1
|
Gruskin DC, Vieira DJ, Lee JK, Patel GH. Heritability of movie-evoked brain activity and connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.612469. [PMID: 39345386 PMCID: PMC11429865 DOI: 10.1101/2024.09.16.612469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The neural bases of sensory processing are conserved across people, but no two individuals experience the same stimulus in exactly the same way. Recent work has established that the idiosyncratic nature of subjective experience is underpinned by individual variability in brain responses to sensory information. However, the fundamental origins of this individual variability have yet to be systematically investigated. Here, we establish a genetic basis for individual differences in sensory processing by quantifying (1) the heritability of high-dimensional brain responses to movies and (2) the extent to which this heritability is grounded in lower-level aspects of brain function. Specifically, we leverage 7T fMRI data collected from a twin sample to first show that movie-evoked brain activity and connectivity patterns are heritable across the cortex. Next, we use hyperalignment to decompose this heritability into genetic similarity in where vs. how sensory information is processed. Finally, we show that the heritability of brain activity patterns can be partially explained by the heritability of the neural timescale, a one-dimensional measure of local circuit functioning. These results demonstrate that brain responses to complex stimuli are heritable, and that this heritability is due, in part, to genetic control over stable aspects of brain function.
Collapse
Affiliation(s)
- David C Gruskin
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Daniel J Vieira
- Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, New York 10032, USA
| | - Jessica K Lee
- Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, New York 10032, USA
| | - Gaurav H Patel
- Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, New York 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
2
|
Videtta G, Colli C, Squarcina L, Fagnani C, Medda E, Brambilla P, Delvecchio G. Heritability of white matter in twins: A diffusion neuroimaging review. Phys Life Rev 2024; 50:126-136. [PMID: 39079258 DOI: 10.1016/j.plrev.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 09/02/2024]
Abstract
Diffusion neuroimaging has emerged as an essential non-invasive technique to explore in vivo microstructural characteristics of white matter (WM), whose integrity allows complex behaviors and cognitive abilities. Studying the factors contributing to inter-individual variability in WM microstructure can provide valuable insight into structural and functional differences of brain among individuals. Genetic influence on this variation has been largely investigated in twin studies employing different measures derived from diffusion neuroimaging. In this context, we performed a comprehensive literature search across PubMed, Scopus and Web of Science of original twin studies focused on the heritability of WM. Overall, our results highlighted a consistent heritability of diffusion indices (i.e., fractional anisotropy, mean, axial and radial diffusivity), and network topology among twins. The genetic influence resulted prominent in frontal and occipital regions, in the limbic system, and in commissural fibers. To enhance the understanding of genetic influence on WM microstructure further studies in less heterogeneous experimental settings, encompassing all diffusion indices, are warranted.
Collapse
Affiliation(s)
- Giovanni Videtta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Chiara Colli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Corrado Fagnani
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Medda
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, Milan 20122, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, Milan 20122, Italy.
| |
Collapse
|
3
|
Wu X, Zhang Y, Xue M, Li J, Li X, Cui Z, Gao JH, Yang G. Heritability of functional gradients in the human subcortico-cortical connectivity. Commun Biol 2024; 7:854. [PMID: 38997510 PMCID: PMC11245549 DOI: 10.1038/s42003-024-06551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
The human subcortex plays a pivotal role in cognition and is widely implicated in the pathophysiology of many psychiatric disorders. However, the heritability of functional gradients based on subcortico-cortical functional connectivity remains elusive. Here, leveraging twin functional MRI (fMRI) data from both the Human Connectome Project (n = 1023) and the Adolescent Brain Cognitive Development study (n = 936) datasets, we construct large-scale subcortical functional gradients and delineate an increased principal functional gradient pattern from unimodal sensory/motor networks to transmodal association networks. We observed that this principal functional gradient is heritable, and the strength of heritability exhibits a heterogeneous pattern along a hierarchical unimodal-transmodal axis in subcortex for both young adults and children. Furthermore, employing a machine learning framework, we show that this heterogeneous pattern of the principal functional gradient in subcortex can accurately discern the relationship between monozygotic twin pairs and dizygotic twin pairs with an accuracy of 76.2% (P < 0.001). The heritability of functional gradients is associated with the anatomical myelin proxied by MRI-derived T1-weighted/T2-weighted (T1w/T2w) ratio mapping in subcortex. This study provides new insights into the biological basis of subcortical functional hierarchy by revealing the structural and genetic properties of the subcortical functional gradients.
