1
|
Zhang Y, Chen Q, Sun Q, Tang M, Yang Y, Guo ZN, Wang Z. Compromised Dynamic Cerebral Autoregulation in Patients with Restless Legs Syndrome. Nat Sci Sleep 2024; 16:431-443. [PMID: 38706925 PMCID: PMC11069370 DOI: 10.2147/nss.s448579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Background Restless legs syndrome (RLS) is a prevalent sensorimotor nervous system disorder in patients accompanied with insomnia, blood pressure fluctuation, and sympathetic dysfunction. These symptoms may disrupt cerebral hemodynamics. Dynamic cerebral autoregulation (dCA) describes the temporary response of cerebrovascular system to abrupt fluctuations in blood pressure, which keep cerebral blood flow stable and serve as a marker of cerebrovascular system ability. Objective This research aimed to assess dCA in RLS patients. Methods In this study, RLS patients were recruited and subsequently classified into four groups (mild, moderate, severe, and very severe) based on the International RLS Rating Scale (IRLS). Healthy controls matched for age and sex were enrolled. All participants were evaluated dCA by assessing phase difference (PD). A portion of patients with RLS was reassessed for dCA after one month of medication therapy (pramipexole [0.125 mg/day] and gabapentin [300 mg/day]). Results There were altogether 120 patients with RLS and 30 controls completed the polysomnography and dCA assessment. PD was lower in the moderate, severe, and very severe RLS groups than that in the controls and mild RLS groups. Periodic limb movement index (PLMI), arousal index, and IRLS all showed a linear correlation with PD in RLS patients. Additionally, PD increased in RLS patients after therapy. Conclusion The dCA was compromised in moderate, severe, and very severe RLS patients and was negatively correlated with the IRLS, arousal index, and PLMI. After 1 month of therapy, dCA improved in RLS patients.
Collapse
Affiliation(s)
- Yanan Zhang
- Sleep Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, People’s Republic of China
| | - Qianqian Chen
- Sleep Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, People’s Republic of China
| | - Qingqing Sun
- Sleep Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, People’s Republic of China
| | - Mingyang Tang
- Sleep Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, People’s Republic of China
| | - Yi Yang
- Sleep Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, People’s Republic of China
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, People’s Republic of China
| | - Zhen-Ni Guo
- Sleep Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, People’s Republic of China
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, People’s Republic of China
| | - Zan Wang
- Sleep Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, People’s Republic of China
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, People’s Republic of China
| |
Collapse
|
2
|
Sagud M, Tudor L, Nedic Erjavec G, Nikolac Perkovic M, Uzun S, Mimica N, Madzarac Z, Zivkovic M, Kozumplik O, Konjevod M, Svob Strac D, Pivac N. Genotypic and Haplotypic Association of Catechol- O-Methyltransferase rs4680 and rs4818 Gene Polymorphisms with Particular Clinical Symptoms in Schizophrenia. Genes (Basel) 2023; 14:1358. [PMID: 37510262 PMCID: PMC10379812 DOI: 10.3390/genes14071358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Catechol-O-methyl transferase (COMT) gene variants are involved in different neuropsychiatric disorders and cognitive impairments, associated with altered dopamine function. This study investigated the genotypic and haplotypic association of COMT rs4680 and rs4618 polymorphisms with the severity of cognitive and other clinical symptoms in 544 male and 385 female subjects with schizophrenia. COMT rs4818 G carriers were more frequent in male patients with mild abstract thinking difficulties, compared to CC homozygotes or C allele carriers. Male carriers of COMT rs4680 A allele had worse abstract thinking (N5) scores than GG carriers, whereas AA homozygotes were more frequent in male subjects with lower scores on the intensity of the somatic concern (G1) item, compared to G carriers. Male carriers of COMT rs4818-rs4680 GA haplotype had the highest scores on the G1 item (somatic concern), whereas GG haplotype carriers had the lowest scores on G2 (anxiety) and G6 (depression) items. COMT GG haplotype was less frequent in female patients with severe disturbance of volition (G13 item) compared to the group with mild symptoms, while CG haplotype was more frequent in female patients with severe then mild symptoms. These findings suggest the sex-specific genotypic and haplotypic association of COMT variants with a severity of cognitive and other clinical symptoms of schizophrenia.
Collapse
Affiliation(s)
- Marina Sagud
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.S.); (Z.M.); (M.Z.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.U.); (N.M.)
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.); (D.S.S.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.); (D.S.S.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.); (D.S.S.)
| | - Suzana Uzun
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia;
| | - Ninoslav Mimica
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia;
| | - Zoran Madzarac
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.S.); (Z.M.); (M.Z.)
| | - Maja Zivkovic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.S.); (Z.M.); (M.Z.)
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia;
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.); (D.S.S.)
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.); (D.S.S.)
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.); (D.S.S.)
