustin Ibañez
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Global Brain Health Institute (GBHI), University of California-San Francisco (UCSF), San Francisco, California, United States and Trinity College Dublin, Ireland
| | - Morten Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Århus, Denmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Helmut Laufs
- Department of Neurology and Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
- Department of Neurology, Christian Albrechts University, Kiel, Germany
| | - Jacobo Sitt
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau², Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Intendente Güiraldes 2160—Ciudad Universitaria—Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Department of Neurology, Christian Albrechts University, Kiel, Germany
- * E-mail: (YSP); (ET)
| |
Collapse
|
25
|
Duran-Aniotz C, Orellana P, Leon Rodriguez T, Henriquez F, Cabello V, Aguirre-Pinto MF, Escobedo T, Takada LT, Pina-Escudero SD, Lopez O, Yokoyama JS, Ibanez A, Parra MA, Slachevsky A. Systematic Review: Genetic, Neuroimaging, and Fluids Biomarkers for Frontotemporal Dementia Across Latin America Countries. Front Neurol 2021; 12:663407. [PMID: 34248820 PMCID: PMC8263937 DOI: 10.3389/fneur.2021.663407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) includes a group of clinically, genetically, and pathologically heterogeneous neurodegenerative disorders, affecting the fronto-insular-temporal regions of the brain. Clinically, FTD is characterized by progressive deficits in behavior, executive function, and language and its diagnosis relies mainly on the clinical expertise of the physician/consensus group and the use of neuropsychological tests and/or structural/functional neuroimaging, depending on local availability. The modest correlation between clinical findings and FTD neuropathology makes the diagnosis difficult using clinical criteria and often leads to underdiagnosis or misdiagnosis, primarily due to lack of recognition or awareness of FTD as a disease and symptom overlap with psychiatric disorders. Despite advances in understanding the underlying neuropathology of FTD, accurate and sensitive diagnosis for this disease is still lacking. One of the major challenges is to improve diagnosis in FTD patients as early as possible. In this context, biomarkers have emerged as useful methods to provide and/or complement clinical diagnosis for this complex syndrome, although more evidence is needed to incorporate most of them into clinical practice. However, most biomarker studies have been performed using North American or European populations, with little representation of the Latin American and the Caribbean (LAC) region. In the LAC region, there are additional challenges, particularly the lack of awareness and knowledge about FTD, even in specialists. Also, LAC genetic heritage and cultures are complex, and both likely influence clinical presentations and may modify baseline biomarker levels. Even more, due to diagnostic delay, the clinical presentation might be further complicated by both neurological and psychiatric comorbidity, such as vascular brain damage, substance abuse, mood disorders, among others. This systematic review provides a brief update and an overview of the current knowledge on genetic, neuroimaging, and fluid biomarkers for FTD in LAC countries. Our review highlights the need for extensive research on biomarkers in FTD in LAC to contribute to a more comprehensive understanding of the disease and its associated biomarkers. Dementia research is certainly reduced in the LAC region, highlighting an urgent need for harmonized, innovative, and cross-regional studies with a global perspective across multiple areas of dementia knowledge.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon Rodriguez
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Henriquez
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Victoria Cabello
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Tamara Escobedo
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Stefanie D. Pina-Escudero
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer S. Yokoyama
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
- Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
26
|
Shen Q, Liu Z. Remote firing propagation in the neural network of C. elegans. Phys Rev E 2021; 103:052414. [PMID: 34134291 DOI: 10.1103/physreve.103.052414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/10/2021] [Indexed: 11/07/2022]
Abstract
Understanding the mechanisms of firing propagation in brain networks has been a long-standing problem in the fields of nonlinear dynamics and network science. In general, it is believed that a specific firing in a brain network may be gradually propagated from a source node to its neighbors and then to the neighbors' neighbors and so on. Here, we explore firing propagation in the neural network of Caenorhabditis elegans and surprisingly find an abnormal phenomenon, i.e., remote firing propagation between two distant and indirectly connected nodes with the intermediate nodes being inactivated. This finding is robust to source nodes but depends on the topology of network such as the unidirectional couplings and heterogeneity of network. Further, a brief theoretical analysis is provided to explain its mechanism and a principle for remote firing propagation is figured out. This finding provides insights for us to understand how those cognitive subnetworks emerge in a brain network.