Collapse
Affiliation(s)
- Xinyu Wu
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Yu Zhang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Mufan Xue
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Jinlong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- McGovern Institute for Brain Research, Peking University, Beijing, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Guoyuan Yang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China.
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
4
|
Keller AS, Pines AR, Shanmugan S, Sydnor VJ, Cui Z, Bertolero MA, Barzilay R, Alexander-Bloch AF, Byington N, Chen A, Conan GM, Davatzikos C, Feczko E, Hendrickson TJ, Houghton A, Larsen B, Li H, Miranda-Dominguez O, Roalf DR, Perrone A, Shetty A, Shinohara RT, Fan Y, Fair DA, Satterthwaite TD. Personalized functional brain network topography is associated with individual differences in youth cognition. Nat Commun 2023; 14:8411. [PMID: 38110396 PMCID: PMC10728159 DOI: 10.1038/s41467-023-44087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
Individual differences in cognition during childhood are associated with important social, physical, and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization during development reflects the brain's functional prioritization, quantifying variation in the topography of functional brain networks across the developing cortex may provide insight regarding individual differences in cognition. We test this idea by defining personalized functional networks (PFNs) that account for interindividual heterogeneity in functional brain network topography in 9-10 year olds from the Adolescent Brain Cognitive Development℠ Study. Across matched discovery (n = 3525) and replication (n = 3447) samples, the total cortical representation of fronto-parietal PFNs positively correlates with general cognition. Cross-validated ridge regressions trained on PFN topography predict cognition in unseen data across domains, with prediction accuracy increasing along the cortex's sensorimotor-association organizational axis. These results establish that functional network topography heterogeneity is associated with individual differences in cognition before the critical transition into adolescence.
Collapse
Affiliation(s)
- Arielle S Keller
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam R Pines
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sheila Shanmugan
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Maxwell A Bertolero
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ran Barzilay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nora Byington
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Andrew Chen
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gregory M Conan
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Timothy J Hendrickson
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Audrey Houghton
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongming Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Oscar Miranda-Dominguez
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anders Perrone
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Alisha Shetty
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yong Fan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Yan H, Han Y, Shan X, Li H, Liu F, Xie G, Li P, Guo W. Altered resting-state cerebellar-cerebral functional connectivity in patients with panic disorder before and after treatment. Neuropharmacology 2023; 240:109692. [PMID: 37652260 DOI: 10.1016/j.neuropharm.2023.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
The study aimed to investigate the functional connectivity (FC) between the cerebellum and intrinsic cerebral networks in patients with panic disorder (PD), and to observe changes in the cerebellar-cerebral FC following pharmacotherapy. Fifty-four patients with PD and 54 healthy controls (HCs) underwent clinical assessments and functional magnetic resonance imaging scans before and after a 5-week paroxetine treatment. Seed-based cerebellar-cerebral FC was compared between the PD and HC groups, as well as between patients with PD before and after treatment. Additionally, the correlations between FC and clinical features of PD were analyzed. Compared to HCs, patients with PD had altered cerebellar-cerebral FC in the default mode, affective-limbic, and sensorimotor networks. Moreover, a negative correlation between cerebellar-insula disconnection and the severity of depressive symptoms in patients with PD (Pearson correlation, r = -0.424, p = 0.001, Bonferroni corrected) was found. After treatment, most of the enhanced FCs observed in patients with PD at baseline returned to levels similar to those observed in HCs. However, the reduced FC at baseline did not significantly change after treatment. The findings suggest that patients with PD have specific deficits in resting-state cerebellar-cerebral FC and that paroxetine may improve PD by restoring the balance of cerebellar-cerebral FC. These findings emphasize the crucial involvement of cerebellar-cerebral FC in the neuropsychological mechanisms underlying PD and in the potential pharmacological mechanisms of paroxetine for treating PD.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
6
|
Zhang XH, Anderson KM, Dong HM, Chopra S, Dhamala E, Emani PS, Margulies D, Holmes AJ. The Cellular Underpinnings of the Human Cortical Connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547828. [PMID: 37461642 PMCID: PMC10349999 DOI: 10.1101/2023.07.05.547828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The functional properties of the human brain arise, in part, from the vast assortment of cell types that pattern the cortex. The cortical sheet can be broadly divided into distinct networks, which are further embedded into processing streams, or gradients, that extend from unimodal systems through higher-order association territories. Here, using transcriptional data from the Allen Human Brain Atlas, we demonstrate that imputed cell type distributions are spatially coupled to the functional organization of cortex, as estimated through fMRI. Cortical cellular profiles follow the macro-scale organization of the functional gradients as well as the associated large-scale networks. Distinct cellular fingerprints were evident across networks, and a classifier trained on post-mortem cell-type distributions was able to predict the functional network allegiance of cortical tissue samples. These data indicate that the in vivo organization of the cortical sheet is reflected in the spatial variability of its cellular composition.
