1
|
Paromov D, Wang YR, Munoz Galarza K. GABAergic Inhibition Underpins Hidden Hearing Loss. J Neurosci 2024; 44:e0964242024. [PMID: 39414372 PMCID: PMC11484542 DOI: 10.1523/jneurosci.0964-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 10/18/2024] Open
Affiliation(s)
- Daniel Paromov
- University of Montreal, Montréal, Quebec H3N 1X7, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de l'université de Montréal (CRIUGM), Montréal, Quebec H3W 1W6, Canada
| | - Yi Ran Wang
- University of Montreal, Montréal, Quebec H3N 1X7, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de l'université de Montréal (CRIUGM), Montréal, Quebec H3W 1W6, Canada
| | - Kyla Munoz Galarza
- University of Montreal, Montréal, Quebec H3N 1X7, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de l'université de Montréal (CRIUGM), Montréal, Quebec H3W 1W6, Canada
| |
Collapse
|
2
|
Lunardelo PP, Fukuda MTH, Zanchetta S. Age-Related Listening Performance Changes Across Adulthood. Ear Hear 2024:00003446-990000000-00353. [PMID: 39370558 DOI: 10.1097/aud.0000000000001595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
OBJECTIVES This study compares auditory processing performance across different decades of adulthood, including young adults and middle-aged individuals with normal hearing and no spontaneous auditory complaints. DESIGN We assessed 80 participants with normal hearing, at least 10 years of education, and normal global cognition. The participants completed various auditory tests, including speech-in-noise, dichotic digits, duration, pitch pattern sequence, gap in noise, and masking level difference. In addition, we conducted working memory assessments and administered a questionnaire on self-perceived hearing difficulties. RESULTS Our findings revealed significant differences in auditory test performance across different age groups, except for the masking level difference. The youngest group outperformed all other age groups in the speech-in-noise test, while differences in dichotic listening and temporal resolution emerged from the age of 40 and in temporal ordering from the age of 50. Moreover, higher education levels and better working memory test scores were associated with better auditory performance as individuals aged. However, the influence of these factors varied across different auditory tests. It is interesting that we observed increased self-reported hearing difficulties with age, even in participants without spontaneous auditory complaints. CONCLUSIONS Our study highlights significant variations in auditory test performance, with noticeable changes occurring from age 30 and becoming more pronounced from age 40 onward. As individuals grow older, they tend to perceive more hearing difficulties. Furthermore, the impact of age on auditory processing performance is influenced by factors such as education and working memory.
Collapse
Affiliation(s)
- Pamela P Lunardelo
- Department of Psychology, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Brazil
| | - Marisa T H Fukuda
- Department of Psychology, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Brazil
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sthella Zanchetta
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Guo ZC, McHaney JR, Parthasarathy A, Chandrasekaran B. Reduced neural distinctiveness of speech representations in the middle-aged brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609778. [PMID: 39253477 PMCID: PMC11383304 DOI: 10.1101/2024.08.28.609778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Speech perception declines independent of hearing thresholds in middle-age, and the neurobiological reasons are unclear. In line with the age-related neural dedifferentiation hypothesis, we predicted that middle-aged adults show less distinct cortical representations of phonemes and acoustic-phonetic features relative to younger adults. In addition to an extensive audiological, auditory electrophysiological, and speech perceptual test battery, we measured electroencephalographic responses time-locked to phoneme instances (phoneme-related potential; PRP) in naturalistic, continuous speech and trained neural network classifiers to predict phonemes from these responses. Consistent with age-related neural dedifferentiation, phoneme predictions were less accurate, more uncertain, and involved a broader network for middle-aged adults compared with younger adults. Representational similarity analysis revealed that the featural relationship between phonemes was less robust in middle-age. Electrophysiological and behavioral measures revealed signatures of cochlear neural degeneration (CND) and speech perceptual deficits in middle-aged adults relative to younger adults. Consistent with prior work in animal models, signatures of CND were associated with greater cortical dedifferentiation, explaining nearly a third of the variance in PRP prediction accuracy together with measures of acoustic neural processing. Notably, even after controlling for CND signatures and acoustic processing abilities, age-group differences in PRP prediction accuracy remained. Overall, our results reveal "fuzzier" phonemic representations, suggesting that age-related cortical neural dedifferentiation can occur even in middle-age and may underlie speech perceptual challenges, despite a normal audiogram.
