1
|
Meng Y, Allen JW, Sharghi VK, Qiu D. Motion and temporal B 0-shift corrections for QSM and R 2 * mapping using dual-echo spiral navigators and conjugate-phase reconstruction. Magn Reson Med 2025; 93:199-212. [PMID: 39233495 DOI: 10.1002/mrm.30266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE To develop an efficient navigator-based motion and temporal B0-shift correction technique for 3D multi-echo gradient-echo (ME-GRE) MRI for quantitative susceptibility mapping (QSM) andR 2 * $$ {\mathrm{R}}_2^{\ast } $$ mapping. THEORY AND METHODS A dual-echo 3D stack-of-spiral navigator was designed to interleave with the Cartesian multi-echo gradient-echo acquisitions, allowing the acquisition of both low-echo and high-echo time signals. We additionally designed a novel conjugate phase-based reconstruction method for the joint correction of motion and temporal B0 shifts. We performed numerical simulation, phantom scans, and in vivo human scans to assess the performance of the methods. RESULTS Numerical simulation and human brain scans demonstrated that the proposed technique successfully corrected artifacts induced by both head motions and temporal B0 changes. Efficient B0-change correction with conjugate-phase reconstruction can be performed on fewer than 10 clustered k-space segments. In vivo scans showed that combining temporal B0 correction with motion correction further reduced artifacts and improved image quality in bothR 2 * $$ {\mathrm{R}}_2^{\ast } $$ and QSM images. CONCLUSION Our proposed approach of using 3D spiral navigators and a novel conjugate-phase reconstruction method can improve susceptibility-related measurements using MR.
Collapse
Affiliation(s)
- Yuguang Meng
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Jason W Allen
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Riedel M, Ulrich T, Pruessmann KP. Run-time motion and first-order shim control by expanded servo navigation. Magn Reson Med 2025; 93:166-182. [PMID: 39188123 DOI: 10.1002/mrm.30262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/17/2024] [Accepted: 08/04/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE To provide a navigator-based run-time motion and first-order field correction for three-dimensional human brain imaging with high precision, minimal calibration and acquisition, and fast processing. METHODS A complex-valued linear perturbation model with feedback control is extended to estimate and correct for gradient shim fields using orbital navigators (2.3 ms). Two approaches for sensitizing the model to gradient fields are presented, one based on finite differences with three additional navigators, and another projection-based approximation requiring no additional navigators. A mechanism for noise decorrelation of the matrix and the data is proposed and evaluated to reduce unwanted parameter biases. RESULTS The rigid motion and first-order field control achieves robust motion and gradient shim corrections improving image quality in a series of phantom and in vivo experiments with varying field conditions. In phantom scans, magnet drifts, forced gradient field perturbations and field distortions from shifts of a second bottle phantom are successfully corrected. Field estimates of the magnet drifts are in good agreement with concurrent field probe measurements. For in vivo scans, the proposed method mitigates field variations from torso motions while being robust to head motion. In vivo gradient field precisions were30 nT / m $$ 30\;\mathrm{nT}/\mathrm{m} $$ along with single-digit micrometer and millidegree rigid precisions. CONCLUSION The navigator-based method achieves accurate, high-precision run-time motion and field corrections with low sequence impact and calibration requirements.
