1
|
Papenberg G, Karalija N, Salami A, Johansson J, Wåhlin A, Andersson M, Axelsson J, Garrett DD, Riklund K, Lindenberger U, Nyberg L, Bäckman L. Aging-related losses in dopamine D2/3 receptor availability are linked to working-memory decline across five years. Cereb Cortex 2025:bhae481. [PMID: 39756432 DOI: 10.1093/cercor/bhae481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025] Open
Abstract
Although age differences in the dopamine system have been suggested to contribute to age-related cognitive decline based on cross-sectional data, recent large-scale cross-sectional studies reported only weak evidence for a correlation among aging, dopamine receptor availability, and cognition. Regardless, longitudinal data remain essential to make robust statements about dopamine losses as a basis for cognitive aging. We present correlations between changes in D2/3 dopamine receptor availability and changes in working memory measured over 5 yr in healthy, older adults (n = 128, ages 64 to 68 yr at baseline). Greater decline in D2/3 dopamine receptor availability in working memory-relevant regions (caudate, middle frontal cortex, hippocampus) was related to greater decline in working memory performance in individuals who exhibited working memory reductions across time (n = 43; caudate: rs = 0.494; middle frontal cortex: rs = 0.506; hippocampus; rs = 0.423), but not in individuals who maintained performance (n = 41; caudate: rs = 0.052; middle frontal cortex: rs = 0.198; hippocampus; rs = 0.076). The dopamine-working memory link in decliners was not observed in the orbitofrontal cortex, which does not belong to the core working memory network. Our longitudinal analyses support the notion that aging-related changes in the dopamine system contribute to working memory decline in aging.
Collapse
Affiliation(s)
- Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Tomtebodavägen 18 A, SE-171 65 Solna, Sweden
| | - Nina Karalija
- Department of Medical and Translational Biology, Umeå University, Johan Bures väg 12, SE-90187 Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Johan Bures väg 12, SE-90187 Umeå, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Tomtebodavägen 18 A, SE-171 65 Solna, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Johan Bures väg 12, SE-90187 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Johan Bures väg 12, Umeå University, SE-90187 Umeå, Sweden
| | - Jarkko Johansson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Johan Bures väg 12, SE-90187 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Johan Bures väg 12, Umeå University, SE-90187 Umeå, Sweden
- Department of Diagnostics and Intervention, Radiation Physics, Umeå University, Norrlands universitetssjukhus, SE-90187 Umeå, Sweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Johan Bures väg 12, SE-90187 Umeå, Sweden
- Department of Diagnostics and Intervention, Radiation Physics, Umeå University, Norrlands universitetssjukhus, SE-90187 Umeå, Sweden
- Department of Applied Physics and Electronics, Håken Gullessons väg 20, Umeå University, SE-90187 Umeå, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Johan Bures väg 12, SE-90187 Umeå, Sweden
- Department of Diagnostics and Intervention, Radiation Physics, Umeå University, Norrlands universitetssjukhus, SE-90187 Umeå, Sweden
| | - Jan Axelsson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Johan Bures väg 12, SE-90187 Umeå, Sweden
- Department of Diagnostics and Intervention, Radiation Physics, Umeå University, Norrlands universitetssjukhus, SE-90187 Umeå, Sweden
| | - Douglas D Garrett
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, DE-14195 Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, DE-14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London WC1B 5EH, United Kingdom
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Johan Bures väg 12, SE-90187 Umeå, Sweden
- Department of Diagnostics and Intervention, Radiation Physics, Umeå University, Norrlands universitetssjukhus, SE-90187 Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, DE-14195 Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, DE-14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London WC1B 5EH, United Kingdom
| | - Lars Nyberg
- Department of Medical and Translational Biology, Umeå University, Johan Bures väg 12, SE-90187 Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Johan Bures väg 12, SE-90187 Umeå, Sweden
