1
|
Lin S, Guo M, Liang Q, Lin X, Chen S, Li Y, Chen P, Qiu Y. Evaluation of Glymphatic System Development in Neonatal Brain via Diffusion Analysis along the Perivascular Space Index. Ann Neurol 2024; 96:970-980. [PMID: 39096048 DOI: 10.1002/ana.27047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/22/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Glymphatic system is a recently discovered macroscopic waste clearance system associated with numerous neurological diseases. However, little is known about glymphatic system development in neonates. We sought to evaluate diffusion along the perivascular space (ALPS) index, a proxy for glymphatic system function, in neonates and investigate its potential associations with maturation, sex, and preterm birth. METHODS Diffusion magnetic resonance imaging (MRI) data in 418 neonates, including 92 preterm neonates (57 males) and 326 term neonates (175 males), from the Developing Human Connectome Project were used for evaluating ALPS index. Linear regression modeling was performed to assess group differences in the ALPS index according to preterm birth and sex. Pearson's and partial correlation analysis were performed to assess the association between the ALPS index and gestational age (GA) as well as postmenstrual age (PMA) at MRI. Moderation analysis was performed to assess the moderation effect of preterm birth on the relationship between the ALPS index and PMA. RESULTS Compared to term neonates, preterm neonates exhibited lower ALPS indices (p < 0.001). The ALPS index positively correlated with PMA (p = 0.004) and GA (p < 0.001). Preterm birth (p = 0.013) had a significant moderation effect on the relationship between the ALPS index and PMA. Sex had no significant direct effect (p = 0.639) or moderation effect (p = 0.333) on ALPS index. INTERPRETATION Glymphatic system development is a dynamic process in neonates, which can be moderated by preterm birth, the ALPS index could serve as a sensitive biomarker for monitoring this process. ANN NEUROL 2024;96:970-980.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Meifen Guo
- Department of Radiology, the Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qunjun Liang
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Ying Li
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Peiqi Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
2
|
Yamamoto EA, Bagley JH, Geltzeiler M, Sanusi OR, Dogan A, Liu JJ, Piantino J. The perivascular space is a conduit for cerebrospinal fluid flow in humans: A proof-of-principle report. Proc Natl Acad Sci U S A 2024; 121:e2407246121. [PMID: 39374384 PMCID: PMC11494350 DOI: 10.1073/pnas.2407246121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/04/2024] [Indexed: 10/09/2024] Open
Abstract
The glymphatic pathway was defined in rodents as a network of perivascular spaces (PVSs) that facilitates organized distribution of cerebrospinal fluid (CSF) into the brain parenchyma. To date, perivascular CSF and cerebral interstitial fluid exchange has not been shown in humans. Using intrathecal gadolinium contrast-enhanced MRI, we show that contrast-enhanced CSF moves through the PVS into the parenchyma, supporting the existence of a glymphatic pathway in humans.
Collapse
Affiliation(s)
- Erin A. Yamamoto
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR97239
| | - Jacob H. Bagley
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR97239
- Department of Neurosurgery, Aurora St. Luke’s Medical Center, Milwaukee, WI53215
| | - Mathew Geltzeiler
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health & Science University, Portland, OR97239
| | - Olabisi R. Sanusi
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR97239
| | - Aclan Dogan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR97239
| | - Jesse J. Liu
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR97239
| | - Juan Piantino
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children’s Hospital, Oregon Health and Science University, Portland, OR97239
| |
Collapse
|
3
|
Wright AM, Wu YC, Chen NK, Wen Q. Exploring Radial Asymmetry in MR Diffusion Tensor Imaging and Its Impact on the Interpretation of Glymphatic Mechanisms. J Magn Reson Imaging 2024; 60:1432-1441. [PMID: 38156600 PMCID: PMC11213825 DOI: 10.1002/jmri.29203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Diffusion imaging holds great potential for the non-invasive assessment of the glymphatic system in humans. One technique, diffusion tensor imaging along the perivascular space (DTI-ALPS), has introduced the ALPS-index, a novel metric for evaluating diffusivity within the perivascular space. However, it still needs to be established whether the observed reduction in the ALPS-index reflects axonal changes, a common occurrence in neurodegenerative diseases. PURPOSE To determine whether axonal alterations can influence change in the ALPS-index. STUDY TYPE Retrospective. POPULATION 100 participants (78 cognitively normal and 22 with mild cognitive impairments) aged 50-90 years old. FIELD STRENGTH/SEQUENCE 3T; diffusion-weighted single-shot spin-echo echo-planar imaging sequence, T1-weighted images (MP-RAGE). ASSESSMENT The ratio of two radial diffusivities of the diffusion tensor (i.e., λ2/λ3) across major white matter tracts with distinct venous/perivenous anatomy that fulfill (ALPS-tracts) and do not fulfill (control tracts) ALPS-index anatomical assumptions were analyzed. STATISTICAL TESTS To investigate the correlation between λ2/λ3 and age/cognitive function (RAVLT) while accounting for the effect of age, linear regression was implemented to remove the age effect from each variable. Pearson correlation analysis was conducted on the residuals obtained from the linear regression. Statistical significance was set at p < 0.05. RESULTS λ2 was ~50% higher than λ3 and demonstrated a consistent pattern across both ALPS and control tracts. Additionally, in both ALPS and control tracts a reduction in the λ2/λ3 ratio was observed with advancing age (r = -0.39, r = -0.29, association and forceps tract, respectively) and decreased memory function (r = 0.24, r = 0.27, association and forceps tract, respectively). DATA CONCLUSIONS The results unveil a widespread radial asymmetry of white matter tracts that changes with aging and neurodegeration. These findings highlight that the ALPS-index may not solely reflect changes in the diffusivity of the perivascular space but may also incorporate axonal contributions. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Adam M. Wright
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Yao J, Huang T, Tian Y, Zhao H, Li R, Yin X, Shang S, Chen YC. Early detection of dopaminergic dysfunction and glymphatic system impairment in Parkinson's disease. Parkinsonism Relat Disord 2024; 127:107089. [PMID: 39106761 DOI: 10.1016/j.parkreldis.2024.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
PURPOSE This study aimed to assess the glymphatic function and its correlation with clinical characteristics and the loss of dopaminergic neurons in Parkinson's disease (PD) using hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI) combined with diffusion tensor image analysis along the perivascular space (DTI-ALPS), choroid plexus volume (CPV), and enlarged perivascular space (EPVS) volume. METHODS Twenty-five PD patients and thirty matched healthy controls (HC) participated in the study. All participants underwent 18F-fluorodopa (18F-DOPA) PET-MRI scanning. The striatal standardized uptake value ratio (SUVR), DTI-ALPS index, CPV, and EPVS volume were calculated. Furthermore, we also analysed the relationship between the DTI-ALPS index, CPV, EPVS volume and striatal SUVR as well as clinical characteristics of PD patients. RESULTS PD patients demonstrated significantly lower values in DTI-ALPS (t = 3.053, p = 0.004) and larger CPV (t = 2.743, p = 0.008) and EPVS volume (t = 2.807, p = 0.008) compared to HC. In PD group, the ALPS-index was negatively correlated with the Unified Parkinson's Disease Rating Scale III (UPDRS-III) scores (r = -0.730, p < 0.001), and positively correlated with the mean putaminal SUVR (r = 0.560, p = 0.007) and mean caudal SUVR (r = 0.459, p = 0.032). Moreover, the mean putaminal SUVR was negatively associated with the UPDRS-III scores (r = -0.544, p = 0.009). CONCLUSION DTI-ALPS has the potential to uncover glymphatic dysfunction in patients with PD, with this dysfunction correlating strongly with the severity of disease, together with the mean putaminal and caudal SUVR. PET- MRI can serve as a potential multimodal imaging biomarker for early-stage PD.
Collapse
Affiliation(s)
- Jun Yao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Youyong Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongdong Zhao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rushuai Li
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Song'an Shang
- Department of Medical imaging center, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Huang P, Liu L, Zhang Y, Zhong S, Liu P, Hong H, Wang S, Xie L, Lin M, Jiaerken Y, Luo X, Li K, Zeng Q, Cui L, Li J, Chen Y, Zhang R. Development and validation of a perivascular space segmentation method in multi-center datasets. Neuroimage 2024; 298:120803. [PMID: 39181194 DOI: 10.1016/j.neuroimage.2024.120803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Perivascular spaces (PVS) visible on magnetic resonance imaging (MRI) are significant markers associated with various neurological diseases. Although quantitative analysis of PVS may enhance sensitivity and improve consistency across studies, the field lacks a universally validated method for analyzing images from multi-center studies. METHODS We annotated PVS on multi-center 3D T1-weighted (T1w) images acquired using scanners from three major vendors (Siemens, General Electric, and Philips). A neural network, mcPVS-Net (multi-center PVS segmentation network), was trained using data from 40 subjects and then tested in a separate cohort of 15 subjects. We assessed segmentation accuracy against ground truth masks tailored for each scanner vendor. Additionally, we evaluated the agreement between segmented PVS volumes and visual scores for each scanner. We also explored correlations between PVS volumes and various clinical factors such as age, hypertension, and white matter hyperintensities (WMH) in a larger sample of 1020 subjects. Furthermore, mcPVS-Net was applied to a new dataset comprising both T1w and T2-weighted (T2w) images from a United Imaging scanner to investigate if PVS volumes could discriminate between subjects with differing visual scores. We also compared the mcPVS-Net with a previously published method that segments PVS from T1 images. RESULTS In the test dataset, mcPVS-Net achieved a mean DICE coefficient of 0.80, with an average Precision of 0.81 and Recall of 0.79, indicating good specificity and sensitivity. The segmented PVS volumes were significantly associated with visual scores in both the basal ganglia (r = 0.541, p < 0.001) and white matter regions (r = 0.706, p < 0.001), and PVS volumes were significantly different among subjects with varying visual scores. Segmentation performance was consistent across different scanner vendors. PVS volumes exhibited significant associations with age, hypertension, and WMH. In the United Imaging scanner dataset, PVS volumes showed good associations with PVS visual scores evaluated on either T1w or T2w images. Compared to a previously published method, mcPVS-Net showed a higher accuracy and improved PVS segmentation in the basal ganglia region. CONCLUSION The mcPVS-Net demonstrated good accuracy for segmenting PVS from 3D T1w images. It may serve as a useful tool for future PVS research.