Collapse
Affiliation(s)
- Xi-Han Zhang
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | - Hao-Ming Dong
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Elvisha Dhamala
- Department of Psychology, Yale University, New Haven, CT, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Prashant S. Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Daniel Margulies
- CNRS, Integrative Neuroscience and Cognition Center (UMR 8002), Université de Paris, Paris, France
| | - Avram J. Holmes
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
7
|
Alberti F, Menardi A, Margulies D, Vallesi A. Understanding the link between functional profiles and intelligence through dimensionality reduction and graph analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536421. [PMID: 37090501 PMCID: PMC10120667 DOI: 10.1101/2023.04.12.536421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
There is a growing interest in neuroscience for how individual-specific structural and functional features of the cortex relate to cognitive traits. This work builds on previous research which, using classical high-dimensional approaches, has proven that the interindividual variability of functional connectivity profiles reflects differences in fluid intelligence. To provide an additional perspective into this relationship, the present study uses a recent framework for investigating cortical organization: functional gradients. This approach places local connectivity profiles within a common low-dimensional space whose axes are functionally interretable dimensions. Specifically, this study uses a data-driven approach focussing on areas where FC variability is highest across individuals to model different facets of intelligence. For one of these loci, in the right ventral-lateral prefrontal cortex (vlPFC), we describe an association between fluid intelligence and relative functional distance from sensory and high-cognition systems. Furthermore, the topological properties of this region indicate that with decreasing functional affinity with the latter, its functional connections are more evenly distributed across all networks. Participating in multiple functional networks may reflect a better ability to coordinate sensory and high-order cognitive systems.
Collapse
Affiliation(s)
- F. Alberti
- Department of Neuroscience, University of Padova, Padova, Italy
| | - A. Menardi
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - D.S. Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique, Paris, France
| | - A. Vallesi
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Pines AR, Larsen B, Cui Z, Sydnor VJ, Bertolero MA, Adebimpe A, Alexander-Bloch AF, Davatzikos C, Fair DA, Gur RC, Gur RE, Li H, Milham MP, Moore TM, Murtha K, Parkes L, Thompson-Schill SL, Shanmugan S, Shinohara RT, Weinstein SM, Bassett DS, Fan Y, Satterthwaite TD. Dissociable multi-scale patterns of development in personalized brain networks. Nat Commun 2022; 13:2647. [PMID: 35551181 PMCID: PMC9098559 DOI: 10.1038/s41467-022-30244-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
The brain is organized into networks at multiple resolutions, or scales, yet studies of functional network development typically focus on a single scale. Here, we derive personalized functional networks across 29 scales in a large sample of youths (n = 693, ages 8-23 years) to identify multi-scale patterns of network re-organization related to neurocognitive development. We found that developmental shifts in inter-network coupling reflect and strengthen a functional hierarchy of cortical organization. Furthermore, we observed that scale-dependent effects were present in lower-order, unimodal networks, but not higher-order, transmodal networks. Finally, we found that network maturation had clear behavioral relevance: the development of coupling in unimodal and transmodal networks are dissociably related to the emergence of executive function. These results suggest that the development of functional brain networks align with and refine a hierarchy linked to cognition.