Collapse
Affiliation(s)
- Zhe-chen Guo
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jacie R. McHaney
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | | | - Bharath Chandrasekaran
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| |
Collapse
|
4
|
Guerreiro MJS, Puschmann S, Eck J, Rienäcker F, Van Gerven PWM, Thiel CM. The effect of hearing loss on age-related differences in neural distinctiveness. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024; 31:627-645. [PMID: 37306610 DOI: 10.1080/13825585.2023.2223904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
Age differences in cognitive performance have been shown to be overestimated if age-related hearing loss is not taken into account. Here, we investigated the role of age-related hearing loss on age differences in functional brain organization by assessing its impact on previously reported age differences in neural differentiation. To this end, we analyzed the data of 36 younger adults, 21 older adults with clinically normal hearing, and 21 older adults with mild-to-moderate hearing loss who had taken part in a functional localizer task comprising visual (i.e., faces, scenes) and auditory stimuli (i.e., voices, music) while undergoing functional magnetic resonance imaging. Evidence for reduced neural distinctiveness in the auditory cortex was observed only in older adults with hearing loss relative to younger adults, whereas evidence for reduced neural distinctiveness in the visual cortex was observed both in older adults with normal hearing and in older adults with hearing loss relative to younger adults. These results indicate that age-related dedifferentiation in the auditory cortex is exacerbated by age-related hearing loss.
Collapse
Affiliation(s)
- Maria J S Guerreiro
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Sebastian Puschmann
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Judith Eck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Franziska Rienäcker
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Pascal W M Van Gerven
- Department of Educational Development & Research, School of Health Professions Education (SHE), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
5
|
Poe AA, Karawani H, Anderson S. Aging effects on the neural representation and perception of consonant transition cues. Hear Res 2024; 448:109034. [PMID: 38781768 PMCID: PMC11156531 DOI: 10.1016/j.heares.2024.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Older listeners have difficulty processing temporal cues that are important for word discrimination, and deficient processing may limit their ability to benefit from these cues. Here, we investigated aging effects on perception and neural representation of the consonant transition and the factors that contribute to successful perception. To further understand the neural mechanisms underlying the changes in processing from brainstem to cortex, we also examined the factors that contribute to exaggerated amplitudes in cortex. We enrolled 30 younger normal-hearing and 30 older normal-hearing participants who met the criteria of clinically normal hearing. Perceptual identification functions were obtained for the words BEAT and WHEAT on a 7-step continuum of consonant-transition duration. Auditory brainstem responses (ABRs) were recorded to click stimuli and frequency-following responses (FFRs) and cortical auditory-evoked potentials were recorded to the endpoints of the BEAT-WHEAT continuum. Perceptual performance for identification of BEAT vs. WHEAT did not differ between younger and older listeners. However, both subcortical and cortical measures of neural representation showed age group differences, such that FFR phase locking was lower but cortical amplitudes (P1 and N1) were higher in older compared to younger listeners. ABR Wave I amplitude and FFR phase locking, but not audiometric thresholds, predicted early cortical amplitudes. Phase locking to the transition region and early cortical peak amplitudes (P1) predicted performance on the perceptual identification function. Overall, results suggest that the neural representation of transition durations and cortical overcompensation may contribute to the ability to perceive transition duration contrasts. Cortical overcompensation appears to be a maladaptive response to decreased neural firing/synchrony.
Collapse
Affiliation(s)
- Abigail Anne Poe
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Hanin Karawani
- Department of Communication Sciences and Disorders, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
6
|
Masri S, Mowery TM, Fair R, Sanes DH. Developmental hearing loss-induced perceptual deficits are rescued by genetic restoration of cortical inhibition. Proc Natl Acad Sci U S A 2024; 121:e2311570121. [PMID: 38830095 PMCID: PMC11181144 DOI: 10.1073/pnas.2311570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Even a transient period of hearing loss during the developmental critical period can induce long-lasting deficits in temporal and spectral perception. These perceptual deficits correlate with speech perception in humans. In gerbils, these hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. Therefore, we developed viral vectors to express proteins that would upregulate gerbil postsynaptic inhibitory receptor subunits (GABAA, Gabra1; GABAB, Gabbr1b) in pyramidal neurons, and an enzyme that mediates GABA synthesis (GAD65) presynaptically in parvalbumin-expressing interneurons. A transient period of developmental hearing loss during the auditory critical period significantly impaired perceptual performance on two auditory tasks: amplitude modulation depth detection and spectral modulation depth detection. We then tested the capacity of each vector to restore perceptual performance on these auditory tasks. While both GABA receptor vectors increased the amplitude of cortical inhibitory postsynaptic potentials, only viral expression of postsynaptic GABAB receptors improved perceptual thresholds to control levels. Similarly, presynaptic GAD65 expression improved perceptual performance on spectral modulation detection. These findings suggest that recovering performance on auditory perceptual tasks depends on GABAB receptor-dependent transmission at the auditory cortex parvalbumin to pyramidal synapse and point to potential therapeutic targets for developmental sensory disorders.