Collapse
Affiliation(s)
- Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingyun Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyan Zhong
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Liu
- Department of Radiology, Linyi Traditional Chinese Medicine Hospital, Linyi, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linyun Xie
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Lin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Cui
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jixuan Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Tu Y, Fang Y, Li G, Xiong F, Gao F. Glymphatic System Dysfunction Underlying Schizophrenia Is Associated With Cognitive Impairment. Schizophr Bull 2024; 50:1223-1231. [PMID: 38581275 PMCID: PMC11349007 DOI: 10.1093/schbul/sbae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
BACKGROUND AND HYPOTHESIS Despite the well-documented structural and functional brain changes in schizophrenia, the potential role of glymphatic dysfunction remains largely unexplored. This study investigates the glymphatic system's function in schizophrenia, utilizing diffusion tensor imaging (DTI) to analyze water diffusion along the perivascular space (ALPS), and examines its correlation with clinical symptoms. STUDY DESIGN A cohort consisting of 43 people with schizophrenia and 108 healthy controls was examined. We quantified water diffusion metrics along the x-, y-, and z-axis in both projection and association fibers to derive the DTI-ALPS index, a proxy for glymphatic activity. The differences in the ALPS index between groups were analyzed using a 2-way ANCOVA controlling for age and sex, while partial correlations assessed the association between the ALPS index and clinical variables. STUDY RESULTS People with schizophrenia showed a significantly reduced DTI-ALPS index across the whole brain and within both hemispheres (F = 9.001, P = .011; F = 10.024, P = .011; F = 5.927, P = .044; false discovery rate corrected), indicating potential glymphatic dysfunction in schizophrenia. The group by cognitive performance interaction effects on the ALPS index were not observed. Moreover, a lower ALPS index was associated with poorer cognitive performance on specific neuropsychological tests in people with schizophrenia. CONCLUSION Our study highlights a lower ALPS index in schizophrenia, correlated with more pronounced cognitive impairments. This suggests that glymphatic dysfunction may contribute to the pathophysiology of schizophrenia, offering new insights into its underlying mechanisms.
Collapse
Affiliation(s)
- Ye Tu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Fang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohui Li
- Department of Anesthesiology and Sungical intensive CaneUnit, Xinhua Hospital A filiated to Shamghai jiaotong University school of Medicine, Shanghai, China
| | - Fei Xiong
- Department of Radiology. General Hospital of Central Theater Command, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Terem I, Younes K, Wang N, Condron P, Abderezaei J, Kumar H, Vossler H, Kwon E, Kurt M, Mormino E, Holdsworth S, Setsompop K. 3D Quantitative-Amplified Magnetic Resonance Imaging (3D q-aMRI). Bioengineering (Basel) 2024; 11:851. [PMID: 39199808 PMCID: PMC11352018 DOI: 10.3390/bioengineering11080851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Amplified MRI (aMRI) is a promising new technique that can visualize pulsatile brain tissue motion by amplifying sub-voxel motion in cine MRI data, but it lacks the ability to quantify the sub-voxel motion field in physical units. Here, we introduce a novel post-processing algorithm called 3D quantitative amplified MRI (3D q-aMRI). This algorithm enables the visualization and quantification of pulsatile brain motion. 3D q-aMRI was validated and optimized on a 3D digital phantom and was applied in vivo on healthy volunteers for its ability to accurately measure brain parenchyma and CSF voxel displacement. Simulation results show that 3D q-aMRI can accurately quantify sub-voxel motions in the order of 0.01 of a voxel size. The algorithm hyperparameters were optimized and tested on in vivo data. The repeatability and reproducibility of 3D q-aMRI were shown on six healthy volunteers. The voxel displacement field extracted by 3D q-aMRI is highly correlated with the displacement measurements estimated by phase contrast (PC) MRI. In addition, the voxel displacement profile through the cerebral aqueduct resembled the CSF flow profile reported in previous literature. Differences in brain motion was observed in patients with dementia compared with age-matched healthy controls. In summary, 3D q-aMRI is a promising new technique that can both visualize and quantify pulsatile brain motion. Its ability to accurately quantify sub-voxel motion in physical units holds potential for the assessment of pulsatile brain motion as well as the indirect assessment of CSF homeostasis. While further research is warranted, 3D q-aMRI may provide important diagnostic information for neurological disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Itamar Terem
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Kyan Younes
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA; (K.Y.); (H.V.); (E.M.)
| | - Nan Wang
- Department of Radiology, Stanford University, Stanford, CA 94305, USA;
| | - Paul Condron
- Mātai Medical Research Institute, Tairāwhiti-Gisborne 4010, New Zealand; (P.C.); (E.K.); (S.H.)
| | - Javid Abderezaei
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; (J.A.); (M.K.)
| | - Haribalan Kumar
- General Electric Healthcare, Tairāwhiti-Gisborne 4010, New Zealand;
| | - Hillary Vossler
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA; (K.Y.); (H.V.); (E.M.)
| | - Eryn Kwon
- Mātai Medical Research Institute, Tairāwhiti-Gisborne 4010, New Zealand; (P.C.); (E.K.); (S.H.)
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging—Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
| | - Mehmet Kurt
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; (J.A.); (M.K.)
| | - Elizabeth Mormino
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA; (K.Y.); (H.V.); (E.M.)
| | - Samantha Holdsworth
- Mātai Medical Research Institute, Tairāwhiti-Gisborne 4010, New Zealand; (P.C.); (E.K.); (S.H.)
- Department of Anatomy and Medical Imaging—Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
8
|
Yamamoto EA, Koike S, Wong C, Dennis LE, Luther MN, Scatena A, Khambadkone S, Iliff JJ, Lim MM, Levendovszky SR, Elliott JE, Barisano G, Müller-Oehring EM, Morales AM, Baker FC, Nagel BJ, Piantino J. Biological sex and BMI influence the longitudinal evolution of adolescent and young adult MRI-visible perivascular spaces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608337. [PMID: 39229241 PMCID: PMC11370374 DOI: 10.1101/2024.08.17.608337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background and Purpose An association recently emerged between magnetic resonance imaging (MRI)-visible perivascular spaces (MV-PVS) with intracerebral solute clearance and neuroinflammation, in adults. However, it is unknown how MV-PVS change throughout adolescence and what factors influence MV-PVS volume and morphology. This study assesses the temporal evolution of MV-PVS volume in adolescents and young adults, and secondarily evaluates the relationship between MV-PVS, age, sex, and body mass index (BMI). Materials and Methods This analysis included a 783 participant cohort from the longitudinal multicenter National Consortium on Alcohol and Neurodevelopment in Adolescence study that involved up to 6 imaging visits spanning 5 years. Healthy adolescents aged 12-21 years at study entry with at least two MRI scans were included. The primary outcome was mean MV-PVS volume (mm 3 /white matter cm 3 ). Results On average, males had greater MV-PVS volume at all ages compared to females. A linear mixed-effect model for MV-PVS volume was performed. Mean BMI and increases in a person's BMI were associated with increases in MV-PVS volume over time. In females only, changes in BMI correlated with MV-PVS volume. One unit increase in BMI above a person's average BMI was associated with a 0.021 mm 3 /cm 3 increase in MV-PVS volume (p<0.001). Conclusion This longitudinal study showed sex differences in MV-PVS features during adolescence and young adulthood. Importantly, we report that increases in BMI from a person's mean BMI are associated with increases in MV-PVS volume in females only. These findings suggest a potential link between MV-PVS, sex, and BMI that warrants future study.
Collapse
|
9
|
Sacchi L, D'Agata F, Campisi C, Arcaro M, Carandini T, Örzsik B, Dal Maschio VP, Fenoglio C, Pietroboni AM, Ghezzi L, Serpente M, Pintus M, Conte G, Triulzi F, Lopiano L, Galimberti D, Cercignani M, Bozzali M, Arighi A. A "glympse" into neurodegeneration: Diffusion MRI and cerebrospinal fluid aquaporin-4 for the assessment of glymphatic system in Alzheimer's disease and other dementias. Hum Brain Mapp 2024; 45:e26805. [PMID: 39185685 PMCID: PMC11345637 DOI: 10.1002/hbm.26805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
The glymphatic system (GS) is a whole-brain perivascular network, consisting of three compartments: the periarterial and perivenous spaces and the interposed brain parenchyma. GS dysfunction has been implicated in neurodegenerative diseases, particularly Alzheimer's disease (AD). So far, comprehensive research on GS in humans has been limited by the absence of easily accessible biomarkers. Recently, promising non-invasive methods based on magnetic resonance imaging (MRI) along with aquaporin-4 (AQP4) quantification in the cerebrospinal fluid (CSF) were introduced for an indirect assessment of each of the three GS compartments. We recruited 111 consecutive subjects presenting with symptoms suggestive of degenerative cognitive decline, who underwent 3 T MRI scanning including multi-shell diffusion-weighted images. Forty nine out of 111 also underwent CSF examination with quantification of CSF-AQP4. CSF-AQP4 levels and MRI measures-including perivascular spaces (PVS) counts and volume fraction (PVSVF), white matter free water fraction (FW-WM) and mean kurtosis (MK-WM), diffusion tensor imaging analysis along the perivascular spaces (DTI-ALPS) (mean, left and right)-were compared among patients with AD (n = 47) and other neurodegenerative diseases (nAD = 24), patients with stable mild cognitive impairment (MCI = 17) and cognitively unimpaired (CU = 23) elderly people. Two runs of analysis were conducted, the first including all patients; the second after dividing both nAD and AD patients into two subgroups based on gray matter atrophy as a proxy of disease stage. Age, sex, years of education, and scanning time were included as confounding factors in the analyses. Considering the whole cohort, patients with AD showed significantly higher levels of CSF-AQP4 (exp(b) = 2.05, p = .005) and FW-WM FW-WM (exp(b) = 1.06, p = .043) than CU. AQP4 levels were also significantly higher in nAD in respect to CU (exp(b) = 2.98, p < .001). CSF-AQP4 and FW-WM were significantly higher in both less atrophic AD (exp(b) = 2.20, p = .006; exp(b) = 1.08, p = .019, respectively) and nAD patients (exp(b) = 2.66, p = .002; exp(b) = 1.10, p = .019, respectively) compared to CU subjects. Higher total (exp(b) = 1.59, p = .013) and centrum semiovale PVS counts (exp(b) = 1.89, p = .016), total (exp(b) = 1.50, p = .036) and WM PVSVF (exp(b) = 1.89, p = .005) together with lower MK-WM (exp(b) = 0.94, p = .006), mean and left ALPS (exp(b) = 0.91, p = .043; exp(b) = 0.88, p = .010 respectively) were observed in more atrophic AD patients in respect to CU. In addition, more atrophic nAD patients exhibited higher levels of AQP4 (exp(b) = 3.39, p = .002) than CU. Our results indicate significant changes in putative MRI biomarkers of GS and CSF-AQP4 levels in AD and in other neurodegenerative dementias, suggesting a close interaction between glymphatic dysfunction and neurodegeneration, particularly in the case of AD. However, the usefulness of some of these biomarkers as indirect and standalone indices of glymphatic activity may be hindered by their dependence on disease stage and structural brain damage.
