1
|
Nix KC, Oh A, Goad BS, Wu W, Lucas MV, Baumer FM. Detection of Language Lateralization Using Spectral Analysis of EEG. J Clin Neurophysiol 2024; 41:334-343. [PMID: 38710040 PMCID: PMC11076005 DOI: 10.1097/wnp.0000000000000988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
PURPOSE Language lateralization relies on expensive equipment and can be difficult to tolerate. We assessed if lateralized brain responses to a language task can be detected with spectral analysis of electroencephalography (EEG). METHODS Twenty right-handed, neurotypical adults (28 ± 10 years; five males) performed a verb generation task and two control tasks (word listening and repetition). We measured changes in EEG activity elicited by tasks (the event-related spectral perturbation [ERSP]) in the theta, alpha, beta, and gamma frequency bands in two language (superior temporal and inferior frontal [ST and IF]) and one control (occipital [Occ]) region bilaterally. We tested whether language tasks elicited (1) changes in spectral power from baseline (significant ERSP) at any region or (2) asymmetric ERSPs between matched left and right regions. RESULTS Left IF beta power (-0.37±0.53, t = -3.12, P = 0.006) and gamma power in all regions decreased during verb generation. Asymmetric ERSPs (right > left) occurred between the (1) IF regions in the beta band (right vs. left difference of 0.23±0.37, t(19) = -2.80, P = 0.0114) and (2) ST regions in the alpha band (right vs. left difference of 0.48±0.63, t(19) = -3.36, P = 0.003). No changes from baseline or hemispheric asymmetries were noted in language regions during control tasks. On the individual level, 16 (80%) participants showed decreased left IF beta power from baseline, and 16 showed ST alpha asymmetry. Eighteen participants (90%) showed one of these two findings. CONCLUSIONS Spectral EEG analysis detects lateralized responses during language tasks in frontal and temporal regions. Spectral EEG analysis could be developed into a readily available language lateralization modality.
Collapse
Affiliation(s)
- Kerry C Nix
- Department of Neurology, Stanford University School of Medicine, Palo Alto, California, U.S.A
- Wu Tsai Neurosciences Institute, Stanford, California, U.S.A.; and
| | - Ahyuda Oh
- Department of Neurology, Stanford University School of Medicine, Palo Alto, California, U.S.A
| | - Beattie S Goad
- Department of Neurology, Stanford University School of Medicine, Palo Alto, California, U.S.A
| | - Wei Wu
- Wu Tsai Neurosciences Institute, Stanford, California, U.S.A.; and
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto, California, U.S.A
| | - Molly V Lucas
- Wu Tsai Neurosciences Institute, Stanford, California, U.S.A.; and
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto, California, U.S.A
| | - Fiona M Baumer
- Department of Neurology, Stanford University School of Medicine, Palo Alto, California, U.S.A
- Wu Tsai Neurosciences Institute, Stanford, California, U.S.A.; and
| |
Collapse
|
2
|
Qiu Y, Wu X, Liu B, Huang R, Wu H. Neural substrates of affective temperaments: An intersubject representational similarity analysis to resting-state functional magnetic resonance imaging in nonclinical subjects. Hum Brain Mapp 2024; 45:e26696. [PMID: 38685815 PMCID: PMC11058400 DOI: 10.1002/hbm.26696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/12/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Previous research has suggested that certain types of the affective temperament, including depressive, cyclothymic, hyperthymic, irritable, and anxious, are subclinical manifestations and precursors of mental disorders. However, the neural mechanisms that underlie these temperaments are not fully understood. The aim of this study was to identify the brain regions associated with different affective temperaments. We collected the resting-state functional magnetic resonance imaging (fMRI) data from 211 healthy adults and evaluated their affective temperaments using the Temperament Evaluation of Memphis, Pisa, Paris and San Diego Autoquestionnaire. We used intersubject representational similarity analysis to identify brain regions associated with each affective temperament. Brain regions associated with each affective temperament were detected. These regions included the prefrontal cortex, anterior cingulate cortex (ACC), precuneus, amygdala, thalami, hippocampus, and visual areas. The ACC, lingual gyri, and precuneus showed similar activity across several affective temperaments. The similarity in related brain regions was high among the cyclothymic, irritable, and anxious temperaments, and low between hyperthymic and the other affective temperaments. These findings may advance our understanding of the neural mechanisms underlying affective temperaments and their potential relationship to mental disorders and may have potential implications for personalized treatment strategies for mood disorders.
