1
|
Hanalioglu S, Bahadir S, Ozak AC, Yangi K, Mignucci-Jiménez G, Gurses ME, Fuentes A, Mathew E, Graham DT, Altug MY, Gok E, Turner GH, Lawton MT, Preul MC. Ultrahigh-resolution 7-Tesla anatomic magnetic resonance imaging and diffusion tensor imaging of ex vivo formalin-fixed human brainstem-cerebellum complex. Front Hum Neurosci 2024; 18:1484431. [PMID: 39664682 PMCID: PMC11631901 DOI: 10.3389/fnhum.2024.1484431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Brain cross-sectional images, tractography, and segmentation are valuable resources for neuroanatomical education and research but are also crucial for neurosurgical planning that may improve outcomes in cerebellar and brainstem interventions. Although ultrahigh-resolution 7-Tesla (7T) magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) reveal such structural brain details in living or fresh unpreserved brain tissue, imaging standard formalin-preserved cadaveric brain specimens often used for neurosurgical anatomic studies has proven difficult. This study sought to develop a practical protocol to provide anatomic information and tractography results of an ex vivo human brainstem-cerebellum specimen. Materials and methods A protocol was developed for specimen preparation and 7T MRI with image postprocessing on a combined brainstem-cerebellum specimen obtained from an 85-year-old male cadaver with a postmortem interval of 1 week that was stored in formalin for 6 months. Anatomic image series were acquired for detailed views and diffusion tractography to map neural pathways and segment major anatomic structures within the brainstem and cerebellum. Results Complex white matter tracts were visualized with high-precision segmentation of crucial brainstem structures, delineating the brainstem-cerebellum and mesencephalic-dentate connectivity, including the Guillain-Mollaret triangle. Tractography and fractional anisotropy mapping revealed the complexities of white matter fiber pathways, including the superior, middle, and inferior cerebellar peduncles and visible decussating fibers. 3-dimensional (3D) reconstruction and quantitative and qualitative analyses verified the anatomical precision of the imaging relative to a standard brain space. Discussion This novel imaging protocol successfully captured the intricate 3D architecture of the brainstem-cerebellum network. The protocol, unique in several respects (including tissue preservation and rehydration times, choice of solutions, preferred sequences, voxel sizes, and diffusion directions) aimed to balance high resolution and practical scan times. This approach provided detailed neuroanatomical imaging while avoiding impractically long scan times. The extended postmortem and fixation intervals did not compromise the diffusion imaging quality. Moreover, the combination of time efficiency and ultrahigh-resolution imaging results makes this protocol a strong candidate for optimal use in detailed neuroanatomical studies, particularly in presurgical trajectory planning.
Collapse
Affiliation(s)
- Sahin Hanalioglu
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neurosurgery, Hacettepe University, Ankara, Türkiye
| | - Siyar Bahadir
- Department of Neurosurgery, Hacettepe University, Ankara, Türkiye
| | - Ahmet C. Ozak
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neurosurgery, Akdeniz University, Antalya, Türkiye
| | - Kivanc Yangi
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neurosurgery, Turkish Republic Ministry of Health, University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Türkiye
| | - Giancarlo Mignucci-Jiménez
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Muhammet Enes Gurses
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Alberto Fuentes
- Neuroimaging Innovation Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Ethan Mathew
- Neuroimaging Innovation Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Dakota T. Graham
- Thurston Innovation Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | | | - Egemen Gok
- Department of Neurosurgery, Hacettepe University, Ankara, Türkiye
| | - Gregory H. Turner
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Michael T. Lawton
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C. Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
2
|
Darrault F, Dannhoff G, Chauvel M, Delmaire T, Louchez S, Poupon C, Uszynski I, Destrieux C, Maldonado IL, Andersson F. A road map to manual segmentation of cerebral structures. J Anat 2024. [PMID: 39465613 DOI: 10.1111/joa.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Manual segmentation is an essential tool in the researcher's technical arsenal. It is a frequent practice necessary for image analysis in many protocols, especially in neuroimaging and comparative brain anatomy. In the framework of emergence of studies focusing on alternative animal models, manual segmentation procedures play a critical role. Nevertheless, this critical task is often assigned to students, a process that, unfortunately, tends to be time-consuming and repetitive. Well-conducted and well-described segmentation procedures can potentially guide novice and even expert operators and enhance research works' internal and external validity, making it possible to harmonize studies and facilitate data sharing. Furthermore, recent advances in neuroimaging, such as ex vivo imaging or ultra-high-field MRI, enable new acquisition modalities and the identification of minute structures that are barely visible with typical approaches. In this context of increasingly detailed and multimodal brain studies, reflecting on methodology is relevant and necessary. Because it is crucial to implement good practices in manual segmentation per se but also in the description of the segmentation procedures in research papers, we propose a general roadmap for optimizing the technique, its process and the reporting of manual segmentation. For each of them, the relevant elements of the literature have been collected and cited. The article is accompanied by a checklist that the reader can use to verify that the critical steps are being followed.