Collapse
Affiliation(s)
- Luca Sacchi
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | - Federico D'Agata
- Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
| | - Corrado Campisi
- Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
| | - Marina Arcaro
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Tiziana Carandini
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Balázs Örzsik
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Vera Pacoova Dal Maschio
- Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
- Neurology 2 Unit, A.O.U. Città della Salute e Della Scienza di TorinoTurinItaly
| | - Chiara Fenoglio
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | | | - Laura Ghezzi
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | - Maria Serpente
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Manuela Pintus
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Giorgio Conte
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Fabio Triulzi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Leonardo Lopiano
- Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
- Neurology 2 Unit, A.O.U. Città della Salute e Della Scienza di TorinoTurinItaly
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | | | - Marco Bozzali
- Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
- Neurology 2 Unit, A.O.U. Città della Salute e Della Scienza di TorinoTurinItaly
| | - Andrea Arighi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
10
|
Waymont JMJ, Valdés Hernández MDC, Bernal J, Duarte Coello R, Brown R, Chappell FM, Ballerini L, Wardlaw JM. Systematic review and meta-analysis of automated methods for quantifying enlarged perivascular spaces in the brain. Neuroimage 2024; 297:120685. [PMID: 38914212 DOI: 10.1016/j.neuroimage.2024.120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Research into magnetic resonance imaging (MRI)-visible perivascular spaces (PVS) has recently increased, as results from studies in different diseases and populations are cementing their association with sleep, disease phenotypes, and overall health indicators. With the establishment of worldwide consortia and the availability of large databases, computational methods that allow to automatically process all this wealth of information are becoming increasingly relevant. Several computational approaches have been proposed to assess PVS from MRI, and efforts have been made to summarise and appraise the most widely applied ones. We systematically reviewed and meta-analysed all publications available up to September 2023 describing the development, improvement, or application of computational PVS quantification methods from MRI. We analysed 67 approaches and 60 applications of their implementation, from 112 publications. The two most widely applied were the use of a morphological filter to enhance PVS-like structures, with Frangi being the choice preferred by most, and the use of a U-Net configuration with or without residual connections. Older adults or population studies comprising adults from 18 years old onwards were, overall, more frequent than studies using clinical samples. PVS were mainly assessed from T2-weighted MRI acquired in 1.5T and/or 3T scanners, although combinations using it with T1-weighted and FLAIR images were also abundant. Common associations researched included age, sex, hypertension, diabetes, white matter hyperintensities, sleep and cognition, with occupation-related, ethnicity, and genetic/hereditable traits being also explored. Despite promising improvements to overcome barriers such as noise and differentiation from other confounds, a need for joined efforts for a wider testing and increasing availability of the most promising methods is now paramount.
Collapse
Affiliation(s)
- Jennifer M J Waymont
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Maria Del C Valdés Hernández
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK.
| | - José Bernal
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK; German Centre for Neurodegenerative Diseases (DZNE), Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany
| | - Roberto Duarte Coello
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Rosalind Brown
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Francesca M Chappell
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | | | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| |
Collapse
|
11
|
Javierre-Petit C, Kontzialis M, Leurgans SE, Bennett DA, Schneider JA, Arfanakis K. Quantitative assessment of enlarged perivascular spaces via deep-learning in community-based older adults reveals independent associations with vascular neuropathologies, vascular risk factors and cognition. Brain Commun 2024; 6:fcae252. [PMID: 39130513 PMCID: PMC11316207 DOI: 10.1093/braincomms/fcae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024] Open
Abstract
Enlarged perivascular spaces (EPVS) are common in older adults, but their neuropathologic correlates are unclear mainly because most work to date has relied on visual rating scales and/or clinical cohorts. The present study first developed a deep-learning model for automatic segmentation, localization and quantification of EPVS in ex vivo brain MRI, and then used this model to investigate the neuropathologic, clinical and cognitive correlates of EPVS in 817 community-based older adults that underwent autopsy. The new method exhibited high sensitivity in detecting EPVS as small as 3 mm3, good segmentation accuracy and consistency. Most EPVS were located in the frontal lobe, but the highest density was observed in the basal ganglia. EPVS in the cerebrum and specifically in the frontal lobe were associated with infarcts independent of other neuropathologies, while temporal and occipital EPVS were associated with cerebral amyloid angiopathy. EPVS in most brain lobes were also associated with diabetes mellitus independently of neuropathologies, while basal ganglia EPVS were independently associated with hypertension, supporting the notion of independent pathways from diabetes and hypertension to EPVS. Finally, EPVS were associated with lower cognitive performance independently of neuropathologies and clinical variables, suggesting that EPVS represent additional abnormalities contributing to lower cognition.
Collapse
Affiliation(s)
- Carles Javierre-Petit
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Marinos Kontzialis
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sue E Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
12
|
Drenthen GS, Elschot EP, van der Knaap N, Uher D, Voorter PHM, Backes WH, Jansen JFA, van der Thiel MM. Imaging Interstitial Fluid With MRI: A Narrative Review on the Associations of Altered Interstitial Fluid With Vascular and Neurodegenerative Abnormalities. J Magn Reson Imaging 2024; 60:40-53. [PMID: 37823526 DOI: 10.1002/jmri.29056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Interstitial fluid (ISF) refers to the fluid between the parenchymal cells and along the perivascular spaces (PVS). ISF plays a crucial role in delivering nutrients and clearing waste products from the brain. This narrative review focuses on the use of MRI techniques to measure various ISF characteristics in humans. The complementary value of contrast-enhanced and noncontrast-enhanced techniques is highlighted. While contrast-enhanced MRI methods allow measurement of ISF transport and flow, they lack quantitative assessment of ISF properties. Noninvasive MRI techniques, including multi-b-value diffusion imaging, free-water-imaging, T2-decay imaging, and DTI along the PVS, offer promising alternatives to derive ISF measures, such as ISF volume and diffusivity. The emerging role of these MRI techniques in investigating ISF alterations in neurodegenerative diseases (eg, Alzheimer's disease and Parkinson's disease) and cerebrovascular diseases (eg, cerebral small vessel disease and stroke) is discussed. This review also emphasizes current challenges of ISF imaging, such as the microscopic scale at which ISF has to be measured, and discusses potential focus points for future research to overcome these challenges, for example, the use of high-resolution imaging techniques. Noninvasive MRI methods for measuring ISF characteristics hold significant potential and may have a high clinical impact in understanding the pathophysiology of neurodegenerative and cerebrovascular disorders, as well as in evaluating the efficacy of ISF-targeted therapies in clinical trials. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Gerhard S Drenthen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Elles P Elschot
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Noa van der Knaap
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Daniel Uher
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Paulien H M Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Merel M van der Thiel
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
13
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Li X, Lin Z, Liu C, Bai R, Wu D, Yang J. Glymphatic Imaging in Pediatrics. J Magn Reson Imaging 2024; 59:1523-1541. [PMID: 37819198 DOI: 10.1002/jmri.29040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
The glymphatic system, which facilitates cerebrospinal fluid (CSF) flow through the brain parenchyma, is important for brain development and waste clearance. Advances in imaging techniques, particularly magnetic resonance imaging, have make it possible to evaluate glymphatic structures and functions in vivo. Recently, several studies have focused on the development and alterations of the glymphatic system in pediatric disorders. This review discusses the development of the glymphatic system, advances of imaging techniques and their applications in pediatric disorders. First, the results of the reviewed studies indicate that the development of the glymphatic system is a long-lasting process that continues into adulthood. Second, there is a need for improved glymphatic imaging techniques that are non-invasive and fast to improve suitability for pediatric applications, as some of existing methods use contrast injection and are susceptible to motion artifacts from long scanning times. Several novel techniques are potentially feasible for pediatric patients and may be used in the future. Third, the glymphatic dysfunction is associated with a large number of pediatric disorders, although only a few have recently been investigated. In conclusion, research on the pediatric glymphatic system remains an emerging field. The preliminary applications of glymphatic imaging techniques have provided unique insight into the pathological mechanism of pediatric diseases, but mainly limited in visualization of enlarged perivascular spaces and morphological measurements on CSF volumes. More in-depth studies on glymphatic functions are required to improve our understanding of the mechanisms underlying brain development and pediatric diseases. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zixuan Lin
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Congcong Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Wu
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Barisano G, Iv M, Choupan J, Hayden-Gephart M. Cerebral perivascular spaces as predictors of dementia risk and accelerated brain atrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.25.24306324. [PMID: 38712073 PMCID: PMC11071547 DOI: 10.1101/2024.04.25.24306324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cerebral small vessel disease, an important risk factor for dementia, lacks robust, in vivo measurement methods. Perivascular spaces (PVS) on brain MRI are surrogates for small parenchymal blood vessels and their perivascular compartment, and may relate to brain health. We developed a novel, robust algorithm to automatically assess PVS count and size on MRI, and investigated their relationship with dementia risk and brain atrophy. We analyzed 46,478 clinical measurements of cognitive functioning and 20,845 brain MRI scans from 10,004 participants (71.1±9.7 years-old, 56.6% women). Fewer PVS and larger PVS diameter at baseline were associated with higher dementia risk and accelerated brain atrophy. Longitudinal trajectories of PVS markers were significantly different in non-demented individuals who converted to dementia compared with non-converters. In simulated placebo-controlled trials for treatments targeting cognitive decline, screening out participants less likely to develop dementia based on our PVS markers enhanced the power of the trial. These novel radiographic cerebrovascular markers may improve risk-stratification of individuals, potentially reducing cost and increasing throughput of clinical trials to combat dementia.
