1
|
Pellegrino G, Isabella SL, Ferrazzi G, Gschwandtner L, Tik M, Arcara G, Marinazzo D, Schuler AL. Reliable measurement of auditory-driven gamma synchrony with a single EEG electrode: A simultaneous EEG-MEG study. Neuroimage 2024; 300:120862. [PMID: 39305968 DOI: 10.1016/j.neuroimage.2024.120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE Auditory-driven gamma synchrony (GS) is linked to the function of a specific cortical circuit based on a parvalbumin+ and pyramidal neuron loop. This circuit is impaired in neuropsychiatric conditions (i.e. schizophrenia, Alzheimer's disease, stroke etc.) and its relevance in clinical practice is increasingly being recognized. Auditory stimulation at a typical gamma frequency of 40 Hz can be applied as a 'stress test' of excitation/inhibition (E/I) of the entire cerebral cortex, to drive GS and record it with magnetoencephalography (MEG) or high-density electroencephalography (EEG). However, these two techniques are costly and not widely available. Therefore, we assessed whether a single EEG electrode is sufficient to provide an accurate estimate of the auditory-driven GS level of the entire cortical surface while expecting the highest correspondence in the auditory and somatosensory cortices. METHODS We measured simultaneous EEG-MEG in 29 healthy subjects, utilizing 3 EEG electrodes (C4, F4, O2) and a full MEG setup. Recordings were performed during binaural exposure to auditory gamma stimulation and during silence. We compared GS measurement of each of the three EEG electrodes separately against full MEG mapping. Time-resolved phase locking value (PLVt) was computed between EEG signals and cortex reconstructed MEG signals. RESULTS During auditory stimulation, but not at rest, EEG captures a significant amount of GS, especially from both auditory cortices and motor-premotor regions. This was especially true for frontal (C4) and central electrodes (F4). DISCUSSION AND CONCLUSIONS While hd-EEG and MEG are necessary for accurate spatial mapping of GS at rest and during auditory stimulation, a single EEG channel is sufficient to detect the global level of GS. These results have great translational potential for mapping GS in standard clinical settings.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Clinical Neurological Sciences Department, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Silvia L Isabella
- Campus Bio-Medico University of Rome, Rome, Italy; IRCCS San Camillo Hospital, Via Alberoni 80, 30126, Venice, Italy
| | | | - Laura Gschwandtner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Martin Tik
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria.
| | - Giorgio Arcara
- IRCCS San Camillo Hospital, Via Alberoni 80, 30126, Venice, Italy; Department of General Psychology, University of Padua, Padua, Italy
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Belgium
| | - Anna-Lisa Schuler
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
2
|
Beck M, Heyl M, Mejer L, Vinding M, Christiansen L, Tomasevic L, Siebner H. Methodological Choices Matter: A Systematic Comparison of TMS-EEG Studies Targeting the Primary Motor Cortex. Hum Brain Mapp 2024; 45:e70048. [PMID: 39460649 PMCID: PMC11512442 DOI: 10.1002/hbm.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) triggers time-locked cortical activity that can be recorded with electroencephalography (EEG). Transcranial evoked potentials (TEPs) are widely used to probe brain responses to TMS. Here, we systematically reviewed 137 published experiments that studied TEPs elicited from TMS to the human primary motor cortex (M1) in healthy individuals to investigate the impact of methodological choices. We scrutinized prevalent methodological choices and assessed how consistently they were reported in published papers. We extracted amplitudes and latencies from reported TEPs and compared specific TEP peaks and components between studies using distinct methods. Reporting of methodological details was overall sufficient, but some relevant information regarding the TMS settings and the recording and preprocessing of EEG data were missing in more than 25% of the included experiments. The published TEP latencies and amplitudes confirm the "prototypical" TEP waveform following stimulation of M1, comprising distinct N15, P30, N45, P60, N100, and P180 peaks. However, variations in amplitude were evident across studies. Higher stimulation intensities were associated with overall larger TEP amplitudes. Active noise masking during TMS generally resulted in lower TEP amplitudes compared to no or passive masking but did not specifically impact those TEP peaks linked to long-latency sensory processing. Studies implementing independent component analysis (ICA) for artifact removal generally reported lower TEP magnitudes. In summary, some aspects of reporting practices could be improved in future TEP studies to enable replication. Methodological choices, including TMS intensity and the use of noise masking or ICA, introduce systematic differences in reported TEP amplitudes. Further investigation into the significance of these and other methodological factors and their interactions is warranted.
Collapse
Affiliation(s)
- Mikkel Malling Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Marieke Heyl
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Louise Mejer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Mikkel C. Vinding
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
- Department of Neuroscience, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
- Department of NeurologyCopenhagen University Hospital Bispebjerg and FrederiksbergKøbenhavnDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Takai Y, Tamura S, Hoaki N, Kitajima K, Nakamura I, Hirano S, Ueno T, Nakao T, Onitsuka T, Hirano Y. Aberrant thalamocortical connectivity and shifts between the resting state and task state in patients with schizophrenia. Eur J Neurosci 2024; 59:1961-1976. [PMID: 38440952 DOI: 10.1111/ejn.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
Prominent pathological hypotheses for schizophrenia include auditory processing deficits and dysconnectivity within cerebral networks. However, most neuroimaging studies have focused on impairments in either resting-state or task-related functional connectivity in patients with schizophrenia. The aims of our study were to examine (1) blood oxygen level-dependent (BOLD) signals during auditory steady-state response (ASSR) tasks, (2) functional connectivity during the resting-state and ASSR tasks and (3) state shifts between the resting-state and ASSR tasks in patients with schizophrenia. To reduce the functional consequences of scanner noise, we employed resting-state and sparse sampling auditory fMRI paradigms in 25 schizophrenia patients and 25 healthy controls. Auditory stimuli were binaural click trains at frequencies of 20, 30, 40 and 80 Hz. Based on the detected ASSR-evoked BOLD signals, we examined the functional connectivity between the thalamus and bilateral auditory cortex during both the resting state and ASSR task state, as well as their alterations. The schizophrenia group exhibited significantly diminished BOLD signals in the bilateral auditory cortex and thalamus during the 80 Hz ASSR task (corrected p < 0.05). We observed a significant inverse relationship between the resting state and ASSR task state in altered functional connectivity within the thalamo-auditory network in schizophrenia patients. Specifically, our findings demonstrated stronger functional connectivity in the resting state (p < 0.004) and reduced functional connectivity during the ASSR task (p = 0.048), which was mediated by abnormal state shifts, within the schizophrenia group. These results highlight the presence of abnormal thalamocortical connectivity associated with deficits in the shift between resting and task states in patients with schizophrenia.