Collapse
Affiliation(s)
- Fanny Darrault
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Guillaume Dannhoff
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Maëlig Chauvel
- BAOBAB, NeuroSpin, Paris-Saclay University, CNRS, CEA, Gif-sur-Yvette, France
| | - Théo Delmaire
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Simon Louchez
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Cyril Poupon
- BAOBAB, NeuroSpin, Paris-Saclay University, CNRS, CEA, Gif-sur-Yvette, France
| | - Ivy Uszynski
- BAOBAB, NeuroSpin, Paris-Saclay University, CNRS, CEA, Gif-sur-Yvette, France
| | - Christophe Destrieux
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- CHRU de Tours, Tours, France
| | - Igor Lima Maldonado
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- CHRU de Tours, Tours, France
| | - Frédéric Andersson
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| |
Collapse
|
3
|
Olchanyi MD, Augustinack J, Haynes RL, Lewis LD, Cicero N, Li J, Destrieux C, Folkerth RD, Kinney HC, Fischl B, Brown EN, Iglesias JE, Edlow BL. Histology-guided MRI segmentation of brainstem nuclei critical to consciousness. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.26.24314117. [PMID: 39399006 PMCID: PMC11469455 DOI: 10.1101/2024.09.26.24314117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
While substantial progress has been made in mapping the connectivity of cortical networks responsible for conscious awareness, neuroimaging analysis of subcortical arousal networks that modulate arousal (i.e., wakefulness) has been limited by a lack of a robust segmentation procedures for brainstem arousal nuclei. Automated segmentation of brainstem arousal nuclei is an essential step toward elucidating the physiology of arousal in human consciousness and the pathophysiology of disorders of consciousness. We created a probabilistic atlas of brainstem arousal nuclei built on diffusion MRI scans of five ex vivo human brain specimens scanned at 750 μm isotropic resolution. Labels of arousal nuclei used to generate the probabilistic atlas were manually annotated with reference to nucleus-specific immunostaining in two of the five brain specimens. We then developed a Bayesian segmentation algorithm that utilizes the probabilistic atlas as a generative model and automatically identifies brainstem arousal nuclei in a resolution- and contrast-agnostic manner. The segmentation method displayed high accuracy in both healthy and lesioned in vivo T1 MRI scans and high test-retest reliability across both T1 and T2 MRI contrasts. Finally, we show that the segmentation algorithm can detect volumetric changes and differences in magnetic susceptibility within brainstem arousal nuclei in Alzheimer's disease and traumatic coma, respectively. We release the probabilistic atlas and Bayesian segmentation tool in FreeSurfer to advance the study of human consciousness and its disorders.
