1
|
Li Q, Zimmermann M, Konvalinka I. Two-brain microstates: A novel hyperscanning-EEG method for quantifying task-driven inter-brain asymmetry. J Neurosci Methods 2025:110355. [PMID: 39855307 DOI: 10.1016/j.jneumeth.2024.110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND The neural mechanisms underlying real-time social interaction remain poorly understood. While hyperscanning has emerged as a popular method to better understand inter-brain mechanisms, inter-brain methods remain underdeveloped, and primarily focused on inter-brain synchronization (IBS). NEW METHOD We developed a novel approach employing two-brain EEG microstates, to investigate neural mechanisms during symmetric and asymmetric interactive tasks. Microstates are quasi-stable configurations of brain activity that have been proposed to represent basic building blocks for mental processing. Expanding the microstate methodology to dyads of interacting participants enables us to investigate quasi-stable moments of inter-brain synchronous and asymmetric activity. RESULTS Conventional microstates fitted to individuals were not related to the different interactive conditions. However, two-brain microstates were modulated in the observer-actor condition, compared to all other conditions where participants had more symmetric task demands, and the same trend was observed for the follower-leader condition. This indicates differences in resting state default-mode network activity during interactions with asymmetric tasks. COMPARISON WITH EXISTING METHODS Hyperscanning studies have primarily estimated IBS based on functional connectivity measures. However, localized connections are often hard to interpret on a larger scale when multiple connections across brains are found to be important. Two-brain microstates offer an alternative approach to evaluate neural activity from a large-scale global network perspective, by quantifying task-driven asymmetric neural states between interacting individuals. CONCLUSIONS We present a novel method using two-brain microstates, including open-source code, which expands the current hyperscanning-EEG methodology to measure and potentially identify both synchronous and asymmetric inter-brain states during real-time social interaction.
Collapse
Affiliation(s)
- Qianliang Li
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Marius Zimmermann
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark; Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Ivana Konvalinka
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Xue S, Shen X, Zhang D, Sang Z, Long Q, Song S, Wu J. Unveiling Frequency-Specific Microstate Correlates of Anxiety and Depression Symptoms. Brain Topogr 2024; 38:12. [PMID: 39499403 DOI: 10.1007/s10548-024-01082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/25/2024] [Indexed: 11/07/2024]
Abstract
Electroencephalography (EEG) microstates are canonical voltage topographies that reflect the temporal dynamics of brain networks on a millisecond time scale. Abnormalities in broadband microstate parameters have been observed in subjects with psychiatric symptoms, indicating their potential as clinical biomarkers. Considering distinct information provided by specific frequency bands of EEG, we hypothesized that microstates in decomposed frequency bands could provide a more detailed depiction of the underlying neuropathological mechanism. In this study, with a large open access resting-state dataset (n = 203), we examined the properties of frequency-specific microstates and their relationship with anxiety and depression symptoms. We conducted clustering on EEG topographies in decomposed frequency bands (delta, theta, alpha and beta), and determined the number of clusters with a meta-criterion. Microstate parameters, including global explained variance (GEV), duration, coverage, occurrence and transition probability, were calculated for eyes-open and eyes-closed states, respectively. Their ability to predict the severity of depression and anxiety symptoms were systematically identified by correlation, regression and classification analyses. Distinct microstate patterns were observed across different frequency bands. Microstate parameters in the alpha band held the best predictive power for emotional symptoms. Microstates B (GEV, coverage) and parieto-central maximum microstate E (coverage, occurrence, transitions from B to E) in the alpha band exhibited significant correlations with depression and anxiety, respectively. Microstate parameters of the alpha band achieved predictive R-square of 0.100 for anxiety scores, which is much higher than those of broadband (R-square = -0.026, p < 0.01). Similar results were found in classification of participants with high and low anxiety symptom scores (68% accuracy in alpha vs. 52% in broadband). These results suggested the value of frequency-specific microstates in predicting emotional symptoms.