Collapse
Affiliation(s)
| | - Michael Iv
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | - Jeiran Choupan
- Laboratory of Neuro Imaging, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
16
|
Duarte Coello R, Valdés Hernández MDC, Zwanenburg JJM, van der Velden M, Kuijf HJ, De Luca A, Moyano JB, Ballerini L, Chappell FM, Brown R, Jan Biessels G, Wardlaw JM. Detectability and accuracy of computational measurements of in-silico and physical representations of enlarged perivascular spaces from magnetic resonance images. J Neurosci Methods 2024; 403:110039. [PMID: 38128784 DOI: 10.1016/j.jneumeth.2023.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Magnetic Resonance Imaging (MRI) visible perivascular spaces (PVS) have been associated with age, decline in cognitive abilities, interrupted sleep, and markers of small vessel disease. But the limits of validity of their quantification have not been established. NEW METHOD We use a purpose-built digital reference object to construct an in-silico phantom for addressing this need, and validate it using a physical phantom. We use cylinders of different sizes as models for PVS. We also evaluate the influence of 'PVS' orientation, and different sets of parameters of the two vesselness filters that have been used for enhancing tubular structures, namely Frangi and RORPO filters, in the measurements' accuracy. RESULTS PVS measurements in MRI are only a proxy of their true dimensions, as the boundaries of their representation are consistently overestimated. The success in the use of the Frangi filter relies on a careful tuning of several parameters. Alpha= 0.5, beta= 0.5 and c= 500 yielded the best results. RORPO does not have these requirements and allows detecting smaller cylinders in their entirety more consistently in the absence of noise and confounding artefacts. The Frangi filter seems to be best suited for voxel sizes equal or larger than 0.4 mm-isotropic and cylinders larger than 1 mm diameter and 2 mm length. 'PVS' orientation did not affect measurements in data with isotropic voxels. COMPARISON WITH EXISTENT METHODS Does not apply. CONCLUSIONS The in-silico and physical phantoms presented are useful for establishing the validity of quantification methods of tubular small structures.
Collapse
Affiliation(s)
- Roberto Duarte Coello
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Maria Del C Valdés Hernández
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK.
| | | | | | - Hugo J Kuijf
- Image Sciences Institute, UMC Utrecht, Utrecht, Netherlands
| | | | - José Bernal Moyano
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK; German Centre for Neurodegenerative Diseases, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lucia Ballerini
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK; University for Foreigner of Perugia, Perugia, Italy
| | - Francesca M Chappell
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Rosalind Brown
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Ozsahin I, Zhou L, Wang X, Garetti J, Jamison K, Xi K, Tanzi E, Jaywant A, Patchell A, Maloney T, de Leon MJ, Kuceyeski A, Shah SA, Li Y, Butler TA. Diffusion Tensor Imaging Along Perivascular Spaces (DTI-ALPS) to Assess Effects of Age, Sex, and Head Size on Interstitial Fluid Dynamics in Healthy Subjects. J Alzheimers Dis Rep 2024; 8:355-361. [PMID: 38405348 PMCID: PMC10894616 DOI: 10.3233/adr-230143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/11/2024] [Indexed: 02/27/2024] Open
Abstract
Diffusion tensor imaging along perivascular spaces (DTI-ALPS) is a novel MRI method for assessing brain interstitial fluid dynamics, potentially indexing glymphatic function. Failed glymphatic clearance is implicated in Alzheimer's disease (AD) pathophysiology. We assessed the contribution of age and female sex (strong AD risk factors) to DTI-ALPS index in healthy subjects. We also for the first time assessed the effect of head size. In accord with prior studies, we show reduced DTI-ALPS index with aging, and in men compared to women. However, head size may be a major contributing factor to this counterintuitive sex difference.
Collapse
Affiliation(s)
- Ilker Ozsahin
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
- Operational Research Center in Healthcare, Near East University, Nicosia/TRNC, Turkey
| | - Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Xiuyuan Wang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Garetti
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Keith Jamison
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ke Xi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Emily Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Abhishek Jaywant
- Department of Rehabilitation Medicine and Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Abigail Patchell
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Thomas Maloney
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Mony J. de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Amy Kuceyeski
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sudhin A. Shah
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Tracy A. Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
18
|
Voorter PHM, van Dinther M, Jansen WJ, Postma AA, Staals J, Jansen JFA, van Oostenbrugge RJ, van der Thiel MM, Backes WH. Blood-Brain Barrier Disruption and Perivascular Spaces in Small Vessel Disease and Neurodegenerative Diseases: A Review on MRI Methods and Insights. J Magn Reson Imaging 2024; 59:397-411. [PMID: 37658640 DOI: 10.1002/jmri.28989] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Perivascular spaces (PVS) and blood-brain barrier (BBB) disruption are two key features of cerebral small vessel disease (cSVD) and neurodegenerative diseases that have been linked to cognitive impairment and are involved in the cerebral waste clearance system. Magnetic resonance imaging (MRI) offers the possibility to study these pathophysiological processes noninvasively in vivo. This educational review provides an overview of the MRI techniques used to assess PVS functionality and BBB disruption. MRI-visible PVS can be scored on structural images by either (subjectively) counting or (automatically) delineating the PVS. We highlight emerging (diffusion) techniques to measure proxies of perivascular fluid and its movement, which may provide a more comprehensive understanding of the role of PVS in diseases. For the measurement of BBB disruption, we explain the most commonly used MRI technique, dynamic contrast-enhanced (DCE) MRI, as well as a more recently developed technique based on arterial spin labeling (ASL). DCE MRI and ASL are thought to measure complementary characteristics of the BBB. Furthermore, we describe clinical studies that have utilized these MRI techniques in cSVD and neurodegenerative diseases, particularly Alzheimer's disease (AD). These studies demonstrate the role of PVS and BBB dysfunction in these diseases and provide insight into the large overlap, but also into the differences between cSVD and AD. Overall, MRI techniques may provide valuable insights into the pathophysiological mechanisms underlying these diseases and have the potential to be used as markers for disease progression and treatment response. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Paulien H M Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Maud van Dinther
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Willemijn J Jansen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Julie Staals
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Robert J van Oostenbrugge
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Merel M van der Thiel
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
19
|
Parillo M, Vaccarino F, Di Gennaro G, Kumar S, Van Goethem J, Beomonte Zobel B, Quattrocchi CC, Parizel PM, Mallio CA. Overview of the Current Knowledge and Conventional MRI Characteristics of Peri- and Para-Vascular Spaces. Brain Sci 2024; 14:138. [PMID: 38391713 PMCID: PMC10886993 DOI: 10.3390/brainsci14020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Brain spaces around (perivascular spaces) and alongside (paravascular or Virchow-Robin spaces) vessels have gained significant attention in recent years due to the advancements of in vivo imaging tools and to their crucial role in maintaining brain health, contributing to the anatomic foundation of the glymphatic system. In fact, it is widely accepted that peri- and para-vascular spaces function as waste clearance pathways for the brain for materials such as ß-amyloid by allowing exchange between cerebrospinal fluid and interstitial fluid. Visible brain spaces on magnetic resonance imaging are often a normal finding, but they have also been associated with a wide range of neurological and systemic conditions, suggesting their potential as early indicators of intracranial pressure and neurofluid imbalance. Nonetheless, several aspects of these spaces are still controversial. This article offers an overview of the current knowledge and magnetic resonance imaging characteristics of peri- and para-vascular spaces, which can help in daily clinical practice image description and interpretation. This paper is organized into different sections, including the microscopic anatomy of peri- and para-vascular spaces, their associations with pathological and physiological events, and their differential diagnosis.
Collapse
Affiliation(s)
- Marco Parillo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Federica Vaccarino
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Gianfranco Di Gennaro
- Department of Health Sciences, Chair of Medical Statistics, University of Catanzaro "Magna Græcia", 88100 Catanzaro, Italy
| | - Sumeet Kumar
- Department of Neuroradiology, National Neuroscience Institute, Singapore 308433, Singapore
- Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Johan Van Goethem
- Department of Radiology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Bruno Beomonte Zobel
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Carlo Cosimo Quattrocchi
- Centre for Medical Sciences-CISMed, University of Trento, Via S. Maria Maddalena 1, 38122 Trento, Italy
| | - Paul M Parizel
- Royal Perth Hospital & University of Western Australia, Perth, WA 6000, Australia
- Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Carlo Augusto Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
20
|
Barlattani T, Grandinetti P, Di Cintio A, Montemagno A, Testa R, D’Amelio C, Olivieri L, Tomasetti C, Rossi A, Pacitti F, De Berardis D. Glymphatic System and Psychiatric Disorders: A Rapid Comprehensive Scoping Review. Curr Neuropharmacol 2024; 22:2016-2033. [PMID: 39234773 PMCID: PMC11333792 DOI: 10.2174/1570159x22666240130091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Since discovering the glymphatic system, there has been a looming interest in exploring its relationship with psychiatric disorders. Recently, increasing evidence suggests an involvement of the glymphatic system in the pathophysiology of psychiatric disorders. However, clear data are still lacking. In this context, this rapid comprehensive PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) scoping review aims to identify and analyze current evidence about the relation between the glymphatic system and psychiatric disorders. METHODS We conducted a comprehensive review of the literature and then proceeded to discuss the findings narratively. Tables were then constructed and articles were sorted according to authors, year, title, location of study, sample size, psychiatric disorder, the aim of the study, principal findings, implications. RESULTS Twenty papers were identified as eligible, among which 2 articles on Schizophrenia, 1 on Autism Spectrum Disorders, 2 on Depression, 1 on Depression and Trauma-related Disorders, 1 on Depression and Anxiety, 2 on Anxiety and Sleep Disorders, 8 on Sleep Disorders, 2 on Alcohol use disorder and 1 on Cocaine Use Disorder. CONCLUSION This review suggests a correlation between the glymphatic system and several psychiatric disorders: Schizophrenia, Depression, Anxiety Disorders, Sleep Disorders, Alcohol Use Disorder, Cocaine Use Disorder, Trauma-Related Disorders, and Autism Spectrum Disorders. Impairment of the glymphatic system could play a role in Trauma-Related Disorders, Alcohol Use Disorders, Cocaine Use Disorders, Sleep Disorders, Depression, and Autism Spectrum Disorders. It is important to implement research on this topic and adopt standardized markers and radio diagnostic tools.