Collapse
|
4
|
Dauleac C, Mertens P, Frindel C, Jacquesson T, Cotton F. Atlas-guided brain projection tracts: From regions of interest to tractography 3D rendering. J Anat 2024. [PMID: 39129322 DOI: 10.1111/joa.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
The use of diffusion tensor imaging (DTI) has seen significant development over the last two decades, in particular with the development of the tractography of association tracts for preoperative planning of surgery. However, projection tracts are difficult to differentiate from one another and tractography studies have failed to reconstruct these ascending/descending pathways from/to the spinal cord. The present study proposes an atlas of regions of interest (ROIs) designed specifically for projection tracts tractography. Forty-nine healthy subjects were included in this prospective study. Brain DTI was acquired using the same 3 T MRI scanner, with 32 diffusion directions. Distortions were corrected using the FSL software package. ROIs were drawn using the anterior commissure (AC)-posterior commissure (PC) line on the following landmarks: the pyramid for the corticospinal tract, the medio-caudal part of the red nucleus for the rubrospinal tract, the pontine reticular nucleus for corticoreticular tract, the superior and inferior cerebellar peduncles for, respectively, the anterior and posterior spinocerebellar tract, the gracilis and cuneatus nucleus for the dorsal columns, and the ventro-posterolateral nucleus for the spinothalamic tract. Fiber tracking was performed using a deterministic algorithm using DSI Studio software. ROI coordinates, according to AC-PC line, were given for each tract. Tractography was obtained for each tract, allowing tridimensional rendering and comparison of tracking metrics between tracts. The present study reports the accurate design of specific ROIs for tractography of each projection tract. This could be a useful tool in order to differentiate projection tracts at the spinal cord level.
Collapse
Affiliation(s)
- Corentin Dauleac
- Hospices Civils de Lyon, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Service de Neurochirurgie, Lyon, France
- Laboratoire CREATIS, CNRS UMR5220, Inserm U1206, INSA-Lyon, Université de Lyon I, Lyon, France
| | - Patrick Mertens
- Hospices Civils de Lyon, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Service de Neurochirurgie, Lyon, France
- Laboratoire d'Anatomie, Ecole de Chirurgie, Faculté de Médecine de Lyon, Université Claude Bernard, Lyon, France
| | - Carole Frindel
- Laboratoire CREATIS, CNRS UMR5220, Inserm U1206, INSA-Lyon, Université de Lyon I, Lyon, France
| | - Timothée Jacquesson
- Hospices Civils de Lyon, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Service de Neurochirurgie, Lyon, France
- Laboratoire CREATIS, CNRS UMR5220, Inserm U1206, INSA-Lyon, Université de Lyon I, Lyon, France
- Laboratoire d'Anatomie, Ecole de Chirurgie, Faculté de Médecine de Lyon, Université Claude Bernard, Lyon, France
| | - François Cotton
- Laboratoire CREATIS, CNRS UMR5220, Inserm U1206, INSA-Lyon, Université de Lyon I, Lyon, France
- Hospices Civils de Lyon, Centre Hospitalier de Lyon Sud, Service de Radiologie, Lyon, France
| |
Collapse
|
5
|
Cai J, Wang Y, McKeown MJ. Advances in functional and structural imaging of the brainstem: implications for disease. Curr Opin Neurol 2024; 37:361-368. [PMID: 38884636 DOI: 10.1097/wco.0000000000001284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
PURPOSE OF REVIEW The brainstem's complex anatomy and relatively small size means that structural and functional assessment of this structure is done less frequently compared to other brain areas. However, recent years have seen substantial progress in brainstem imaging, enabling more detailed investigations into its structure and function, as well as its role in neuropathology. RECENT FINDINGS Advancements in ultrahigh field MRI technology have allowed for unprecedented spatial resolution in brainstem imaging, facilitating the new creation of detailed brainstem-specific atlases. Methodological improvements have significantly enhanced the accuracy of physiological (cardiac and respiratory) noise correction within brainstem imaging studies. These technological and methodological advancements have allowed for in-depth analyses of the brainstem's anatomy, including quantitative assessments and examinations of structural connectivity within both gray and white matter. Furthermore, functional studies, including assessments of activation patterns and functional connectivity, have revealed the brainstem's roles in both specialized functions and broader neural integration. Notably, these investigations have identified alterations in brainstem structure and function associated with various neurological disorders. SUMMARY The aforementioned developments have allowed for a greater appreciation of the importance of the brainstem in the wider context of neuroscience and clinical neurology.
