1
|
Perron M, Vuong V, Grassi MW, Imran A, Alain C. Engagement of the speech motor system in challenging speech perception: Activation likelihood estimation meta-analyses. Hum Brain Mapp 2024; 45:e70023. [PMID: 39268584 PMCID: PMC11393483 DOI: 10.1002/hbm.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
The relationship between speech production and perception is a topic of ongoing debate. Some argue that there is little interaction between the two, while others claim they share representations and processes. One perspective suggests increased recruitment of the speech motor system in demanding listening situations to facilitate perception. However, uncertainties persist regarding the specific regions involved and the listening conditions influencing its engagement. This study used activation likelihood estimation in coordinate-based meta-analyses to investigate the neural overlap between speech production and three speech perception conditions: speech-in-noise, spectrally degraded speech and linguistically complex speech. Neural overlap was observed in the left frontal, insular and temporal regions. Key nodes included the left frontal operculum (FOC), left posterior lateral part of the inferior frontal gyrus (IFG), left planum temporale (PT), and left pre-supplementary motor area (pre-SMA). The left IFG activation was consistently observed during linguistic processing, suggesting sensitivity to the linguistic content of speech. In comparison, the left pre-SMA activation was observed when processing degraded and noisy signals, indicating sensitivity to signal quality. Activations of the left PT and FOC activation were noted in all conditions, with the posterior FOC area overlapping in all conditions. Our meta-analysis reveals context-independent (FOC, PT) and context-dependent (pre-SMA, posterior lateral IFG) regions within the speech motor system during challenging speech perception. These regions could contribute to sensorimotor integration and executive cognitive control for perception and production.
Collapse
Affiliation(s)
- Maxime Perron
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Veronica Vuong
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, Ontario, Canada
| | - Madison W Grassi
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
| | - Ashna Imran
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
| | - Claude Alain
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Har-Shai Yahav P, Sharaabi A, Zion Golumbic E. The effect of voice familiarity on attention to speech in a cocktail party scenario. Cereb Cortex 2024; 34:bhad475. [PMID: 38142293 DOI: 10.1093/cercor/bhad475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023] Open
Abstract
Selective attention to one speaker in multi-talker environments can be affected by the acoustic and semantic properties of speech. One highly ecological feature of speech that has the potential to assist in selective attention is voice familiarity. Here, we tested how voice familiarity interacts with selective attention by measuring the neural speech-tracking response to both target and non-target speech in a dichotic listening "Cocktail Party" paradigm. We measured Magnetoencephalography from n = 33 participants, presented with concurrent narratives in two different voices, and instructed to pay attention to one ear ("target") and ignore the other ("non-target"). Participants were familiarized with one of the voices during the week prior to the experiment, rendering this voice familiar to them. Using multivariate speech-tracking analysis we estimated the neural responses to both stimuli and replicate their well-established modulation by selective attention. Importantly, speech-tracking was also affected by voice familiarity, showing enhanced response for target speech and reduced response for non-target speech in the contra-lateral hemisphere, when these were in a familiar vs. an unfamiliar voice. These findings offer valuable insight into how voice familiarity, and by extension, auditory-semantics, interact with goal-driven attention, and facilitate perceptual organization and speech processing in noisy environments.
Collapse
Affiliation(s)
- Paz Har-Shai Yahav
- The Gonda Center for Multidisciplinary Brain Research, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Aviya Sharaabi
- The Gonda Center for Multidisciplinary Brain Research, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Elana Zion Golumbic
- The Gonda Center for Multidisciplinary Brain Research, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
3
|
Dura-Bernal S, Griffith EY, Barczak A, O'Connell MN, McGinnis T, Moreira JVS, Schroeder CE, Lytton WW, Lakatos P, Neymotin SA. Data-driven multiscale model of macaque auditory thalamocortical circuits reproduces in vivo dynamics. Cell Rep 2023; 42:113378. [PMID: 37925640 PMCID: PMC10727489 DOI: 10.1016/j.celrep.2023.113378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/05/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
We developed a detailed model of macaque auditory thalamocortical circuits, including primary auditory cortex (A1), medial geniculate body (MGB), and thalamic reticular nucleus, utilizing the NEURON simulator and NetPyNE tool. The A1 model simulates a cortical column with over 12,000 neurons and 25 million synapses, incorporating data on cell-type-specific neuron densities, morphology, and connectivity across six cortical layers. It is reciprocally connected to the MGB thalamus, which includes interneurons and core and matrix-layer-specific projections to A1. The model simulates multiscale measures, including physiological firing rates, local field potentials (LFPs), current source densities (CSDs), and electroencephalography (EEG) signals. Laminar CSD patterns, during spontaneous activity and in response to broadband noise stimulus trains, mirror experimental findings. Physiological oscillations emerge spontaneously across frequency bands comparable to those recorded in vivo. We elucidate population-specific contributions to observed oscillation events and relate them to firing and presynaptic input patterns. The model offers a quantitative theoretical framework to integrate and interpret experimental data and predict its underlying cellular and circuit mechanisms.
