1
|
De Felice S, Chand T, Croy I, Engert V, Goldstein P, Holroyd CB, Kirsch P, Krach S, Ma Y, Scheele D, Schurz M, Schweinberger SR, Hoehl S, Vrticka P. Relational neuroscience: Insights from hyperscanning research. Neurosci Biobehav Rev 2025; 169:105979. [PMID: 39674533 DOI: 10.1016/j.neubiorev.2024.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Humans are highly social, typically without this ability requiring noticeable efforts. Yet, such social fluency poses challenges both for the human brain to compute and for scientists to study. Over the last few decades, neuroscientific research of human sociality has witnessed a shift in focus from single-brain analysis to complex dynamics occurring across several brains, posing questions about what these dynamics mean and how they relate to multifaceted behavioural models. We propose the term 'Relational Neuroscience' to collate the interdisciplinary research field devoted to modelling the inter-brain dynamics subserving human connections, spanning from real-time joint experiences to long-term social bonds. Hyperscanning, i.e., simultaneously measuring brain activity from multiple individuals, has proven to be a highly promising technique to investigate inter-brain dynamics. Here, we discuss how hyperscanning can help investigate questions within the field of Relational Neuroscience, considering a variety of subfields, including cooperative interactions in dyads and groups, empathy, attachment and bonding, and developmental neuroscience. While presenting Relational Neuroscience in the light of hyperscanning, our discussion also takes into account behaviour, physiology and endocrinology to properly interpret inter-brain dynamics within social contexts. We consider the strengths but also the limitations and caveats of hyperscanning to answer questions about interacting people. The aim is to provide an integrative framework for future work to build better theories across a variety of contexts and research subfields to model human sociality.
Collapse
Affiliation(s)
| | - Tara Chand
- Jindal Institute of Behavioural Sciences, O. P. Jindal Global University, Sonipat, Haryana, India; Department of Clinical Psychology, Friedrich-Schiller University Jena, Jena, Germany
| | - Ilona Croy
- Department of Clinical Psychology, Friedrich-Schiller University Jena, Jena, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| | - Veronika Engert
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany
| | - Pavel Goldstein
- Integrative Pain Laboratory, School of Public Health, University of Haifa, Haifa, Israel
| | - Clay B Holroyd
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Institute of Psychology, University of Heidelberg, Germany; German Center for Mental Health (DZPG), Site Mannheim-Heidelberg-Ulm, Germany
| | - Sören Krach
- Klinik für Psychiatrie und Psychotherapie, University of Lübeck, Lübeck, Germany
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Dirk Scheele
- Department of Social Neuroscience, Faculty of Medicine, Ruhr University Bochum, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, Ruhr University Bochum, Germany
| | - Matthias Schurz
- Department of Psychology, Faculty of Psychology and Sport Science, and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Stefan R Schweinberger
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Department of General Psychology, Friedrich Schiller University, Jena, Germany
| | - Stefanie Hoehl
- Faculty of Psychology, University of Vienna, Vienna, Austria.
| | - Pascal Vrticka
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
| |
Collapse
|
2
|
Wang YJ, Wen Y, Zheng L, Chen J, Lin Z, Pan Y. A computational and multi-brain signature for aberrant social coordination in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111225. [PMID: 39706546 DOI: 10.1016/j.pnpbp.2024.111225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Social functioning impairment is a core symptom of schizophrenia (SCZ). Yet, the computational and neural mechanisms of social coordination in SCZ under real-time and naturalistic settings are poorly understood. Here, we instructed patients with SCZ to coordinate with a healthy control (HC) in a joint finger-tapping task, during which their brain activity was measured by functional near-infrared spectroscopy simultaneously. The results showed that patients with SCZ exhibited poor rhythm control ability and unstable tapping behaviour, which weakened their interpersonal synchronization when coordinating with HCs. Moreover, the dynamical systems modeling revealed disrupted between-participant coupling when SCZ patients coordinated with HCs. Importantly, increased inter-brain synchronization was identified within SCZ-HC dyads, which positively correlated with behavioural synchronization and successfully predicted dimensions of psychopathology. Our study suggests that SCZ individuals may require stronger interpersonal neural alignment to support their deficient coordination performance. This hyperalignment may be relevant for developing inter-personalized treatment strategies.