Collapse
Affiliation(s)
- Tommaso Barlattani
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Paolo Grandinetti
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Alexsander Di Cintio
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Alessio Montemagno
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Roberta Testa
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Chiara D’Amelio
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Luigi Olivieri
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Carmine Tomasetti
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Alessandro Rossi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Francesca Pacitti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Domenico De Berardis
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| |
Collapse
|
21
|
Zhu HH, Li SS, Wang YC, Song B, Gao Y, Xu YM, Li YS. Clearance dysfunction of trans-barrier transport and lymphatic drainage in cerebral small vessel disease: Review and prospect. Neurobiol Dis 2023; 189:106347. [PMID: 37951367 DOI: 10.1016/j.nbd.2023.106347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
Cerebral small vessel disease (CSVD) causes 20%-25% of stroke and contributes to 45% of dementia cases worldwide. However, since its early symptoms are inconclusive in addition to the complexity of the pathological basis, there is a rather limited effective therapies and interventions. Recently, accumulating evidence suggested that various brain-waste-clearance dysfunctions are closely related to the pathogenesis and prognosis of CSVD, and after a comprehensive and systematic review we classified them into two broad categories: trans-barrier transport and lymphatic drainage. The former includes blood brain barrier and blood-cerebrospinal fluid barrier, and the latter, glymphatic-meningeal lymphatic system and intramural periarterial drainage pathway. We summarized the concepts and potential mechanisms of these clearance systems, proposing a relatively complete framework for elucidating their interactions with CSVD. In addition, we also discussed recent advances in therapeutic strategies targeting clearance dysfunction, which may be an important area for future CSVD research.
Collapse
Affiliation(s)
- Hang-Hang Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, China.
| | - Shan-Shan Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yun-Chao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, China.
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, China.
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, China.
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, China.
| | - Yu-Sheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, China.
| |
Collapse
|
22
|
Shih NC, Barisano G, Lincoln KD, Mack WJ, Sepehrband F, Choupan J. Effects of sleep on brain perivascular space in a cognitively healthy population. Sleep Med 2023; 111:170-179. [PMID: 37782994 PMCID: PMC10591884 DOI: 10.1016/j.sleep.2023.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
The magnetic resonance imaging (MRI) visible perivascular space (PVS) reportedly clears amyloid-β and metabolic waste during sleep. Previous studies reported an association between sleep and the PVS in small vessel disease, traumatic brain injury, and Alzheimer's disease. However, this relationship in a healthy cohort is still unclear. Here, we used the Human Connectome Project Aging dataset to analyze the relationship between sleep and the PVS in cognitively healthy adults across the aging continuum. We measured sleep parameters using the self-reported Pittsburgh Sleep Quality Index questionnaire. We found that older adults who had better sleep quality and sleep efficiency presented with a larger PVS volume fraction in the basal ganglia (BG). However, sleep measures were not associated with PVS volume fraction in the centrum semiovale (CSO). In addition, we found that body mass index (BMI) influenced the BG-PVS across middle-aged and older participants. In the entire cognitively healthy cohort, the effect of sleep quality on PVS volume fraction was mediated by BMI. However, BMI did not influence this effect in the older cohort. Furthermore, there are significant differences in PVS volume fraction across racial/ethnic cohorts. In summary, the effect of sleep on the PVS volume alteration was different in the middle-aged adults and older adults.
Collapse
Affiliation(s)
- Nien-Chu Shih
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Giuseppe Barisano
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Karen D Lincoln
- Program in Public Health, Department of Environmental and Occupational Health, University of California, Irvine, CA, USA
| | - Wendy J Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Farshid Sepehrband
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Tidwell JB, Taylor JA, Collins HR, Chamberlin JH, Barisano G, Sepehrband F, Turner MD, Gauthier G, Mulder ER, Gerlach DA, Roberts DR. Longitudinal Changes in Cerebral Perfusion, Perivascular Space Volume, and Ventricular Volume in a Healthy Cohort Undergoing a Spaceflight Analog. AJNR Am J Neuroradiol 2023; 44:1026-1031. [PMID: 37562828 PMCID: PMC10494950 DOI: 10.3174/ajnr.a7949] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 06/25/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND AND PURPOSE A global decrease in brain perfusion has recently been reported during exposure to a ground-based spaceflight analog. Considering that CSF and glymphatic flow are hypothesized to be propelled by arterial pulsations, it is unknown whether a change in perfusion would impact these CSF compartments. The aim of the current study was to evaluate the relationship among changes in cerebral perfusion, ventricular volume, and perivascular space volume before, during, and after a spaceflight analog. MATERIALS AND METHODS Eleven healthy participants underwent 30 days of bed rest at 6° head-down tilt with 0.5% atmospheric CO2 as a spaceflight analog. For each participant, 6 MR imaging brain scans, including perfusion and anatomic-weighted T1 sequences, were obtained before, during, and after the analog period. Global perfusion, ventricular volume, and perivascular space volume time courses were constructed and evaluated with repeated measures ANOVAs. RESULTS Global perfusion followed a divergent time trajectory from ventricular and perivascular space volume, with perfusion decreasing during the analog, whereas ventricular and perivascular space volume increased (P < .001). These patterns subsequently reversed during the 2-week recovery period. CONCLUSIONS The patterns of change in brain physiology observed in healthy participants suggest a relationship between cerebral perfusion and CSF homeostasis. Further study is warranted to determine whether a causal relationship exists and whether similar neurophysiologic responses occur during spaceflight.
Collapse
Affiliation(s)
- J B Tidwell
- From the Department of Radiology and Radiological Science (J.B.T., J.A.T., H.R.C., J.H.C., M.D.T., G.G., D.R.R.), Medical University of South Carolina; Charleston, South Carolina
| | - J A Taylor
- From the Department of Radiology and Radiological Science (J.B.T., J.A.T., H.R.C., J.H.C., M.D.T., G.G., D.R.R.), Medical University of South Carolina; Charleston, South Carolina
| | - H R Collins
- From the Department of Radiology and Radiological Science (J.B.T., J.A.T., H.R.C., J.H.C., M.D.T., G.G., D.R.R.), Medical University of South Carolina; Charleston, South Carolina
| | - J H Chamberlin
- From the Department of Radiology and Radiological Science (J.B.T., J.A.T., H.R.C., J.H.C., M.D.T., G.G., D.R.R.), Medical University of South Carolina; Charleston, South Carolina
| | - G Barisano
- Laboratory of Neuroimaging (F.S.), University of Southern California, Los Angeles, California
| | - F Sepehrband
- Department of Neurosurgery (G.B.), Stanford University, Stanford, California
| | - M D Turner
- From the Department of Radiology and Radiological Science (J.B.T., J.A.T., H.R.C., J.H.C., M.D.T., G.G., D.R.R.), Medical University of South Carolina; Charleston, South Carolina
| | - G Gauthier
- From the Department of Radiology and Radiological Science (J.B.T., J.A.T., H.R.C., J.H.C., M.D.T., G.G., D.R.R.), Medical University of South Carolina; Charleston, South Carolina
| | - E R Mulder
- Department of Neurosurgery (G.B.), Stanford University, Stanford, California
| | - D A Gerlach
- Department of Neurosurgery (G.B.), Stanford University, Stanford, California
| | - D R Roberts
- From the Department of Radiology and Radiological Science (J.B.T., J.A.T., H.R.C., J.H.C., M.D.T., G.G., D.R.R.), Medical University of South Carolina; Charleston, South Carolina
| |
Collapse
|
24
|
Sacchi L, Arcaro M, Carandini T, Pietroboni AM, Fumagalli GG, Fenoglio C, Serpente M, Sorrentino F, Visconte C, Pintus M, Conte G, Contarino VE, Scarpini E, Triulzi F, Galimberti D, Arighi A. Association between enlarged perivascular spaces and cerebrospinal fluid aquaporin-4 and tau levels: report from a memory clinic. Front Aging Neurosci 2023; 15:1191714. [PMID: 37547746 PMCID: PMC10399743 DOI: 10.3389/fnagi.2023.1191714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Background Perivascular spaces (PVS) are fluid-filled compartments that dilate in response to many different conditions. A high burden of enlarged PVS (EPVS) in the centrum semiovale (CSO) has been linked to neurodegeneration. Moreover, an increase in cerebrospinal fluid (CSF) levels of aquaporin-4 (AQP4), a water channel expressed on PVS-bounding astrocytes, has been described in patients with neurodegenerative dementia. Our aim was to investigate the relationship between neurodegenerative diseases and two putative glymphatic system biomarkers: AQP4 and EPVS. Methods We included 70 individuals, 54 patients with neurodegenerative diseases and 16 subjects with non-degenerative conditions. EPVS were visually quantified on MRI-scans applying Paradise's scale. All subjects underwent lumbar puncture for the measurement of AQP4 levels in the cerebrospinal fluid (CSF). CSF levels of amyloid-β-1-42, phosphorylated and total tau (tTau) were also measured. Linear regression analyses were adjusted for age, sex, education and disease duration, after excluding outliers. Results Cerebrospinal fluid (CSF)-AQP4 levels were independent predictors of total (β = 0.28, standard error [SE] = 0.08, p = 0.001), basal ganglia (β = 0.20, SE = 0.08, p = 0.009) and centrum semiovale EPVS (β = 0.37, SE = 0.12, p = 0.003). tTau levels predicted CSO-EPVS (β = 0.30, SE = 0.15, p = 0.046). Moreover, increased levels of AQP4 were strongly associated with higher levels of tTau in the CSF (β = 0.35, SE = 0.13, p = 0.008). Conclusion We provide evidence that CSO-EPVS and CSF-AQP4 might be clinically meaningful biomarkers of glymphatic dysfunction and associated neurodegeneration.