Collapse
Affiliation(s)
- Yoshifumi Takai
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Tamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nobuhiko Hoaki
- Psychiatry Neuroimaging Center, Hoaki Hospital, Oita, Japan
| | - Kazutoshi Kitajima
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Itta Nakamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takefumi Ueno
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Center, Saga, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- National Hospital Organization Sakakibara Hospital, Tsu, Mie, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Alahmadi AAS. Beyond boundaries: investigating shared and divergent connectivity in the pre-/postcentral gyri and supplementary motor area. Neuroreport 2024; 35:283-290. [PMID: 38407836 DOI: 10.1097/wnr.0000000000002011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
OBJECTIVE This study aimed to comprehensively investigate the functional connectivity of key brain regions involved in motor and sensory functions, namely the precentral gyrus, postcentral gyrus and supplementary motor area (SMA). Using advanced MRI, the objective was to understand the neurophysiological integrative characterizations of these regions by examining their connectivity with eight distinct functional brain networks. The goal was to uncover their roles beyond conventional motor and sensory functions, contributing to a more holistic understanding of brain functioning. METHODS The study involved 198 healthy volunteers, with the primary methodology being functional connectivity analysis using advanced MRI techniques. The bilateral precentral gyrus, postcentral gyrus and SMA served as seed regions, and their connectivity with eight distinct brain regional functional networks was investigated. This approach allowed for the exploration of synchronized activity between these critical brain areas, shedding light on their integrated functioning and relationships with other brain networks. RESULTS The study revealed a nuanced landscape of functional connectivity for the precentral gyrus, postcentral gyrus and SMA with the main functional brain networks. Despite their high functional connectedness, these regions displayed diverse functional integrations with other networks, particularly in the salience, visual, cerebellar and language networks. Specific data and statistical significance were not provided in the abstract, but the results suggested unique and distinct roles for each brain area in sophisticated cognitive tasks beyond their conventional motor and sensory functions. CONCLUSION The study emphasized the multifaceted roles of the precentral gyrus, postcentral gyrus and SMA. Beyond their crucial involvement in motor and sensory functions, these regions exhibited varied functional integrations with different brain networks. The observed disparities, especially in the salience, visual, cerebellar and language networks, indicated a nuanced and specialized involvement of these regions in diverse cognitive functions. The study underscores the importance of considering the broader neurophysiological landscape to comprehend the intricate roles of these brain areas, contributing to ongoing efforts in unraveling the complexities of brain function.
Collapse
Affiliation(s)
- Adnan A S Alahmadi
- Department of Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Pellegrino G, Schuler AL, Cai Z, Marinazzo D, Tecchio F, Ricci L, Tombini M, Di Lazzaro V, Assenza G. Assessing cortical excitability with electroencephalography: A pilot study with EEG-iTBS. Brain Stimul 2024; 17:176-183. [PMID: 38286400 DOI: 10.1016/j.brs.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/26/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Cortical excitability measures neural reactivity to stimuli, usually delivered via Transcranial Magnetic Stimulation (TMS). Excitation/inhibition balance (E/I) is the ongoing equilibrium between excitatory and inhibitory activity of neural circuits. According to some studies, E/I could be estimated in-vivo and non-invasively through the modeling of electroencephalography (EEG) signals and termed 'intrinsic excitability' measures. Several measures have been proposed (phase consistency in the gamma band, sample entropy, exponent of the power spectral density 1/f curve, E/I index extracted from detrend fluctuation analysis, and alpha power). Intermittent theta burst stimulation (iTBS) of the primary motor cortex (M1) is a non-invasive neuromodulation technique allowing controlled and focal enhancement of TMS cortical excitability and E/I of the stimulated hemisphere. OBJECTIVE Investigating to what extent E/I estimates scale with TMS excitability and how they relate to each other. METHODS M1 excitability (TMS) and several E/I estimates extracted from resting state EEG recordings were assessed before and after iTBS in a cohort of healthy subjects. RESULTS Enhancement of TMS M1 excitability, as measured through motor-evoked potentials (MEPs), and phase consistency of the cortex in high gamma band correlated with each other. Other measures of E/I showed some expected results, but no correlation with TMS excitability measures or strong consistency with each other. CONCLUSIONS EEG E/I estimates offer an intriguing opportunity to map cortical excitability non-invasively, with high spatio-temporal resolution and with a stimulus independent approach. While different EEG E/I estimates may reflect the activity of diverse excitatory-inhibitory circuits, spatial phase synchrony in the gamma band is the measure that best captures excitability changes in the primary motor cortex.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| | - Anna-Lisa Schuler
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Zhengchen Cai
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Institute of Cognitive Sciences and Technologies (ISTC) - Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Lorenzo Ricci
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Mario Tombini
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Vincenzo Di Lazzaro
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Giovanni Assenza
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy.