Collapse
Affiliation(s)
- Siyang Xue
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Xinke Shen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dan Zhang
- Department of Psychology, Tsinghua University, Beijing, 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Zhenhua Sang
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Qiting Long
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Sen Song
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China.
| | - Jian Wu
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| |
Collapse
|
3
|
Dziego CA, Zanesco AP, Bornkessel-Schlesewsky I, Schlesewsky M, Stanley EA, Jha AP. Mindfulness Training in High-Demand Cohorts Alters Resting-State Electroencephalography: An Exploratory Investigation of Individual Alpha Frequency, Aperiodic 1/ f Activity, and Microstates. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100383. [PMID: 39416660 PMCID: PMC11480290 DOI: 10.1016/j.bpsgos.2024.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 10/19/2024] Open
Abstract
Background Mindfulness training (MT) programs have demonstrated utility as cognitive training tools, but there is little consensus on the neurophysiological processes that may underlie its benefits. It has been posited that intrinsic brain activity recorded at rest reflects the functional connectivity of large-scale brain networks and may provide insight into neuroplastic changes that support MT. In the current study, we indexed changes in several resting-state electroencephalography (EEG) parameters to investigate the neurophysiological underpinnings of MT. Methods Resting-state EEG data were collected from active-duty U.S. military personnel (N = 80) at 2 testing sessions: before (time [T] 1) and after (T2) engaging in an 8-week MT or active comparison intervention (positivity training). We examined longitudinal and/or groupwise differences in several EEG parameters through parameterization of power spectra (individual alpha frequency and 1/f activity) and microstate analysis. Results While no significant group × time differences were observed in individual alpha frequency, significant group × time effects were observed in several EEG parameters from T1 to T2. Compared with MT, positivity training was associated with a steepening of the 1/f slope and higher 1/f intercepts together with decreased duration and increased global field power of microstates. Conclusions Taken together, these results suggest that the effects of interventions may be differentiated in resting-state brain activity in a sample of military personnel. Such findings provide insight into the neural underpinnings of MT-related brain changes, but more research is required to elucidate how these may relate to task-related neural and performance changes with MT and whether results generalize to other mindfulness interventions in alternative cohorts and contexts.
Collapse
Affiliation(s)
- Chloe A. Dziego
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | | | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Matthias Schlesewsky
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Elizabeth A. Stanley
- Edmund A. Walsh School of Foreign Service, Georgetown University, Washington, DC
| | - Amishi P. Jha
- Department of Psychology, University of Miami, Coral Gables, Florida
| |
Collapse
|
4
|
Lin Y, Atad DA, Zanesco AP. Using Electroencephalography to Advance Mindfulness Science: A Survey of Emerging Methods and Approaches. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00280-5. [PMID: 39369988 DOI: 10.1016/j.bpsc.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Throughout the brief history of contemplative neuroscience, electroencephalography (EEG) has been a valuable and enduring methodology used to elucidate the neural correlates and mechanisms of mindfulness. In this review, we provide a reminder that longevity should not be conflated with obsoletion and that EEG continues to offer exceptional promise for addressing key questions and challenges that pervade the field today. Toward this end, we first outline the unique advantages of EEG from a research strategy and experimental design perspective, then highlight an array of new sophisticated data analytic approaches and translational paradigms. Along the way, we provide illustrative examples from our own work and the broader literature to showcase how these innovations can be leveraged to spark new insights and stimulate progress across both basic science and translational applications of mindfulness. Ultimately, we argue that EEG still has much to contribute to contemplative neuroscience, and we hope to solicit the interest of other investigators to make full use of its capabilities in service of maximizing its potential within the field.
Collapse
Affiliation(s)
- Yanli Lin
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas.
| | - Daniel A Atad
- Department of Counseling and Human Development, Faculty of Education, University of Haifa, Haifa, Israel; Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel; Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Haifa, Israel
| | - Anthony P Zanesco
- Department of Psychology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
5
|
Takarae Y, Zanesco A, Erickson CA, Pedapati EV. EEG Microstates as Markers for Cognitive Impairments in Fragile X Syndrome. Brain Topogr 2024; 37:432-446. [PMID: 37751055 DOI: 10.1007/s10548-023-01009-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Fragile X syndrome (FXS) is one of the most common inherited causes of intellectual disabilities. While there is currently no cure for FXS, EEG is considered an important method to investigate the pathophysiology and evaluate behavioral and cognitive treatments. We conducted EEG microstate analysis to investigate resting brain dynamics in FXS participants. Resting-state recordings from 70 FXS participants and 71 chronological age-matched typically developing control (TDC) participants were used to derive microstates via modified k-means clustering. The occurrence, mean global field power (GFP), and global explained variance (GEV) of microstate C were significantly higher in the FXS group compared to the TDC group. The mean GFP was significantly negatively correlated with non-verbal IQ (NVIQ) in the FXS group, where lower NVIQ scores were associated with greater GFP. In addition, the occurrence, mean duration, mean GFP, and GEV of microstate D were significantly greater in the FXS group than the TDC group. The mean GFP and occurrence of microstate D were also correlated with individual alpha frequencies in the FXS group, where lower IAF frequencies accompanied greater microstate GFP and occurrence. Alterations in microstates C and D may be related to the two well-established cognitive characteristics of FXS, intellectual disabilities and attention impairments, suggesting that microstate parameters could serve as markers to study cognitive impairments and evaluate treatment outcomes in this population. Slowing of the alpha peak frequency and its correlation to microstate D parameters may suggest changes in thalamocortical dynamics in FXS, which could be specifically related to attention control. (250 words).