Collapse
Affiliation(s)
- Malte Riedel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Switzerland
| | - Thomas Ulrich
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Switzerland
| | - Klaas P Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Switzerland
| |
Collapse
|
3
|
Brackenier Y, Cordero-Grande L, McElroy S, Tomi-Tricot R, Barbaroux H, Bridgen P, Malik SJ, Hajnal JV. Sequence-agnostic motion-correction leveraging efficiently calibrated Pilot Tone signals. Magn Reson Med 2024; 92:1881-1897. [PMID: 38860530 DOI: 10.1002/mrm.30161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
PURPOSE This study leverages externally generated Pilot Tone (PT) signals to perform motion-corrected brain MRI for sequences with arbitrary k-space sampling and image contrast. THEORY AND METHODS PT signals are promising external motion sensors due to their cost-effectiveness, easy workflow, and consistent performance across contrasts and sampling patterns. However, they lack robust calibration pipelines. This work calibrates PT signal to rigid motion parameters acquired during short blocks (˜4 s) of motion calibration (MC) acquisitions, which are short enough to unobstructively fit between acquisitions. MC acquisitions leverage self-navigated trajectories that enable state-of-the-art motion estimation methods for efficient calibration. To capture the range of patient motion occurring throughout the examination, distributed motion calibration (DMC) uses data acquired from MC scans distributed across the entire examination. After calibration, PT is used to retrospectively motion-correct sequences with arbitrary k-space sampling and image contrast. Additionally, a data-driven calibration refinement is proposed to tailor calibration models to individual acquisitions. In vivo experiments involving 12 healthy volunteers tested the DMC protocol's ability to robustly correct subject motion. RESULTS The proposed calibration pipeline produces pose parameters consistent with reference values, even when distributing only six of these approximately 4-s MC blocks, resulting in a total acquisition time of 22 s. In vivo motion experiments reveal significant (p < 0.05 $$ p<0.05 $$ ) improved motion correction with increased signal to residual ratio for both MPRAGE and SPACE sequences with standard k-space acquisition, especially when motion is large. Additionally, results highlight the benefits of using a distributed calibration approach. CONCLUSIONS This study presents a framework for performing motion-corrected brain MRI in sequences with arbitrary k-space encoding and contrast, using externally generated PT signals. The DMC protocol is introduced, promoting observation of patient motion occurring throughout the examination and providing a calibration pipeline suitable for clinical deployment. The method's application is demonstrated in standard volumetric MPRAGE and SPACE sequences.
Collapse
Affiliation(s)
- Yannick Brackenier
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Lucilio Cordero-Grande
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BNN, ISCIII, Madrid, Spain
| | - Sarah McElroy
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Raphael Tomi-Tricot
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Hugo Barbaroux
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Philippa Bridgen
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shaihan J Malik
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Joseph V Hajnal
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
4
|
Ulrich T, Riedel M, Pruessmann KP. Servo navigators: Linear regression and feedback control for rigid-body motion correction. Magn Reson Med 2024; 91:1876-1892. [PMID: 38234052 DOI: 10.1002/mrm.29967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/05/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE Navigator-based correction of rigid-body motion reconciling high precision with minimal acquisition, minimal calibration and simple, fast processing. METHODS A short orbital navigator (2.3 ms) is inserted in a three-dimensional (3D) gradient echo sequence for human head imaging. Head rotation and translation are determined by linear regression based on a complex-valued model built either from three reference navigators or in a reference-less fashion, from the first actual navigator. Optionally, the model is expanded by global phase and field offset. Run-time scan correction on this basis establishes servo control that maintains validity of the linear picture by keeping its expansion point stable in the head frame of reference. The technique is assessed in a phantom and demonstrated by motion-corrected imaging in vivo. RESULTS The proposed approach is found to establish stable motion control both with and without reference acquisition. In a phantom, it is shown to accurately detect motion mimicked by rotation of scan geometry as well as change in global B0 . It is demonstrated to converge to accurate motion estimates after perturbation well beyond the linear signal range. In vivo, servo navigation achieved motion detection with precision in the single-digit range of micrometers and millidegrees. Involuntary and intentional motion in the range of several millimeters were successfully corrected, achieving excellent image quality. CONCLUSION The combination of linear regression and feedback control enables prospective motion correction for head imaging with high precision and accuracy, short navigator readouts, fast run-time computation, and minimal demand for reference data.