Collapse
Affiliation(s)
- Samer Masri
- Center for Neural Science, New York University, New York, NY10003
| | - Todd M. Mowery
- Department of Otolaryngology, Rutgers, New Brunswick, NJ08901
| | - Regan Fair
- Center for Neural Science, New York University, New York, NY10003
| | - Dan H. Sanes
- Center for Neural Science, New York University, New York, NY10003
- Department of Psychology, New York University, New York, NY10003
- Department of Biology, New York University, New York, NY10003
- Neuroscience Institute at New York University Langone School of Medicine, New York, NY10016
| |
Collapse
|
7
|
Zhou P, Li L, Ming X, Cai W, Hao B, Hu Y, He Z, Chen X. Causal relationship between psychiatric disorders and sensorineural hearing loss: A bidirectional two-sample mendelian randomization analysis. J Psychosom Res 2024; 179:111641. [PMID: 38461621 DOI: 10.1016/j.jpsychores.2024.111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE This study employed bidirectional two-sample Mendelian randomization (MR) to investigate the causal links between psychiatric disorders and sensorineural hearing loss (SNHL). METHODS Instrumental variables were chosen from genome-wide association studies of schizophrenia (SCH, N = 127,906), bipolar disorder (BD, N = 51,710), major depressive disorder (MDD, N = 500,199), and SNHL (N = 212,544). In the univariable MR analysis, the inverse-variance weighted method (IVW) was conducted as the primary analysis, complemented by various sensitivity analyses to ensure result robustness. RESULTS SCH exhibited a decreased the risk of SNHL (OR = 0.949, P = 0.005), whereas BD showed an increased incidence of SNHL (OR = 1.145, P = 0.005). No causal association was found for MDD on SNHL (OR = 1.088, P = 0.246). Multivariable MR validated these results. In the reverse direction, genetically predicted SNHL was linked to a decreased risk of SCH with suggestive significance (OR = 0.912, P = 0.023). No reverse causal relationships were observed for SNHL influencing BD or MDD. These findings remained consistent across various MR methods and sensitivity analyses. CONCLUSION This study demonstrated that the causal relationships between diverse psychiatric disorders with SNHL were heterogeneous. Specifically, SCH was inversely associated with SNHL susceptibility, and similarly, a reduced risk of SNHL was observed in schizophrenia patients. In contrast, BD exhibited an increased incidence of SNHL, although SNHL did not influence the prevalence of BD. No causal association between MDD and SNHL was found.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ling Li
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Xiaoping Ming
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wanyue Cai
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bin Hao
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yifan Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuhong He
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| | - Xiong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Mittelstadt JK, Shilling-Scrivo KV, Kanold PO. Long-term training alters response dynamics in the aging auditory cortex. Hear Res 2024; 444:108965. [PMID: 38364511 PMCID: PMC11186583 DOI: 10.1016/j.heares.2024.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/18/2024]
Abstract
Age-related auditory dysfunction, presbycusis, is caused in part by functional changes in the auditory cortex (ACtx) such as altered response dynamics and increased population correlations. Given the ability of cortical function to be altered by training, we tested if performing auditory tasks might benefit auditory function in old age. We examined this by training adult mice on a low-effort tone-detection task for at least six months and then investigated functional responses in ACtx at an older age (∼18 months). Task performance remained stable well into old age. Comparing sound-evoked responses of thousands of ACtx neurons using in vivo 2-photon Ca2+ imaging, we found that many aspects of youthful neuronal activity, including low activity correlations, lower neural excitability, and a greater proportion of suppressed responses, were preserved in trained old animals as compared to passively-exposed old animals. Thus, consistent training on a low-effort task can benefit age-related functional changes in ACtx and may preserve many aspects of auditory function.
Collapse
Affiliation(s)
- Jonah K Mittelstadt
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Kelson V Shilling-Scrivo
- Department of Biology, University of Maryland, College Park, MD 20742, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21230, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biology, University of Maryland, College Park, MD 20742, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Slugocki C, Kuk F, Korhonen P. Cortical sensory gating and reactions to dynamic speech-in-noise in older normal-hearing and hearing-impaired adults. Int J Audiol 2024:1-10. [PMID: 38334072 DOI: 10.1080/14992027.2024.2311663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE To examine whether cortical sensory gating predicts how older adults with and without hearing loss perform the Tracking of Noise Tolerance (TNT) test. DESIGN Single-blind mixed design. TNT performance was defined by average tolerated noise relative to speech levels (TNTAve) and by an average range of noise levels over a two-minute trial (excursion). Sensory gating of P1-N1-P2 components was measured using pairs of 1 kHz tone pips. STUDY SAMPLE Twenty-three normal-hearing (NH) and 16 hearing-impaired (HI) older adults with a moderate-to-severe degree of sensorineural hearing loss. RESULTS NH listeners tolerated significantly more noise than HI listeners, but the two groups did not differ in their excursion. Both NH and HI listeners exhibited significant gating of P1 amplitudes and N1P2 peak-to-peak amplitudes with no difference in gating magnitudes between listener groups. Sensory gating magnitudes of P1 and N1P2 did not predict TNTAve scores, but N1P2 gating negatively predicted excursion after accounting for listener age and hearing thresholds. CONCLUSIONS Listeners' reactivity to a roving noise (excursion), but not their average noise tolerance (TNTAve), was predicted by sensory gating at N1P2 generators. These results suggest that temporal aspects of speech-in-noise processing may be affected by declines in the central inhibition of older adults.