Collapse
Affiliation(s)
- Yukari Takarae
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA.
- M.I.N.D. Institute, University of California, Davis, Sacramento, CA, USA.
| | - Anthony Zanesco
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
6
|
Tarailis P, Koenig T, Michel CM, Griškova-Bulanova I. The Functional Aspects of Resting EEG Microstates: A Systematic Review. Brain Topogr 2024; 37:181-217. [PMID: 37162601 DOI: 10.1007/s10548-023-00958-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
A growing body of clinical and cognitive neuroscience studies have adapted a broadband EEG microstate approach to evaluate the electrical activity of large-scale cortical networks. However, the functional aspects of these microstates have not yet been systematically reviewed. Here, we present an overview of the existing literature and systematize the results to provide hints on the functional role of electrical brain microstates. Studies that evaluated and manipulated the temporal properties of resting-state microstates and utilized questionnaires, task-initiated thoughts, specific tasks before or between EEG session(s), pharmacological interventions, neuromodulation approaches, or localized sources of the extracted microstates were selected. Fifty studies that met the inclusion criteria were included. A new microstate labeling system has been proposed for a comprehensible comparison between the studies, where four classical microstates are referred to as A-D, and the others are labeled by the frequency of their appearance. Microstate A was associated with both auditory and visual processing and links to subjects' arousal/arousability. Microstate B showed associations with visual processing related to self, self-visualization, and autobiographical memory. Microstate C was related to processing personally significant information, self-reflection, and self-referential internal mentation rather than autonomic information processing. In contrast, microstate E was related to processing interoceptive and emotional information and to the salience network. Microstate D was associated with executive functioning. Microstate F is suggested to be a part of the Default Mode Network and plays a role in personally significant information processing, mental simulations, and theory of mind. Microstate G is potentially linked to the somatosensory network.
Collapse
Affiliation(s)
- Povilas Tarailis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | | |
Collapse
|
7
|
Hermann G, Tödt I, Tagliazucchi E, Todtenhaupt IK, Laufs H, von Wegner F. Propofol Reversibly Attenuates Short-Range Microstate Ordering and 20 Hz Microstate Oscillations. Brain Topogr 2024; 37:329-342. [PMID: 38228923 DOI: 10.1007/s10548-023-01023-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Microstate sequences summarize the changing voltage patterns measured by electroencephalography, using a clustering approach to reduce the high dimensionality of the underlying data. A common approach is to restrict the pattern matching step to local maxima of the global field power (GFP) and to interpolate the microstate fit in between. In this study, we investigate how the anesthetic propofol affects microstate sequence periodicity and predictability, and how these metrics are changed by interpolation. We performed two frequency analyses on microstate sequences, one based on time-lagged mutual information, the other based on Fourier transform methodology, and quantified the effects of interpolation. Resting-state microstate sequences had a 20 Hz frequency peak related to dominant 10 Hz (alpha) rhythms, and the Fourier approach demonstrated that all five microstate classes followed this frequency. The 20 Hz periodicity was reversibly attenuated under moderate propofol sedation, as shown by mutual information and Fourier analysis. Characteristic microstate frequencies could only be observed in non-interpolated microstate sequences and were masked by smoothing effects of interpolation. Information-theoretic analysis revealed faster microstate dynamics and larger entropy rates under propofol, whereas Shannon entropy did not change significantly. In moderate sedation, active information storage decreased for non-interpolated sequences. Signatures of non-equilibrium dynamics were observed in non-interpolated sequences, but no changes were observed between sedation levels. All changes occurred while subjects were able to perform an auditory perception task. In summary, we show that low dose propofol reversibly increases the randomness of microstate sequences and attenuates microstate oscillations without correlation to cognitive task performance. Microstate dynamics between GFP peaks reflect physiological processes that are not accessible in interpolated sequences.