| |
Collapse
|
6
|
Song Y, Gordon PC, Metsomaa J, Rostami M, Belardinelli P, Ziemann U. Evoked EEG Responses to TMS Targeting Regions Outside the Primary Motor Cortex and Their Test-Retest Reliability. Brain Topogr 2024; 37:19-36. [PMID: 37996562 PMCID: PMC10771591 DOI: 10.1007/s10548-023-01018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Transcranial magnetic stimulation (TMS)-evoked electroencephalography (EEG) potentials (TEPs) provide unique insights into cortical excitability and connectivity. However, confounding EEG signals from auditory and somatosensory co-stimulation complicate TEP interpretation. Our optimized sham procedure established with TMS of primary motor cortex (Gordon in JAMA 245:118708, 2021) differentiates direct cortical EEG responses to TMS from those caused by peripheral sensory inputs. Using this approach, this study aimed to investigate TEPs and their test-retest reliability when targeting regions outside the primary motor cortex, specifically the left angular gyrus, supplementary motor area, and medial prefrontal cortex. We conducted three identical TMS-EEG sessions one week apart involving 24 healthy participants. In each session, we targeted the three areas separately using a figure-of-eight TMS coil for active TMS, while a second coil away from the head produced auditory input for sham TMS. Masking noise and electric scalp stimulation were applied in both conditions to achieve matched EEG responses to peripheral sensory inputs. High test-retest reliability was observed in both conditions. However, reliability declined for the 'cleaned' TEPs, resulting from the subtraction of evoked EEG response to the sham TMS from those to the active, particularly for latencies > 100 ms following the TMS pulse. Significant EEG differences were found between active and sham TMS at latencies < 90 ms for all targeted areas, exhibiting distinct spatiotemporal characteristics specific to each target. In conclusion, our optimized sham procedure effectively reveals EEG responses to direct cortical activation by TMS in brain areas outside primary motor cortex. Moreover, we demonstrate the impact of peripheral sensory inputs on test-retest reliability of TMS-EEG responses.
Collapse
Affiliation(s)
- Yufei Song
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Pedro C Gordon
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Johanna Metsomaa
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Maryam Rostami
- Faculty of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Paolo Belardinelli
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Center for Mind/Brain Sciences, CIMeC, University of Trento, Trento, Italy
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Vaisberg JM, Gilmore S, Qian J, Russo FA. The Benefit of Hearing Aids as Measured by Listening Accuracy, Subjective Listening Effort, and Functional Near Infrared Spectroscopy. Trends Hear 2024; 28:23312165241273346. [PMID: 39195628 PMCID: PMC11363059 DOI: 10.1177/23312165241273346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024] Open
Abstract
There is broad consensus that listening effort is an important outcome for measuring hearing performance. However, there remains debate on the best ways to measure listening effort. This study sought to measure neural correlates of listening effort using functional near-infrared spectroscopy (fNIRS) in experienced adult hearing aid users. The study evaluated impacts of amplification and signal-to-noise ratio (SNR) on cerebral blood oxygenation, with the expectation that easier listening conditions would be associated with less oxygenation in the prefrontal cortex. Thirty experienced adult hearing aid users repeated sentence-final words from low-context Revised Speech Perception in Noise Test sentences. Participants repeated words at a hard SNR (individual SNR-50) or easy SNR (individual SNR-50 + 10 dB), while wearing hearing aids fit to prescriptive targets or without wearing hearing aids. In addition to assessing listening accuracy and subjective listening effort, prefrontal blood oxygenation was measured using fNIRS. As expected, easier listening conditions (i.e., easy SNR, with hearing aids) led to better listening accuracy, lower subjective listening effort, and lower oxygenation across the entire prefrontal cortex compared to harder listening conditions. Listening accuracy and subjective listening effort were also significant predictors of oxygenation.
Collapse
Affiliation(s)
| | - Sean Gilmore
- Department of Psychology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Jinyu Qian
- Innovation Centre Toronto, Sonova Canada Inc., Kitchener, ON, Canada
- Department of Communicative Sciences Disorders and Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Frank A. Russo
- Department of Psychology, Toronto Metropolitan University, Toronto, ON, Canada
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
van der Burght CL, Friederici AD, Maran M, Papitto G, Pyatigorskaya E, Schroën JAM, Trettenbrein PC, Zaccarella E. Cleaning up the Brickyard: How Theory and Methodology Shape Experiments in Cognitive Neuroscience of Language. J Cogn Neurosci 2023; 35:2067-2088. [PMID: 37713672 DOI: 10.1162/jocn_a_02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The capacity for language is a defining property of our species, yet despite decades of research, evidence on its neural basis is still mixed and a generalized consensus is difficult to achieve. We suggest that this is partly caused by researchers defining "language" in different ways, with focus on a wide range of phenomena, properties, and levels of investigation. Accordingly, there is very little agreement among cognitive neuroscientists of language on the operationalization of fundamental concepts to be investigated in neuroscientific experiments. Here, we review chains of derivation in the cognitive neuroscience of language, focusing on how the hypothesis under consideration is defined by a combination of theoretical and methodological assumptions. We first attempt to disentangle the complex relationship between linguistics, psychology, and neuroscience in the field. Next, we focus on how conclusions that can be drawn from any experiment are inherently constrained by auxiliary assumptions, both theoretical and methodological, on which the validity of conclusions drawn rests. These issues are discussed in the context of classical experimental manipulations as well as study designs that employ novel approaches such as naturalistic stimuli and computational modeling. We conclude by proposing that a highly interdisciplinary field such as the cognitive neuroscience of language requires researchers to form explicit statements concerning the theoretical definitions, methodological choices, and other constraining factors involved in their work.