Collapse
Affiliation(s)
- Christopher Slugocki
- Office of Research in Clinical Amplification (ORCA-USA), WS Audiology, Lisle, IL, USA
| | - Francis Kuk
- Office of Research in Clinical Amplification (ORCA-USA), WS Audiology, Lisle, IL, USA
| | - Petri Korhonen
- Office of Research in Clinical Amplification (ORCA-USA), WS Audiology, Lisle, IL, USA
| |
Collapse
|
10
|
Angenstein N. Asymmetries and hemispheric interaction in the auditory system of elderly people. FRONTIERS IN NEUROIMAGING 2024; 2:1320989. [PMID: 38235106 PMCID: PMC10791916 DOI: 10.3389/fnimg.2023.1320989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024]
Abstract
Age-related changes of asymmetries in the auditory system and decreasing efficiency of hemispheric interaction have been discussed for some time. This mini-review discusses recent neuroimaging studies on alterations in lateralization of cortical processing and structural changes concerning the division of labor and interaction between hemispheres during auditory processing in elderly people with the focus on people without severe hearing loss. Several changes of asymmetries in anatomy, function and neurotransmitter concentration were observed in auditory cortical areas of older compared to younger adults. It was shown that connections between left and right auditory cortex are reduced during aging. Functionally, aging seems to lead to a reduction in asymmetry of auditory processing. However, the results do not always point into the same direction. Furthermore, correlations between function, anatomy and behavior in the left and right hemisphere appear to differ between younger and older adults. The changes in auditory cortex asymmetries with aging might be due to compensation of declining processing capacities, but at the same time these mechanisms could impair the balanced division of labor between the two hemispheres that is required for the processing of complex auditory stimuli such as speech. Neuroimaging studies are essential to follow the slow changes with aging as in the beginning no behavioral effects might be visible due to compensation. Future studies should control well for peripheral hearing loss and cognitive decline. Furthermore, for the interpretability of results it is necessary to use specific tasks with well-controlled task difficulty.
Collapse
Affiliation(s)
- Nicole Angenstein
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
11
|
Parezanović M, Ilić N, Ostojić S, Stevanović G, Ječmenica J, Maver A, Sarajlija A. Sensorineural Hearing Loss in a Child with Succinic Semialdehyde Dehydrogenase Deficiency. Balkan J Med Genet 2023; 26:63-68. [PMID: 37576789 PMCID: PMC10413887 DOI: 10.2478/bjmg-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Succinic semialdehyde dehydrogenase (SSADH) deficiency is a rare autosomal-recessive disorder of gamma-aminobutyric acid (GABA) metabolism, resulting in accumulation of GABA and gamma-hydroxybutyric acid (GHB) in physiological fluids. Approximately 450 patients have been diagnosed worldwide with this inherited neurotransmitter disorder. We report on a five-year-old male patient, homozygous for the pathogenic variant (NM_170740:c.1265G>A) in ALDH5A1 presenting with an unexpected association of typical SSADH deficiency manifestations with bilateral sensorineural hearing loss (SNHL). Brainstem evoked response audiometry (BERA) testing showed mid-frequency sensorineural hearing damage that suggested a hereditary component to SNHL. Whole exome sequencing (WES) failed to discern other genetic causes of deafness. Several variants of uncertain significance (VUS) detected in genes known for their role in hearing physiology could not be verified as the cause for the SNHL. It is known that central auditory processing depends on a delicate balance between excitatory and inhibitory neurotransmission, and GABA is known to play a significant role in this process. Additionally, excessive concentrations of accumulated GABA and GBH are known to cause a down-regulation of GABA receptors, which could have an adverse influence on hearing function. However, these mechanisms are very speculative in context of SNHL in a patient with inherited disorder of GABA metabolism. Injury of the globi pallidi, one of hallmarks of SSADH deficiency, could also be a contributory factor to SNHL, as was suspected in some other inborn errors in metabolism. We hope that this case will contribute to the understanding of phenotypic complexity of SSADH deficiency.