- Department of Diagnostics and Intervention, Radiation Physics, Umeå University, Norrlands universitetssjukhus, SE-90187 Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Tomtebodavägen 18 A, SE-171 65 Solna, Sweden
| |
Collapse
|
2
|
Zhang R, Demiral SB, Tomasi D, Yan W, Manza P, Wang GJ, Volkow ND. Sleep Deprivation Effects on Brain State Dynamics Are Associated With Dopamine D 2 Receptor Availability Via Network Control Theory. Biol Psychiatry 2025; 97:89-96. [PMID: 39127232 DOI: 10.1016/j.biopsych.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Sleep deprivation (SD) negatively affects brain function. Most brain imaging studies have investigated the effects of SD on static brain function. SD effects on functional brain dynamics and their relationship with molecular changes remain relatively unexplored. METHODS We used functional magnetic resonance imaging to examine resting-brain state dynamics after one night of SD compared with rested wakefulness (N = 41) and assessed the association of brain state dynamics with striatal brain dopamine D2 receptor availability measured by positron emission tomography [11C]raclopride using network control theory. RESULTS SD reduced dwell time and persistence probabilities, with the strongest effects in two brain states, one characterized by high default mode network and low dorsal attention network activity and the other by high frontoparietal network and low somatomotor network activity. Using network control theory, we showed that after SD, there was an overall increase in the control energy required for brain state transitions, with effects varying for different brain state transitions. Control energy requirement was negatively associated with transition probabilities under SD and restful wakefulness and accounted for SD-induced changes in transition probabilities. Alteration in the energy landscape was associated with SD-induced changes in striatal D2 receptor distribution. CONCLUSIONS These findings demonstrate altered occurrence of internally and externally oriented brain states following acute SD and suggest an association with energy requirements for brain state transitions modulated by striatal D2 receptors.
Collapse
Affiliation(s)
- Rui Zhang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| | - Sukru Baris Demiral
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Weizheng Yan
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
3
|
Sun L, Malén T, Tuisku J, Kaasinen V, Hietala JA, Rinne J, Nuutila P, Nummenmaa L. Seasonal variation in D2/3 dopamine receptor availability in the human brain. Eur J Nucl Med Mol Imaging 2024; 51:3284-3291. [PMID: 38730083 PMCID: PMC11369044 DOI: 10.1007/s00259-024-06715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/14/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE Brain functional and physiological plasticity is essential to combat dynamic environmental challenges. The rhythmic dopamine signaling pathway, which regulates emotion, reward and learning, shows seasonal patterns with higher capacity of dopamine synthesis and lower number of dopamine transporters during dark seasons. However, seasonal variation of the dopamine receptor signaling remains to be characterized. METHODS Based on a historical database of healthy human brain [11C]raclopride PET scans (n = 291, 224 males and 67 females), we investigated the seasonal patterns of D2/3 dopamine receptor signaling. Daylength at the time of scanning was used as a predictor for brain regional non-displaceable binding of the radiotracer, while controlling for age and sex. RESULTS Daylength was negatively correlated with availability of D2/3 dopamine receptors in the striatum. The largest effect was found in the left caudate, and based on the primary sample, every 4.26 h (i.e., one standard deviation) increase of daylength was associated with a mean 2.8% drop (95% CI -0.042 to -0.014) of the receptor availability. CONCLUSIONS Seasonally varying D2/3 receptor signaling may also underlie the seasonality of mood, feeding, and motivational processes. Our finding suggests that in future studies of brain dopamine signaling, especially in high-latitude regions, the effect of seasonality should be considered.
Collapse
Affiliation(s)
- Lihua Sun
- Huashan Institute of Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Turku PET Centre, University of Turku, Turku, Finland.