Collapse
Affiliation(s)
- Gesine Hermann
- Department of Neurology, Christian-Albrechts University, University Hospital Schleswig Holstein, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Inken Tödt
- Institute of Sexual Medicine & Forensic Psychiatry and Psychotherapy, Christian-Albrechts University, Schwanenweg 24, 24105, Kiel, Germany
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Inga Karin Todtenhaupt
- Department of Neurology, Christian-Albrechts University, University Hospital Schleswig Holstein, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Helmut Laufs
- Department of Neurology, Christian-Albrechts University, University Hospital Schleswig Holstein, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Frederic von Wegner
- School of Biomedical Sciences, UNSW, Wallace Wurth Building, Kensington, NSW, 2052, Australia.
| |
Collapse
|
8
|
Wiemers MC, Laufs H, von Wegner F. Frequency Analysis of EEG Microstate Sequences in Wakefulness and NREM Sleep. Brain Topogr 2024; 37:312-328. [PMID: 37253955 PMCID: PMC11374823 DOI: 10.1007/s10548-023-00971-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 05/11/2023] [Indexed: 06/01/2023]
Abstract
The majority of EEG microstate analyses concern wakefulness, and the existing sleep studies have focused on changes in spatial microstate properties and on microstate transitions between adjacent time points, the shortest available time scale. We present a more extensive time series analysis of unsmoothed EEG microstate sequences in wakefulness and non-REM sleep stages across many time scales. Very short time scales are assessed with Markov tests, intermediate time scales by the entropy rate and long time scales by a spectral analysis which identifies characteristic microstate frequencies. During the descent from wakefulness to sleep stage N3, we find that the increasing mean microstate duration is a gradual phenomenon explained by a continuous slowing of microstate dynamics as described by the relaxation time of the transition probability matrix. The finite entropy rate, which considers longer microstate histories, shows that microstate sequences become more predictable (less random) with decreasing vigilance level. Accordingly, the Markov property is absent in wakefulness but in sleep stage N3, 10/19 subjects have microstate sequences compatible with a second-order Markov process. A spectral microstate analysis is performed by comparing the time-lagged mutual information coefficients of microstate sequences with the autocorrelation function of the underlying EEG. We find periodic microstate behavior in all vigilance states, linked to alpha frequencies in wakefulness, theta activity in N1, sleep spindle frequencies in N2, and in the delta frequency band in N3. In summary, we show that EEG microstates are a dynamic phenomenon with oscillatory properties that slow down in sleep and are coupled to specific EEG frequencies across several sleep stages.
Collapse
Affiliation(s)
- Milena C Wiemers
- Department of Neurology and Clinical Neurophysiology, Lüneburg Hospital, Bögelstrasse 1, 21339, Lüneburg, Germany
| | - Helmut Laufs
- Department of Neurology, Christian-Albrechts University Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Frederic von Wegner
- School of Biomedical Sciences, University of New South Wales, Wallace Wurth Building, Kensington, NSW, 2052, Australia.
| |
Collapse
|
9
|
Teng CL, Cong L, Wang W, Cheng S, Wu M, Dang WT, Jia M, Ma J, Xu J, Hu WD. Disrupted properties of functional brain networks in major depressive disorder during emotional face recognition: an EEG study via graph theory analysis. Front Hum Neurosci 2024; 18:1338765. [PMID: 38415279 PMCID: PMC10897049 DOI: 10.3389/fnhum.2024.1338765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Previous neuroimaging studies have revealed abnormal brain networks in patients with major depressive disorder (MDD) in emotional processing. While any cognitive task consists of a series of stages, little is yet known about the topology of functional brain networks in MDD for these stages during emotional face recognition. To address this problem, electroencephalography (EEG)-based functional brain networks of MDD patients at different stages of facial information processing were investigated in this study. First, EEG signals were collected from 16 patients with MDD and 18 age-, gender-, and education-matched normal subjects when performing an emotional face recognition task. Second, the global field power (GFP) method was employed to divide group-averaged event-related potentials into different stages. Third, using the phase transfer entropy (PTE) approach, the brain networks of MDD patients and normal individuals were constructed for each stage in negative and positive face processing, respectively. Finally, we compared the topological properties of brain networks of each stage between the two groups using graph theory approaches. The results showed that the analyzed three stages of emotional face processing corresponded to specific neurophysiological phases, namely, visual perception, face recognition, and emotional decision-making. It was also demonstrated that depressed patients showed abnormally decreased characteristic path length at the visual perception stage of negative face recognition and normalized characteristic path length in the stage of emotional decision-making during positive face processing compared to healthy subjects. Furthermore, while both the MDD and normal groups' brain networks were found to exhibit small-world network characteristics, the brain network of patients with depression tended to be randomized. Moreover, for patients with MDD, the centro-parietal region may lose its status as a hub in the process of facial expression identification. Together, our findings suggested that altered emotional function in MDD patients might be associated with disruptions in the topological organization of functional brain networks during emotional face recognition, which further deepened our understanding of the emotion processing dysfunction underlying MDD.