Collapse
Affiliation(s)
- M Parezanović
- Department of Pediatric Intensive Care, Mother and Child Health Care Institute “Dr Vukan Čupić”, Belgrade, Serbia
| | - N Ilić
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute “Dr Vukan Čupić”, Belgrade, Serbia
| | - S Ostojić
- Department of Neurology, Mother and Child Health Care Institute “Dr Vukan Čupić”, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine
| | - G Stevanović
- Clinic of Neurology and Psychiatry for Children and Youth, University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - J Ječmenica
- Department of Otorhinolaryngology, Mother and Child Health Care Institute “Dr Vukan Čupić”, Belgrade, Serbia
| | - A Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - A Sarajlija
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute “Dr Vukan Čupić”, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine
- University of Eastern Sarajevo, Faculty of Medicine, Foča, Republic of Srpska, Bosnia and Hercegovina
| |
Collapse
|
12
|
Karunathilake IMD, Dunlap JL, Perera J, Presacco A, Decruy L, Anderson S, Kuchinsky SE, Simon JZ. Effects of aging on cortical representations of continuous speech. J Neurophysiol 2023; 129:1359-1377. [PMID: 37096924 PMCID: PMC10202479 DOI: 10.1152/jn.00356.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
Understanding speech in a noisy environment is crucial in day-to-day interactions and yet becomes more challenging with age, even for healthy aging. Age-related changes in the neural mechanisms that enable speech-in-noise listening have been investigated previously; however, the extent to which age affects the timing and fidelity of encoding of target and interfering speech streams is not well understood. Using magnetoencephalography (MEG), we investigated how continuous speech is represented in auditory cortex in the presence of interfering speech in younger and older adults. Cortical representations were obtained from neural responses that time-locked to the speech envelopes with speech envelope reconstruction and temporal response functions (TRFs). TRFs showed three prominent peaks corresponding to auditory cortical processing stages: early (∼50 ms), middle (∼100 ms), and late (∼200 ms). Older adults showed exaggerated speech envelope representations compared with younger adults. Temporal analysis revealed both that the age-related exaggeration starts as early as ∼50 ms and that older adults needed a substantially longer integration time window to achieve their better reconstruction of the speech envelope. As expected, with increased speech masking envelope reconstruction for the attended talker decreased and all three TRF peaks were delayed, with aging contributing additionally to the reduction. Interestingly, for older adults the late peak was delayed, suggesting that this late peak may receive contributions from multiple sources. Together these results suggest that there are several mechanisms at play compensating for age-related temporal processing deficits at several stages but which are not able to fully reestablish unimpaired speech perception.NEW & NOTEWORTHY We observed age-related changes in cortical temporal processing of continuous speech that may be related to older adults' difficulty in understanding speech in noise. These changes occur in both timing and strength of the speech representations at different cortical processing stages and depend on both noise condition and selective attention. Critically, their dependence on noise condition changes dramatically among the early, middle, and late cortical processing stages, underscoring how aging differentially affects these stages.
Collapse
Affiliation(s)
- I M Dushyanthi Karunathilake
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States
| | - Jason L Dunlap
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Janani Perera
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Alessandro Presacco
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
| | - Lien Decruy
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Stefanie E Kuchinsky
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Jonathan Z Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
- Department of Biology, University of Maryland, College Park, Maryland, United States
| |
Collapse
|
13
|
Li N, Ma W, Ren F, Li X, Li F, Zong W, Wu L, Dai Z, Hui SCN, Edden RAE, Li M, Gao F. Neurochemical and functional reorganization of the cognitive-ear link underlies cognitive impairment in presbycusis. Neuroimage 2023; 268:119861. [PMID: 36610677 PMCID: PMC10026366 DOI: 10.1016/j.neuroimage.2023.119861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Recent studies suggest that the interaction between presbycusis and cognitive impairment may be partially explained by the cognitive-ear link. However, the underlying neurophysiological mechanisms remain largely unknown. In this study, we combined magnetic resonance spectroscopy (MRS) and resting-state functional magnetic resonance imaging (fMRI) to investigate auditory gamma-aminobutyric acid (GABA) and glutamate (Glu) levels, intra- and inter-network functional connectivity, and their relationships with auditory and cognitive function in 51 presbycusis patients and 51 well-matched healthy controls. Our results confirmed reorganization of the cognitive-ear link in presbycusis, including decreased auditory GABA and Glu levels and aberrant functional connectivity involving auditory networks (AN) and cognitive-related networks, which were associated with reduced speech perception or cognitive impairment. Moreover, mediation analyses revealed that decreased auditory GABA levels and dysconnectivity between the AN and default mode network (DMN) mediated the association between hearing loss and impaired information processing speed in presbycusis. These findings highlight the importance of AN-DMN dysconnectivity in cognitive-ear link reorganization leading to cognitive impairment, and hearing loss may drive reorganization via decreased auditory GABA levels. Modulation of GABA neurotransmission may lead to new treatment strategies for cognitive impairment in presbycusis patients.