- University of Applied Sciences Hrvatsko Zagorje Krapina, 49000 Krapina, Croatia
| |
Collapse
|
3
|
Cerebral Blood Flow in Predator Stress-Resilient and -Susceptible Rats and Mechanisms of Resilience. Int J Mol Sci 2022; 23:ijms232314729. [PMID: 36499055 PMCID: PMC9738343 DOI: 10.3390/ijms232314729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Stress-induced conditions are associated with impaired cerebral blood flow (CBF) and increased risk of dementia and stroke. However, these conditions do not develop in resilient humans and animals. Here the effects of predator stress (PS, cat urine scent, ten days) on CBF and mechanisms of CBF regulation were compared in PS-susceptible (PSs) and PS-resilient (PSr) rats. Fourteen days post-stress, the rats were segregated into PSs and PSr groups based on a behavior-related anxiety index (AI). CBF and its endothelium-dependent changes were measured in the parietal cortex by laser Doppler flowmetry. The major findings are: (1) PS susceptibility was associated with reduced basal CBF and endothelial dysfunction. In PSr rats, the basal CBF was higher, and endothelial dysfunction was attenuated. (2) CBF was inversely correlated with the AI of PS-exposed rats. (3) Endothelial dysfunction was associated with a decrease in eNOS mRNA in PSs rats compared to the PSr and control rats. (4) Brain dopamine was reduced in PSs rats and increased in PSr rats. (5) Plasma corticosterone of PSs was reduced compared to PSr and control rats. (6) A hypercoagulation state was present in PSs rats but not in PSr rats. Thus, potential stress resilience mechanisms that are protective for CBF were identified.
Collapse
|
4
|
Furman DJ, Pappas I, White RL, Kayser AS, D'Esposito M. Enhancing dopamine tone modulates global and local cortical perfusion as a function of COMT val158met genotype. Neuroimage 2021; 242:118472. [PMID: 34390874 DOI: 10.1016/j.neuroimage.2021.118472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
The cognitive effects of pharmacologically enhancing cortical dopamine (DA) tone are variable across healthy human adults. It has been postulated that individual differences in drug responses are linked to baseline cortical DA activity according to an inverted-U-shaped function. To better understand the effect of divergent starting points along this curve on DA drug responses, researchers have leveraged a common polymorphism (rs4680) in the gene encoding the enzyme catechol-O-methyltransferase (COMT) that gives rise to greater (Met allele) or lesser (Val allele) extracellular levels of cortical DA. Here we examined the extent to which changes in resting cortical perfusion following the administration of two mechanistically-distinct dopaminergic drugs vary by COMT genotype, and thereby track predictions of the inverted-U model. Using arterial spin labeling (ASL) and a double-blind, within-subject design, perfusion was measured in 75 healthy, genotyped participants once each after administration of tolcapone (a COMT inhibitor), bromocriptine (a DA D2/3 agonist), and placebo. COMT genotype and drug interacted such that COMT Val homozygotes exhibited increased prefusion in response to both drugs, whereas Met homozygotes did not. Additionally, tolcapone-related perfusion changes in the right inferior frontal gyrus correlated with altered performance on a task of executive function. No comparable effects were found for a genetic polymorphism (rs1800497) affecting striatal DA system function. Together, these results indicate that both the directionality and magnitude of drug-induced perfusion change provide meaningful information about individual differences in response to enhanced cortical DA tone.
Collapse
Affiliation(s)
- Daniella J Furman
- Department of Neurology, University of California, San Francisco, CA, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| | - Ioannis Pappas
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Division of Neurology, VA Northern California Health Care System, United States.
| | - Robert L White
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew S Kayser
- Department of Neurology, University of California, San Francisco, CA, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Division of Neurology, VA Northern California Health Care System, United States
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Division of Neurology, VA Northern California Health Care System, United States
| |
Collapse
|
5
|
Martens MAG, Kaltenboeck A, Halahakoon DC, Browning M, Cowen PJ, Harmer CJ. An Experimental Medicine Investigation of the Effects of Subacute Pramipexole Treatment on Emotional Information Processing in Healthy Volunteers. Pharmaceuticals (Basel) 2021; 14:ph14080800. [PMID: 34451897 PMCID: PMC8401454 DOI: 10.3390/ph14080800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Treatment with the dopamine D2/D3 receptor agonist pramipexole has demonstrated promising clinical effects in patients with depression. However, the mechanisms through which pramipexole might alleviate depressive symptoms are currently not well understood. Conventional antidepressant drugs are thought to work by biasing the processing of emotional information in favour of positive relative to negative appraisal. In this study, we used an established experimental medicine assay to explore whether pramipexole treatment might have a similar effect. Employing a double-blind, parallel-group design, 40 healthy volunteers (aged 18 to 43 years, 50% female) were randomly allocated to 12 to 15 days of treatment with either pramipexole (at a peak daily dose of 1.0 mg pramipexole salt) or placebo. After treatment was established, emotional information processing was assessed on the neural level by measuring amygdala activity in response to positive and negative facial emotional expressions, using functional magnetic resonance imaging (MRI). In addition, behavioural measures of emotional information processing were collected at baseline and on drug, using an established computerized task battery, tapping into different cognitive domains. As predicted, pramipexole-treated participants, compared to those receiving placebo, showed decreased neural activity in response to negative (fearful) vs. positive (happy) facial expressions in bilateral amygdala. Contrary to our predictions, however, pramipexole treatment had no significant antidepressant-like effect on behavioural measures of emotional processing. This study provides the first experimental evidence that subacute pramipexole treatment in healthy volunteers modifies neural responses to emotional information in a manner that resembles the effects of conventional antidepressant drugs.
Collapse
Affiliation(s)
- Marieke Annie Gerdine Martens
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, UK
- Correspondence:
| | - Alexander Kaltenboeck
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Clinical Division of Social Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria
| | - Don Chamith Halahakoon
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, UK
| | - Michael Browning
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, UK
| | - Philip J. Cowen
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, UK
| | - Catherine J. Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, UK
| |
Collapse
|