Collapse
Affiliation(s)
- Qiwei Shen
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, People's Republic of China
| | - Zonghua Liu
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, People's Republic of China
| |
Collapse
|
27
|
Doelling KB, Assaneo MF. Neural oscillations are a start toward understanding brain activity rather than the end. PLoS Biol 2021; 19:e3001234. [PMID: 33945528 PMCID: PMC8121326 DOI: 10.1371/journal.pbio.3001234] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/14/2021] [Indexed: 11/18/2022] Open
Abstract
Does rhythmic neural activity merely echo the rhythmic features of the environment, or does it reflect a fundamental computational mechanism of the brain? This debate has generated a series of clever experimental studies attempting to find an answer. Here, we argue that the field has been obstructed by predictions of oscillators that are based more on intuition rather than biophysical models compatible with the observed phenomena. What follows is a series of cautionary examples that serve as reminders to ground our hypotheses in well-developed theories of oscillatory behavior put forth by theoretical study of dynamical systems. Ultimately, our hope is that this exercise will push the field to concern itself less with the vague question of "oscillation or not" and more with specific biophysical models that can be readily tested.
Collapse
Affiliation(s)
| | - M. Florencia Assaneo
- Instituto de Neurobiología, Universidad Autónoma de México Santiago de Querétaro, México
| |
Collapse
|
28
|
Ibanez A, Yokoyama JS, Possin KL, Matallana D, Lopera F, Nitrini R, Takada LT, Custodio N, Sosa Ortiz AL, Avila-Funes JA, Behrens MI, Slachevsky A, Myers RM, Cochran JN, Brusco LI, Bruno MA, Brucki SMD, Pina-Escudero SD, Okada de Oliveira M, Donnelly Kehoe P, Garcia AM, Cardona JF, Santamaria-Garcia H, Moguilner S, Duran-Aniotz C, Tagliazucchi E, Maito M, Longoria Ibarrola EM, Pintado-Caipa M, Godoy ME, Bakman V, Javandel S, Kosik KS, Valcour V, Miller BL. The Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat): Driving Multicentric Research and Implementation Science. Front Neurol 2021; 12:631722. [PMID: 33776890 PMCID: PMC7992978 DOI: 10.3389/fneur.2021.631722] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Dementia is becoming increasingly prevalent in Latin America, contrasting with stable or declining rates in North America and Europe. This scenario places unprecedented clinical, social, and economic burden upon patients, families, and health systems. The challenges prove particularly pressing for conditions with highly specific diagnostic and management demands, such as frontotemporal dementia. Here we introduce a research and networking initiative designed to tackle these ensuing hurdles, the Multi-partner consortium to expand dementia research in Latin America (ReDLat). First, we present ReDLat's regional research framework, aimed at identifying the unique genetic, social, and economic factors driving the presentation of frontotemporal dementia and Alzheimer's disease in Latin America relative to the US. We describe ongoing ReDLat studies in various fields and ongoing research extensions. Then, we introduce actions coordinated by ReDLat and the Latin America and Caribbean Consortium on Dementia (LAC-CD) to develop culturally appropriate diagnostic tools, regional visibility and capacity building, diplomatic coordination in local priority areas, and a knowledge-to-action framework toward a regional action plan. Together, these research and networking initiatives will help to establish strong cross-national bonds, support the implementation of regional dementia plans, enhance health systems' infrastructure, and increase translational research collaborations across the continent.
Collapse
Affiliation(s)
- Agustin Ibanez
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- School of Psychology, Center for Social and Cognitive Neuroscience, Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Adolfo Ibanez University, Santiago, Chile
| | - Jennifer S. Yokoyama
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Katherine L. Possin
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Diana Matallana
- Psychiatry Department, School of Medicine, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
- Memory and Cognition Clinic, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
- Mental Health Unit, Hospital Universitario Santa Fe de Bogotá, Bogotá, Colombia
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Ricardo Nitrini
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Nilton Custodio
- Unit Cognitive Impairment and Dementia Prevention, Cognitive Neurology Center, Peruvian Institute of Neurosciences, Lima, Perú
| | - Ana Luisa Sosa Ortiz
- Instituto Nacional de Neurologia y Neurocirugia MVS, Universidad Nacional Autonoma de Mexico, Mexico, Mexico
| | - José Alberto Avila-Funes
- Department of Geriatrics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Bordeaux, France
| | - Maria Isabel Behrens
- Centro de Investigación Clínica Avanzada, Hospital Clínico, Facultad de Medicina Universidad de Chile, Santiago, Chile
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Neurociencia, Facultad de Medicina Universidad de Chile, Santiago, Chile
- Clínica Alemana Santiago, Universidad del Desarrollo, Santiago, Chile
| | - Andrea Slachevsky
- Clínica Alemana Santiago, Universidad del Desarrollo, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, Institute of Biomedical Sciences, Neuroscience and East Neuroscience, Santiago, Chile
- Faculty of Medicine, University of Chile, Santiago, Chile
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Faculty of Medicine, Hospital del Salvador, University of Chile, Santiago, Chile