Collapse
Affiliation(s)
- Jiayue Cai
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yuheng Wang
- School of Biomedical Engineering
- Faculty of Medicine
| | - Martin J McKeown
- School of Biomedical Engineering
- Faculty of Medicine
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Shinohara Y, Ibaraki M, Matsubara K, Sato K, Yamamoto H, Kinoshita T. Visualization of small brain nuclei with a high-spatial resolution, clinically available whole-body PET scanner. Ann Nucl Med 2024; 38:154-161. [PMID: 37989801 PMCID: PMC10822807 DOI: 10.1007/s12149-023-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE To verify the visibility of physiological 18F-fluorodeoxyglucose (18F-FDG) uptake in nuclei in and around the brainstem by a whole-body (WB) silicon photomultiplier positron emission tomography (SiPM-PET) scanner with point-spread function (PSF) reconstruction using various iteration numbers. METHODS Ten healthy subjects (5 men, 5 women; mean age, 56.0 ± 5.0 years) who underwent 18F-FDG PET/CT using a WB SiPM-PET scanner and magnetic resonance imaging (MRI) of the brain including a spin-echo three-dimensional sampling perfection with application-optimized contrasts using different flip angle evolutions fluid-attenuated inversion recovery (3D-FLAIR) and a 3D-T1 magnetization-prepared rapid gradient-echo (T1-MPRAGE) images were enrolled. Each acquired PET image was reconstructed using ordered-subset expectation maximization (OSEM) with iteration numbers of 4, 16, 64, and 256 (subset 5 fixed) + time-of-flight (TOF) + PSF. The reconstructed PET images and 3D-FLAIR images for each subject were registered to individual T1-MPRAGE volumes using normalized mutual information criteria. For each MR-coregistered individual PET image, the pattern of FDG uptake in the inferior olivary nuclei (ION), dentate nuclei (DN), midbrain raphe nuclei (MRN), inferior colliculi (IC), mammillary bodies (MB), red nuclei (RN), subthalamic nuclei (STN), lateral geniculate nuclei (LGN), medial geniculate nuclei (MGN), and superior colliculi (SC) was visually classified into the following three categories: good, clearly distinguishable FDG accumulation; fair, obscure contour of FDG accumulation; poor, FDG accumulation indistinguishable from surrounding uptake. RESULTS Among individual 18F-FDG PET images with OSEM iterations of 4, 16, 64, and 256 + TOF + PSF, the iteration numbers that showed the best visibility in each structure were as follows: ION, MRN, LGN, MGN, and SC, iteration 64; DN, iteration 16; IC, iterations 16, 64, and 256; MB, iterations 64 and 256; and RN and STN, iterations 16 and 64, respectively. Of the four iterations, the 18F-FDG PET image of iteration 64 visualized FDG accumulation in small structures in and around the brainstem most clearly (good, 98 structures; fair, 2 structures). CONCLUSIONS A clinically available WB SiPM-PET scanner is useful for visualizing physiological FDG uptake in small brain nuclei, using a sufficiently high number of iterations for OSEM with TOF and PSF reconstructions.