Collapse
Affiliation(s)
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matteo Maran
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Giorgio Papitto
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Elena Pyatigorskaya
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Joëlle A M Schroën
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Patrick C Trettenbrein
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
- University of Göttingen, Göttingen, Germany
| | - Emiliano Zaccarella
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
9
|
Hikishima K, Tsurugizawa T, Kasahara K, Hayashi R, Takagi R, Yoshinaka K, Nitta N. Functional ultrasound reveals effects of MRI acoustic noise on brain function. Neuroimage 2023; 281:120382. [PMID: 37734475 DOI: 10.1016/j.neuroimage.2023.120382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Loud acoustic noise from the scanner during functional magnetic resonance imaging (fMRI) can affect functional connectivity (FC) observed in the resting state, but the exact effect of the MRI acoustic noise on resting state FC is not well understood. Functional ultrasound (fUS) is a neuroimaging method that visualizes brain activity based on relative cerebral blood volume (rCBV), a similar neurovascular coupling response to that measured by fMRI, but without the audible acoustic noise. In this study, we investigated the effects of different acoustic noise levels (silent, 80 dB, and 110 dB) on FC by measuring resting state fUS (rsfUS) in awake mice in an environment similar to fMRI measurement. Then, we compared the results to those of resting state fMRI (rsfMRI) conducted using an 11.7 Tesla scanner. RsfUS experiments revealed a significant reduction in FC between the retrosplenial dysgranular and auditory cortexes (0.56 ± 0.07 at silence vs 0.05 ± 0.05 at 110 dB, p=.01) and a significant increase in FC anticorrelation between the infralimbic and motor cortexes (-0.21 ± 0.08 at silence vs -0.47 ± 0.04 at 110 dB, p=.017) as acoustic noise increased from silence to 80 dB and 110 dB, with increased consistency of FC patterns between rsfUS and rsfMRI being found with the louder noise conditions. Event-related auditory stimulation experiments using fUS showed strong positive rCBV changes (16.5% ± 2.9% at 110 dB) in the auditory cortex, and negative rCBV changes (-6.7% ± 0.8% at 110 dB) in the motor cortex, both being constituents of the brain network that was altered by the presence of acoustic noise in the resting state experiments. Anticorrelation between constituent brain regions of the default mode network (such as the infralimbic cortex) and those of task-positive sensorimotor networks (such as the motor cortex) is known to be an important feature of brain network antagonism, and has been studied as a biological marker of brain disfunction and disease. This study suggests that attention should be paid to the acoustic noise level when using rsfMRI to evaluate the anticorrelation between the default mode network and task-positive sensorimotor network.
Collapse
Affiliation(s)
- Keigo Hikishima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinwa 904-0495, Japan.
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8568, Japan
| | - Kazumi Kasahara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8568, Japan
| | - Ryusuke Hayashi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8568, Japan
| | - Ryo Takagi
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Kiyoshi Yoshinaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Naotaka Nitta
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| |
Collapse
|
10
|
Brkić D, Sommariva S, Schuler AL, Pascarella A, Belardinelli P, Isabella SL, Pino GD, Zago S, Ferrazzi G, Rasero J, Arcara G, Marinazzo D, Pellegrino G. The impact of ROI extraction method for MEG connectivity estimation: practical recommendations for the study of resting state data. Neuroimage 2023; 284:120424. [PMID: 39492417 DOI: 10.1016/j.neuroimage.2023.120424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024] Open
Abstract
Magnetoencephalography and electroencephalography (M/EEG) seed-based connectivity analysis requires the extraction of measures from regions of interest (ROI). M/EEG ROI-derived source activity can be treated in different ways. It is possible, for instance, to average each ROI's time series prior to calculating connectivity measures. Alternatively, one can compute connectivity maps for each element of the ROI prior to dimensionality reduction to obtain a single map. The impact of these different strategies on connectivity results is still unclear. Here, we address this question within a large MEG resting state cohort (N=113) and within simulated data. We consider 68 ROIs (Desikan-Kiliany atlas), two measures of connectivity (phase locking value-PLV, and its imaginary counterpart- ciPLV), and three frequency bands (theta 4-8 Hz, alpha 9-12 Hz, beta 15-30 Hz). We compare four extraction methods: (i) mean, or (ii) PCA of the activity within the seed or ROI before computing connectivity, map of the (iii) average, or (iv) maximum connectivity after computing connectivity for each element of the seed. Hierarchical clustering is then applied to compare connectivity outputs across multiple strategies, followed by direct contrasts across extraction methods. Finally, the results are validated by using a set of realistic simulations. We show that ROI-based connectivity maps vary remarkably across strategies in terms of connectivity magnitude and spatial distribution. Dimensionality reduction procedures conducted after computing connectivity are more similar to each-other, while PCA before approach is the most dissimilar to other approaches. Although differences across methods are consistent across frequency bands, they are influenced by the connectivity metric and ROI size. Greater differences were observed for ciPLV than PLV, and in larger ROIs. Realistic simulations confirmed that after aggregation procedures are generally more accurate but have lower specificity (higher rate of false positive connections). Though computationally demanding, after dimensionality reduction strategies should be preferred when higher sensitivity is desired. Given the remarkable differences across aggregation procedures, caution is warranted in comparing results across studies applying different methods.
Collapse
Affiliation(s)
| | - Sara Sommariva
- Dipartimento di Matematica, Università di Genova, Genova, Italy
| | - Anna-Lisa Schuler
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Annalisa Pascarella
- Istituto per le Applicazioni del Calcolo "M. Picone", National Research Council, Rome, Italy
| | | | - Silvia L Isabella
- IRCCS San Camillo, Venice, Italy; Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy
| | | | | | - Javier Rasero
- CoAx Lab, Carnegie Mellon University, Pittsburgh, USA; School of Data Science, University of Virginia, Charlottesville, USA.