| | - Richard M. Myers
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | | | - Luis Ignacio Brusco
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- ALZAR – Alzheimer, Buenos Aires, Argentina
| | - Martin A. Bruno
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad Ciencias Médicas, Instituto Ciencias Biomédicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - Sonia M. D. Brucki
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
- Hospital Santa Marcelina, São Paulo, São Paulo, Brazil
| | - Stefanie Danielle Pina-Escudero
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Maira Okada de Oliveira
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
- Hospital Santa Marcelina, São Paulo, São Paulo, Brazil
| | - Patricio Donnelly Kehoe
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Multimedia Signal Processing Group - Neuroimage Division, French-Argentine International Center for Information and Systems Sciences, Rosario, Argentina
| | - Adolfo M. Garcia
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Faculty of Education, National University of Cuyo, Mendoza, Argentina
| | | | - Hernando Santamaria-Garcia
- Memory and Cognition Clinic, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
- Ph.D. Program in Neuroscience, Department of Psychiatry, Physiology, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sebastian Moguilner
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Claudia Duran-Aniotz
- School of Psychology, Center for Social and Cognitive Neuroscience, Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Adolfo Ibanez University, Santiago, Chile
| | - Enzo Tagliazucchi
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo Maito
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | | | - Maritza Pintado-Caipa
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Unit Cognitive Impairment and Dementia Prevention, Cognitive Neurology Center, Peruvian Institute of Neurosciences, Lima, Perú
| | - Maria Eugenia Godoy
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Vera Bakman
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Shireen Javandel
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Kenneth S. Kosik
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Victor Valcour
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Bruce L. Miller
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
29
|
Piccinini J, Ipiñna IP, Laufs H, Kringelbach M, Deco G, Sanz Perl Y, Tagliazucchi E. Noise-driven multistability vs deterministic chaos in phenomenological semi-empirical models of whole-brain activity. CHAOS (WOODBURY, N.Y.) 2021; 31:023127. [PMID: 33653038 DOI: 10.1063/5.0025543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
An outstanding open problem in neuroscience is to understand how neural systems are capable of producing and sustaining complex spatiotemporal dynamics. Computational models that combine local dynamics with in vivo measurements of anatomical and functional connectivity can be used to test potential mechanisms underlying this complexity. We compared two conceptually different mechanisms: noise-driven switching between equilibrium solutions (modeled by coupled Stuart-Landau oscillators) and deterministic chaos (modeled by coupled Rossler oscillators). We found that both models struggled to simultaneously reproduce multiple observables computed from the empirical data. This issue was especially manifested in the case of noise-driven dynamics close to a bifurcation, which imposed overly strong constraints on the optimal model parameters. In contrast, the chaotic model could produce complex behavior over a range of parameters, thus being capable of capturing multiple observables at the same time with good performance. Our observations support the view of the brain as a non-equilibrium system able to produce endogenous variability. We presented a simple model capable of jointly reproducing functional connectivity computed at different temporal scales. Besides adding to our conceptual understanding of brain complexity, our results inform and constrain the future development of biophysically realistic large-scale models.
Collapse
Affiliation(s)
- Juan Piccinini
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires 1428, Argentina
| | - Ignacio Perez Ipiñna
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires 1428, Argentina
| | - Helmut Laufs
- Neurology Department, University of Kiel, Kiel 24105, Germany
| | - Morten Kringelbach
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Yonatan Sanz Perl
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires 1428, Argentina
| | - Enzo Tagliazucchi
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires 1428, Argentina
| |
Collapse
|
30
|
Moguilner S, García AM, Perl YS, Tagliazucchi E, Piguet O, Kumfor F, Reyes P, Matallana D, Sedeño L, Ibáñez A. Dynamic brain fluctuations outperform connectivity measures and mirror pathophysiological profiles across dementia subtypes: A multicenter study. Neuroimage 2021; 225:117522. [PMID: 33144220 PMCID: PMC7832160 DOI: 10.1016/j.neuroimage.2020.117522] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