Collapse
Affiliation(s)
- Yidan Qiu
- School of Psychology; Center for the Study of Applied Psychology; Key Laboratory of Mental Health and Cognitive Science of Guangdong Province; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; South China Normal UniversityGuangzhouChina
| | - Xiaoyan Wu
- School of Psychology; Center for the Study of Applied Psychology; Key Laboratory of Mental Health and Cognitive Science of Guangdong Province; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; South China Normal UniversityGuangzhouChina
| | - Bingyi Liu
- School of Psychology; Center for the Study of Applied Psychology; Key Laboratory of Mental Health and Cognitive Science of Guangdong Province; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; South China Normal UniversityGuangzhouChina
| | - Ruiwang Huang
- School of Psychology; Center for the Study of Applied Psychology; Key Laboratory of Mental Health and Cognitive Science of Guangdong Province; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; South China Normal UniversityGuangzhouChina
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
3
|
Geller AS, Teale P, Kronberg E, Ebersole JS. Magnetoencephalography for Epilepsy Presurgical Evaluation. Curr Neurol Neurosci Rep 2024; 24:35-46. [PMID: 38148387 DOI: 10.1007/s11910-023-01328-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE OF THE REVIEW Magnetoencephalography (MEG) is a functional neuroimaging technique that records neurophysiology data with millisecond temporal resolution and localizes it with subcentimeter accuracy. Its capability to provide high resolution in both of these domains makes it a powerful tool both in basic neuroscience as well as clinical applications. In neurology, it has proven useful in its ability to record and localize epileptiform activity. Epilepsy workup typically begins with scalp electroencephalography (EEG), but in many situations, EEG-based localization of the epileptogenic zone is inadequate. The complementary sensitivity of MEG can be crucial in such cases, and MEG has been adopted at many centers as an important resource in building a surgical hypothesis. In this paper, we review recent work evaluating the extent of MEG influence of presurgical evaluations, novel analyses of MEG data employed in surgical workup, and new MEG instrumentation that will likely affect the field of clinical MEG. RECENT FINDINGS MEG consistently contributes to presurgical evaluation and these contributions often change the plan for epilepsy surgery. Extensive work has been done to develop new analytic methods for localizing the source of epileptiform activity with MEG. Systems using optically pumped magnetometry (OPM) have been successfully deployed to record and localize epileptiform activity. MEG remains an important noninvasive tool for epilepsy presurgical evaluation. Continued improvements in analytic methodology will likely increase the diagnostic yield of the test. Novel instrumentation with OPM may contribute to this as well, and may increase accessibility of MEG by decreasing cost.
Collapse
Affiliation(s)
- Aaron S Geller
- Department of Neurology, CU Anschutz Medical School, Aurora, CO, USA.