- Turku PET Centre, Turku University Hospital, Turku, Finland.
| | - Tuulia Malén
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Turku University Hospital, Neurocenter, Turku, Finland
| | - Jarmo A Hietala
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Turku, Turku University Hospital, Turku, Finland
| | - Juha Rinne
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Wang F, Xin M, Li X, Li L, Wang C, Dai L, Zheng C, Cao K, Yang X, Ge Q, Li B, Wang T, Zhan S, Li D, Zhang X, Paerhati H, Zhou Y, Liu J, Sun B. Effects of deep brain stimulation on dopamine D2 receptor binding in patients with treatment-refractory depression. J Affect Disord 2024; 356:672-680. [PMID: 38657771 DOI: 10.1016/j.jad.2024.04.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Depression is a chronic psychiatric disorder related to diminished dopaminergic neurotransmission. Deep brain stimulation (DBS) has shown effectiveness in treating patients with treatment-refractory depression (TRD). This study aimed to evaluate the effect of DBS on dopamine D2 receptor binding in patients with TRD. METHODS Six patients with TRD were treated with bed nucleus of the stria terminalis (BNST)-nucleus accumbens (NAc) DBS were recruited. Ultra-high sensitivity [11C]raclopride dynamic total-body positron emission tomography (PET) imaging was used to assess the brain D2 receptor binding. Each patient underwent a [11C]raclopride PET scan for 60-min under DBS OFF and DBS ON, respectively. A simplified reference tissue model was used to generate parametric images of binding potential (BPND) with the cerebellum as reference tissue. RESULTS Depression and anxiety symptoms improved after 3-6 months of DBS treatment. Compared with two-day-nonstimulated conditions, one-day BNST-NAc DBS decreased [11C]raclopride BPND in the amygdala (15.9 %, p < 0.01), caudate nucleus (15.4 %, p < 0.0001) and substantia nigra (10.8 %, p < 0.01). LIMITATIONS This study was limited to the small sample size and lack of a healthy control group. CONCLUSIONS Chronic BNST-NAc DBS improved depression and anxiety symptoms, and short-term stimulation decreased D2 receptor binding in the amygdala, caudate nucleus, and substantia nigra. The findings suggest that DBS relieves depression and anxiety symptoms possibly by regulating the dopaminergic system.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China
| | - Mei Xin
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xuefei Li
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Lianghua Li
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Lulin Dai
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chaojie Zheng
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Kaiyi Cao
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Xuefei Yang
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Qi Ge
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Bolun Li
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shikun Zhan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoxiao Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Halimureti Paerhati
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
5
|
Pais ML, Crisóstomo J, Abrunhosa A, Castelo-Branco M. Portuguese observational cross-sectional clinical imaging study protocol to investigate central dopaminergic mechanisms of successful weight loss through bariatric surgery. BMJ Open 2024; 14:e080702. [PMID: 38569700 PMCID: PMC10989096 DOI: 10.1136/bmjopen-2023-080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION Bariatric surgery (BS) is the treatment of choice for refractory obesity. Although weight loss (WL) reduces the prevalence of obesity-related comorbidities, not all patients maintain it. It has been suggested that central mechanisms involving dopamine receptors may play a role in successful WL. This protocol describes an observational cross-sectional study to test if the binding of central dopamine receptors is similar in individuals who responded successfully to BS and age- and gender-matched normal-weight healthy individuals (controls). As secondary goals, the protocol will investigate if this binding correlates with key parameters such as age, hormonal status, anthropometric metrics and neurobehavioural scores. Finally, as exploratory goals, we will include a cohort of individuals with obesity before and after BS to explore whether obesity and type of BS (sleeve gastrectomy and Roux-en-Y gastric bypass) yield distinct binding values and track central dopaminergic changes resulting from BS. METHODS AND ANALYSIS To address the major research question of this observational study, positron emission tomography (PET) with [11C]raclopride will be used to map brain dopamine type 2 and 3 receptors (D2/3R) non-displaceable binding potential (BPND) of individuals who have successfully responded to BS. Mean regional D2/3R BPND values will be compared with control individuals by two one-sided test approaches. The sample size (23 per group) was estimated to demonstrate the equivalence between two independent group means. In addition, these binding values will be correlated with key parameters to address secondary goals. Finally, for exploratory analysis, these values will be compared within the same individuals (before and after BS) and between individuals with obesity and controls and types of BS. ETHICS AND DISSEMINATION The project and informed consent received ethical approval from the Faculty of Medicine and the Coimbra University Hospital ethics committees. Results will be disseminated in international peer-reviewed journals and conferences.