From molecular mechanisms to global brain networks, atypical fluctuations are the hallmark of neurodegeneration. Yet, traditional fMRI research on resting-state networks (RSNs) has favored static and average connectivity methods, which by overlooking the fluctuation dynamics triggered by neurodegeneration, have yielded inconsistent results. The present multicenter study introduces a data-driven machine learning pipeline based on dynamic connectivity fluctuation analysis (DCFA) on RS-fMRI data from 300 participants belonging to three groups: behavioral variant frontotemporal dementia (bvFTD) patients, Alzheimer's disease (AD) patients, and healthy controls. We considered non-linear oscillatory patterns across combined and individual resting-state networks (RSNs), namely: the salience network (SN), mostly affected in bvFTD; the default mode network (DMN), mostly affected in AD; the executive network (EN), partially compromised in both conditions; the motor network (MN); and the visual network (VN). These RSNs were entered as features for dementia classification using a recent robust machine learning approach (a Bayesian hyperparameter tuned Gradient Boosting Machines (GBM) algorithm), across four independent datasets with different MR scanners and recording parameters. The machine learning classification accuracy analysis revealed a systematic and unique tailored architecture of RSN disruption. The classification accuracy ranking showed that the most affected networks for bvFTD were the SN + EN network pair (mean accuracy = 86.43%, AUC = 0.91, sensitivity = 86.45%, specificity = 87.54%); for AD, the DMN + EN network pair (mean accuracy = 86.63%, AUC = 0.89, sensitivity = 88.37%, specificity = 84.62%); and for the bvFTD vs. AD classification, the DMN + SN network pair (mean accuracy = 82.67%, AUC = 0.86, sensitivity = 81.27%, specificity = 83.01%). Moreover, the DFCA classification systematically outperformed canonical connectivity approaches (including both static and linear dynamic connectivity). Our findings suggest that non-linear dynamical fluctuations surpass two traditional seed-based functional connectivity approaches and provide a pathophysiological characterization of global brain networks in neurodegenerative conditions (AD and bvFTD) across multicenter data.
Collapse
Affiliation(s)
- Sebastian Moguilner
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US; & Trinity College Dublin, Dublin, Ireland; Fundación Escuela de Medicina Nuclear (FUESMEN) and Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - Adolfo M García
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US; & Trinity College Dublin, Dublin, Ireland; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad de San Andrés, Buenos Aires, Argentina; Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Yonatan Sanz Perl
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad de San Andrés, Buenos Aires, Argentina; Department of Physics, University of Buenos Aires, Argentina
| | - Enzo Tagliazucchi
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Department of Physics, University of Buenos Aires, Argentina
| | - Olivier Piguet
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Fiona Kumfor
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Pablo Reyes
- Medical School, Aging Institute, Psychiatry and Mental Health, Pontificia Universidad Javeriana; Mental Health Unit, Hospital Universitario Fundación Santa Fe, Bogotá, Colombia, Hospital Universitario San Ignacio. Bogotá, Colombia
| | - Diana Matallana
- Medical School, Aging Institute, Psychiatry and Mental Health, Pontificia Universidad Javeriana; Mental Health Unit, Hospital Universitario Fundación Santa Fe, Bogotá, Colombia, Hospital Universitario San Ignacio. Bogotá, Colombia
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| | - Agustín Ibáñez
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US; & Trinity College Dublin, Dublin, Ireland; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad de San Andrés, Buenos Aires, Argentina; Universidad Autónoma del Caribe, Barranquilla, Colombia; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.
| |
Collapse
|
31
|
Zhu X, Ni K, Tan H, Liu Y, Zeng Y, Yu B, Guo Q, Xiao L. Abnormal Brain Network Topology During Non-rapid Eye Movement Sleep and Its Correlation With Cognitive Behavioral Abnormalities in Narcolepsy Type 1. Front Neurol 2021; 11:617827. [PMID: 33505350 PMCID: PMC7829333 DOI: 10.3389/fneur.2020.617827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) were applied to investigate the abnormalities in the topological characteristics of functional brain networks during non-rapid eye movement(NREM)sleep. And we investigated its relationship with cognitive abnormalities in patients with narcolepsy type 1 (NT1) disorder in the current study. Methods: The Beijing version of the Montreal Cognitive Assessment (MoCA-BJ) and EEG-fMRI were applied in 25 patients with NT1 and 25 age-matched healthy controls. All subjects participated in a nocturnal video polysomnography(PSG)study, and total sleep time (TST), percentage of TST (%TST) for each sleep stage and arousal index were calculated. The Epworth Sleepiness Score (ESS) was used to measure the degree of daytime sleepiness. The EEG-fMRI study was performed simultaneously using a 3T MRI system and a 32-channel MRI-compatible EEG system during sleep. Visual scoring of EEG data was used for sleep staging. Cognitive function was assessed for all subjects using the MoCA-BJ. The fMRI data were applied to establish a whole-brain functional connectivity network for all subjects, and the topological characteristics of the whole-brain functional network were analyzed using a graph-theoretic approach. The topological parameters were compared between groups. Lastly, the correlation between topological parameters and the assessment scale using Montreal Cognition was analyzed. Results: The MoCA-BJ scores were lower in patients with NT1 than in normal controls. Whole-brain global efficiency during stage N2 sleep in patients with NT1 displayed significantly lower small-world properties than in normal controls. Whole-brain functional network global efficiency in patients with NT1 was significantly correlated with MoCA-BJ scores. Conclusion: The global efficiency of the functional brain network during stage N2 sleep in patients with NT1 and the correspondingly reduced small-world attributes were associated with cognitive impairment.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kunlin Ni