Collapse
Affiliation(s)
- Ya-Jie Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yalan Wen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Leilei Zheng
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China; Center for Brain Health and Brain Technology, Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| | - Zheng Lin
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Schilbach L, Redcay E. Synchrony Across Brains. Annu Rev Psychol 2025; 76:883-911. [PMID: 39441884 DOI: 10.1146/annurev-psych-080123-101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Second-person neuroscience focuses on studying the behavioral and neuronal mechanisms of real-time social interactions within single and across interacting brains. In this review article, we describe the developments that have been undertaken to study socially interactive phenomena and the behavioral and neurobiological processes that extend across interaction partners. More specifically, we focus on the role that synchrony across brains plays in enabling and facilitating social interaction and communication and in shaping social coordination and learning, and we consider how reduced synchrony across brains may constitute a core feature of psychopathology.
Collapse
Affiliation(s)
- Leonhard Schilbach
- Department of General Psychiatry 2, LVR-Klinikum Düsseldorf / Kliniken der Heinrich-Heine-Universität, Düsseldorf, Germany;
- Department of Psychiatry and Psychotherapy, Clinic of the Ludwig-Maximilians-University, Munich, Germany
| | - Elizabeth Redcay
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
4
|
Feng S, Ding L, Wang M, Zhang J, Yuan Y, Zhang P, Bai X. Can similarity of autistic traits promote neural synchronization? Exp Brain Res 2024; 242:2633-2644. [PMID: 39320438 DOI: 10.1007/s00221-024-06919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024]
Abstract
People with similar levels of autistic traits are reported to exhibit better interactions than those with larger differences in autistic traits. However, whether this "similarity effect" exists at the neural level remains unclear. To address this gap, the present study employed functional near-infrared spectroscopy (fNIRS) hyperscanning technology to assess inter-brain synchronization (IBS) during naturalistic conversations among dyads with three types of autistic trait combinations (20 high-high, 22 high-low, and 18 low-low dyads). The results revealed that the high-high dyads exhibited significantly lower IBS in the right temporoparietal junction (rTPJ) region compared to the low-low dyads, with no significant differences observed between the high-low group and the other two groups. Moreover, though dyadic differences in conversation satisfaction were positively correlated with dyadic autistic trait differences, IBS only showed a significant negative correlation with the dyadic average autistic trait scores and no significant correlation with the dyadic difference scores of autistic traits. These findings suggest that dyads with high autistic traits may have shared feelings about conversations, but cannot produce IBS through successful mutual prediction and understanding.
Collapse
Affiliation(s)
- Shuyuan Feng
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Lin Ding
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Mingliang Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Jianing Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Yuqing Yuan
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Peng Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China.
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China.
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.
| | - Xuejun Bai
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| |
Collapse
|
5
|
Ciaramidaro A, Toppi J, Vogel P, Freitag CM, Siniatchkin M, Astolfi L. Synergy of the mirror neuron system and the mentalizing system in a single brain and between brains during joint actions. Neuroimage 2024; 299:120783. [PMID: 39187218 DOI: 10.1016/j.neuroimage.2024.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cooperative action involves the simulation of actions and their co-representation by two or more people. This requires the involvement of two complex brain systems: the mirror neuron system (MNS) and the mentalizing system (MENT), both of critical importance for successful social interaction. However, their internal organization and the potential synergy of both systems during joint actions (JA) are yet to be determined. The aim of this study was to examine the role and interaction of these two fundamental systems-MENT and MNS-during continuous interaction. To this hand, we conducted a multiple-brain connectivity analysis in the source domain during a motor cooperation task using high-density EEG dual-recordings providing relevant insights into the roles of MNS and MENT at the intra- and interbrain levels. In particular, the intra-brain analysis demonstrated the essential function of both systems during JA, as well as the crucial role played by single brain regions of both neural mechanisms during cooperative activities. Specifically, our intra-brain analysis revealed that both neural mechanisms are essential during Joint Action (JA), showing a solid connection between MNS and MENT and a central role of the single brain regions of both mechanisms during cooperative actions. Additionally, our inter-brain study revealed increased inter-subject connections involving the motor system, MENT and MNS. Thus, our findings show a mutual influence between two interacting agents, based on synchronization of MNS and MENT systems. Our results actually encourage more research into the still-largely unknown realm of inter-brain dynamics and contribute to expand the body of knowledge in social neuroscience.
Collapse
Affiliation(s)
- Angela Ciaramidaro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Viale Allegri 9, 42121 Reggio Emilia, Italy; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany.