Collapse
Affiliation(s)
- Marta Lapo Pais
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Joana Crisóstomo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Antero Abrunhosa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Bini J. The historical progression of positron emission tomography research in neuroendocrinology. Front Neuroendocrinol 2023; 70:101081. [PMID: 37423505 PMCID: PMC10530506 DOI: 10.1016/j.yfrne.2023.101081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The rapid and continual development of a number of radiopharmaceuticals targeting different receptor, enzyme and small molecule systems has fostered Positron Emission Tomography (PET) imaging of endocrine system actions in vivo in the human brain for several decades. PET radioligands have been developed to measure changes that are regulated by hormone action (e.g., glucose metabolism, cerebral blood flow, dopamine receptors) and actions within endocrine organs or glands such as steroids (e.g., glucocorticoids receptors), hormones (e.g., estrogen, insulin), and enzymes (e.g., aromatase). This systematic review is targeted to the neuroendocrinology community that may be interested in learning about positron emission tomography (PET) imaging for use in their research. Covering neuroendocrine PET research over the past half century, researchers and clinicians will be able to answer the question of where future research may benefit from the strengths of PET imaging.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
7
|
Jangard S, Jayaram-Lindström N, Isacsson NH, Matheson GJ, Plavén-Sigray P, Franck J, Borg J, Farde L, Cervenka S. Striatal dopamine D2 receptor availability as a predictor of subsequent alcohol use in social drinkers. Addiction 2023; 118:1053-1061. [PMID: 36710462 DOI: 10.1111/add.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIMS Whereas striatal dopamine D2 receptor (D2R) availability has shown to be altered in individuals with alcohol use disorder (AUD) and in healthy individuals with a family history of AUD, the role of D2R in the development of AUD is unknown. In this positron emission tomography (PET) study, we measured whether D2R availability is associated with subsequent alcohol use and alcohol-related factors, at a follow-up 8 to 16 years post-PET scan, in social drinkers. DESIGN Longitudinal study investigating the association between PET data and later self-report measures in healthy individuals. SETTING Academic research imaging centre in Stockholm, Sweden. PARTICIPANTS There were 71 individuals (68 of whom had evaluable PET data, 5 females, 42.0 years mean age) from a series of previous PET studies. MEASUREMENTS One PET examination with the D2R antagonist radioligand [11 C]raclopride at baseline and self-report measures assessing alcohol use, drug use, impulsivity, reward sensitivity and family history of alcohol or substance use disorder at follow-up. FINDINGS We found no evidence for an association between D2R availability and later alcohol use (B = -0.019, B 95% CI = -0.043 to -0.006, P = 0.147) nor for the majority of the alcohol-related factors (B 95% CI = -0.034 to 0.004, P = 0.273-0.288). A negative association with a small effect size was found between D2R availability and later impulsivity (B = -0.017, B 95% CI = -0.034 to -0.001, P = 0.046). CONCLUSIONS Low striatal dopamine D2 receptor availability may not be a strong predictor in the development of alcohol use disorder.