Collapse
Affiliation(s)
- Chao-Lin Teng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Lin Cong
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wei Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shan Cheng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Min Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei-Tao Dang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Min Jia
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Ma
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wen-Dong Hu
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Zhang H, Yang X, Yao L, Liu Q, Lu Y, Chen X, Wang T. EEG microstates analysis after TMS in patients with subacute stroke during the resting state. Cereb Cortex 2024; 34:bhad480. [PMID: 38112223 PMCID: PMC10793572 DOI: 10.1093/cercor/bhad480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
To investigate whether intermittent theta burst stimulation over the cerebellum induces changes in resting-state electroencephalography microstates in patients with subacute stroke and its correlation with cognitive and emotional function. Twenty-four stroke patients and 17 healthy controls were included in this study. Patients and healthy controls were assessed at baseline, including resting-state electroencephalography and neuropsychological scales. Fifteen patients received lateral cerebellar intermittent theta burst stimulation as well as routine rehabilitation training (intermittent theta burst stimulation-RRT group), whereas 9 patients received only conventional rehabilitation training (routine rehabilitation training group). After 2 wk, baseline data were recorded again in both groups. Stroke patients exhibited reduced parameters in microstate D and increased parameters in microstate C compared with healthy controls. However, after the administration of intermittent theta burst stimulation over the lateral cerebellum, significant alterations were observed in the majority of metrics for both microstates D and C. Lateral cerebellar intermittent theta burst stimulation combined with conventional rehabilitation has a stronger tendency to improve emotional and cognitive function in patients with subacute stroke than conventional rehabilitation. The improvement of mood and cognitive function was significantly associated with microstates C and D. We identified electroencephalography microstate spatiotemporal dynamics associated with clinical improvement following a course of intermittent theta burst stimulation therapy.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Xue Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Liqing Yao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Qian Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Yihuan Lu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Xueting Chen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Tianling Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| |
Collapse
|
11
|
Kang J, Fan X, Zhong Y, Casanova MF, Sokhadze EM, Li X, Niu Z, Geng X. Transcranial Direct Current Stimulation Modulates EEG Microstates in Low-Functioning Autism: A Pilot Study. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010098. [PMID: 36671670 PMCID: PMC9855011 DOI: 10.3390/bioengineering10010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous disorder that affects several behavioral domains of neurodevelopment. Transcranial direct current stimulation (tDCS) is a new method that modulates motor and cognitive function and may have potential applications in ASD treatment. To identify its potential effects on ASD, differences in electroencephalogram (EEG) microstates were compared between children with typical development (n = 26) and those with ASD (n = 26). Furthermore, children with ASD were divided into a tDCS (experimental) and sham stimulation (control) group, and EEG microstates and Autism Behavior Checklist (ABC) scores before and after tDCS were compared. Microstates A, B, and D differed significantly between children with TD and those with ASD. In the experimental group, the scores of microstates A and C and ABC before tDCS differed from those after tDCS. Conversely, in the control group, neither the EEG microstates nor the ABC scores before the treatment period (sham stimulation) differed from those after the treatment period. This study indicates that tDCS may become a viable treatment for ASD.
Collapse
Affiliation(s)
- Jiannan Kang
- College of Electronic & Information Engineering, Hebei University, Baoding 071000, China
| | - Xiwang Fan
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China
| | - Yiwen Zhong
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China
| | - Manuel F. Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, SC 29605, USA
| | - Estate M. Sokhadze
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, SC 29605, USA
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100859, China
| | - Zikang Niu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100859, China
- Correspondence: (Z.N.); (X.G.)
| | - Xinling Geng
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Correspondence: (Z.N.); (X.G.)