Collapse
Affiliation(s)
- Yuki Shinohara
- Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels-Akita, 6-10 Senshu-kubota-machi, Akita, 010-0874, Japan.
| | - Masanobu Ibaraki
- Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels-Akita, 6-10 Senshu-kubota-machi, Akita, 010-0874, Japan
| | - Keisuke Matsubara
- Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels-Akita, 6-10 Senshu-kubota-machi, Akita, 010-0874, Japan
- Department of Management Science and Engineering, Faculty of System Science and Technology, Akita Prefectural University, Yurihonjo, Japan
| | - Kaoru Sato
- Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels-Akita, 6-10 Senshu-kubota-machi, Akita, 010-0874, Japan
| | - Hiroyuki Yamamoto
- Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels-Akita, 6-10 Senshu-kubota-machi, Akita, 010-0874, Japan
| | - Toshibumi Kinoshita
- Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels-Akita, 6-10 Senshu-kubota-machi, Akita, 010-0874, Japan
| |
Collapse
|
7
|
Mohammadi MS, Planty-Bonjour A, Poupon F, Uszynski I, Poupon C, Destrieux C, Andersson F. ProbaStem, a pipeline towards the first high-resolution probabilistic atlas of the whole human brainstem. Brain Struct Funct 2024; 229:115-132. [PMID: 37924354 DOI: 10.1007/s00429-023-02726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/16/2023] [Indexed: 11/06/2023]
Abstract
The brainstem plays an essential role in many vital functions, such as autonomic control, consciousness and sleep, motricity, somatic afferent function, and cognition. Its involvement in several neurological diseases and the definition of brainstem targets for deep brain stimulation (DBS) explain the need for brainstem atlases describing its structural organization and connectivity from several modalities, from histology to ultrahigh field ex vivo MRI. Nonetheless, these atlases are often limited to a subpart of the brainstem or only include a single subject, the brainstem variability being considered low. This paper proposes a pipeline to create a high-resolution multisubject probabilistic atlas of the whole human brainstem based on four ultrahigh field ex vivo MRI datasets. The variability of the brainstem structures appears higher than usually considered, both for the volume and position of the central gray matter structures of the brainstem. This justifies the creation of atlases that capture the anatomical variability across subjects. The one we present here only included four specimens, but can easily be incremented due to its highly flexible design.
Collapse
Affiliation(s)
| | - Alexia Planty-Bonjour
- UMR 1253, Inserm, iBrain, Université de Tours, Tours, France
- CHRU de Tours, Tours, France
| | - Fabrice Poupon
- CEA, CNRS, BAOBAB, Paris-Saclay University, Gif-sur-Yvette, France
| | - Ivy Uszynski
- CEA, CNRS, BAOBAB, Paris-Saclay University, Gif-sur-Yvette, France
| | - Cyril Poupon
- CEA, CNRS, BAOBAB, Paris-Saclay University, Gif-sur-Yvette, France
| | - Christophe Destrieux
- UMR 1253, Inserm, iBrain, Université de Tours, Tours, France.
- CHRU de Tours, Tours, France.
| | | |
Collapse
|
8
|
Smirnov M, Maldonado IL, Destrieux C. Using ex vivo arterial injection and dissection to assess white matter vascularization. Sci Rep 2023; 13:809. [PMID: 36646713 PMCID: PMC9842749 DOI: 10.1038/s41598-022-26227-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/12/2022] [Indexed: 01/18/2023] Open
Abstract
Advances in the techniques for assessing human cerebral white matter have recently contributed to greater attention to structural connectivity. Yet, little is known about the vascularization of most white matter fasciculi and the fascicular composition of the vascular territories. This paper presents an original method to label the arterial supply of macroscopic white matter fasciculi based on a standardized protocol for post-mortem injection of colored material into main cerebral arteries combined with a novel fiber dissection technique. Twelve whole human cerebral hemispheres obtained post-mortem were included. A detailed description of every step, from obtaining the specimen to image acquisition of its dissection, is provided. Injection and dissection were reproducible and manageable without any sophisticated equipment. They successfully showed the arterial supply of the dissected fasciculi. In addition, we discuss the challenges we faced and overcame during the development of the presented method, highlight its originality. Henceforth, this innovative method serves as a tool to provide a precise anatomical description of the vascularization of the main white matter tracts.