Collapse
Affiliation(s)
- Simon Jangard
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nitya Jayaram-Lindström
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Nils Hentati Isacsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Granville James Matheson
- Department of Psychiatry, Columbia University, New York City, New York, USA
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York City, New York, USA
| | - Pontus Plavén-Sigray
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Johan Franck
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Jacqueline Borg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Lars Farde
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Simonsson E, Stiernman LJ, Lundquist A, Rosendahl E, Hedlund M, Lindelöf N, Boraxbekk CJ. Dopamine D2/3-receptor availability and its association with autonomous motivation to exercise in older adults: An exploratory [11C]-raclopride study. Front Hum Neurosci 2022; 16:997131. [DOI: 10.3389/fnhum.2022.997131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
BackgroundAutonomous motivation to exercise occurs when the activity is voluntary and with a perceived inherent satisfaction from the activity itself. It has been suggested that autonomous motivation is related to striatal dopamine D2/3-receptor (D2/3R) availability within the brain. In this study, we hypothesized that D2/3R availability in three striatal regions (nucleus accumbens, caudate nucleus, and putamen) would be positively associated with self-reported autonomous motivation to exercise. We also examined this relationship with additional exploratory analyses across a set of a priori extrastriatal regions of interest (ROI).MethodsOur sample comprised 49 older adults (28 females) between 64 and 78 years of age. The D2/3R availability was quantified from positron emission tomography using the non-displaceable binding potential of [11C]-raclopride ligand. The exercise-related autonomous motivation was assessed with the Swedish version of the Behavioral Regulations in Exercise Questionnaire-2.ResultsNo significant associations were observed between self-reported autonomous motivation to exercise and D2/3R availability within the striatum (nucleus accumbens, caudate nucleus, and putamen) using semi-partial correlations controlling for ROI volume on D2/3R availability. For exploratory analyses, positive associations were observed for the superior (r = 0.289, p = 0.023) and middle frontal gyrus (r = 0.330, p = 0.011), but not for the inferior frontal gyrus, orbitofrontal cortex, anterior cingulate cortex, or anterior insular cortex.ConclusionThis study could not confirm the suggested link between striatal D2/3R availability and subjective autonomous motivation to exercise among older adults. The exploratory findings, however, propose that frontal brain regions may be involved in the intrinsic regulation of exercise-related behaviors, though this has to be confirmed by future studies using a more suitable ligand and objective measures of physical activity levels.
Collapse
|
9
|
Siafaka PI, Okur ME, Erim PD, Çağlar EŞ, Özgenç E, Gündoğdu E, Köprülü REP, Karantas ID, Üstündağ Okur N. Protein and Gene Delivery Systems for Neurodegenerative Disorders: Where Do We Stand Today? Pharmaceutics 2022; 14:2425. [PMID: 36365243 PMCID: PMC9698227 DOI: 10.3390/pharmaceutics14112425] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2023] Open
Abstract
It has been estimated that every year, millions of people are affected by neurodegenerative disorders, which complicate their lives and their caregivers' lives. To date, there has not been an approved pharmacological approach to provide the complete treatment of neurodegenerative disorders. The only available drugs may only relieve the symptoms or slow down the progression of the disease. The absence of any treatment is quite rational given that neurodegeneration occurs by the progressive loss of the function or structure of the nerve cells of the brain or the peripheral nervous system, which eventually leads to their death either by apoptosis or necrotic cell death. According to a recent study, even though adult brain cells are injured, they can revert to an embryonic state, which may help to restore their function. These interesting findings might open a new path for the development of more efficient therapeutic strategies to combat devastating neurodegenerative disorders. Gene and protein therapies have emerged as a rapidly growing field for various disorders, especially neurodegenerative diseases. Despite these promising therapies, the complete treatment of neurodegenerative disorders has not yet been achieved. Therefore, the aim of this review is to address the most up-to-date data for neurodegenerative diseases, but most importantly, to summarize the available delivery systems incorporating proteins, peptides, and genes that can potentially target such diseases and pass into the blood-brain barrier. The authors highlight the advancements, at present, on delivery based on the carrier, i.e., lipid, polymeric, and inorganic, as well as the recent studies on radiopharmaceutical theranostics.