Collapse
Affiliation(s)
- Thomas Ulrich
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Malte Riedel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Klaas P Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Brackenier Y, Wang N, Liao C, Cao X, Schauman S, Yurt M, Cordero-Grande L, Malik SJ, Kerr A, Hajnal JV, Setsompop K. Rapid and accurate navigators for motion and B 0 tracking using QUEEN: Quantitatively enhanced parameter estimation from navigators. Magn Reson Med 2024; 91:2028-2043. [PMID: 38173304 DOI: 10.1002/mrm.29976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE To develop a framework that jointly estimates rigid motion and polarizing magnetic field (B0 ) perturbations (δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ ) for brain MRI using a single navigator of a few milliseconds in duration, and to additionally allow for navigator acquisition at arbitrary timings within any type of sequence to obtain high-temporal resolution estimates. THEORY AND METHODS Methods exist that match navigator data to a low-resolution single-contrast image (scout) to estimate either motion orδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . In this work, called QUEEN (QUantitatively Enhanced parameter Estimation from Navigators), we propose combined motion andδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimation from a fast, tailored trajectory with arbitrary-contrast navigator data. To this end, the concept of a quantitative scout (Q-Scout) acquisition is proposed from which contrast-matched scout data is predicted for each navigator. Finally, navigator trajectories, contrast-matched scout, andδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ are integrated into a motion-informed parallel-imaging framework. RESULTS Simulations and in vivo experiments show the need to modelδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ to obtain accurate motion parameters estimated in the presence of strongδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Simulations confirm that tailored navigator trajectories are needed to robustly estimate both motion andδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Furthermore, experiments show that a contrast-matched scout is needed for parameter estimation from multicontrast navigator data. A retrospective, in vivo reconstruction experiment shows improved image quality when using the proposed Q-Scout and QUEEN estimation. CONCLUSIONS We developed a framework to jointly estimate rigid motion parameters andδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ from navigators. Combing a contrast-matched scout with the proposed trajectory allows for navigator deployment in almost any sequence and/or timing, which allows for higher temporal-resolution motion andδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimates.
Collapse
Affiliation(s)
| | - Nan Wang
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Sophie Schauman
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Mahmut Yurt
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Lucilio Cordero-Grande
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BNN, Madrid, Spain
| | - Shaihan J Malik
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Adam Kerr
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
- Cognitive and Neurobiological Imaging, Stanford University, Stanford, California, USA
| | - Joseph V Hajnal
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
6
|
Wallace TE, Kober T, Stockmann JP, Polimeni JR, Warfield SK, Afacan O. Real-time shimming with FID navigators. Magn Reson Med 2022; 88:2548-2563. [PMID: 36093989 PMCID: PMC9529812 DOI: 10.1002/mrm.29421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE To implement a method for real-time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for mitigating dynamic field perturbations and improvingT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality. METHODS FIDnavs were embedded in a gradient echo sequence and a subject-specific linear calibration model was generated on the scanner to facilitate rapid shim updates in response to measured FIDnav signals. To confirm the accuracy of FID-navigated field updates, phantom and volunteer scans were performed with online updates of the scanner B0 shim settings. To evaluate improvement inT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality with real-time shimming, 10 volunteers were scanned at 3T while performing deep-breathing and nose-touching tasks designed to modulate the B0 field. Quantitative image quality metrics were compared with and without FID-navigated field control. An additional volunteer was scanned at 7T to evaluate performance at ultra-high field. RESULTS Applying measured FIDnav shim updates successfully compensated for applied global and linear field offsets in phantoms and across all volunteers. FID-navigated real-time shimming led to a substantial reduction in field fluctuations and a consequent improvement inT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality in volunteers performing deep-breathing and nose-touching tasks, with 7.57% ± 6.01% and 8.21% ± 10.90% improvement in peak SNR and structural similarity, respectively. CONCLUSION FIDnavs facilitate rapid measurement and application of field coefficients for slice-wise B0 shimming. The proposed approach can successfully counteract spatiotemporal field perturbations and substantially improvesT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality, which is important for a variety of clinical and research applications, particularly at ultra-high field.