| | - Peter Teale
- Department of Neurology, CU Anschutz Medical School, Aurora, CO, USA
| | - Eugene Kronberg
- Department of Neurology, CU Anschutz Medical School, Aurora, CO, USA
| | - John S Ebersole
- Department of Neurology, Atlantic Neuroscience Institute, Summit, NJ, USA
| |
Collapse
|
4
|
Koorathota S, Ma JL, Faller J, Hong L, Lapborisuth P, Sajda P. Pupil-linked arousal correlates with neural activity prior to sensorimotor decisions. J Neural Eng 2023; 20:066031. [PMID: 38016448 DOI: 10.1088/1741-2552/ad1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Objective.Sensorimotor decisions require the brain to process external information and combine it with relevant knowledge prior to actions. In this study, we explore the neural predictors of motor actions in a novel, realistic driving task designed to study decisions while driving.Approach.Through a spatiospectral assessment of functional connectivity during the premotor period, we identified the organization of visual cortex regions of interest into a distinct scene processing network. Additionally, we identified a motor action selection network characterized by coherence between the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC).Main results.We show that steering behavior can be predicted from oscillatory power in the visual cortex, DLPFC, and ACC. Power during the premotor periods (specific to the theta and beta bands) correlates with pupil-linked arousal and saccade duration.Significance.We interpret our findings in the context of network-level correlations with saccade-related behavior and show that the DLPFC is a key node in arousal circuitry and in sensorimotor decisions.
Collapse
Affiliation(s)
- Sharath Koorathota
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Jia Li Ma
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Josef Faller
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Linbi Hong
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Pawan Lapborisuth
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
- Department of Electrical Engineering, Columbia University, New York, NY, United States of America
- Data Science Institute, Columbia University, New York, NY, United States of America
| |
Collapse
|
5
|
Gastaldon S, Busan P, Arcara G, Peressotti F. Inefficient speech-motor control affects predictive speech comprehension: atypical electrophysiological correlates in stuttering. Cereb Cortex 2023:6995383. [PMID: 36682885 DOI: 10.1093/cercor/bhad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023] Open
Abstract
Listeners predict upcoming information during language comprehension. However, how this ability is implemented is still largely unknown. Here, we tested the hypothesis proposing that language production mechanisms have a role in prediction. We studied 2 electroencephalographic correlates of predictability during speech comprehension-pre-target alpha-beta (8-30 Hz) power decrease and the post-target N400 event-related potential effect-in a population with impaired speech-motor control, i.e. adults who stutter (AWS), compared to typically fluent adults (TFA). Participants listened to sentences that could either constrain towards a target word or not, modulating its predictability. As a complementary task, participants also performed context-driven word production. Compared to TFA, AWS not only displayed atypical neural responses in production, but, critically, they showed a different pattern also in comprehension. Specifically, while TFA showed the expected pre-target power decrease, AWS showed a power increase in frontal regions, associated with speech-motor control. In addition, the post-target N400 effect was reduced for AWS with respect to TFA. Finally, we found that production and comprehension power changes were positively correlated in TFA, but not in AWS. Overall, the results support the idea that processes and neural structures prominently devoted to speech planning also support prediction during speech comprehension.
Collapse
Affiliation(s)
- Simone Gastaldon
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione (DPSS), University of Padova, Via Venezia 8, Padova (PD) 35131, Italy.,Padova Neuroscience Center (PNC), University of Padova, Via Giuseppe Orus 2/B, Padova (PD) 35131, Italy
| | - Pierpaolo Busan
- IRCCS Ospedale San Camillo, Via Alberoni 70, Lido (VE) 30126, Italy
| | - Giorgio Arcara
- IRCCS Ospedale San Camillo, Via Alberoni 70, Lido (VE) 30126, Italy
| | - Francesca Peressotti
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione (DPSS), University of Padova, Via Venezia 8, Padova (PD) 35131, Italy.,Padova Neuroscience Center (PNC), University of Padova, Via Giuseppe Orus 2/B, Padova (PD) 35131, Italy.,Centro Interdipartimentale di Ricerca "I-APPROVE-International Auditory Processing Project in Venice", University of Padova, Via Belzoni 160, Padova (PD) 35121, Italy
| |
Collapse
|
6
|