Collapse
Affiliation(s)
- Luca Sacchi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Arcaro
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Carandini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Margherita Pietroboni
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Chiara Fenoglio
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Maria Serpente
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Sorrentino
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Caterina Visconte
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Manuela Pintus
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giorgio Conte
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Neuroradiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Elisa Contarino
- Neuroradiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Neuroradiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Arighi
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
25
|
Hicks AJ, Sinclair B, Shultz SR, Pham W, Silbert LC, Schwartz DL, Rowe CC, Ponsford JL, Law M, Spitz G. Associations of Enlarged Perivascular Spaces With Brain Lesions, Brain Age, and Clinical Outcomes in Chronic Traumatic Brain Injury. Neurology 2023; 101:e63-e73. [PMID: 37156615 PMCID: PMC10351302 DOI: 10.1212/wnl.0000000000207370] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/17/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Enlarged perivascular spaces (ePVS) have been identified as a key signature of glymphatic system dysfunction in neurologic conditions. The incidence and clinical implications of ePVS after traumatic brain injury (TBI) are not yet understood. We investigated whether individuals with chronic moderate-to-severe TBI had an increased burden of ePVS and whether ePVS burden is modulated by the presence of focal lesions, older brain age, and poorer sleep quality. We examined whether an increased burden of ePVS was associated with poorer cognitive and emotional outcomes. METHODS Using a cross-sectional design, participants with a single moderate-to-severe chronic TBI (sustained ≥10 years ago) were recruited from an inpatient rehabilitation program. Control participants were recruited from the community. Participants underwent 3T brain MRI, neuropsychological assessment, and clinical evaluations. ePVS burden in white matter was quantified using automated segmentation. The relationship between the number of ePVS, group membership, focal lesions, brain age, current sleep quality, and outcome was modeled using negative binomial and linear regressions. RESULTS This study included 100 participants with TBI (70% male; mean age = 56.8 years) and 75 control participants (54.3% male; mean age = 59.8 years). The TBI group had a significantly greater burden of ePVS (prevalence ratio rate [PRR] = 1.29, p = 0.013, 95% CI 1.05-1.57). The presence of bilateral lesions was associated with greater ePVS burden (PRR = 1.41, p = 0.021, 95% CI 1.05-1.90). There was no association between ePVS burden, sleep quality (PRR = 1.01, p = 0.491, 95% CI 0.98-1.048), and sleep duration (PRR = 1.03, p = 0.556, 95% CI 0.92-1.16). ePVS was associated with verbal memory (β = -0.42, p = 0.006, 95% CI -0.72 to -0.12), but not with other cognitive domains. The burden of ePVS was not associated with emotional distress (β = -0.70, p = 0.461, 95% CI -2.57 to 1.17) or brain age (PRR = 1.00, p = 0.665, 95% CI 0.99-1.02). DISCUSSION TBI is associated with a greater burden of ePVS, especially when there have been bilateral brain lesions. ePVS was associated with reduced verbal memory performance. ePVS may indicate ongoing impairments in glymphatic system function in the chronic postinjury period.
Collapse
Affiliation(s)
- Amelia J Hicks
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Benjamin Sinclair
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Sandy R Shultz
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - William Pham
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Lisa C Silbert
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Daniel L Schwartz
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Christopher C Rowe
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Jennie L Ponsford
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Meng Law
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Gershon Spitz
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia.
| |
Collapse
|
26
|
Pinho J, Almeida FC, Araújo JM, Machado Á, Costa AS, Silva F, Francisco A, Quintas-Neves M, Ferreira C, Soares-Fernandes JP, Oliveira TG. Sex-Specific Patterns of Cerebral Atrophy and Enlarged Perivascular Spaces in Patients with Cerebral Amyloid Angiopathy and Dementia. AJNR Am J Neuroradiol 2023; 44:792-798. [PMID: 37290817 PMCID: PMC10337609 DOI: 10.3174/ajnr.a7900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/07/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral amyloid angiopathy is characterized by amyloid β deposition in leptomeningeal and superficial cortical vessels. Cognitive impairment is common and may occur independent of concomitant Alzheimer disease neuropathology. It is still unknown which neuroimaging findings are associated with dementia in cerebral amyloid angiopathy and whether they are modulated by sex. This study compared MR imaging markers in patients with cerebral amyloid angiopathy with dementia or mild cognitive impairment or who are cognitively unimpaired and explored sex-specific differences. MATERIALS AND METHODS We studied 58 patients with cerebral amyloid angiopathy selected from the cerebrovascular and memory outpatient clinics. Clinical characteristics were collected from clinical records. Cerebral amyloid angiopathy was diagnosed on MR imaging on the basis of the Boston criteria. Visual rating scores for atrophy and other imaging features were independently assessed by 2 senior neuroradiologists. RESULTS Medial temporal lobe atrophy was higher for those with cerebral amyloid angiopathy with dementia versus those cognitively unimpaired (P = .015), but not for those with mild cognitive impairment. This effect was mainly driven by higher atrophy in men with dementia, compared with women with and without dementia (P = .034, P = .012; respectively) and with men without dementia (P = .012). Enlarged perivascular spaces in the centrum semiovale were more frequent in women with dementia versus men with and without dementia (P = .021, P = .011; respectively) and women without dementia (P = .011). CONCLUSIONS Medial temporal lobe atrophy was more prominent in men with dementia, whereas women showed a higher number of enlarged perivascular spaces in the centrum semiovale. Overall, this finding suggests differential pathophysiologic mechanisms with sex-specific neuroimaging patterns in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- J Pinho
- From the Department of Neurology (J.P., A.S.C.), University Hospital RWTH Aachen, Aachen, Germany
| | - F C Almeida
- Life and Health Sciences Research Institute (F.C.A., M.Q.-N., T.G.O.), School of Medicine
- Life and Health Sciences Research Institute/3Bs (F.C.A., M.Q.-N., T.G.O.), Portuguese Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Neuroradiology (F.C.A.), Centro Hospitalar Universitxrário do Porto, Porto, Portugal
| | - J M Araújo
- Departments of Neurology (J.M.A., Á.M., C.F.)
| | - Á Machado
- Departments of Neurology (J.M.A., Á.M., C.F.)
| | - A S Costa
- From the Department of Neurology (J.P., A.S.C.), University Hospital RWTH Aachen, Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging (A.S.C.), Forschungszentrum Jülich and RWTH Aachen University, Aachen, Germany
| | - F Silva
- Algoritmi Center (F.S., A.F.), University of Minho, Braga, Portugal
| | - A Francisco
- Algoritmi Center (F.S., A.F.), University of Minho, Braga, Portugal
| | - M Quintas-Neves
- Life and Health Sciences Research Institute (F.C.A., M.Q.-N., T.G.O.), School of Medicine
- Life and Health Sciences Research Institute/3Bs (F.C.A., M.Q.-N., T.G.O.), Portuguese Government Associate Laboratory, Braga/Guimarães, Portugal
- Neuroradiology (M.Q.-N., J.P.S.-F., T.G.O.), Hospital de Braga, Braga, Portugal
| | - C Ferreira
- Departments of Neurology (J.M.A., Á.M., C.F.)
| | | | - T G Oliveira
- Life and Health Sciences Research Institute (F.C.A., M.Q.-N., T.G.O.), School of Medicine
- Life and Health Sciences Research Institute/3Bs (F.C.A., M.Q.-N., T.G.O.), Portuguese Government Associate Laboratory, Braga/Guimarães, Portugal
- Neuroradiology (M.Q.-N., J.P.S.-F., T.G.O.), Hospital de Braga, Braga, Portugal
| |
Collapse
|
27
|
Sotgiu MA, Lo Jacono A, Barisano G, Saderi L, Cavassa V, Montella A, Crivelli P, Carta A, Sotgiu S. Brain perivascular spaces and autism: clinical and pathogenic implications from an innovative volumetric MRI study. Front Neurosci 2023; 17:1205489. [PMID: 37425010 PMCID: PMC10328421 DOI: 10.3389/fnins.2023.1205489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Our single-center case-control study aimed to evaluate the unclear glymphatic system alteration in autism spectrum disorder (ASD) through an innovative neuroimaging tool which allows to segment and quantify perivascular spaces in the white matter (WM-PVS) with filtering of non-structured noise and increase of the contrast-ratio between perivascular spaces and the surrounding parenchyma. Methods Briefly, files of 65 ASD and 71 control patients were studied. We considered: ASD type, diagnosis and severity level and comorbidities (i.e., intellectual disability, attention-deficit hyperactivity disorder, epilepsy, sleep disturbances). We also examined diagnoses other than ASD and their associated comorbidities in the control group. Results When males and females with ASD are included together, WM-PVS grade and WM-PVS volume do not significantly differ between the ASD group and the control group overall. We found, instead, that WM-PVS volume is significantly associated with male sex: males had higher WM-PVS volume compared to females (p = 0.01). WM-PVS dilation is also non-significantly associated with ASD severity and younger age (< 4 years). In ASD patients, higher WM-PVS volume was related with insomnia whereas no relation was found with epilepsy or IQ. Discussion We concluded that WM-PVS dilation can be a neuroimaging feature of male ASD patients, particularly the youngest and most severe ones, which may rely on male-specific risk factors acting early during neurodevelopment, such as a transient excess of extra-axial CSF volume. Our findings can corroborate the well-known strong male epidemiological preponderance of autism worldwide.