Collapse
Affiliation(s)
- Ning Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wen Ma
- Department of Otolaryngology, the Central Hospital of Jinan City, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuyan Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zong
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lili Wu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Zongrui Dai
- Westa College, Southwest University, Chongqing, China
| | - Steve C N Hui
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
14
|
Masri S, Fair R, Mowery TM, Sanes DH. Developmental hearing loss-induced perceptual deficits are rescued by cortical expression of GABA B receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523440. [PMID: 36711464 PMCID: PMC9882079 DOI: 10.1101/2023.01.10.523440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Even transient periods of developmental hearing loss during the developmental critical period have been linked to long-lasting deficits in auditory perception, including temporal and spectral processing, which correlate with speech perception and educational attainment. In gerbils, hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. We developed viral vectors to express both endogenous GABAA or GABAB receptor subunits in auditory cortex and tested their capacity to restore perception of temporal and spectral auditory cues following critical period hearing loss in the Mongolian gerbil. HL significantly impaired perception of both temporal and spectral auditory cues. While both vectors similarly increased IPSCs in auditory cortex, only overexpression of GABAB receptors improved perceptual thresholds after HL to be similar to those of animals without developmental hearing loss. These findings identify the GABAB receptor as an important regulator of sensory perception in cortex and point to potential therapeutic targets for developmental sensory disorders.
Collapse
Affiliation(s)
- Samer Masri
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003
| | - Regan Fair
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003
| | - Todd M. Mowery
- Brain Health Institute & Department of Otolaryngology, Rutgers University
| | - Dan H. Sanes
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003
- Department of Psychology, New York University
- Department of Biology, New York University
- Neuroscience Institute, New York University Langone Medical Center
| |
Collapse
|
15
|
Gómez-Álvarez M, Johannesen PT, Coelho-de-Sousa SL, Klump GM, Lopez-Poveda EA. The Relative Contribution of Cochlear Synaptopathy and Reduced Inhibition to Age-Related Hearing Impairment for People With Normal Audiograms. Trends Hear 2023; 27:23312165231213191. [PMID: 37956654 PMCID: PMC10644751 DOI: 10.1177/23312165231213191] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Older people often show auditory temporal processing deficits and speech-in-noise intelligibility difficulties even when their audiogram is clinically normal. The causes of such problems remain unclear. Some studies have suggested that for people with normal audiograms, age-related hearing impairments may be due to a cognitive decline, while others have suggested that they may be caused by cochlear synaptopathy. Here, we explore an alternative hypothesis, namely that age-related hearing deficits are associated with decreased inhibition. For human adults (N = 30) selected to cover a reasonably wide age range (25-59 years), with normal audiograms and normal cognitive function, we measured speech reception thresholds in noise (SRTNs) for disyllabic words, gap detection thresholds (GDTs), and frequency modulation detection thresholds (FMDTs). We also measured the rate of growth (slope) of auditory brainstem response wave-I amplitude with increasing level as an indirect indicator of cochlear synaptopathy, and the interference inhibition score in the Stroop color and word test (SCWT) as a proxy for inhibition. As expected, performance in the auditory tasks worsened (SRTNs, GDTs, and FMDTs increased), and wave-I slope and SCWT inhibition scores decreased with ageing. Importantly, SRTNs, GDTs, and FMDTs were not related to wave-I slope but worsened with decreasing SCWT inhibition. Furthermore, after partialling out the effect of SCWT inhibition, age was no longer related to SRTNs or GDTs and became less strongly related to FMDTs. Altogether, results suggest that for people with normal audiograms, age-related deficits in auditory temporal processing and speech-in-noise intelligibility are mediated by decreased inhibition rather than cochlear synaptopathy.
Collapse
Affiliation(s)
- Marcelo Gómez-Álvarez
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Peter T. Johannesen
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Sónia L. Coelho-de-Sousa
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Georg M. Klump
- Department of Neuroscience and Cluster of Excellence “Hearing4all”, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Enrique A. Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
16
|
Wang C, Qiu J, Li G, Wang J, Liu D, Chen L, Song X, Cui L, Sun Y. Application and prospect of quasi-targeted metabolomics in age-related hearing loss. Hear Res 2022; 424:108604. [PMID: 36116178 DOI: 10.1016/j.heares.2022.108604] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
Abstract
Age-related hearing loss (ARHL) is a common sensory deficit in the elderly, which seriously affects physical and mental health. Therefore, understanding its underlying molecular mechanisms and taking interventions to treat ARHL are urgently needed. In our study, cochlea of 4-week-old C57BL/6 mice as the Youth group (n = 6) and 48-week-old cochlea as the Old group (n = 6) were subjected to quasi-targeted metabolomics analysis by Ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). In total, 208 differential metabolites were identified in 12 cochlea samples, which highlighted the following discriminant compounds: tryptophan, piperidine, methionine, L-arginine, histamine, serotonin, acetylcholine, and 4-aminobutyric acid. Differentially expressed metabolites were identified which were involved in KEGG pathways related to the digestion and absorption of oxidative stress associated amino acids, Synaptic vesicle cycle of serotonin, Pantothenate and CoA Biosynthesis. These findings are a first step toward elucidating the pathophysiological pathways involved in the etiology of ARHL and provide the possibility to further explore the mechanisms of ARHL using metabolomic analysis.