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| | - Pascal Vogel
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Institute of Neurophysiology, Neuroscience Center, Goethe University, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt/M, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Laura Astolfi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| |
Collapse
|
6
|
Callara AL, Scopa C, Contalbrigo L, Lanatà A, Scilingo EP, Baragli P, Greco A. Unveiling directional physiological coupling in human-horse interactions. iScience 2024; 27:110857. [PMID: 39310749 PMCID: PMC11414536 DOI: 10.1016/j.isci.2024.110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/27/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
This research investigates the human-horse bond, aiming to unveil the physiological mechanisms regulating interspecies interactions. We hypothesized observing a physiological synchronization in human-horse dynamics, akin to human interactions. Through time-frequency Granger causality analysis of heart rate variability (HRV) and behavioral data, this study reveals the establishment of bidirectional synchronization in HRV between humans and horses. The coupling directionality is influenced by behavior and familiarity. In exploration scenarios led by horses, bidirectional interactions occur, particularly with familiar individuals. Conversely, during human-led activities such as grooming, physiological connectivity direction varies based on the familiarity level. In addition, the methodology allows in-depth analysis of sympathetic and parasympathetic nervous system contributions, highlighting their intricate role in the human-horse relationship. Such a physiological coupling estimate, correlated with behavioral data, provides a quantitative tool applicable across contexts and species This holds significant promise for assessing animal-assisted therapies and for applications in sports and various animal-related domains.
Collapse
Affiliation(s)
- Alejandro Luis Callara
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, Pisa, 56122 Pisa, Italy
- Research Center “E. Piaggio”, Largo Lucio Lazzarino 1, Pisa, 56122 Pisa, Italy
| | - Chiara Scopa
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Viale delle Scienze 11/A, Parma, 43124 Parma, Italy
| | - Laura Contalbrigo
- National Reference Centre for Animal Assisted Interventions, Istituto Zooprofilattico Sperimentale delle Venezie,Viale dell’Università 10, 35020 Legnaro, Italy
| | - Antonio Lanatà
- Department of Information Engineering, University of Florence, Via di Santa Marta 3, Firenze, 50139 Firenze, Italy
| | - Enzo Pasquale Scilingo
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, Pisa, 56122 Pisa, Italy
- Research Center “E. Piaggio”, Largo Lucio Lazzarino 1, Pisa, 56122 Pisa, Italy
| | - Paolo Baragli
- Research Center “E. Piaggio”, Largo Lucio Lazzarino 1, Pisa, 56122 Pisa, Italy
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, 56124 Pisa, Italy
| | - Alberto Greco
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, Pisa, 56122 Pisa, Italy
- Research Center “E. Piaggio”, Largo Lucio Lazzarino 1, Pisa, 56122 Pisa, Italy
| |
Collapse
|
7
|
Marriot Haresign I, A M Phillips E, V Wass S. Why behaviour matters: Studying inter-brain coordination during child-caregiver interaction. Dev Cogn Neurosci 2024; 67:101384. [PMID: 38657470 PMCID: PMC11059326 DOI: 10.1016/j.dcn.2024.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Modern technology allows for simultaneous neuroimaging from interacting caregiver-child dyads. Whereas most analyses that examine the coordination between brain regions within an individual brain do so by measuring changes relative to observed events, studies that examine coordination between two interacting brains generally do this by measuring average intra-brain coordination across entire blocks or experimental conditions. In other words, they do not examine changes in inter-brain coordination relative to individual behavioural events. Here, we discuss the limitations of this approach. First, we present data suggesting that fine-grained temporal interdependencies in behaviour can leave residual artifact in neuroimaging data. We show how artifact can manifest as both power and (through that) phase synchrony effects in EEG and affect wavelet transform coherence in fNIRS analyses. Second, we discuss different possible mechanistic explanations of how inter-brain coordination is established and maintained. We argue that non-event-locked approaches struggle to differentiate between them. Instead, we contend that approaches which examine how interpersonal dynamics change around behavioural events have better potential for addressing possible artifactual confounds and for teasing apart the overlapping mechanisms that drive changes in inter-brain coordination.