Collapse
Affiliation(s)
- Tess E Wallace
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jason P Stockmann
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Jonathan R Polimeni
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Vaculčiaková L, Podranski K, Edwards LJ, Ocal D, Veale T, Fox NC, Haak R, Ehses P, Callaghan MF, Pine KJ, Weiskopf N. Combining navigator and optical prospective motion correction for high-quality 500 μm resolution quantitative multi-parameter mapping at 7T. Magn Reson Med 2022; 88:787-801. [PMID: 35405027 DOI: 10.1002/mrm.29253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE High-resolution quantitative multi-parameter mapping shows promise for non-invasively characterizing human brain microstructure but is limited by physiological artifacts. We implemented corrections for rigid head movement and respiration-related B0-fluctuations and evaluated them in healthy volunteers and dementia patients. METHODS Camera-based optical prospective motion correction (PMC) and FID navigator correction were implemented in a gradient and RF-spoiled multi-echo 3D gradient echo sequence for mapping proton density (PD), longitudinal relaxation rate (R1) and effective transverse relaxation rate (R2*). We studied their effectiveness separately and in concert in young volunteers and then evaluated the navigator correction (NAVcor) with PMC in a group of elderly volunteers and dementia patients. We used spatial homogeneity within white matter (WM) and gray matter (GM) and scan-rescan measures as quality metrics. RESULTS NAVcor and PMC reduced artifacts and improved the homogeneity and reproducibility of parameter maps. In elderly participants, NAVcor improved scan-rescan reproducibility of parameter maps (coefficient of variation decreased by 14.7% and 11.9% within WM and GM respectively). Spurious inhomogeneities within WM were reduced more in the elderly than in the young cohort (by 9% vs. 2%). PMC increased regional GM/WM contrast and was especially important in the elderly cohort, which moved twice as much as the young cohort. We did not find a significant interaction between the two corrections. CONCLUSION Navigator correction and PMC significantly improved the quality of PD, R1, and R2* maps, particularly in less compliant elderly volunteers and dementia patients.
Collapse
Affiliation(s)
- Lenka Vaculčiaková
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kornelius Podranski
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luke J Edwards
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Dilek Ocal
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas Veale
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, UCL, London, UK
| | - Nick C Fox
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, UCL, London, UK
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Philipp Ehses
- Department of MR Physics, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Martina F Callaghan
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kerrin J Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK.,Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| |
Collapse
|
8
|
Římal V, Callon M, Malär A, Cadalbert R, Torosyan A, Wiegand T, Ernst M, Böckmann A, Meier B. Correction of field instabilities in biomolecular solid-state NMR by simultaneous acquisition of a frequency reference. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:15-26. [PMID: 37905180 PMCID: PMC10539777 DOI: 10.5194/mr-3-15-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/26/2022] [Indexed: 11/02/2023]
Abstract
With the advent of faster magic-angle spinning (MAS) and higher magnetic fields, the resolution of biomolecular solid-state nuclear magnetic resonance (NMR) spectra has been continuously increasing. As a direct consequence, the always narrower spectral lines, especially in proton-detected spectroscopy, are also becoming more sensitive to temporal instabilities of the magnetic field in the sample volume. Field drifts in the order of tenths of parts per million occur after probe insertion or temperature change, during cryogen refill, or are intrinsic to the superconducting high-field magnets, particularly in the months after charging. As an alternative to a field-frequency lock based on deuterium solvent resonance rarely available for solid-state NMR, we present a strategy to compensate non-linear field drifts using simultaneous acquisition of a frequency reference (SAFR). It is based on the acquisition of an auxiliary 1D spectrum in each scan of the experiment. Typically, a small-flip-angle pulse is added at the beginning of the pulse sequence. Based on the frequency of the maximum of the solvent signal, the field evolution in time is reconstructed and used to correct the raw data after acquisition, thereby acting in its principle as a digital lock system. The general applicability of our approach is demonstrated on 2D and 3D protein spectra during various situations with a non-linear field drift. SAFR with small-flip-angle pulses causes no significant loss in sensitivity or increase in experimental time in protein spectroscopy. The correction leads to the possibility of recording high-quality spectra in a typical biomolecular experiment even during non-linear field changes in the order of 0.1 ppm h- 1 without the need for hardware solutions, such as stabilizing the temperature of the magnet bore. The improvement of linewidths and peak shapes turns out to be especially important for 1 H-detected spectra under fast MAS, but the method is suitable for the detection of carbon or other nuclei as well.
Collapse
Affiliation(s)
- Václav Římal
- Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland
| | - Morgane Callon
- Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland
| | | | | | | | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR 5086,
CNRS/Université de Lyon, 69367 Lyon, France
| | - Beat H. Meier
- Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|