Collapse
Affiliation(s)
- Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, USA; Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Erica Y Griffith
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, USA; Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Annamaria Barczak
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Monica N O'Connell
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Tammy McGinnis
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Joao V S Moreira
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, USA
| | - Charles E Schroeder
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Departments of Psychiatry and Neurology, Columbia University Medical Center, New York, NY, USA
| | - William W Lytton
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, USA; Kings County Hospital Center, Brooklyn, NY, USA
| | - Peter Lakatos
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Samuel A Neymotin
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Xie X, Jaeger TF, Kurumada C. What we do (not) know about the mechanisms underlying adaptive speech perception: A computational framework and review. Cortex 2023; 166:377-424. [PMID: 37506665 DOI: 10.1016/j.cortex.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/23/2022] [Accepted: 05/05/2023] [Indexed: 07/30/2023]
Abstract
Speech from unfamiliar talkers can be difficult to comprehend initially. These difficulties tend to dissipate with exposure, sometimes within minutes or less. Adaptivity in response to unfamiliar input is now considered a fundamental property of speech perception, and research over the past two decades has made substantial progress in identifying its characteristics. The mechanisms underlying adaptive speech perception, however, remain unknown. Past work has attributed facilitatory effects of exposure to any one of three qualitatively different hypothesized mechanisms: (1) low-level, pre-linguistic, signal normalization, (2) changes in/selection of linguistic representations, or (3) changes in post-perceptual decision-making. Direct comparisons of these hypotheses, or combinations thereof, have been lacking. We describe a general computational framework for adaptive speech perception (ASP) that-for the first time-implements all three mechanisms. We demonstrate how the framework can be used to derive predictions for experiments on perception from the acoustic properties of the stimuli. Using this approach, we find that-at the level of data analysis presently employed by most studies in the field-the signature results of influential experimental paradigms do not distinguish between the three mechanisms. This highlights the need for a change in research practices, so that future experiments provide more informative results. We recommend specific changes to experimental paradigms and data analysis. All data and code for this study are shared via OSF, including the R markdown document that this article is generated from, and an R library that implements the models we present.
Collapse
Affiliation(s)
- Xin Xie
- Language Science, University of California, Irvine, USA.
| | - T Florian Jaeger
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA; Computer Science, University of Rochester, Rochester, NY, USA
| | - Chigusa Kurumada
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
5
|
Park JJ, Baek SC, Suh MW, Choi J, Kim SJ, Lim Y. The effect of topic familiarity and volatility of auditory scene on selective auditory attention. Hear Res 2023; 433:108770. [PMID: 37104990 DOI: 10.1016/j.heares.2023.108770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
Selective auditory attention has been shown to modulate the cortical representation of speech. This effect has been well documented in acoustically more challenging environments. However, the influence of top-down factors, in particular topic familiarity, on this process remains unclear, despite evidence that semantic information can promote speech-in-noise perception. Apart from individual features forming a static listening condition, dynamic and irregular changes of auditory scenes-volatile listening environments-have been less studied. To address these gaps, we explored the influence of topic familiarity and volatile listening on the selective auditory attention process during dichotic listening using electroencephalography. When stories with unfamiliar topics were presented, participants' comprehension was severely degraded. However, their cortical activity selectively tracked the speech of the target story well. This implies that topic familiarity hardly influences the speech tracking neural index, possibly when the bottom-up information is sufficient. However, when the listening environment was volatile and the listeners had to re-engage in new speech whenever auditory scenes altered, the neural correlates of the attended speech were degraded. In particular, the cortical response to the attended speech and the spatial asymmetry of the response to the left and right attention were significantly attenuated around 100-200 ms after the speech onset. These findings suggest that volatile listening environments could adversely affect the modulation effect of selective attention, possibly by hampering proper attention due to increased perceptual load.