| |
Collapse
|
12
|
Agrawal S, Chinnadurai V, Sharma R. Hemodynamic functional connectivity optimization of frequency EEG microstates enables attention LSTM framework to classify distinct temporal cortical communications of different cognitive tasks. Brain Inform 2022; 9:25. [PMID: 36219346 PMCID: PMC9554110 DOI: 10.1186/s40708-022-00173-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Temporal analysis of global cortical communication of cognitive tasks in coarse EEG information is still challenging due to the underlying complex neural mechanisms. This study proposes an attention-based time-series deep learning framework that processes fMRI functional connectivity optimized quasi-stable frequency microstates for classifying distinct temporal cortical communications of the cognitive task. Seventy volunteers were subjected to visual target detection tasks, and their electroencephalogram (EEG) and functional MRI (fMRI) were acquired simultaneously. At first, the acquired EEG information was preprocessed and bandpass to delta, theta, alpha, beta, and gamma bands and then subjected to quasi-stable frequency-microstate estimation. Subsequently, time-series elicitation of each frequency microstates is optimized with graph theory measures of simultaneously eliciting fMRI functional connectivity between frontal, parietal, and temporal cortices. The distinct neural mechanisms associated with each optimized frequency-microstate were analyzed using microstate-informed fMRI. Finally, these optimized, quasi-stable frequency microstates were employed to train and validate the attention-based Long Short-Term Memory (LSTM) time-series architecture for classifying distinct temporal cortical communications of the target from other cognitive tasks. The temporal, sliding input sampling windows were chosen between 180 to 750 ms/segment based on the stability of transition probabilities of the optimized microstates. The results revealed 12 distinct frequency microstates capable of deciphering target detections' temporal cortical communications from other task engagements. Particularly, fMRI functional connectivity measures of target engagement were observed significantly correlated with the right-diagonal delta (r = 0.31), anterior-posterior theta (r = 0.35), left-right theta (r = - 0.32), alpha (r = - 0.31) microstates. Further, neuro-vascular information of microstate-informed fMRI analysis revealed the association of delta/theta and alpha/beta microstates with cortical communications and local neural processing, respectively. The classification accuracies of the attention-based LSTM were higher than the traditional LSTM architectures, particularly the frameworks that sampled the EEG data with a temporal width of 300 ms/segment. In conclusion, the study demonstrates reliable temporal classifications of global cortical communication of distinct tasks using an attention-based LSTM utilizing fMRI functional connectivity optimized quasi-stable frequency microstates.
Collapse
Affiliation(s)
- Swati Agrawal
- Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
- Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Vijayakumar Chinnadurai
- Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Rinku Sharma
- Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| |
Collapse
|
13
|
Research on Top Archer’s EEG Microstates and Source Analysis in Different States. Brain Sci 2022; 12:brainsci12081017. [PMID: 36009079 PMCID: PMC9405655 DOI: 10.3390/brainsci12081017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/08/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
The electroencephalograph (EEG) microstate is a method used to describe the characteristics of the EEG signal through the brain scalp electrode potential’s spatial distribution; as such, it reflects the changes in the brain’s functional state. The EEGs of 13 elite archers from China’s national archery team and 13 expert archers from China’s provincial archery team were recorded under the alpha rhythm during the resting state (with closed eyes) and during archery aiming. By analyzing the differences between the EEG microstate parameters and the correlation between these parameters with archery performance, as well as by combining our findings through standardized low-resolution brain electromagnetic tomography source analysis (sLORETA), we explored the changes in the neural activity of professional archers of different levels, under different states. The results of the resting state study demonstrated that the duration, occurrence, and coverage in microstate D of elite archers were significantly higher than those of expert archers and that their other microstates had the greatest probability of transferring to microstate D. During the archery aiming state, the average transition probability of the other microstates transferring to microstate in the left temporal region was the highest observed in the two groups of archers. Moreover, there was a significant negative correlation between the duration and coverage of microstates in the frontal region of elite archers and their archery performance. Our findings indicate that elite archers are more active in the dorsal attention system and demonstrate a higher neural efficiency during the resting state. When aiming, professional archers experience an activation of brain regions associated with archery by suppressing brain regions unrelated to archery tasks. These findings provide a novel theoretical basis for the study of EEG microstate dynamics in archery and related cognitive motor tasks, particularly from the perspective of the subject’s mental state.