Qu X, Wang Z, Cheng Y, Xue Q, Li Z, Li L, Feng L, Hartwigsen G, Chen L. Neuromodulatory effects of transcranial magnetic stimulation on language performance in healthy participants: Systematic review and meta-analysis. Front Hum Neurosci 2022; 16:1027446. [PMID: 36545349 PMCID: PMC9760723 DOI: 10.3389/fnhum.2022.1027446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background The causal relationships between neural substrates and human language have been investigated by transcranial magnetic stimulation (TMS). However, the robustness of TMS neuromodulatory effects is still largely unspecified. This study aims to systematically examine the efficacy of TMS on healthy participants' language performance. Methods For this meta-analysis, we searched PubMed, Web of Science, PsycINFO, Scopus, and Google Scholar from database inception until October 15, 2022 for eligible TMS studies on language comprehension and production in healthy adults published in English. The quality of the included studies was assessed with the Cochrane risk of bias tool. Potential publication biases were assessed by funnel plots and the Egger Test. We conducted overall as well as moderator meta-analyses. Effect sizes were estimated using Hedges'g (g) and entered into a three-level random effects model. Results Thirty-seven studies (797 participants) with 77 effect sizes were included. The three-level random effects model revealed significant overall TMS effects on language performance in healthy participants (RT: g = 0.16, 95% CI: 0.04-0.29; ACC: g = 0.14, 95% CI: 0.04-0.24). Further moderator analyses indicated that (a) for language tasks, TMS induced significant neuromodulatory effects on semantic and phonological tasks, but didn't show significance for syntactic tasks; (b) for cortical targets, TMS effects were not significant in left frontal, temporal or parietal regions, but were marginally significant in the inferior frontal gyrus in a finer-scale analysis; (c) for stimulation parameters, stimulation sites extracted from previous studies, rTMS, and intensities calibrated to the individual resting motor threshold are more prone to induce robust TMS effects. As for stimulation frequencies and timing, both high and low frequencies, online and offline stimulation elicited significant effects; (d) for experimental designs, studies adopting sham TMS or no TMS as the control condition and within-subject design obtained more significant effects. Discussion Overall, the results show that TMS may robustly modulate healthy adults' language performance and scrutinize the brain-and-language relation in a profound fashion. However, due to limited sample size and constraints in the current meta-analysis approach, analyses at a more comprehensive level were not conducted and results need to be confirmed by future studies. Systematic review registration [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=366481], identifier [CRD42022366481].
Collapse
Affiliation(s)
- Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zichao Wang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Qingwei Xue
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zimu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Lu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Liping Feng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| |
Collapse
|
7
|
Youssofzadeh V, Conant L, Stout J, Ustine C, Humphries C, Gross WL, Shah-Basak P, Mathis J, Awe E, Allen L, DeYoe EA, Carlson C, Anderson CT, Maganti R, Hermann B, Nair VA, Prabhakaran V, Meyerand B, Binder JR, Raghavan M. Late dominance of the right hemisphere during narrative comprehension. Neuroimage 2022; 264:119749. [PMID: 36379420 PMCID: PMC9772156 DOI: 10.1016/j.neuroimage.2022.119749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/12/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
PET and fMRI studies suggest that auditory narrative comprehension is supported by a bilateral multilobar cortical network. The superior temporal resolution of magnetoencephalography (MEG) makes it an attractive tool to investigate the dynamics of how different neuroanatomic substrates engage during narrative comprehension. Using beta-band power changes as a marker of cortical engagement, we studied MEG responses during an auditory story comprehension task in 31 healthy adults. The protocol consisted of two runs, each interleaving 7 blocks of the story comprehension task with 15 blocks of an auditorily presented math task as a control for phonological processing, working memory, and attention processes. Sources at the cortical surface were estimated with a frequency-resolved beamformer. Beta-band power was estimated in the frequency range of 16-24 Hz over 1-sec epochs starting from 400 msec after stimulus onset until the end of a story or math problem presentation. These power estimates were compared to 1-second epochs of data before the stimulus block onset. The task-related cortical engagement was inferred from beta-band power decrements. Group-level source activations were statistically compared using non-parametric permutation testing. A story-math contrast of beta-band power changes showed greater bilateral cortical engagement within the fusiform gyrus, inferior and middle temporal gyri, parahippocampal gyrus, and left inferior frontal gyrus (IFG) during story comprehension. A math-story contrast of beta power decrements showed greater bilateral but left-lateralized engagement of the middle frontal gyrus and superior parietal lobule. The evolution of cortical engagement during five temporal windows across the presentation of stories showed significant involvement during the first interval of the narrative of bilateral opercular and insular regions as well as the ventral and lateral temporal cortex, extending more posteriorly on the left and medially on the right. Over time, there continued to be sustained right anterior ventral temporal engagement, with increasing involvement of the right anterior parahippocampal gyrus, STG, MTG, posterior superior temporal sulcus, inferior parietal lobule, frontal operculum, and insula, while left hemisphere engagement decreased. Our findings are consistent with prior imaging studies of narrative comprehension, but in addition, they demonstrate increasing right-lateralized engagement over the course of narratives, suggesting an important role for these right-hemispheric regions in semantic integration as well as social and pragmatic inference processing.