| | | | - Daniele Marinazzo
- Faculty of Psychology and Educational Sciences, Department of Data Analysis, University of Ghent, Ghent, Belgium
| | - Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| |
Collapse
|
11
|
Schuler AL, Brkić D, Ferrazzi G, Arcara G, Marinazzo D, Pellegrino G. Auditory white noise exposure results in intrinsic cortical excitability changes. iScience 2023; 26:107387. [PMID: 37575186 PMCID: PMC10415920 DOI: 10.1016/j.isci.2023.107387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Cortical excitability is commonly measured by applying magnetic stimulation in combination with measuring behavioral response. This measure has, however, some shortcomings including spatial limitation to the primary motor cortex and not accounting for intrinsic excitability fluctuations. Here, we use a measure for intrinsic excitability based on phase synchronization previously validated for epilepsy. We apply this measure in 30 healthy participants' magnetoencephalography (MEG) recordings during the exposure of auditory white noise, a stimulus that has been suggested to modify cortical excitability. Using cortical parcellation of the MEG source data, we could find a specific pattern of increased and decreased excitability while participants are exposed to white noise vs. silence. Specifically, excitability during white noise exposure decreases in the frontal lobe and increases in the temporal lobe. This study thus adds to the understanding of cortical excitability changes due to specific environmental stimuli as well as the spatial extent of these effects.
Collapse
Affiliation(s)
- Anna-Lisa Schuler
- IRCCS San Camillo Hospital, Venice, Italy
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | | | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
12
|
Poplawsky AJ, Cover C, Reddy S, Chishti HB, Vazquez A, Fukuda M. Odor-evoked layer-specific fMRI activities in the awake mouse olfactory bulb. Neuroimage 2023; 274:120121. [PMID: 37080347 PMCID: PMC10240534 DOI: 10.1016/j.neuroimage.2023.120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Awake rodent fMRI is increasingly common over the use of anesthesia since it permits behavioral paradigms and does not confound normal brain function or neurovascular coupling. It is well established that adequate acclimation to the loud fMRI environment and head fixation reduces stress in the rodents and allows for whole brain imaging with little contamination from motion. However, it is unknown whether high-resolution fMRI with increased susceptibility to motion and lower sensitivity can measure small, but spatially discrete, activations in awake mice. To examine this, we used contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI in the mouse olfactory bulb for its enhanced sensitivity and neural specificity. We determined that activation patterns in the glomerular layer to four different odors were spatially distinct and were consistent with previously established histological patterns. In addition, odor-evoked laminar activations were greatest in superficial layers that decreased with laminar depth, similar to previous observations. Interestingly, the fMRI response strengths in the granule cell layer were greater in awake mice than our previous anesthetized rat studies, suggesting that feedback neural activities were intact with wakefulness. We finally determined that fMRI signal changes to repeated odor exposure (i.e., olfactory adaptation) attenuated relatively more in the feedback granule cell layer compared to the input glomerular layer, which is consistent with prior observations. We, therefore, conclude that high-resolution CBVw fMRI can measure odor-specific activation patterns and distinguish changes in laminar activity of head and body restrained awake mice.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States.
| | - Christopher Cover
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sujatha Reddy
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| | - Harris B Chishti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto Vazquez
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| |
Collapse
|
13
|
Jawata A, Nicolás von E, Jean-Marc L, Giovanni P, Giorgio A, Zhengchen C, Tanguy H, Chifaou A, Hassan K, Birgit F, Jean G, Christophe G. Validating MEG source imaging of resting state oscillatory patterns with an intracranial EEG atlas. Neuroimage 2023; 274:120158. [PMID: 37149236 DOI: 10.1016/j.neuroimage.2023.120158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/27/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Magnetoencephalography (MEG) is a widely used non-invasive tool to estimate brain activity with high temporal resolution. However, due to the ill-posed nature of the MEG source imaging (MSI) problem, the ability of MSI to identify accurately underlying brain sources along the cortical surface is still uncertain and requires validation. METHOD We validated the ability of MSI to estimate the background resting state activity of 45 healthy participants by comparing it to the intracranial EEG (iEEG) atlas (https://mni-open-ieegatlas. RESEARCH mcgill.ca/). First, we applied wavelet-based Maximum Entropy on the Mean (wMEM) as an MSI technique. Next, we converted MEG source maps into intracranial space by applying a forward model to the MEG-reconstructed source maps, and estimated virtual iEEG (ViEEG) potentials on each iEEG channel location; we finally quantitatively compared those with actual iEEG signals from the atlas for 38 regions of interest in the canonical frequency bands. RESULTS The MEG spectra were more accurately estimated in the lateral regions compared to the medial regions. The regions with higher amplitude in the ViEEG than in the iEEG were more accurately recovered. In the deep regions, MEG-estimated amplitudes were largely underestimated and the spectra were poorly recovered. Overall, our wMEM results were similar to those obtained with minimum norm or beamformer source localization. Moreover, the MEG largely overestimated oscillatory peaks in the alpha band, especially in the anterior and deep regions. This is possibly due to higher phase synchronization of alpha oscillations over extended regions, exceeding the spatial sensitivity of iEEG but detected by MEG. Importantly, we found that MEG-estimated spectra were more comparable to spectra from the iEEG atlas after the aperiodic components were removed. CONCLUSION This study identifies brain regions and frequencies for which MEG source analysis is likely to be reliable, a promising step towards resolving the uncertainty in recovering intracerebral activity from non-invasive MEG studies.