Collapse
Affiliation(s)
| | - Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| | - Pelin Dilsiz Erim
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul 34810, Turkey
- Faculty of Pharmacy, Altınbaş University, Istanbul 34217, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| | - Emre Özgenç
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Evren Gündoğdu
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Rabia Edibe Parlar Köprülü
- Department of Medical Pharmacology, Institute of Health Sciences, İstanbul Medipol University, Istanbul 34810, Turkey
| | | | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| |
Collapse
|
10
|
Cervenka S, Frick A, Bodén R, Lubberink M. Application of positron emission tomography in psychiatry-methodological developments and future directions. Transl Psychiatry 2022; 12:248. [PMID: 35701411 PMCID: PMC9198063 DOI: 10.1038/s41398-022-01990-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Mental disorders represent an increasing source of disability and high costs for societies globally. Molecular imaging techniques such as positron emission tomography (PET) represent powerful tools with the potential to advance knowledge regarding disease mechanisms, allowing the development of new treatment approaches. Thus far, most PET research on pathophysiology in psychiatric disorders has focused on the monoaminergic neurotransmission systems, and although a series of discoveries have been made, the results have not led to any material changes in clinical practice. We outline areas of methodological development that can address some of the important obstacles to fruitful progress. First, we point towards new radioligands and targets that can lead to the identification of processes upstream, or parallel to disturbances in monoaminergic systems. Second, we describe the development of new methods of PET data quantification and PET systems that may facilitate research in psychiatric populations. Third, we review the application of multimodal imaging that can link molecular imaging data to other aspects of brain function, thus deepening our understanding of disease processes. Fourth, we highlight the need to develop imaging study protocols to include longitudinal and interventional paradigms, as well as frameworks to assess dimensional symptoms such that the field can move beyond cross-sectional studies within current diagnostic boundaries. Particular effort should be paid to include also the most severely ill patients. Finally, we discuss the importance of harmonizing data collection and promoting data sharing to reach the desired sample sizes needed to fully capture the phenotype of psychiatric conditions.
Collapse
Affiliation(s)
- Simon Cervenka
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden. .,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
| | - Andreas Frick
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Robert Bodén
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Cortical D1 and D2 dopamine receptor availability modulate methylphenidate-induced changes in brain activity and functional connectivity. Commun Biol 2022; 5:514. [PMID: 35637272 PMCID: PMC9151821 DOI: 10.1038/s42003-022-03434-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/02/2022] [Indexed: 11/08/2022] Open
Abstract
Dopamine signaling plays a critical role in shaping brain functional network organization and behavior. Prominent theories suggest the relative expression of D1- to D2-like dopamine receptors shapes excitatory versus inhibitory signaling, with broad consequences for cognition. Yet it remains unknown how the balance between cortical D1R versus D2R signaling coordinates the activity and connectivity of functional networks in the human brain. To address this, we collected three PET scans and two fMRI scans in 36 healthy adults (13 female/23 male; average age 43 ± 12 years), including a baseline D1R PET scan and two sets of D2R PET scans and fMRI scans following administration of either 60 mg oral methylphenidate or placebo (two separate days, blinded, order counterbalanced). The drug challenge allowed us to assess how pharmacologically boosting dopamine levels alters network organization and behavior in association with D1R-D2R ratios across the brain. We found that the relative D1R-D2R ratio was significantly greater in high-level association cortices than in sensorimotor cortices. After stimulation with methylphenidate compared to placebo, brain activity (as indexed by the fractional amplitude of low frequency fluctuations) increased in association cortices and decreased in sensorimotor cortices. Further, within-network resting state functional connectivity strength decreased more in sensorimotor than association cortices following methylphenidate. Finally, in association but not sensorimotor cortices, the relative D1R-D2R ratio (but not the relative availability of D1R or D2R alone) was positively correlated with spatial working memory performance, and negatively correlated with age. Together, these data provide a framework for how dopamine-boosting drugs like methylphenidate alter brain function, whereby regions with relatively higher inhibitory D2R (i.e., sensorimotor cortices) tend to have greater decreases in brain activity and connectivity compared to regions with relatively higher excitatory D1R (i.e., association cortices). They also support the importance of a balanced interaction between D1R and D2R in association cortices for cognitive function and its degradation with aging. Joint PET and MRI analyses of cortical D1 and D2 dopamine receptors in healthy adults provide a framework for understanding how dopamine-boosting drugs alter brain function.