Collapse
Affiliation(s)
- Chen Wang
- School of Clinical Medicine, Weifang Medical University, Baotong West Street 7166, Weifang, China; Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Jingjing Qiu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Guangjin Li
- School of Clinical Medicine, Weifang Medical University, Baotong West Street 7166, Weifang, China; Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Junxin Wang
- School of Clinical Medicine, Weifang Medical University, Baotong West Street 7166, Weifang, China; Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Dawei Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Liang Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Limei Cui
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China.
| | - Yan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China.
| |
Collapse
|
17
|
Dobri S, Chen JJ, Ross B. Insights from auditory cortex for GABA+ magnetic resonance spectroscopy studies of aging. Eur J Neurosci 2022; 56:4425-4444. [PMID: 35781900 DOI: 10.1111/ejn.15755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
Changes in levels of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) may underlie aging-related changes in brain function. GABA and co-edited macromolecules (GABA+) can be measured with MEGA-PRESS magnetic resonance spectroscopy (MRS). The current study investigated how changes in the aging brain impact the interpretation of GABA+ measures in bilateral auditory cortices of healthy young and older adults. Structural changes during aging appeared as decreasing proportion of grey matter in the MRS volume of interest and corresponding increase in cerebrospinal fluid. GABA+ referenced to H2 O without tissue correction declined in aging. This decline persisted after correcting for tissue differences in MR-visible H2 O and relaxation times but vanished after considering the different abundance of GABA+ in grey and white matter. However, GABA+ referenced to creatine and N-acetyl aspartate (NAA), which showed no dependence on tissue composition, decreased in aging. All GABA+ measures showed hemispheric asymmetry in young but not older adults. The study also considered aging-related effects on tissue segmentation and the impact of co-edited macromolecules. Tissue segmentation differed significantly between commonly used algorithms, but aging-related effects on tissue-corrected GABA+ were consistent across methods. Auditory cortex macromolecule concentration did not change with age, indicating that a decline in GABA caused the decrease in the compound GABA+ measure. Most likely, the macromolecule contribution to GABA+ leads to underestimating an aging-related decrease in GABA. Overall, considering multiple GABA+ measures using different reference signals strengthened the support for an aging-related decline in auditory cortex GABA levels.
Collapse
Affiliation(s)
- Simon Dobri
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - J Jean Chen
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bernhard Ross
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Yong W, Song J, Xing C, Xu JJ, Xue Y, Yin X, Wu Y, Chen YC. Disrupted Topological Organization of Resting-State Functional Brain Networks in Age-Related Hearing Loss. Front Aging Neurosci 2022; 14:907070. [PMID: 35669463 PMCID: PMC9163682 DOI: 10.3389/fnagi.2022.907070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Age-related hearing loss (ARHL), associated with the function of speech perception decreases characterized by bilateral sensorineural hearing loss at high frequencies, has become an increasingly critical public health problem. This study aimed to investigate the topological features of the brain functional network and structural dysfunction of the central nervous system in ARHL using graph theory. Methods Forty-six patients with ARHL and forty-five age, sex, and education-matched healthy controls were recruited to undergo a resting-state functional magnetic resonance imaging (fMRI) scan in this study. Graph theory was applied to analyze the topological properties of the functional connectomes by studying the local and global organization of neural networks. Results Compared with healthy controls, the patient group showed increased local efficiency (Eloc) and clustering coefficient (Cp) of the small-world network. Besides, the degree centrality (Dc) and nodal efficiency (Ne) values of the left inferior occipital gyrus (IOG) in the patient group showed a decrease in contrast with the healthy control group. In addition, the intra-modular interaction of the occipital lobe module and the inter-modular interaction of the parietal occipital module decreased in the patient group, which was positively correlated with Dc and Ne. The intra-modular interaction of the occipital lobe module decreased in the patient group, which was negatively correlated with the Eloc. Conclusion Based on fMRI and graph theory, we indicate the aberrant small-world network topology in ARHL and dysfunctional interaction of the occipital lobe and parietal lobe, emphasizing the importance of dysfunctional left IOG. These results suggest that early diagnosis and treatment of patients with ARHL is necessary, which can avoid the transformation of brain topology and decreased brain function.