Collapse
Affiliation(s)
- Mykyta Smirnov
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | - Igor Lima Maldonado
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Tours, France
| | - Christophe Destrieux
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Tours, France
| |
Collapse
|
9
|
Alves PN, Forkel SJ, Corbetta M, Thiebaut de Schotten M. The subcortical and neurochemical organization of the ventral and dorsal attention networks. Commun Biol 2022; 5:1343. [PMID: 36477440 PMCID: PMC9729227 DOI: 10.1038/s42003-022-04281-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Attention is a core cognitive function that filters and selects behaviourally relevant information in the environment. The cortical mapping of attentional systems identified two segregated networks that mediate stimulus-driven and goal-driven processes, the Ventral and the Dorsal Attention Networks (VAN, DAN). Deep brain electrophysiological recordings, behavioral data from phylogenetic distant species, and observations from human brain pathologies challenge purely corticocentric models. Here, we used advanced methods of functional alignment applied to resting-state functional connectivity analyses to map the subcortical architecture of the Ventral and Dorsal Attention Networks. Our investigations revealed the involvement of the pulvinar, the superior colliculi, the head of caudate nuclei, and a cluster of brainstem nuclei relevant to both networks. These nuclei are densely connected structural network hubs, as revealed by diffusion-weighted imaging tractography. Their projections establish interrelations with the acetylcholine nicotinic receptor as well as dopamine and serotonin transporters, as demonstrated in a spatial correlation analysis with a normative atlas of neurotransmitter systems. This convergence of functional, structural, and neurochemical evidence provides a comprehensive framework to understand the neural basis of attention across different species and brain diseases.
Collapse
Affiliation(s)
- Pedro Nascimento Alves
- Laboratório de Estudos de Linguagem, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- Serviço de Neurologia, Departmento de Neurociências e Saúde Mental, Hospital de Santa Maria, CHULN, Lisboa, Portugal.
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
- Donders Institute for Brain Cognition Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525GD, Nijmegen, the Netherlands
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Departments of Neurosurgery, Technical University of Munich School of Medicine, Munich, Germany
| | - Maurizio Corbetta
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, VIMM, Padova, Italy
- Department of Neurology, Radiology, Neuroscience Washington University School of Medicine, St.Louis, MO, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
10
|
Galaburda AM. Animal models of developmental dyslexia. Front Neurosci 2022; 16:981801. [PMID: 36452335 PMCID: PMC9702821 DOI: 10.3389/fnins.2022.981801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
As some critics have stated, the term "developmental dyslexia" refers to a strictly human disorder, relating to a strictly human capacity - reading - so it cannot be modeled in experimental animals, much less so in lowly rodents. However, two endophenotypes associated with developmental dyslexia are eminently suitable for animal modeling: Cerebral Lateralization, as illustrated by the association between dyslexia and non-righthandedness, and Cerebrocortical Dysfunction, as illustrated by the described abnormal structural anatomy and/or physiology and functional imaging of the dyslexic cerebral cortex. This paper will provide a brief review of these two endophenotypes in human beings with developmental dyslexia and will describe the animal work done in my laboratory and that of others to try to shed light on the etiology of and neural mechanisms underlying developmental dyslexia. Some thought will also be given to future directions of the research.