Collapse
Affiliation(s)
- Afnan Jawata
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada; Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada.
| | - Ellenrieder Nicolás von
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Lina Jean-Marc
- Centre De Recherches En Mathématiques, Montréal, Québec H3C 3J7, Canada; Electrical Engineering Department, École De Technologie Supérieure, Montréal, Québec H3C 1K3, Canada
| | - Pellegrino Giovanni
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Arcara Giorgio
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Cai Zhengchen
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Hedrich Tanguy
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Abdallah Chifaou
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Khajehpour Hassan
- Physics Department and PERFORM Centre, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Frauscher Birgit
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Gotman Jean
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Grova Christophe
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada; Centre De Recherches En Mathématiques, Montréal, Québec H3C 3J7, Canada; Physics Department and PERFORM Centre, Concordia University, Montréal, Québec H4B 1R6, Canada.
| |
Collapse
|
14
|
Pinardi M, Schuler AL, Arcara G, Ferreri F, Marinazzo D, Di Pino G, Pellegrino G. Reduced connectivity of primary auditory and motor cortices during exposure to auditory white noise. Neurosci Lett 2023; 804:137212. [PMID: 36966962 DOI: 10.1016/j.neulet.2023.137212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Auditory white noise (WN) is widely used in daily life for inducing sleep, and in neuroscience to mask unwanted environmental noise and cues. However, WN was recently reported to influence corticospinal excitability and behavioral performance. Here, we expand previous preliminary findings on the influence of WN exposure on cortical functioning, and we hypothesize that it may modulate cortical connectivity. We tested our hypothesis by performing magnetoencephalography in 20 healthy subjects. WN reduces cortical connectivity of the primary auditory and motor regions with very distant cortical areas, showing a right lateralized connectivity reduction for primary motor cortex. The present results, together with previous finding concerning WN impact on corticospinal excitability and behavioral performance, further support the role of WN as a modulator of cortical function. This suggest avoiding its unrestricted use as a masking tool, while purposely designed and controlled WN application could be exploited to harness brain function and to treat neuropsychiatric conditions.
Collapse
|
15
|
Alahmadi AA. Functional connectivity of sub-cortical brain regions: disparities and similarities. Neuroreport 2023; 34:214-219. [PMID: 36789843 PMCID: PMC10516169 DOI: 10.1097/wnr.0000000000001881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 02/16/2023]
Abstract
Sub-cortical grey matter structures, such as the putamen, pallidum, caudate, thalamus, amygdala and hippocampus, play substantial roles in both simple and complex brain functions, including regulation of pleasure and emotions; control of movements; learning; decision-making; language development; and sensory, cognitive, social and other higher-order functions. Most of these regions act as information hubs for the nervous system, relaying and controlling the flow of information to various portions of the brain. To further understand the complex neurophysiological characteristics of sub-cortical areas, the aim of this study was to investigate the functional integrations of six sub-cortical areas to different major functional brain networks. One hundred ninety-eight healthy individuals were examined using resting-state functional MRI. The seeds identified in this study were six sub-cortical deep grey matter regions, namely putamen, pallidum, caudate, thalamus, amygdala and hippocampus. The analysis indicated that the link between the sub-cortical regions and some functional brain networks was similar in some aspects, but there were disparities in the mechanism underlying such a link and in the existence of functional connections between these regions and networks. Despite the substantial functional connectivity linkages between the sub-cortical regions, discrepancies were still noted. On the basis of the connections to the majority of the major brain networks, this study demonstrated the essential functional roles and involvements of the sub-cortical regions. This finding is consistent with an earlier report that revealed a substantial role of the sub-cortical regions in several brain functions.
Collapse
Affiliation(s)
- Adnan A.S. Alahmadi
- Department of Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Hernandez-Pavon JC, Veniero D, Bergmann TO, Belardinelli P, Bortoletto M, Casarotto S, Casula EP, Farzan F, Fecchio M, Julkunen P, Kallioniemi E, Lioumis P, Metsomaa J, Miniussi C, Mutanen TP, Rocchi L, Rogasch NC, Shafi MM, Siebner HR, Thut G, Zrenner C, Ziemann U, Ilmoniemi RJ. TMS combined with EEG: Recommendations and open issues for data collection and analysis. Brain Stimul 2023; 16:567-593. [PMID: 36828303 DOI: 10.1016/j.brs.2023.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) evokes neuronal activity in the targeted cortex and connected brain regions. The evoked brain response can be measured with electroencephalography (EEG). TMS combined with simultaneous EEG (TMS-EEG) is widely used for studying cortical reactivity and connectivity at high spatiotemporal resolution. Methodologically, the combination of TMS with EEG is challenging, and there are many open questions in the field. Different TMS-EEG equipment and approaches for data collection and analysis are used. The lack of standardization may affect reproducibility and limit the comparability of results produced in different research laboratories. In addition, there is controversy about the extent to which auditory and somatosensory inputs contribute to transcranially evoked EEG. This review provides a guide for researchers who wish to use TMS-EEG to study the reactivity of the human cortex. A worldwide panel of experts working on TMS-EEG covered all aspects that should be considered in TMS-EEG experiments, providing methodological recommendations (when possible) for effective TMS-EEG recordings and analysis. The panel identified and discussed the challenges of the technique, particularly regarding recording procedures, artifact correction, analysis, and interpretation of the transcranial evoked potentials (TEPs). Therefore, this work offers an extensive overview of TMS-EEG methodology and thus may promote standardization of experimental and computational procedures across groups.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA.
| | | | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Paolo Belardinelli
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Elias P Casula
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Faranak Farzan
- Simon Fraser University, School of Mechatronic Systems Engineering, Surrey, British Columbia, Canada
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Petro Julkunen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Nigel C Rogasch
- University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Monash University, Melbourne, Australia
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregor Thut
- School of Psychology and Neuroscience, University of Glasgow, United Kingdom
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| |
Collapse
|
17
|
Masina F, Montemurro S, Marino M, Manzo N, Pellegrino G, Arcara G. State-dependent tDCS modulation of the somatomotor network: A MEG study. Clin Neurophysiol 2022; 142:133-142. [PMID: 36037749 DOI: 10.1016/j.clinph.2022.07.508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2022] [Accepted: 07/30/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) is a non-invasive technique widely used to investigate brain excitability and activity. However, the variability in both brain and behavioral responses to tDCS limits its application for clinical purposes. This study aims to shed light on state-dependency, a phenomenon that contributes to the variability of tDCS. METHODS To this aim, we investigated changes in spectral activity and functional connectivity in somatomotor regions after Real and Sham tDCS using generalized additive mixed models (GAMMs), which allowed us to investigate how modulation depends on the initial state of the brain. RESULTS Results showed that changes in spectral activity, but not connectivity, in the somatomotor regions depend on the initial state of the brain, confirming state-dependent effects. Specifically, we found a non-linear interaction between stimulation conditions (Real vs Sham) and initial state: a reduction of alpha and beta power was observed only in participants that had higher alpha and beta power before Real tDCS. CONCLUSIONS This study highlights the importance of considering state-dependency to tDCS and shows how it can be taken into account with appropriate statistical models. SIGNIFICANCE Our findings bear insight into tDCS mechanisms, potentially leading to discriminate between tDCS responders and non-responders.