Collapse
Affiliation(s)
- Vahab Youssofzadeh
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA,Corresponding author. (V. Youssofzadeh)
| | - Lisa Conant
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey Stout
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Candida Ustine
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - William L. Gross
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA,Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Jed Mathis
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA,Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elizabeth Awe
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Linda Allen
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Edgar A. DeYoe
- Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chad Carlson
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Rama Maganti
- Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Bruce Hermann
- Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Veena A. Nair
- Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Vivek Prabhakaran
- Radiology, University of Wisconsin-Madison, Madison, WI, USA,Medical Physics, University of Wisconsin-Madison, Madison, WI, USA,Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Beth Meyerand
- Radiology, University of Wisconsin-Madison, Madison, WI, USA,Medical Physics, University of Wisconsin-Madison, Madison, WI, USA,Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Manoj Raghavan
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
8
|
Herfurth K, Harpaz Y, Roesch J, Mueller N, Walther K, Kaltenhaeuser M, Pauli E, Goldstein A, Hamer H, Buchfelder M, Doerfler A, Prell J, Rampp S. Localization of beta power decrease as measure for lateralization in pre-surgical language mapping with magnetoencephalography, compared with functional magnetic resonance imaging and validated by Wada test. Front Hum Neurosci 2022; 16:996989. [PMID: 36393988 PMCID: PMC9644652 DOI: 10.3389/fnhum.2022.996989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2023] Open
Abstract
Objective: Atypical patterns of language lateralization due to early reorganizational processes constitute a challenge in the pre-surgical evaluation of patients with pharmaco-resistant epilepsy. There is no consensus on an optimal analysis method used for the identification of language dominance in MEG. This study examines the concordance between MEG source localization of beta power desynchronization and fMRI with regard to lateralization and localization of expressive and receptive language areas using a visual verb generation task. Methods: Twenty-five patients with pharmaco-resistant epilepsy, including six patients with atypical language lateralization, and ten right-handed controls obtained MEG and fMRI language assessment. Fourteen patients additionally underwent the Wada test. We analyzed MEG beta power desynchronization in sensor (controls) and source space (patients and controls). Beta power decrease between 13 and 35 Hz was localized applying Dynamic Imaging of Coherent Sources Beamformer technique. Statistical inferences were grounded on cluster-based permutation testing for single subjects. Results: Event-related desynchronization of beta power in MEG was seen within the language-dominant frontal and temporal lobe and within the premotor cortex. Our analysis pipeline consistently yielded left language dominance with high laterality indices in controls. Language lateralization in MEG and Wada test agreed in all 14 patients for inferior frontal, temporal and parietal language areas (Cohen's Kappa = 1, p < 0.001). fMRI agreed with Wada test in 12 out of 14 cases (85.7%) for Broca's area (Cohen's Kappa = 0.71, p = 0.024), while the agreement for temporal and temporo-parietal language areas were non-significant. Concordance between MEG and fMRI laterality indices was highest within the inferior frontal gyrus, with an agreement in 19/24 cases (79.2%), and non-significant for Wernicke's area. Spatial agreement between fMRI and MEG varied considerably between subjects and brain regions with the lowest Euclidean distances within the inferior frontal region of interest. Conclusion: Localizing the desynchronization of MEG beta power using a verb generation task is a promising tool for the identification of language dominance in the pre-surgical evaluation of epilepsy patients. The overall agreement between MEG and fMRI was lower than expected and might be attributed to differences within the baseline condition. A larger sample size and an adjustment of the experimental designs are needed to draw further conclusions.