Collapse
Affiliation(s)
| | | | - Sam V Wass
- Department of Psychology, University of East London, London, UK
| |
Collapse
|
8
|
Cheadle JE, Davidson-Turner KJ, Goosby BJ. Active Inference and Social Actors: Towards a Neuro-Bio-Social Theory of Brains and Bodies in Their Worlds. KOLNER ZEITSCHRIFT FUR SOZIOLOGIE UND SOZIALPSYCHOLOGIE 2024; 76:317-350. [PMID: 39429464 PMCID: PMC11485288 DOI: 10.1007/s11577-024-00936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/01/2024] [Indexed: 10/22/2024]
Abstract
Although research including biological concepts and variables has gained more prominence in sociology, progress assimilating the organ of experience, the brain, has been theoretically and technically challenging. Formal uptake and assimilation have thus been slow. Within psychology and neuroscience, the traditional brain, which has made brief appearances in sociological research, is a "bottom-up" processor in which sensory signals are passed up the neural hierarchy where they are eventually cognitively and emotionally processed, after which actions and responses are generated. In this paper, we introduce the Active Inference Framework (AIF), which casts the brain as a Bayesian "inference engine" that tests its "top-down" predictive models against "bottom-up" sensory error streams in its attempts to resolve uncertainty and make the world more predictable. After assembling and presenting key concepts in the AIF, we describe an integrated neuro-bio-social model that prioritizes the microsociological assertion that the scene of action is the situation, wherein brains enculturate. Through such social dynamics, enculturated brains share models of the world with one another, enabling collective realities that disclose the actions afforded in those times and places. We conclude by discussing this neuro-bio-social model within the context of exemplar sociological research areas, including the sociology of stress and health, the sociology of emotions, and cognitive cultural sociology, all areas where the brain has received some degree of recognition and incorporation. In each case, sociological insights that do not fit naturally with the traditional brain model emerge intuitively from the predictive AIF model, further underscoring the interconnections and interdependencies between these areas, while also providing a foundation for a probabilistic sociology.
Collapse
Affiliation(s)
- Jacob E. Cheadle
- Department of Sociology, Population Research Center, and The Center on Aging and Population Sciences, The University of Texas at Austin, 305 E. 23rd St., 78712 Austin, TX USA
| | | | - Bridget J. Goosby
- Department of Sociology, Population Research Center, and The Center on Aging and Population Sciences, The University of Texas at Austin, 305 E. 23rd St., 78712 Austin, TX USA
| |
Collapse
|
9
|
Takeuchi N. A dual-brain therapeutic approach using noninvasive brain stimulation based on two-person neuroscience: A perspective review. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5118-5137. [PMID: 38872529 DOI: 10.3934/mbe.2024226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Our actions and decisions in everyday life are heavily influenced by social interactions, which are dynamic feedback loops involving actions, reactions, and internal cognitive processes between individual agents. Social interactions induce interpersonal synchrony, which occurs at different biobehavioral levels and comprises behavioral, physiological, and neurological activities. Hyperscanning-a neuroimaging technique that simultaneously measures the activity of multiple brain regions-has provided a powerful second-person neuroscience tool for investigating the phase alignment of neural processes during interactive social behavior. Neural synchronization, revealed by hyperscanning, is a phenomenon called inter-brain synchrony- a process that purportedly facilitates social interactions by prompting appropriate anticipation of and responses to each other's social behaviors during ongoing shared interactions. In this review, I explored the therapeutic dual-brain approach using noninvasive brain stimulation to target inter-brain synchrony based on second-person neuroscience to modulate social interaction. Artificially inducing synchrony between the brains is a potential adjunct technique to physiotherapy, psychotherapy, and pain treatment- which are strongly influenced by the social interaction between the therapist and patient. Dual-brain approaches to personalize stimulation parameters must consider temporal, spatial, and oscillatory factors. Multiple data fusion analysis, the assessment of inter-brain plasticity, a closed-loop system, and a brain-to-brain interface can support personalized stimulation.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
10
|
Olarewaju E, Dumas G, Palaniyappan L. Disorganized Communication and Social Dysfunction in Schizophrenia: Emerging Concepts and Methods. Curr Psychiatry Rep 2023; 25:671-681. [PMID: 37740852 DOI: 10.1007/s11920-023-01462-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE OF REVIEW In this review, we embrace the emerging field of second-person neuroscience to address disorganization in schizophrenia. We argue that the focus of interest for disorganization is the interpersonal space where shared mental processes ('social mind') occur based on the bio-behavioural synchrony between two (or more) interacting people. We lay out several bio-behavioural measures that can capture the component parts of this process. In particular, we highlight the real-time imaging technology of hyperscanning that enables multi-person analysis of naturalistic social interaction. We illustrate how these measures can be used in empirical studies by posing disorganization as a problem of interpersonal processing. RECENT FINDINGS Traditionally, disorganized speech and behaviour have been studied as the product of hidden cognitive processes ('private mind'). A dysfunction in these processes was attributed to the brain afflicted by the illness ('brain-bound mechanisms'). But this approach has contributed to challenges in measuring and quantifying disorganization. Consequently, the single-brain focus has not provided satisfactory clarity or led to effective treatments for persistent social dysfunction in schizophrenia. Social dysfunction is a core feature of schizophrenia. This dysfunction arises from disorganized interpersonal interaction that typifies the social profile of affected individuals. We outline challenges in employing several emerging concepts and methods and how they can be addressed to investigate the mechanisms of social dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Emmanuel Olarewaju
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Guillaume Dumas
- Department of Psychiatry, CHU Sainte Justine Research Center, University of Montreal, Montreal, QC, Canada
- Division of Social and Transcultural Psychiatry, McGill University, Montreal, QC, Canada
| | - Lena Palaniyappan
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
- Robarts Research Institute, Western University, London, ON, Canada.