Collapse
Affiliation(s)
| | - Alessandro Lo Jacono
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Giuseppe Barisano
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Laura Saderi
- Clinical Epidemiology and Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Vanna Cavassa
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Paola Crivelli
- Radiology Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Alessandra Carta
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Stefano Sotgiu
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
28
|
Sibilia F, Sheikh-Bahaei N, Mack WJ, Choupan J. Perivascular spaces in Alzheimer's disease are associated with inflammatory, stress-related, and hypertension biomarkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543504. [PMID: 37333097 PMCID: PMC10274635 DOI: 10.1101/2023.06.02.543504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Perivascular spaces (PVS) are fluid-filled spaces surrounding the brain vasculature. Literature suggests that PVS may play a significant role in aging and neurological disorders, including Alzheimer's disease (AD). Cortisol, a stress hormone, has been implicated in the development and progression of AD. Hypertension, a common condition in older adults, has been found to be a risk factor for AD. Hypertension may contribute to PVS enlargement, impairing the clearance of waste products from the brain and promoting neuroinflammation. This study aims to understand the potential interactions between PVS, cortisol, hypertension, and inflammation in the context of cognitive impairment. Using MRI scans acquired at 1.5T, PVS were quantified in a cohort of 465 individuals with cognitive impairment. PVS was calculated in the basal ganglia and centrum semiovale using an automated segmentation approach. Levels of cortisol and angiotensin-converting enzyme (ACE) (an indicator of hypertension) were measured from plasma. Inflammatory biomarkers, such as cytokines and matrix metalloproteinases, were analyzed using advanced laboratory techniques. Main effect and interaction analyses were performed to examine the associations between PVS severity, cortisol levels, hypertension, and inflammatory biomarkers. In the centrum semiovale, higher levels of inflammation reduced cortisol associations with PVS volume fraction. For ACE, an inverse association with PVS was seen only when interacting with TNFr2 (a transmembrane receptor of TNF). There was also a significant inverse main effect of TNFr2. In the PVS basal ganglia, a significant positive association was found with TRAIL (a TNF receptor inducing apoptosis). These findings show for the first time the intricate relationships between PVS structure and the levels of stress-related, hypertension, and inflammatory biomarkers. This research could potentially guide future studies regarding the underlying mechanisms of AD pathogenesis and the potential development of novel therapeutic strategies targeting these inflammation factors.
Collapse
Affiliation(s)
- Francesca Sibilia
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nasim Sheikh-Bahaei
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Wendy J Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of University of Southern California, Los Angeles, CA, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- NeuroScope Inc. Scarsdale, New York
| |
Collapse
|
29
|
Bae YJ, Kim JM, Choi BS, Ryoo N, Song YS, Nam Y, Yoon IY, Cho SJ, Kim JH. Altered Brain Glymphatic Flow at Diffusion-Tensor MRI in Rapid Eye Movement Sleep Behavior Disorder. Radiology 2023; 307:e221848. [PMID: 37158722 DOI: 10.1148/radiol.221848] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Background Brain glymphatic dysfunction may contribute to the development of α-synucleinopathies. Yet, noninvasive imaging and quantification remain lacking. Purpose To examine glymphatic function of the brain in isolated rapid eye movement sleep behavior disorder (RBD) and its relevance to phenoconversion with use of diffusion-tensor imaging (DTI) analysis along the perivascular space (ALPS). Materials and Methods This prospective study included consecutive participants diagnosed with RBD, age- and sex-matched control participants, and participants with Parkinson disease (PD) who were enrolled and examined between May 2017 and April 2020. All study participants underwent 3.0-T brain MRI including DTI, susceptibility-weighted and susceptibility map-weighted imaging, and/or dopamine transporter imaging using iodine 123-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)-nortropane SPECT at the time of participation. Phenoconversion status to α-synucleinopathies was unknown at the time of MRI. Participants were regularly followed up and monitored for any signs of α-synucleinopathies. The ALPS index reflecting glymphatic activity was calculated by a ratio of the diffusivities along the x-axis in the projection and association neural fibers to the diffusivities perpendicular to them and compared according to the groups with use of the Kruskal-Wallis and Mann-Whitney U tests. The phenoconversion risk in participants with RBD was evaluated according to the ALPS index with use of a Cox proportional hazards model. Results Twenty participants diagnosed with RBD (12 men; median age, 73 years [IQR, 66-76 years]), 20 control participants, and 20 participants with PD were included. The median ALPS index was lower in the group with RBD versus controls (1.53 vs 1.72; P = .001) but showed no evidence of a difference compared with the group with PD (1.49; P = .68). The conversion risk decreased with an increasing ALPS index (hazard ratio, 0.57 per 0.1 increase in the ALPS index [95% CI: 0.35, 0.93]; P = .03). Conclusion DTI-ALPS in RBD demonstrated a more severe reduction of glymphatic activity in individuals with phenoconversion to α-synucleinopathies. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Filippi and Balestrino in this issue.
Collapse
Affiliation(s)
- Yun Jung Bae
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K.), Nuclear Medicine (Y.S.S.), and Psychiatry (I.Y.Y.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam 463-707, Republic of Korea; Department of Neurology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (N.R.); and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Jong-Min Kim
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K.), Nuclear Medicine (Y.S.S.), and Psychiatry (I.Y.Y.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam 463-707, Republic of Korea; Department of Neurology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (N.R.); and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Byung Se Choi
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K.), Nuclear Medicine (Y.S.S.), and Psychiatry (I.Y.Y.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam 463-707, Republic of Korea; Department of Neurology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (N.R.); and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Nayoung Ryoo
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K.), Nuclear Medicine (Y.S.S.), and Psychiatry (I.Y.Y.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam 463-707, Republic of Korea; Department of Neurology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (N.R.); and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Yoo Sung Song
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K.), Nuclear Medicine (Y.S.S.), and Psychiatry (I.Y.Y.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam 463-707, Republic of Korea; Department of Neurology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (N.R.); and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Yoonho Nam
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K.), Nuclear Medicine (Y.S.S.), and Psychiatry (I.Y.Y.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam 463-707, Republic of Korea; Department of Neurology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (N.R.); and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - In-Young Yoon
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K.), Nuclear Medicine (Y.S.S.), and Psychiatry (I.Y.Y.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam 463-707, Republic of Korea; Department of Neurology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (N.R.); and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Se Jin Cho
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K.), Nuclear Medicine (Y.S.S.), and Psychiatry (I.Y.Y.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam 463-707, Republic of Korea; Department of Neurology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (N.R.); and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Jae Hyoung Kim
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K.), Nuclear Medicine (Y.S.S.), and Psychiatry (I.Y.Y.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam 463-707, Republic of Korea; Department of Neurology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (N.R.); and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| |
Collapse
|
30
|
Lan H, Lynch KM, Custer R, Shih NC, Sherlock P, Toga AW, Sepehrband F, Choupan J. Weakly supervised perivascular spaces segmentation with salient guidance of Frangi filter. Magn Reson Med 2023; 89:2419-2431. [PMID: 36692103 PMCID: PMC10050143 DOI: 10.1002/mrm.29593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/03/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
PURPOSE To develop a weakly supervised 3D perivascular spaces (PVS) segmentation model that combines the filter-based image processing algorithm and the convolutional neural network. METHODS We present a weakly supervised learning method for PVS segmentation by combing a rule-based image processing approach Frangi filter with a canonical deep learning algorithm Unet using conditional random field theory. The weighted cross entropy loss function and the training patch selection were implemented for the optimization and to alleviate the class imbalance issue. The performance of the model was evaluated on the Human Connectome Project data. RESULTS The proposed method increases the true positive rate compared to the rule-based method and reduces the false positive rate by 36% in the weakly supervised training experiment and 39.4% in the supervised training experiment compared to Unet, which results in superior overall performance. In addition, by training the model on manually quality controlled and annotated data which includes the subjects with the presence of white matter hyperintensities, the proposed method differentiates between PVS and white matter hyperintensities, which reduces the false positive rate by 78.5% compared to weakly supervised trained model. CONCLUSIONS Combing the filter-based image processing algorithm and the convolutional neural network algorithm could improve the model's segmentation accuracy, while reducing the training dependence on the large scale annotated PVS mask data by the trained physician. Compared to the filter-based image processing algorithm, the data driven PVS segmentation model using quality-controlled data as the training target could differentiate the white matter hyperintensity from PVS resulting low false positive rate.
Collapse
Affiliation(s)
- Haoyu Lan
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirsten M. Lynch
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rachel Custer
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nien-Chu Shih
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Patrick Sherlock
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Farshid Sepehrband
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- NeuroScope Inc. New York, USA
| |
Collapse
|
31
|
Ineichen BV, Cananau C, Plattén M, Ouellette R, Moridi T, Frauenknecht KBM, Okar SV, Kulcsar Z, Kockum I, Piehl F, Reich DS, Granberg T. Dilated Virchow-Robin spaces are a marker for arterial disease in multiple sclerosis. EBioMedicine 2023; 92:104631. [PMID: 37253317 DOI: 10.1016/j.ebiom.2023.104631] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Virchow-Robin spaces (VRS) have been associated with neurodegeneration and neuroinflammation. However, it remains uncertain to what degree non-dilated or dilated VRS reflect specific features of neuroinflammatory pathology. Thus, we aimed at investigating the clinical relevance of VRS as imaging biomarker in multiple sclerosis (MS) and to correlate VRS to their histopathologic signature. METHODS In a cohort study comprising 142 MS patients and 30 control subjects, we assessed the association of non-dilated and dilated VRS to clinical and magnetic resonance imaging (MRI) outcomes. Findings were corroborated in a validation cohort comprising 63 MS patients. Brain blocks from 6 MS patients and 3 non-MS controls were histopathologically processed to correlate VRS to their tissue substrate. FINDINGS In our actively treated clinical cohort, the count of dilated centrum semiovale VRS was associated with increased T1 and T2 lesion volumes. There was no systematic spatial colocalization of dilated VRS with MS lesions. At tissue level, VRS mostly corresponded to arteries and were not associated with MS pathological hallmarks. Interestingly, in our ex vivo cohort comprising mostly progressive MS patients, dilated VRS in MS were associated with signs of small vessel disease. INTERPRETATION Contrary to prior beliefs, these observations suggest that VRS in MS do not associate with an accumulation of immune cells. But instead, these findings indicate vascular pathology as a driver and/or consequence of neuroinflammatory pathology for this imaging feature. FUNDING NIH, Swedish Society for Medical Research, Swiss National Science Foundation and University of Zurich.