Collapse
Affiliation(s)
- Albert M. Galaburda
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Forstenpointner J, Maallo AMS, Elman I, Holmes S, Freeman R, Baron R, Borsook D. The Solitary Nucleus Connectivity to Key Autonomic Regions in Humans MRI and Literature based Considerations. Eur J Neurosci 2022; 56:3938-3966. [PMID: 35545280 DOI: 10.1111/ejn.15691] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
The nucleus tractus solitarius (NTS), is a key brainstem structure relaying interoceptive peripheral information to the interrelated brain centers for eliciting rapid autonomic responses and for shaping longer-term neuroendocrine and motor patterns. Structural and functional NTS' connectivity has been extensively investigated in laboratory animals. But there is limited information about NTS' connectome in humans. Using MRI, we examined diffusion and resting state data from 20 healthy participants in the Human Connectome Project. The regions within the brainstem (n=8), subcortical (n=6), cerebellar (n=2) and cortical (n=5) parts of the brain were selected via a systematic review of the literature and their white matter NTS connections were evaluated via probabilistic tractography along with functional and directional (i.e., Granger-causality) analyses. The underlying study confirms previous results from animal models and provides novel aspects on NTS integration in humans. Two key findings can be summarized: (i) the NTS predominantly processes afferent input and (ii) a lateralization towards a predominantly left-sided NTS processing. Our results lay the foundations for future investigations into the NTS' tripartite role comprised of interoreceptors' input integration, the resultant neurochemical outflow and cognitive/affective processing. The implications of these data add to the understanding of NTS' role in specific aspects of autonomic functions.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anne Margarette S Maallo
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Igor Elman
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Scott Holmes
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Department of Radiology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Adil SM, Calabrese E, Charalambous LT, Cook JJ, Rahimpour S, Atik AF, Cofer GP, Parente BA, Johnson GA, Lad SP, White LE. A high-resolution interactive atlas of the human brainstem using magnetic resonance imaging. Neuroimage 2021; 237:118135. [PMID: 33951517 PMCID: PMC8480283 DOI: 10.1016/j.neuroimage.2021.118135] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
Conventional atlases of the human brainstem are limited by the inflexible, sparsely-sampled, two-dimensional nature of histology, or the low spatial resolution of conventional magnetic resonance imaging (MRI). Postmortem high-resolution MRI circumvents the challenges associated with both modalities. A single human brainstem specimen extending from the rostral diencephalon through the caudal medulla was prepared for imaging after the brain was removed from a 65-year-old male within 24 h of death. The specimen was formalin-fixed for two weeks, then rehydrated and placed in a custom-made MRI compatible tube and immersed in liquid fluorocarbon. MRI was performed in a 7-Tesla scanner with 120 unique diffusion directions. Acquisition time for anatomic and diffusion images were 14 h and 208 h, respectively. Segmentation was performed manually. Deterministic fiber tractography was done using strategically chosen regions of interest and avoidance, with manual editing using expert knowledge of human neuroanatomy. Anatomic and diffusion images were rendered with isotropic resolutions of 50 μm and 200 μm, respectively. Ninety different structures were segmented and labeled, and 11 different fiber bundles were rendered with tractography. The complete atlas is available online for interactive use at https://www.civmvoxport.vm.duke.edu/voxbase/login.php?return_url=%2Fvoxbase%2F. This atlas presents multiple contrasting datasets and selected tract reconstruction with unprecedented resolution for MR imaging of the human brainstem. There are immediate applications in neuroanatomical education, with the potential to serve future applications for neuroanatomical research and enhanced neurosurgical planning through "safe" zones of entry into the human brainstem.
Collapse
Affiliation(s)
- Syed M Adil
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States; Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States.
| | - Evan Calabrese
- University of California San Francisco, Department of Radiology & Biomedical Imaging, San Francisco, CA, United States.
| | - Lefko T Charalambous
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States; Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States.
| | - James J Cook
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States.
| | - Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.
| | - Ahmet F Atik
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, United States.
| | - Gary P Cofer
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States.
| | - Beth A Parente
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.
| | - G Allan Johnson
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States.
| | - Shivanand P Lad
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.
| | - Leonard E White
- Department of Neurology, Duke University Medical Center, Durham, NC, United States; Duke Institute for Brain Sciences, Duke University, Durham NC, United States.
| |
Collapse
|