Collapse
|
12
|
Atlas of type 2 dopamine receptors in the human brain: Age and sex dependent variability in a large PET cohort. Neuroimage 2022; 255:119149. [PMID: 35367652 DOI: 10.1016/j.neuroimage.2022.119149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The dopamine system contributes to a multitude of functions ranging from reward and motivation to learning and movement control, making it a key component in goal-directed behavior. Altered dopaminergic function is observed in neurological and psychiatric conditions. Numerous factors have been proposed to influence dopamine function, but due to small sample sizes and heterogeneous data analysis methods in previous studies their specific and joint contributions remain unresolved. METHODS In this cross-sectional register-based study we investigated how age, sex, body mass index (BMI), as well as cerebral hemisphere and regional volume influence striatal type 2 dopamine receptor (D2R) availability in the human brain. We analyzed a large historical dataset (n=156, 120 males and 36 females) of [11C]raclopride PET scans performed between 2004 and 2018. RESULTS Striatal D2R availability decreased through age for both sexes (2-5 % in striatal ROIs per 10 years) and was higher in females versus males throughout age (7-8% in putamen). BMI and striatal D2R availability were weakly associated. There was no consistent lateralization of striatal D2R. The observed effects were independent of regional volumes. These results were validated using two different spatial normalization methods, and the age and sex effects also replicated in an independent sample (n=135). CONCLUSIONS D2R availability is dependent on age and sex, which may contribute to the vulnerability of neurological and psychiatric conditions involving altering D2R expression.
Collapse
|
13
|
Moldovean SN, Timaru DG, Chiş V. All-Atom Molecular Dynamics Investigations on the Interactions between D2 Subunit Dopamine Receptors and Three 11C-Labeled Radiopharmaceutical Ligands. Int J Mol Sci 2022; 23:ijms23042005. [PMID: 35216115 PMCID: PMC8880249 DOI: 10.3390/ijms23042005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
The D2 subunit dopamine receptor represents a key factor in modulating dopamine release. Moreover, the investigated radiopharmaceutical ligands used in positron emission tomography imaging techniques are known to bind D2 receptors, allowing for dopaminergic pathways quantification in the living human brain. Thus, the biophysical characterization of these radioligands is expected to provide additional insights into the interaction mechanisms between the vehicle molecules and their targets. Using molecular dynamics simulations and QM calculations, the present study aimed to investigate the potential positions in which the D2 dopamine receptor would most likely interact with the three distinctive synthetic 11C-labeled compounds (raclopride (3,5-dichloro-N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-2-hydroxy-6-methoxybenzamide)—RACL, FLB457 (5-bromo-N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-2,3-dimethoxybenzamide)—FLB457 and SCH23390 (R(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine)—SCH)), as well as to estimate the binding affinities of the ligand-receptor complexes. A docking study was performed prior to multiple 50 ns molecular dynamics productions for the ligands situated at the top and bottom interacting pockets of the receptor. The most prominent motions for the RACL ligand were described by the high fluctuations of the peripheral aliphatic -CH3 groups and by its C-Cl aromatic ring groups. In good agreement with the experimental data, the D2 dopamine receptor-RACL complex showed the highest interacting patterns for ligands docked at the receptor’s top position.
Collapse
Affiliation(s)
- Sanda Nastasia Moldovean
- Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania; (S.N.M.); (D.-G.T.)
- Biomolecular Modeling and Computational Spectroscopy Laboratory, Institute for Research, Development and Innovation in Applied Natural Sciences, Babeş-Bolyai University, 400327 Cluj-Napoca, Romania
| | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania; (S.N.M.); (D.-G.T.)
| | - Vasile Chiş
- Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania; (S.N.M.); (D.-G.T.)