Collapse
Affiliation(s)
- Wei Yong
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiajie Song
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Radiology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Xue
- Department of Otolaryngology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Yuanqing Wu
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Yu-Chen Chen
| |
Collapse
|
19
|
Li H, Heise KF, Chalavi S, Puts NAJ, Edden RAE, Swinnen SP. The role of MRS-assessed GABA in human behavioral performance. Prog Neurobiol 2022; 212:102247. [PMID: 35149113 DOI: 10.1016/j.pneurobio.2022.102247] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 01/16/2023]
Abstract
Understanding the neurophysiological mechanisms that drive human behavior has been a long-standing focus of cognitive neuroscience. One well-known neuro-metabolite involved in the creation of optimal behavioral repertoires is GABA, the main inhibitory neurochemical in the human brain. Converging evidence from both animal and human studies indicates that individual variations in GABAergic function are associated with behavioral performance. In humans, one increasingly used in vivo approach to measuring GABA levels is through Magnetic Resonance Spectroscopy (MRS). However, the implications of MRS measures of GABA for behavior remain poorly understood. In this respect, it is yet to be determined how GABA levels within distinct task-related brain regions of interest account for differences in behavioral performance. This review summarizes findings from cross-sectional studies that determined baseline MRS-assessed GABA levels and examined their associations with performance on various behaviors representing the perceptual, motor and cognitive domains, with a particular focus on healthy participants across the lifespan. Overall, the results indicate that MRS-assessed GABA levels play a pivotal role in various domains of behavior. Even though some converging patterns emerge, it is challenging to draw comprehensive conclusions due to differences in behavioral task paradigms, targeted brain regions of interest, implemented MRS techniques and reference compounds used. Across all studies, the effects of GABA levels on behavioral performance point to generic and partially independent functions that refer to distinctiveness, interference suppression and cognitive flexibility. On one hand, higher baseline GABA levels may support the distinctiveness of neural representations during task performance and better coping with interference and suppression of preferred response tendencies. On the other hand, lower baseline GABA levels may support a reduction of inhibition, leading to higher cognitive flexibility. These effects are task-dependent and appear to be mediated by age. Nonetheless, additional studies using emerging advanced methods are required to further clarify the role of MRS-assessed GABA in behavioral performance.
Collapse
Affiliation(s)
- Hong Li
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium; KU Leuven Brain Institute (LBI), KU Leuven, Belgium.
| | - Kirstin-Friederike Heise
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium; KU Leuven Brain Institute (LBI), KU Leuven, Belgium; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA.
| | - Sima Chalavi
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium; KU Leuven Brain Institute (LBI), KU Leuven, Belgium.
| | - Nicolaas A J Puts
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium; KU Leuven Brain Institute (LBI), KU Leuven, Belgium.
| |
Collapse
|
20
|
Herrmann B, Butler BE. Hearing loss and brain plasticity: the hyperactivity phenomenon. Brain Struct Funct 2021; 226:2019-2039. [PMID: 34100151 DOI: 10.1007/s00429-021-02313-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
Many aging adults experience some form of hearing problems that may arise from auditory peripheral damage. However, it has been increasingly acknowledged that hearing loss is not only a dysfunction of the auditory periphery but also results from changes within the entire auditory system, from periphery to cortex. Damage to the auditory periphery is associated with an increase in neural activity at various stages throughout the auditory pathway. Here, we review neurophysiological evidence of hyperactivity, auditory perceptual difficulties that may result from hyperactivity, and outline open conceptual and methodological questions related to the study of hyperactivity. We suggest that hyperactivity alters all aspects of hearing-including spectral, temporal, spatial hearing-and, in turn, impairs speech comprehension when background sound is present. By focusing on the perceptual consequences of hyperactivity and the potential challenges of investigating hyperactivity in humans, we hope to bring animal and human electrophysiologists closer together to better understand hearing problems in older adulthood.
Collapse
Affiliation(s)
- Björn Herrmann
- Rotman Research Institute, Baycrest, Toronto, ON, M6A 2E1, Canada. .,Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Blake E Butler
- Department of Psychology & The Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,National Centre for Audiology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
21
|
Mapping the human auditory cortex using spectrotemporal receptive fields generated with magnetoencephalography. Neuroimage 2021; 238:118222. [PMID: 34058330 DOI: 10.1016/j.neuroimage.2021.118222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022] Open
Abstract
We present a novel method to map the functional organization of the human auditory cortex noninvasively using magnetoencephalography (MEG). More specifically, this method estimates via reverse correlation the spectrotemporal receptive fields (STRF) in response to a temporally dense pure tone stimulus, from which important spectrotemporal characteristics of neuronal processing can be extracted and mapped back onto the cortex surface. We show that several neuronal populations can be found examining the spectrotemporal characteristics of their STRFs, and demonstrate how these can be used to generate tonotopic gradient maps. In doing so, we show that the spatial resolution of MEG is sufficient to reliably extract important information about the spatial organization of the auditory cortex, while enabling the analysis of complex temporal dynamics of auditory processing such as best temporal modulation rate and response latency given its excellent temporal resolution. Furthermore, because spectrotemporally dense auditory stimuli can be used with MEG, the time required to acquire the necessary data to generate tonotopic maps is significantly less for MEG than for other neuroimaging tools that acquire BOLD-like signals.
Collapse
|