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huiwen Tan
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yishu Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yin Zeng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Yu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Xiao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Sleep Medicine Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Perl YS, Bocaccio H, Pérez-Ipiña I, Zamberlán F, Piccinini J, Laufs H, Kringelbach M, Deco G, Tagliazucchi E. Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders. PHYSICAL REVIEW LETTERS 2020; 125:238101. [PMID: 33337222 DOI: 10.1103/physrevlett.125.238101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
We consider the problem of encoding pairwise correlations between coupled dynamical systems in a low-dimensional latent space based on few distinct observations. We use variational autoencoders (VAEs) to embed temporal correlations between coupled nonlinear oscillators that model brain states in the wake-sleep cycle into a two-dimensional manifold. Training a VAE with samples generated using two different parameter combinations results in an embedding that encodes the repertoire of collective dynamics, as well as the topology of the underlying connectivity network. We first follow this approach to infer the trajectory of brain states measured from wakefulness to deep sleep from the two end points of this trajectory; then, we show that the same architecture was capable of representing the pairwise correlations of generic Landau-Stuart oscillators coupled by complex network topology.
Collapse
Affiliation(s)
- Yonatan Sanz Perl
- Universidad de San Andrés, Buenos Aires 1644, Argentina
- Physics Department, University of Buenos Aires and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Hernán Bocaccio
- Physics Department, University of Buenos Aires and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
| | - Ignacio Pérez-Ipiña
- Physics Department, University of Buenos Aires and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
| | - Federico Zamberlán
- Physics Department, University of Buenos Aires and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
| | - Juan Piccinini
- Physics Department, University of Buenos Aires and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
| | - Helmut Laufs
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel 24118, Germany
| | - Morten Kringelbach
- Department of Psychiatry, University of Oxford, Oxford 2JD, United Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Enzo Tagliazucchi
- Physics Department, University of Buenos Aires and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
| |
Collapse
|
33
|
Cofré R, Herzog R, Mediano PA, Piccinini J, Rosas FE, Sanz Perl Y, Tagliazucchi E. Whole-Brain Models to Explore Altered States of Consciousness from the Bottom Up. Brain Sci 2020; 10:E626. [PMID: 32927678 PMCID: PMC7565030 DOI: 10.3390/brainsci10090626] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/16/2023] Open
Abstract
The scope of human consciousness includes states departing from what most of us experience as ordinary wakefulness. These altered states of consciousness constitute a prime opportunity to study how global changes in brain activity relate to different varieties of subjective experience. We consider the problem of explaining how global signatures of altered consciousness arise from the interplay between large-scale connectivity and local dynamical rules that can be traced to known properties of neural tissue. For this purpose, we advocate a research program aimed at bridging the gap between bottom-up generative models of whole-brain activity and the top-down signatures proposed by theories of consciousness. Throughout this paper, we define altered states of consciousness, discuss relevant signatures of consciousness observed in brain activity, and introduce whole-brain models to explore the biophysics of altered consciousness from the bottom-up. We discuss the potential of our proposal in view of the current state of the art, give specific examples of how this research agenda might play out, and emphasize how a systematic investigation of altered states of consciousness via bottom-up modeling may help us better understand the biophysical, informational, and dynamical underpinnings of consciousness.
Collapse
Affiliation(s)
- Rodrigo Cofré
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Rubén Herzog
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360103, Chile;
| | - Pedro A.M. Mediano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK;
| | - Juan Piccinini
- National Scientific and Technical Research Council, Buenos Aires C1033AAJ, Argentina; (J.P.); (Y.S.P.); (E.T.)
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Fernando E. Rosas
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London SW7 2DD, UK;
- Data Science Institute, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - Yonatan Sanz Perl
- National Scientific and Technical Research Council, Buenos Aires C1033AAJ, Argentina; (J.P.); (Y.S.P.); (E.T.)
- Departamento de Matemáticas y Ciencias, Universidad de San Andrés, Buenos Aires B1644BID, Argentina
| | - Enzo Tagliazucchi
- National Scientific and Technical Research Council, Buenos Aires C1033AAJ, Argentina; (J.P.); (Y.S.P.); (E.T.)
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|