Collapse
Affiliation(s)
- Adam R Pines
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bart Larsen
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zaixu Cui
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Chinese Institute for Brain Research, 102206, Beijing, China
| | - Valerie J Sydnor
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maxwell A Bertolero
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Azeez Adebimpe
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christos Davatzikos
- Department of Radiology, the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Damien A Fair
- Department of Pediatrics, College of Education and Human Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ruben C Gur
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, the University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongming Li
- Department of Radiology, the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Milham
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.,Center for the Developing Brain, Child Mind Institute, New York City, NY, USA
| | - Tyler M Moore
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kristin Murtha
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Linden Parkes
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Sheila Shanmugan
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarah M Weinstein
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Danielle S Bassett
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Santa Fe Institute, Santa Fe, NM, 87051, USA
| | - Yong Fan
- Department of Radiology, the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Theodore D Satterthwaite
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Functional cortical associations and their intraclass correlations and heritability as revealed by the fMRI Human Connectome Project. Exp Brain Res 2022; 240:1459-1469. [PMID: 35292842 DOI: 10.1007/s00221-022-06346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/04/2022] [Indexed: 11/04/2022]
Abstract
We report on the functional connectivity (FC), its intraclass correlation (ICC), and heritability among 70 areas of the human cerebral cortex. FC was estimated as the Pearson correlation between averaged prewhitened Blood Oxygenation Level-Dependent time series of cortical areas in 988 young adult participants in the Human Connectome Project. Pairs of areas were assigned to three groups, namely homotopic (same area in the two hemispheres), ipsilateral (both areas in the same hemisphere), and heterotopic (nonhomotopic areas in different hemispheres). ICC for each pair of areas was computed for six genetic groups, namely monozygotic (MZ) twins, dizygotic (DZ) twins, singleton siblings of MZ twins (MZsb), singleton siblings of DZ twins (DZsb), non-twin siblings (SB), and unrelated individuals (UNR). With respect to FC, we found the following. (a) Homotopic FC was stronger than ipsilateral and heterotopic FC; (b) average FCs of left and right cortical areas were highly and positively correlated; and (c) FC varied in a systematic fashion along the anterior-posterior and inferior-superior dimensions, such that it increased from anterior to posterior and from inferior to superior. With respect to ICC, we found the following. (a) Homotopic ICC was significantly higher than ipsilateral and heterotopic ICC, but the latter two did not differ significantly from each other; (b) ICC was highest for MZ twins; (c) ICC of DZ twins was significantly lower than that of the MZ twins and higher than that of the three sibling groups (MZsb, DZsb, SB); and (d) ICC was close to zero for UNR. Finally, with respect to heritability, it was highest for homotopic areas, followed by ipsilateral, and heterotopic; however, it did not differ statistically significantly from each other.
Collapse
|
10
|
Nenning KH, Langs G. Machine learning in neuroimaging: from research to clinical practice. RADIOLOGIE (HEIDELBERG, GERMANY) 2022; 62:1-10. [PMID: 36044070 PMCID: PMC9732070 DOI: 10.1007/s00117-022-01051-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Abstract
Neuroimaging is critical in clinical care and research, enabling us to investigate the brain in health and disease. There is a complex link between the brain's morphological structure, physiological architecture, and the corresponding imaging characteristics. The shape, function, and relationships between various brain areas change during development and throughout life, disease, and recovery. Like few other areas, neuroimaging benefits from advanced analysis techniques to fully exploit imaging data for studying the brain and its function. Recently, machine learning has started to contribute (a) to anatomical measurements, detection, segmentation, and quantification of lesions and disease patterns, (b) to the rapid identification of acute conditions such as stroke, or (c) to the tracking of imaging changes over time. As our ability to image and analyze the brain advances, so does our understanding of its intricate relationships and their role in therapeutic decision-making. Here, we review the current state of the art in using machine learning techniques to exploit neuroimaging data for clinical care and research, providing an overview of clinical applications and their contribution to fundamental computational neuroscience.
Collapse
Affiliation(s)
- Karl-Heinz Nenning
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|