Collapse
Affiliation(s)
- Jonghwa Jeonglok Park
- Center for Intelligent & Interactive Robotics, Artificial Intelligence and Robot Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Electrical and Computer Engineering, College of Engineering, Seoul National University, Seoul 08826, South Korea
| | - Seung-Cheol Baek
- Center for Intelligent & Interactive Robotics, Artificial Intelligence and Robot Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main 60322, Germany
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul 03080, South Korea
| | - Jongsuk Choi
- Center for Intelligent & Interactive Robotics, Artificial Intelligence and Robot Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of AI Robotics, KIST School, Korea University of Science and Technology, Seoul 02792, South Korea
| | - Sung June Kim
- Department of Electrical and Computer Engineering, College of Engineering, Seoul National University, Seoul 08826, South Korea
| | - Yoonseob Lim
- Center for Intelligent & Interactive Robotics, Artificial Intelligence and Robot Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
6
|
Blank H, Alink A, Büchel C. Multivariate functional neuroimaging analyses reveal that strength-dependent face expectations are represented in higher-level face-identity areas. Commun Biol 2023; 6:135. [PMID: 36725984 PMCID: PMC9892564 DOI: 10.1038/s42003-023-04508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Perception is an active inference in which prior expectations are combined with sensory input. It is still unclear how the strength of prior expectations is represented in the human brain. The strength, or precision, of a prior could be represented with its content, potentially in higher-level sensory areas. We used multivariate analyses of functional resonance imaging data to test whether expectation strength is represented together with the expected face in high-level face-sensitive regions. Participants were trained to associate images of scenes with subsequently presented images of different faces. Each scene predicted three faces, each with either low, intermediate, or high probability. We found that anticipation enhances the similarity of response patterns in the face-sensitive anterior temporal lobe to response patterns specifically associated with the image of the expected face. In contrast, during face presentation, activity increased for unexpected faces in a typical prediction error network, containing areas such as the caudate and the insula. Our findings show that strength-dependent face expectations are represented in higher-level face-identity areas, supporting hierarchical theories of predictive processing according to which higher-level sensory regions represent weighted priors.
Collapse
Affiliation(s)
- Helen Blank
- grid.13648.380000 0001 2180 3484Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Arjen Alink
- grid.13648.380000 0001 2180 3484Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Büchel
- grid.13648.380000 0001 2180 3484Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
7
|
Wang Y, Wu M, Wu K, Liu H, Wu S, Zhang Z, Liu M, Wei C, Zhang YX, Liu Y. Differential auditory cortical development in left and right cochlear implanted children. Cereb Cortex 2022; 32:5438-5454. [PMID: 35165693 DOI: 10.1093/cercor/bhac025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/27/2022] Open
Abstract
Unilateral aural stimulation has been shown to cause massive cortical reorganization in brain with congenital deafness, particularly during the sensitive period of brain development. However, it is unclear which side of stimulation provides most advantages for auditory development. The left hemisphere dominance of speech and linguistic processing in normal hearing adult brain has led to the assumption of functional and developmental advantages of right over left implantation, but existing evidence is controversial. To test this assumption and provide evidence for clinical choice, we examined 34 prelingually deaf children with unilateral cochlear implants using near-infrared spectroscopy. While controlling for age of implantation, residual hearing, and dominant hand, cortical processing of speech showed neither developmental progress nor influence of implantation side weeks to months after implant activation. In sharp contrast, for nonspeech (music signal vs. noise) processing, left implantation showed functional advantages over right implantation that were not yet discernable using clinical, questionnaire-based outcome measures. These findings support the notion that the right hemisphere develops earlier and is better preserved from adverse environmental influences than its left counterpart. This study thus provides, to our knowledge, the first evidence for differential influences of left and right auditory peripheral stimulation on early cortical development of the human brain.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.,Department of Otolaryngology Head and Neck Surgery, Hunan Provincial People's Hospital (First Affiliated Hospital of Hunan Normal University), Changsha 610041, China
| | - Meiyun Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Kun Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Haotian Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.,Department of Otolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shinan Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Zhikai Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, China
| | - Min Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Chaogang Wei
- Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing 100034, China
| | - Yu-Xuan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yuhe Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|