Collapse
|
14
|
Tait L, Zhang J. MEG cortical microstates: Spatiotemporal characteristics, dynamic functional connectivity and stimulus-evoked responses. Neuroimage 2022; 251:119006. [PMID: 35181551 PMCID: PMC8961001 DOI: 10.1016/j.neuroimage.2022.119006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
EEG microstate analysis is an approach to study brain states and their fast transitions in healthy cognition and disease. A key limitation of conventional microstate analysis is that it must be performed at the sensor level, and therefore gives limited anatomical insight. Here, we generalise the microstate methodology to be applicable to source-reconstructed electrophysiological data. Using simulations of a neural-mass network model, we first established the validity and robustness of the proposed method. Using MEG resting-state data, we uncovered ten microstates with distinct spatial distributions of cortical activation. Multivariate pattern analysis demonstrated that source-level microstates were associated with distinct functional connectivity patterns. We further demonstrated that the occurrence probability of MEG microstates were altered by auditory stimuli, exhibiting a hyperactivity of the microstate including the auditory cortex. Our results support the use of source-level microstates as a method for investigating brain dynamic activity and connectivity at the millisecond scale.
Collapse
Affiliation(s)
- Luke Tait
- Centre for Systems Modelling & Quantitative Biomedicine (SMQB), University of Birmingham, Birmingham, UK; Cardiff University Brain Research Imaging Centre, Cardiff, UK.
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, Cardiff, UK
| |
Collapse
|
15
|
Niu Z, Jia L, Liu Y, Wang Q, Li Y, Yang L, Li X, Wang X. Scale-free dynamics of microstate sequence in negative schizophrenia and depressive disorder. Comput Biol Med 2022; 143:105287. [PMID: 35172224 DOI: 10.1016/j.compbiomed.2022.105287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Negative schizophrenia (NSZ) and depressive disorder (DE) have many clinical similarities (e.g., lack of energy, social withdrawal). The purpose of this study was to explore microstate (MS) and scale-free dynamics of microstate sequence (SFML) in NSZ patients, DE patients and healthy controls (HC). METHODS The subjects included 30 NSZ patients, 32 DE patients and 34 age-matched healthy controls. A resting-state electroencephalogram (rsEEG) was recorded under two conditions: (1) resting state with eyes opened (EO) and (2) resting state with eyes closed (EC). First, rsEEG signals were filtered into 1-45 Hz. Then, MS analysis was performed using the Microstate EEGLAB toolbox. Finally, the SFML feature of the sequence, which was transformed from the MS label sequence, was extracted by the Hurst exponent (HE). RESULTS The rsEEG data of all subjects were clustered into six topographies. We could conclude that DE and NSZ patients show similar abnormalities in EO state. However, in the EC state, MS A, and B values were unique to NSZ patients, while DE patients had different values for MS C D and F. We also found a large correlation between these features and clinical information. In SFML, the Hurst exponent of the EO state might be more useful in assessing the characteristics of NSZ, while that of EC state can be used to understand these disorders with different random walk classifications. SIGNIFICANCE The methods are associated with the ability to dynamically change of brain and information processing system. The MS and SFML of the EO state can be used to reflect the similar abnormalities of NSZ and DE patients. We recommend the EC state as the appropriate state to study the difference between the disorders. By combing the two states and these method, we can learn and study more similarities and differences between NSZ and DE.
Collapse
Affiliation(s)
- Zikang Niu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Beijing Normal University, Beijing, China
| | - Lina Jia
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qian Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yang Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Lijuan Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Beijing Normal University, Beijing, China.
| | - Xue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Lin G, Wu Z, Chen B, Zhang M, Wang Q, Liu M, Zhang S, Yang M, Ning Y, Zhong X. Altered Microstate Dynamics and Spatial Complexity in Late-Life Schizophrenia. Front Psychiatry 2022; 13:907802. [PMID: 35832599 PMCID: PMC9271628 DOI: 10.3389/fpsyt.2022.907802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Resting-state EEG microstate and omega complexity analyses have been widely used to explore deviant brain function in various neuropsychiatric disorders. This study aimed to investigate the features of microstate dynamics and spatial complexity in patients with late-life schizophrenia (LLS). METHOD Microstate and omega complexity analyses were performed on resting-state EEG data from 39 in patients with LLS and compared with 40 elderly normal controls (NCs). RESULT The duration of microstate classes A and D were significantly higher in patients with LLS compared with NCs. The occurrence of microstate classes A, B, and C was significantly lower in patients with LLS compared with NCs. LLS patients have a lower time coverage of microstate class A and a higher time coverage of class D than NCs. Transition probabilities from microstate class A to B and from class A to C were significantly lower in patients with LLS compared with NCs. Transition probabilities between microstate class B and D were significantly higher in patients with LLS compared with NCs. Global omega complexity and anterior omega complexity were significantly higher in patients with LLS compared with NCs. CONCLUSION This study revealed an altered pattern of microstate dynamics and omega complexity in patients with LLS. This may reflect the disturbed neural basis underlying LLS and enhance the understanding of the pathophysiology of LLS.