- Biomolecular Modeling and Computational Spectroscopy Laboratory, Institute for Research, Development and Innovation in Applied Natural Sciences, Babeş-Bolyai University, 400327 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
14
|
Thalamic dopamine D2-receptor availability in schizophrenia: a study on antipsychotic-naive patients with first-episode psychosis and a meta-analysis. Mol Psychiatry 2022; 27:1233-1240. [PMID: 34759359 PMCID: PMC9054658 DOI: 10.1038/s41380-021-01349-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Pharmacological and genetic evidence support a role for an involvement of the dopamine D2-receptor (D2-R) in the pathophysiology of schizophrenia. Previous molecular imaging studies have suggested lower levels of D2-R in thalamus, but results are inconclusive. The objective of the present study was to use improved methodology to compare D2-R density in whole thalamus and thalamic subregions between first-episode psychosis patients and healthy controls. Differences in thalamocortical connectivity was explored based on the D2-R results. 19 antipsychotic-naive first-episode psychosis patients and 19 age- and sex-matched healthy controls were examined using high-resolution Positron Emission Tomography (PET) and the high-affinity D2-R radioligand [11C]FLB457. The main outcome was D2-R binding potential (BPND) in thalamus, and it was predicted that patients would have lower binding. Diffusion tensor imaging (DTI) was performed in a subgroup of 11 patients and 15 controls. D2-R binding in whole thalamus was lower in patients compared with controls (Cohen's dz = -0.479, p = 0.026, Bayes Factor (BF) > 4). Among subregions, lower BPND was observed in the ROI representing thalamic connectivity to the frontal cortex (Cohen's dz = -0.527, p = 0.017, BF > 6). A meta-analysis, including the sample of this study, confirmed significantly lower thalamic D2-R availability in patients. Exploratory analyses suggested that patients had lower fractional anisotropy values compared with controls (Cohen's d = -0.692, p = 0.036) in the inferior thalamic radiation. The findings support the hypothesis of a dysregulation of thalamic dopaminergic neurotransmission in schizophrenia, and it is hypothesized that this could underlie a disturbance of thalamocortical connectivity.
Collapse
|
15
|
Korkki SM, Papenberg G, Karalija N, Garrett DD, Riklund K, Lövdén M, Lindenberger U, Nyberg L, Bäckman L. Fronto-striatal dopamine D2 receptor availability is associated with cognitive variability in older individuals with low dopamine integrity. Sci Rep 2021; 11:21089. [PMID: 34702857 PMCID: PMC8548594 DOI: 10.1038/s41598-021-00106-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
Within-person, moment-to-moment, variability in behavior increases with advancing adult age, potentially reflecting the influence of reduced structural and neurochemical brain integrity, especially that of the dopaminergic system. We examined the role of dopamine D2 receptor (D2DR) availability, grey-, and white-matter integrity, for between-person differences in cognitive variability in a large sample of healthy older adults (n = 181; 64-68 years) from the Cognition, Brain, and Aging (COBRA) study. Intra-individual variability (IIV) in cognition was measured as across-trial variability in participants' response times for tasks assessing perceptual speed and working memory, as well as for a control task of motor speed. Across the whole sample, no associations of D2DR availability, or grey- and white-matter integrity, to IIV were observed. However, within-person variability in cognition was increased in two subgroups of individuals displaying low mean-level cognitive performance, one of which was characterized by low subcortical and cortical D2DR availability. In this latter group, fronto-striatal D2DR availability correlated negatively with within-person variability in cognition. This finding suggests that the influence of D2DR availability on cognitive variability may be more easily disclosed among individuals with low dopamine-system integrity, highlighting the benefits of large-scale studies for delineating heterogeneity in brain-behavior associations in older age.
Collapse
Affiliation(s)
- Saana M. Korkki
- grid.10548.380000 0004 1936 9377Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Goran Papenberg
- grid.10548.380000 0004 1936 9377Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Nina Karalija
- grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Douglas D. Garrett
- grid.419526.d0000 0000 9859 7917Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany ,grid.4372.20000 0001 2105 1091Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Katrine Riklund
- grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Martin Lövdén
- grid.8761.80000 0000 9919 9582Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Ulman Lindenberger
- grid.419526.d0000 0000 9859 7917Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany ,grid.4372.20000 0001 2105 1091Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Lars Nyberg
- grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Lars Bäckman
- grid.10548.380000 0004 1936 9377Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| |
Collapse
|