Collapse
Affiliation(s)
- Kirsten Herfurth
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
- Department of Neurosurgery, University Hospital Halle, Halle (Saale), Germany
| | - Yuval Harpaz
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Julie Roesch
- Department of Neuroradiology, University Hospital Erlangen, Erlangen, Germany
| | - Nadine Mueller
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Katrin Walther
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | | | - Elisabeth Pauli
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Abraham Goldstein
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Hajo Hamer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Erlangen, Germany
| | - Julian Prell
- Department of Neurosurgery, University Hospital Halle, Halle (Saale), Germany
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
- Department of Neurosurgery, University Hospital Halle, Halle (Saale), Germany
| |
Collapse
|
9
|
Boonyakitanont P, Gabrielson B, Belyaeva I, Olikkal P, Songsiri J, Wang YP, Wilson TW, Calhoun VD, Stephen JM, Adali T. An ICA-based framework for joint analysis of cognitive scores and MEG event-related fields. 2022 44TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) 2022; 2022:3594-3598. [PMID: 36086046 DOI: 10.1109/embc48229.2022.9871122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper proposes an independent component analysis (ICA)-based framework for exploring associations between neural signals measured with magnetoencephalography (MEG) and non-neuroimaging data of healthy subjects. Our proposed framework contains methods for subject group identification, latent source estimation of MEG, and discriminatory source visualization. Hierarchical clustering on principal components (HCPC) is used to cluster subject groups based on cognitive scores, and ICA is performed on MEG evoked responses such that not only higher-order statistics but also sample dependence within sources is taken into account. The clustered subject labels and estimated sources are jointly analyzed to determine discriminatory sources. Finally, discriminatory sources are used to calculate global difference maps (GDMs) for the summary. Results using a new data set reveal that estimated sources are significantly correlated with cognitive measures and subject demographics. Discriminatory sources have significant correlations with variables that have not been previously used for group identification, and GDMs can effectively identify group differences.
Collapse
Affiliation(s)
| | - B. Gabrielson
- University of Maryland,Baltimore County, Baltimore,MD,USA
| | - I. Belyaeva
- University of Maryland,Baltimore County, Baltimore,MD,USA
| | - P. Olikkal
- University of Maryland,Baltimore County, Baltimore,MD,USA
| | | | | | - T. W. Wilson
- Boys Town National Research Hospital,Omaha,NE,USA
| | - V. D. Calhoun
- Lovelace Biomedical Research Institute,The Mind Research Network a division,Albuquerque,NM,USA
| | - J. M. Stephen
- Lovelace Biomedical Research Institute,The Mind Research Network a division,Albuquerque,NM,USA
| | - T. Adali
- University of Maryland,Baltimore County, Baltimore,MD,USA
| |
Collapse
|
10
|
Cao Y, Oostenveld R, Alday PM, Piai V. Are alpha and beta oscillations spatially dissociated over the cortex in context-driven spoken-word production? Psychophysiology 2022; 59:e13999. [PMID: 35066874 PMCID: PMC9285923 DOI: 10.1111/psyp.13999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Decreases in oscillatory alpha‐ and beta‐band power have been consistently found in spoken‐word production. These have been linked to both motor preparation and conceptual‐lexical retrieval processes. However, the observed power decreases have a broad frequency range that spans two “classic” (sensorimotor) bands: alpha and beta. It remains unclear whether alpha‐ and beta‐band power decreases contribute independently when a spoken word is planned. Using a re‐analysis of existing magnetoencephalography data, we probed whether the effects in alpha and beta bands are spatially distinct. Participants read a sentence that was either constraining or non‐constraining toward the final word, which was presented as a picture. In separate blocks participants had to name the picture or score its predictability via button press. Irregular‐resampling auto‐spectral analysis (IRASA) was used to isolate the oscillatory activity in the alpha and beta bands from the background 1‐over‐f spectrum. The