Collapse
Affiliation(s)
| | | | - Marco Marino
- IRCCS San Camillo Hospital, Venice, Italy; Department of Movement Sciences, Research Center for Motor Control and Neuroplasticity, KU Leuven, Belgium.
| | - Nicoletta Manzo
- IRCCS San Camillo Hospital, Venice, Italy; Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.
| | | | | |
Collapse
|
18
|
Stimulation with acoustic white noise enhances motor excitability and sensorimotor integration. Sci Rep 2022; 12:13108. [PMID: 35907889 PMCID: PMC9338990 DOI: 10.1038/s41598-022-17055-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Auditory white noise (WN) is widely used in neuroscience to mask unwanted environmental noise and cues, e.g. TMS clicks. However, to date there is no research on the influence of WN on corticospinal excitability and potentially associated sensorimotor integration itself. Here we tested the hypothesis, if WN induces M1 excitability changes and improves sensorimotor performance. M1 excitability (spTMS, SICI, ICF, I/O curve) and sensorimotor reaction-time performance were quantified before, during and after WN stimulation in a set of experiments performed in a cohort of 61 healthy subjects. WN enhanced M1 corticospinal excitability, not just during exposure, but also during silence periods intermingled with WN, and up to several minutes after the end of exposure. Two independent behavioural experiments highlighted that WN improved multimodal sensorimotor performance. The enduring excitability modulation combined with the effects on behaviour suggest that WN might induce neural plasticity. WN is thus a relevant modulator of corticospinal function; its neurobiological effects should not be neglected and could in fact be exploited in research applications.
Collapse
|
19
|
Schuler AL, Ferrazzi G, Colenbier N, Arcara G, Piccione F, Ferreri F, Marinazzo D, Pellegrino G. Auditory driven gamma synchrony is associated with cortical thickness in widespread cortical areas. Neuroimage 2022; 255:119175. [PMID: 35390460 PMCID: PMC9168448 DOI: 10.1016/j.neuroimage.2022.119175] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/20/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Gamma synchrony is a fundamental functional property of the cerebral cortex, impaired in multiple neuropsychiatric conditions (i.e. schizophrenia, Alzheimer's disease, stroke etc.). Auditory stimulation in the gamma range allows to drive gamma synchrony of the entire cortical mantle and to estimate the efficiency of the mechanisms sustaining it. As gamma synchrony depends strongly on the interplay between parvalbumin-positive interneurons and pyramidal neurons, we hypothesize an association between cortical thickness and gamma synchrony. To test this hypothesis, we employed a combined magnetoencephalography (MEG) - Magnetic Resonance Imaging (MRI) study. METHODS Cortical thickness was estimated from anatomical MRI scans. MEG measurements related to exposure of 40 Hz amplitude modulated tones were projected onto the cortical surface. Two measures of cortical synchrony were considered: (a) inter-trial phase consistency at 40 Hz, providing a vertex-wise estimation of gamma synchronization, and (b) phase-locking values between primary auditory cortices and whole cortical mantle, providing a measure of long-range cortical synchrony. A correlation between cortical thickness and synchronization measures was then calculated for 72 MRI-MEG scans. RESULTS Both inter-trial phase consistency and phase locking values showed a significant positive correlation with cortical thickness. For inter-trial phase consistency, clusters of strong associations were found in the temporal and frontal lobes, especially in the bilateral auditory and pre-motor cortices. Higher phase-locking values corresponded to higher cortical thickness in the frontal, temporal, occipital and parietal lobes. DISCUSSION AND CONCLUSIONS In healthy subjects, a thicker cortex corresponds to higher gamma synchrony and connectivity in the primary auditory cortex and beyond, likely reflecting underlying cell density involved in gamma circuitries. This result hints towards an involvement of gamma synchrony together with underlying brain structure in brain areas for higher order cognitive functions. This study contributes to the understanding of inherent cortical functional and structural brain properties, which might in turn constitute the basis for the definition of useful biomarkers in patients showing aberrant gamma synchronization.
Collapse
Affiliation(s)
| | - Giulio Ferrazzi
- IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | - Nigel Colenbier
- IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | - Giorgio Arcara
- IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | | | - Florinda Ferreri
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University
| | | |
Collapse
|
20
|
Xinyuan L, Ximei C, Qingqing L, Guangcan X, Wei L, Mingyue X, Xiaoli D, Shiqing S, Yong L, Hong C. Altered resting-state functional connectivity of medial frontal cortex in overweight individuals: Link to food-specific intentional inhibition and weight gain. Behav Brain Res 2022; 433:114003. [PMID: 35811002 DOI: 10.1016/j.bbr.2022.114003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Numerous findings from functional neuroimaging research suggest that overweight may be associated with alterations in reactive inhibition. However, there is a dearth of research investigating the functional connectivity that mediates intentional inhibition in overweight individuals. To explore this issue, 55 overweight and 45 normal-weight adults completed an assessment consisting of a resting-state functional magnetic resonance imaging scan, a behavioural task measuring food-specific intentional inhibition, and a 1-year longitudinal measurement of BMI change. A seed-based approach was employed to examine the group-difference of the resting-state functional connectivity (rsFC) of the medial frontal cortex (MFC) (dorsal fronto-medial cortex [dFMC], pre-supplementary motor area, and premotor cortex) regions involved in intentional inhibition. Compared with normal-weight adults, the overweight individuals exhibited higher rsFC between the MFC seeds and (i) cerebellum, (ii) postcentral gyrus, (iii) middle temporal gyrus, and (iv) posterior cingulate cortex, while lower rsFC strength were observed between MFC seeds and (i) putamen and (ii) insula. The overweight individuals with higher dFMC-cerebellum rsFC strength showed poorer performance in food-specific intentional inhibition and gained more weight a year later than those of normal-weight participants. Results suggested that altered functional connections between MFC and regions associated with reward and maladaptive eating may be key neural mechanisms of food-specific intentional inhibition in overweight status. Therefore, individuals are encouraged to make informed decisions about their health and reduce their consumption of obesogenic foods from the perspective of intentional inhibition.