- Department of Medical Biophysics, Western University, London, Canada.
| |
Collapse
|
11
|
Bilek E, Gündel H. [Working in a team and mental health]. DER NERVENARZT 2023; 94:993-1000. [PMID: 37874383 DOI: 10.1007/s00115-023-01555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/25/2023]
Abstract
Humans have always naturally lived in groups, which has a significant impact on the well-being and mental stability of the individual. Various physiological processes are coregulated via the closeness of other persons. About one third of our adulthood is spent at work where social relationships often play an important role, because we are typically working with other individuals in groups or a team. In these situations, mutual support and successful cooperation can develop, which promotes the mental and physical health of the employees of a company ("social capital"). From various perspectives it becomes obvious that the quality of relationships at the workplace is a key factor for the satisfaction and health of individual employees as well as for the cohesion, resilience and performance of the entire team. This is confirmed by empirical findings that still need to be expanded, especially with respect to the neurobiological associations of the cooperation in teams and individual health.
Collapse
Affiliation(s)
- Edda Bilek
- Abteilung für Psychiatrie and Psychotherapie, Zentralinstitut für Psychische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland.
- Zentralinstitut für Psychische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, Quadrat J5, 68159, Mannheim, Deutschland.
| | - Harald Gündel
- Abteilung für Psychosomatische Medizin, Universitätsklinikum Ulm, Ulm, Deutschland
| |
Collapse
|
12
|
do Nascimento DC, Santos da Silva JR, Ara A, Sato JR, Costa L. Hyperscanning fNIRS data analysis using multiregression dynamic models: an illustration in a violin duo. Front Comput Neurosci 2023; 17:1132160. [PMID: 37576070 PMCID: PMC10413103 DOI: 10.3389/fncom.2023.1132160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/13/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Interpersonal neural synchronization (INS) demands a greater understanding of a brain's influence on others. Therefore, brain synchronization is an even more complex system than intrasubject brain connectivity and must be investigated. There is a need to develop novel methods for statistical inference in this context. Methods In this study, motivated by the analysis of fNIRS hyperscanning data, which measure the activity of multiple brains simultaneously, we propose a two-step network estimation: Tabu search local method and global maximization in the selected subgroup [partial conditional directed acyclic graph (DAG) + multiregression dynamic model]. We illustrate this approach in a dataset of two individuals who are playing the violin together. Results This study contributes new tools to the social neuroscience field, which may provide new perspectives about intersubject interactions. Our proposed approach estimates the best probabilistic network representation, in addition to providing access to the time-varying parameters, which may be helpful in understanding the brain-to-brain association of these two players. Discussion The illustration of the violin duo highlights the time-evolving changes in the brain activation of an individual influencing the other one through a data-driven analysis. We confirmed that one player was leading the other given the ROI causal relation toward the other player.