sources of alpha‐ and beta‐band oscillations were localized based on the participants’ individualized peak frequencies. For both tasks, alpha‐ and beta‐power decreases overlapped in left posterior temporal and inferior parietal cortex, regions that have previously been associated with conceptual and lexical processes. The spatial distributions of the alpha and beta power effects were spatially similar in these regions to the extent we could assess it. By contrast, for left frontal regions, the spatial distributions differed between alpha and beta effects. Our results suggest that for conceptual‐lexical retrieval, alpha and beta oscillations do not dissociate spatially and, thus, are distinct from the classical sensorimotor alpha and beta oscillations. It remains unclear whether the consistently found alpha‐ and beta‐band power decreases in spoken‐word production support a single operation or contribute independently. Using novel methodology, we probed whether the alpha and beta bands are distinct from an anatomical perspective. We found anatomical overlap in the left posterior temporal and inferior parietal cortex, whereas for the left frontal region, the spatial overlap was limited. Our results suggest that for conceptual‐lexical retrieval, alpha and beta oscillations do not dissociate and, thus, are distinct from the classical sensorimotor alpha and beta.
Collapse
Affiliation(s)
- Yang Cao
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
| | - Robert Oostenveld
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.,NatMEG, Karolinska Institutet, Stockholm, Sweden
| | - Phillip M Alday
- Max-Planck-Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Vitória Piai
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands.,Donders Centre for Medical Neuroscience, Department of Medical Psychology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Mahmud MS, Yeasin M, Bidelman GM. Data-driven machine learning models for decoding speech categorization from evoked brain responses. J Neural Eng 2021; 18:10.1088/1741-2552/abecf0. [PMID: 33690177 PMCID: PMC8738965 DOI: 10.1088/1741-2552/abecf0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/09/2021] [Indexed: 11/12/2022]
Abstract
Objective.Categorical perception (CP) of audio is critical to understand how the human brain perceives speech sounds despite widespread variability in acoustic properties. Here, we investigated the spatiotemporal characteristics of auditory neural activity that reflects CP for speech (i.e. differentiates phonetic prototypes from ambiguous speech sounds).Approach.We recorded 64-channel electroencephalograms as listeners rapidly classified vowel sounds along an acoustic-phonetic continuum. We used support vector machine classifiers and stability selection to determine when and where in the brain CP was best decoded across space and time via source-level analysis of the event-related potentials.Main results. We found that early (120 ms) whole-brain data decoded speech categories (i.e. prototypical vs. ambiguous tokens) with 95.16% accuracy (area under the curve 95.14%;F1-score 95.00%). Separate analyses on left hemisphere (LH) and right hemisphere (RH) responses showed that LH decoding was more accurate and earlier than RH (89.03% vs. 86.45% accuracy; 140 ms vs. 200 ms). Stability (feature) selection identified 13 regions of interest (ROIs) out of 68 brain regions [including auditory cortex, supramarginal gyrus, and inferior frontal gyrus (IFG)] that showed categorical representation during stimulus encoding (0-260 ms). In contrast, 15 ROIs (including fronto-parietal regions, IFG, motor cortex) were necessary to describe later decision stages (later 300-800 ms) of categorization but these areas were highly associated with the strength of listeners' categorical hearing (i.e. slope of behavioral identification functions).Significance.Our data-driven multivariate models demonstrate that abstract categories emerge surprisingly early (∼120 ms) in the time course of speech processing and are dominated by engagement of a relatively compact fronto-temporal-parietal brain network.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Department of Electrical and Computer Engineering, University of Memphis, 3815 Central Avenue, Memphis, TN 38152, United States of America
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, United States of America
| | - Mohammed Yeasin