Collapse
Affiliation(s)
- Liu Xinyuan
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Chen Ximei
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Li Qingqing
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Xiang Guangcan
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Li Wei
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Xiao Mingyue
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Du Xiaoli
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Song Shiqing
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Liu Yong
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Chen Hong
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
21
|
Pérez-Crespo L, Kusters MSW, López-Vicente M, Lubczyńska MJ, Foraster M, White T, Hoek G, Tiemeier H, Muetzel RL, Guxens M. Exposure to traffic-related air pollution and noise during pregnancy and childhood, and functional brain connectivity in preadolescents. ENVIRONMENT INTERNATIONAL 2022; 164:107275. [PMID: 35580436 DOI: 10.1016/j.envint.2022.107275] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The amount of people affected by traffic-related air pollution and noise is continuously increasing, but limited research has been conducted on the association between these environmental exposures and functional brain connectivity in children. OBJECTIVE This exploratory study aimed to analyze the associations between the exposure to traffic-related air pollution and noise during pregnancy and childhood, and functional brain connectivity amongst a wide-swath of brain areas in preadolescents from 9 to 12 years of age. METHODS We used data of 2,197 children from the Generation R Study. Land use regression models were applied to estimate nitrogen oxides and particulate matter levels at participant's homes for several time periods: pregnancy, birth to 3 years, 3 to 6 years, and 6 years of age to the age at magnetic resonance imaging (MRI) assessment. Existing noise maps were used to estimate road traffic noise exposure at participant's homes for the same time periods. Resting-state functional MRI was obtained at 9-12 years of age. Pair-wise correlation coefficients of the blood-oxygen-level-dependent signals between 380 brain areas were calculated. Linear regressions were run and corrected for multiple testing. RESULTS Preadolescents exposed to higher levels of NO2, NOx, and PM2.5 absorbance, from birth to 3 years, and from 3 to 6 years of age showed higher correlation coefficients among several brain regions (e.g. from 0.16 to 0.19 higher correlation coefficient related to PM2.5 absorbance exposure, depending on the brain connection). Overall, most identified associations were between brain regions of the task positive and task negative networks, and were mainly inter-network (20 of 26). Slightly more than half of the connections were intra-hemispheric (14 of 26), predominantly in the right hemisphere. Road traffic noise was not associated with functional brain connectivity. CONCLUSIONS This exploratory study found that exposure to traffic-related air pollution during the first years of life was related to higher functional brain connectivity predominantly in brain areas located in the task positive and task negative networks, in preadolescents from 9 to 12 years of age. These results could be an indicator of differential functional connectivity in children exposed to higher levels of air pollution.
Collapse
Affiliation(s)
- Laura Pérez-Crespo
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Michelle S W Kusters
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Mónica López-Vicente
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | - Małgorzata J Lubczyńska
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Foraster
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Lull (URL), Barcelona, Spain.
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC Rotterdam, The Netherlands.
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health Boston, USA.
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Veldhuizen MG, Cecchetto C, Fjaeldstad AW, Farruggia MC, Hartig R, Nakamura Y, Pellegrino R, Yeung AWK, Fischmeister FPS. Future Directions for Chemosensory Connectomes: Best Practices and Specific Challenges. Front Syst Neurosci 2022; 16:885304. [PMID: 35707745 PMCID: PMC9190244 DOI: 10.3389/fnsys.2022.885304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 01/14/2023] Open
Abstract
Ecological chemosensory stimuli almost always evoke responses in more than one sensory system. Moreover, any sensory processing takes place along a hierarchy of brain regions. So far, the field of chemosensory neuroimaging is dominated by studies that examine the role of brain regions in isolation. However, to completely understand neural processing of chemosensation, we must also examine interactions between regions. In general, the use of connectivity methods has increased in the neuroimaging field, providing important insights to physical sensory processing, such as vision, audition, and touch. A similar trend has been observed in chemosensory neuroimaging, however, these established techniques have largely not been rigorously applied to imaging studies on the chemical senses, leaving network insights overlooked. In this article, we first highlight some recent work in chemosensory connectomics and we summarize different connectomics techniques. Then, we outline specific challenges for chemosensory connectome neuroimaging studies. Finally, we review best practices from the general connectomics and neuroimaging fields. We recommend future studies to develop or use the following methods we perceive as key to improve chemosensory connectomics: (1) optimized study designs, (2) reporting guidelines, (3) consensus on brain parcellations, (4) consortium research, and (5) data sharing.
Collapse
Affiliation(s)
- Maria G. Veldhuizen
- Department of Anatomy, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Cinzia Cecchetto
- Department of General Psychology, University of Padova, Padua, Italy
| | - Alexander W. Fjaeldstad
- Flavour Clinic, Department of Otorhinolaryngology, Regional Hospital West Jutland, Holstebro, Denmark
| | - Michael C. Farruggia
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Renée Hartig
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Yuko Nakamura
- The Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Andy W. K. Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Florian Ph. S. Fischmeister
- Institute of Psychology, University of Graz, Graz, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|