Collapse
Affiliation(s)
| | - José Roberto Santos da Silva
- Department of Statistics, Federal University of Bahia, Salvador, Brazil
- EcMetrics Pesquisa de Mercado, Salvador, Brazil
| | - Anderson Ara
- Departamento de Estatística, Universidade Federal do Parana, Curitiba, Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Lilia Costa
- Department of Statistics, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
13
|
McParlin Z, Cerritelli F, Manzotti A, Friston KJ, Esteves JE. Therapeutic touch and therapeutic alliance in pediatric care and neonatology: An active inference framework. Front Pediatr 2023; 11:961075. [PMID: 36923275 PMCID: PMC10009260 DOI: 10.3389/fped.2023.961075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Therapeutic affective touch has been recognized as essential for survival, nurturing supportive interpersonal interactions, accelerating recovery-including reducing hospitalisations, and promoting overall health and building robust therapeutic alliances. Through the lens of active inference, we present an integrative model, combining therapeutic touch and communication, to achieve biobehavioural synchrony. This model speaks to how the brain develops a generative model required for recovery, developing successful therapeutic alliances, and regulating allostasis within paediatric manual therapy. We apply active inference to explain the neurophysiological and behavioural mechanisms that underwrite the development and maintenance of synchronous relationships through touch. This paper foregrounds the crucial role of therapeutic touch in developing a solid therapeutic alliance, the clinical effectiveness of paediatric care, and triadic synchrony between health care practitioner, caregiver, and infant in a variety of clinical situations. We start by providing a brief overview of the significance and clinical role of touch in the development of social interactions in infants; facilitating a positive therapeutic alliance and restoring homeostasis through touch to allow a more efficient process of allostatic regulation. Moreover, we explain the role of CT tactile afferents in achieving positive clinical outcomes and updating prior beliefs. We then discuss how touch is implemented in treatment sessions to promote cooperative interactions in the clinic and facilitate theory of mind. This underwrites biobehavioural synchrony, epistemic trust, empathy, and the resolution of uncertainty. The ensuing framework is underpinned by a critical application of the active inference framework to the fields of pediatrics and neonatology.
Collapse
Affiliation(s)
- Zoe McParlin
- Foundation COME Collaboration, Clinical-Based Human Research Department, Pescara, Italy
| | - Francesco Cerritelli
- Division of Neonatology, “V. Buzzi” Children's Hospital, ASST-FBF-Sacco, Milan, Italy
| | - Andrea Manzotti
- Foundation COME Collaboration, Clinical-Based Human Research Department, Pescara, Italy
- Division of Neonatology, “V. Buzzi” Children's Hospital, ASST-FBF-Sacco, Milan, Italy
- Research Department, SOMA, Istituto Osteopatia Milano, Milan, Italy
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, Queen Square, London, United Kingdom
| | - Jorge E Esteves
- Foundation COME Collaboration, Clinical-Based Human Research Department, Pescara, Italy
- Malta ICOM Educational, Malta, Finland
- Research Department, University College of Osteopathy, Research Department, London, United Kingdom
| |
Collapse
|
14
|
Pérez A, Davis MH. Speaking and listening to inter-brain relationships. Cortex 2023; 159:54-63. [PMID: 36608420 DOI: 10.1016/j.cortex.2022.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Studies of inter-brain relationships thrive, and yet many reservations regarding their scope and interpretation of these phenomena have been raised by the scientific community. It is thus essential to establish common ground on methodological and conceptual definitions related to this topic and to open debate about any remaining points of uncertainty. We here offer insights to improve the conceptual clarity and empirical standards offered by social neuroscience studies of inter-personal interaction using hyperscanning with a particular focus on verbal communication.
Collapse
Affiliation(s)
- Alejandro Pérez
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
| | - Matthew H Davis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| |
Collapse
|
15
|
Gerloff C, Konrad K, Bzdok D, Büsing C, Reindl V. Interacting brains revisited: A cross-brain network neuroscience perspective. Hum Brain Mapp 2022; 43:4458-4474. [PMID: 35661477 PMCID: PMC9435014 DOI: 10.1002/hbm.25966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/25/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Elucidating the neural basis of social behavior is a long‐standing challenge in neuroscience. Such endeavors are driven by attempts to extend the isolated perspective on the human brain by considering interacting persons' brain activities, but a theoretical and computational framework for this purpose is still in its infancy. Here, we posit a comprehensive framework based on bipartite graphs for interbrain networks and address whether they provide meaningful insights into the neural underpinnings of social interactions. First, we show that the nodal density of such graphs exhibits nonrandom properties. While the current hyperscanning analyses mostly rely on global metrics, we encode the regions' roles via matrix decomposition to obtain an interpretable network representation yielding both global and local insights. With Bayesian modeling, we reveal how synchrony patterns seeded in specific brain regions contribute to global effects. Beyond inferential inquiries, we demonstrate that graph representations can be used to predict individual social characteristics, outperforming functional connectivity estimators for this purpose. In the future, this may provide a means of characterizing individual variations in social behavior or identifying biomarkers for social interaction and disorders.
Collapse
Affiliation(s)
- Christian Gerloff
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Aachen, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Chair II of Mathematics, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Aachen, Germany
| | - Kerstin Konrad
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Aachen, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Canada
| | - Christina Büsing
- Chair II of Mathematics, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Aachen, Germany
| | - Vanessa Reindl
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Aachen, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|