- Department of Electrical and Computer Engineering, University of Memphis, 3815 Central Avenue, Memphis, TN 38152, United States of America
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, United States of America
| | - Gavin M Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, United States of America
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, United States of America
- University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, United States of America
| |
Collapse
|
12
|
Morpheme Analysis Associated with German Noun Plural Endings among Second Language (L2) Learners Using Event-Related Potentials (ERPs). Brain Sci 2020; 10:brainsci10110866. [PMID: 33212865 PMCID: PMC7698344 DOI: 10.3390/brainsci10110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022] Open
Abstract
This paper aims to examine the morpho-syntactic process of noun plural endings, “-n” and “-s”, in adult second language (L2) learners using event-related potentials (ERPs). German noun plural endings consist of many inflectional forms. They are one of the difficulties faced by German L2 learners. We recorded an electroencephalogram (EEG) study of German L2 learners by dividing study subjects into low and high L2 learners according to the learning level. We examined what ERP components were associated with L2 language processing. All participants were Korean German L2 learners who had achieved varying levels of proficiency. As a result of our analysis, we confirmed different morpho-syntactic processing between the two groups. First, N400 was detected at any learning level. It confirmed language processing supportive of the Full-Listing Model for irregular endings. Second, we confirmed left anterior negativity (LAN), as detected in both low and high proficiency L2 learners. LAN is supportive of a Full-Parsing Model for regular endings, as it was detected in both low and high proficiency L2 learners. However, P600 was detected in highly proficient L2 learners only. It implies that high proficiency learners differ from low proficiency L2 learners. P600 is processed in a reparsing process after recognition of grammatical errors. Based on this result, more active use of a Dual Mechanism Model is possible as learning levels improve. It confirms that improvement in L2 learners results in an approach to cognitive processing similar to that of German first language (L1) speakers.
Collapse
|
13
|
Gastaldon S, Arcara G, Navarrete E, Peressotti F. Commonalities in alpha and beta neural desynchronizations during prediction in language comprehension and production. Cortex 2020; 133:328-345. [PMID: 33171348 DOI: 10.1016/j.cortex.2020.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023]
Abstract
The present study investigates whether predictions during language comprehension are generated by engaging the language production system. Previous studies investigating either prediction or production highlighted M/EEG desynchronization (power decrease) in the alpha (8-10 Hz) and beta (13-30 Hz) frequency bands preceding the target. However, it is unclear whether this electrophysiological modulation underlies common mechanisms. We recorded EEG from participants performing both a comprehension and a production task in two separate blocks. Participants listened to high and low constraint incomplete sentences and were asked either to name a picture to complete them (production) or to simply listen to the final word (comprehension). We found that in a silent gap before the final stimulus, predictable stimuli elicited alpha and beta desynchronization in both tasks, signaling the pre-activation of linguistic information. Source estimation highlighted the involvement of left-lateralized language areas and temporo-parietal areas in the right hemisphere. Furthermore, correlations between the desynchronizations in comprehension and production showed spatiotemporal commonalities in language-relevant areas of the left hemisphere. As proposed by prediction-by-production models, our results suggest that comprehenders engage the production system while predicting upcoming words.
Collapse
Affiliation(s)
- Simone Gastaldon
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione (DPSS), University of Padova, Padova, Italy.
| | | | - Eduardo Navarrete
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione (DPSS), University of Padova, Padova, Italy
| | - Francesca Peressotti
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione (DPSS), University of Padova, Padova, Italy.
| |
Collapse
|