Collapse
Affiliation(s)
- Gaohong Lin
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhangying Wu
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ben Chen
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Zhang
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiang Wang
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meiling Liu
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Si Zhang
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingfeng Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yuping Ning
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaomei Zhong
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Coquelet N, De Tiège X, Roshchupkina L, Peigneux P, Goldman S, Woolrich M, Wens V. Microstates and power envelope hidden Markov modeling probe bursting brain activity at different timescales. Neuroimage 2021; 247:118850. [PMID: 34954027 PMCID: PMC8803543 DOI: 10.1016/j.neuroimage.2021.118850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022] Open
Abstract
State modeling of whole-brain electroencephalography (EEG) or magnetoencephalography (MEG) allows to investigate transient, recurring neurodynamical events. Two widely-used techniques are the microstate analysis of EEG signals and hidden Markov modeling (HMM) of MEG power envelopes. Both reportedly lead to similar state lifetimes on the 100 ms timescale, suggesting a common neural basis. To investigate whether microstates and power envelope HMM states describe the same neural dynamics, we used simultaneous MEG/EEG recordings at rest and compared the spatial signature and temporal activation dynamics of microstates and power envelope HMM states obtained separately from EEG and MEG. Results showed that microstates and power envelope HMM states differ both spatially and temporally. Microstates reflect sharp events of neural synchronization, whereas power envelope HMM states disclose network-level activity with 100–200 ms lifetimes. Further, MEG microstates do not correspond to the canonical EEG microstates but are better interpreted as split HMM states. On the other hand, both MEG and EEG HMM states involve the (de)activation of similar functional networks. Microstate analysis and power envelope HMM thus appear sensitive to neural events occurring over different spatial and temporal scales. As such, they represent complementary approaches to explore the fast, sub-second scale bursting electrophysiological dynamics in spontaneous human brain activity.
Collapse
Affiliation(s)
- N Coquelet
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles, Brussels 1070, Belgium.
| | - X De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles, Brussels 1070, Belgium; Magnetoencephalography Unit, Service of Translational Neuroimaging, CUB - Hôpital Erasme, Brussels, Belgium
| | - L Roshchupkina
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles, Brussels 1070, Belgium; Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Centre for Research in Cognition and Neurosciences (CRCN), UNI - ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
| | - P Peigneux
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Centre for Research in Cognition and Neurosciences (CRCN), UNI - ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
| | - S Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles, Brussels 1070, Belgium; Magnetoencephalography Unit, Service of Translational Neuroimaging, CUB - Hôpital Erasme, Brussels, Belgium
| | - M Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - V Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles, Brussels 1070, Belgium; Magnetoencephalography Unit, Service of Translational Neuroimaging, CUB - Hôpital Erasme, Brussels, Belgium
| |
Collapse
|
18
|
EEG microstate in obstructive sleep apnea patients. Sci Rep 2021; 11:17178. [PMID: 34433839 PMCID: PMC8387348 DOI: 10.1038/s41598-021-95749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a common sleep respiratory disease. Previous studies have found that the wakefulness electroencephalogram (EEG) of OSA patients has changed, such as increased EEG power. However, whether the microstates reflecting the transient state of the brain is abnormal is unclear during obstructive hypopnea (OH). We investigated the microstates of sleep EEG in 100 OSA patients. Then correlation analysis was carried out between microstate parameters and EEG markers of sleep disturbance, such as power spectrum, sample entropy and detrended fluctuation analysis (DFA). OSA_OH patients showed that the microstate C increased presence and the microstate D decreased presence compared to OSA_withoutOH patients and controls. The fifth microstate E appeared during N1-OH, but the probability of other microstates transferring to microstate E was small. According to the correlation analysis, OSA_OH patients in N1-OH showed that the microstate D was positively correlated with delta power, and negatively correlated with beta and alpha power; the transition probability of the microstate B → C and E → C was positively correlated with alpha power. In other sleep stages, the microstate parameters were not correlated with power, sample entropy and FDA. We might interpret that the abnormal transition of brain active areas of OSA patients in N1-OH stage leads to abnormal microstates, which might be related to the change of alpha activity in the cortex.
Collapse
|