Collapse
Affiliation(s)
- Benjamin V Ineichen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Center for Reproducible Science, University of Zurich, Zurich, Switzerland; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MA, USA.
| | - Carmen Cananau
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Plattén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Russell Ouellette
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Moridi
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center of Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Katrin B M Frauenknecht
- National Centre for Pathology (NCP), Laboratoire National de Santé, Dudelange, Luxembourg; Luxembourg Centre for Neuropathology (LCNP), Laboratoire National de Santé, Dudelange, Luxembourg
| | - Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MA, USA
| | - Zsolt Kulcsar
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center of Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MA, USA
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Ineichen BV, Cananau C, Platt N M, Ouellette R, Moridi T, Frauenknecht KBM, Okar SV, Kulcsar Z, Kockum I, Piehl F, Reich DS, Granberg T. Dilated Virchow-Robin Spaces are a Marker for Arterial Disease in Multiple Sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529871. [PMID: 36945422 PMCID: PMC10028816 DOI: 10.1101/2023.02.24.529871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Virchow-Robin spaces (VRS) have been associated with neurodegeneration and neuroinflammation. However, it remains uncertain to what degree non-dilated or dilated VRS reflect specific features of neuroinflammatory pathology. Thus, we aimed at investigating the clinical relevance of VRS as imaging biomarker in multiple sclerosis (MS) and to correlate VRS to their histopathologic signature. In a cohort study comprising 205 MS patients (including a validation cohort) and 30 control subjects, we assessed the association of non-dilated and dilated VRS to clinical and magnetic resonance imaging (MRI) out-comes. Brain blocks from 6 MS patients and 3 non-MS controls were histopathologically processed to correlate VRS to their tissue substrate. The count of dilated centrum semiovale VRS was associated with increased T1 and T2 lesion volumes. There was no systematic spatial colocalization of dilated VRS with MS lesions. At tissue level, VRS mostly corresponded to arteries and were not associated with MS pathological hallmarks. Interestingly, dilated VRS in MS were associated with signs of small vessel disease. Contrary to prior beliefs, these observations suggest that VRS in MS do not associate with accumulation of immune cells. But instead, these findings indicate vascular pathology as a driver and/or consequence of neuroinflammatory pathology for this imaging feature.
Collapse
|
33
|
van der Thiel MM, Backes WH, Ramakers IHGB, Jansen JFA. Novel developments in non-contrast enhanced MRI of the perivascular clearance system: What are the possibilities for Alzheimer's disease research? Neurosci Biobehav Rev 2023; 144:104999. [PMID: 36529311 DOI: 10.1016/j.neubiorev.2022.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The cerebral waste clearance system (i.e, glymphatic or intramural periarterial drainage) works through a network of perivascular spaces (PVS). Dysfunction of this system likely contributes to aggregation of Amyloid-β and subsequent toxic plaques in Alzheimer's disease (AD). A promising, non-invasive technique to study this system is MRI, though applications in dementia are still scarce. This review focusses on recent non-contrast enhanced (non-CE) MRI techniques which determine and visualise physiological aspects of the clearance system at multiple levels, i.e., cerebrospinal fluid flow, PVS-flow and interstitial fluid movement. Furthermore, various MRI studies focussing on aspects of the clearance system which are relevant to AD are discussed, such as studies on ageing, sleep alterations, and cognitive decline. Additionally, the complementary function of non-CE to CE methods is elaborated upon. We conclude that non-CE studies have great potential to determine which parts of the waste clearance system are affected by AD and in which stages of cognitive impairment dysfunction of this system occurs, which could allow future clinical trials to target these specific mechanisms.
Collapse
Affiliation(s)
- Merel M van der Thiel
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Inez H G B Ramakers
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
34
|
Sun Y, Liu E, Pei Y, Yao Q, Ma H, Mu Y, Wang Y, Zhang Y, Yang X, Wang X, Xue J, Zhai J, Carare RO, Qin L, Yan J. The impairment of intramural periarterial drainage in brain after subarachnoid hemorrhage. Acta Neuropathol Commun 2022; 10:187. [PMID: 36529767 PMCID: PMC9759914 DOI: 10.1186/s40478-022-01492-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Interstitial fluid (ISF) from brain drains along the basement membranes of capillaries and arteries as Intramural Periarterial Drainage (IPAD); failure of IPAD results in cerebral amyloid angiopathy (CAA). In this study, we test the hypothesis that IPAD fails after subarachnoid haemorrhage (SAH). The rat SAH model was established using endovascular perforation method. Fluorescence dyes with various molecular weights were injected into cisterna magna of rats, and the pattern of IPAD after SAH was detected using immunofluorescence staining, two-photon fluorescent microscope, transmission electron microscope and magnetic resonance imaging tracking techniques. Our results showed that fluorescence dyes entered the brain along a periarterial compartment and were cleared from brain along the basement membranes of the capillaries, with different patterns based on individual molecular weights. After SAH, there was significant impairment in the IPAD system: marked expansion of perivascular spaces, and ISF clearance rate was significantly decreased, associated with the apoptosis of endothelial cells, activation of astrocytes, over-expression of matrix metalloproteinase 9 and loss of collagen type IV. In conclusion, experimental SAH leads to a failure of IPAD, clinically significant for long term complications such as CAA, following SAH.
Collapse
Affiliation(s)
- Yanrong Sun
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - E. Liu
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.27255.370000 0004 1761 1174Department of Anatomy, School of Medicine, Shandong University, Jinan, 250012 Shandong China
| | - Yanhong Pei
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Qinhan Yao
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Haowen Ma
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Yakun Mu
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Yingjie Wang
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Yan Zhang
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Xiaomei Yang
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Xing Wang
- grid.48166.3d0000 0000 9931 8406State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Jiajia Xue
- grid.48166.3d0000 0000 9931 8406State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Jiliang Zhai
- grid.413106.10000 0000 9889 6335Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730 China
| | - Roxana O. Carare
- grid.5491.90000 0004 1936 9297Faculty of Medicine, UK Southampton General Hospital, University of Southampton, Southampton, SO16 6YD UK ,University of Medicine, Pharmacy, Science and Technology “G.E. Palade”, Targu Mures, Romania
| | - Lihua Qin
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Junhao Yan
- grid.11135.370000 0001 2256 9319Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.411642.40000 0004 0605 3760Beijing Key Lab of Magnetic Resonance Imaging Technology, Peking University Third Hospital, Beijing, 100191 China
| |
Collapse
|
35
|
Pham W, Lynch M, Spitz G, O’Brien T, Vivash L, Sinclair B, Law M. A critical guide to the automated quantification of perivascular spaces in magnetic resonance imaging. Front Neurosci 2022; 16:1021311. [PMID: 36590285 PMCID: PMC9795229 DOI: 10.3389/fnins.2022.1021311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
The glymphatic system is responsible for waste clearance in the brain. It is comprised of perivascular spaces (PVS) that surround penetrating blood vessels. These spaces are filled with cerebrospinal fluid and interstitial fluid, and can be seen with magnetic resonance imaging. Various algorithms have been developed to automatically label these spaces in MRI. This has enabled volumetric and morphological analyses of PVS in healthy and disease cohorts. However, there remain inconsistencies between PVS measures reported by different methods of automated segmentation. The present review emphasizes that importance of voxel-wise evaluation of model performance, mainly with the Sørensen Dice similarity coefficient. Conventional count correlations for model validation are inadequate if the goal is to assess volumetric or morphological measures of PVS. The downside of voxel-wise evaluation is that it requires manual segmentations that require large amounts of time to produce. One possible solution is to derive these semi-automatically. Additionally, recommendations are made to facilitate rigorous development and validation of automated PVS segmentation models. In the application of automated PVS segmentation tools, publication of image quality metrics, such as the contrast-to-noise ratio, alongside descriptive statistics of PVS volumes and counts will facilitate comparability between studies. Lastly, a head-to-head comparison between two algorithms, applied to two cohorts of astronauts reveals how results can differ substantially between techniques.
Collapse
Affiliation(s)
- William Pham
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Miranda Lynch
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gershon Spitz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Terence O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Radiology, Alfred Health Hospital, Melbourne, VIC, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Wang ML, Zou QQ, Sun Z, Wei XE, Li PY, Wu X, Li YH. Associations of MRI-visible perivascular spaces with longitudinal cognitive decline across the Alzheimer's disease spectrum. Alzheimers Res Ther 2022; 14:185. [PMID: 36514127 PMCID: PMC9746143 DOI: 10.1186/s13195-022-01136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the characteristics and associations of MRI-visible perivascular spaces (PVS) with clinical progression and longitudinal cognitive decline across the Alzheimer's disease spectrum. METHODS We included 1429 participants (641 [44.86%] female) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. PVS number and grade in the centrum semiovale (CSO-PVS), basal ganglia (BG-PVS), and hippocampus (HP-PVS) were compared among the control (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD) groups. PVS were tested as predictors of diagnostic progression (i.e., CN to MCI/AD or MCI to AD) and longitudinal changes in the 13-item Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-Cog 13), Mini-Mental State Examination (MMSE), memory (ADNI-MEM), and executive function (ADNI-EF) using multiple linear regression, linear mixed-effects, and Cox proportional hazards modeling. RESULTS Compared with CN subjects, MCI and AD subjects had more CSO-PVS, both in number (p < 0.001) and grade (p < 0.001). However, there was no significant difference in BG-PVS and HP-PVS across the AD spectrum (p > 0.05). Individuals with moderate and frequent/severe CSO-PVS had a higher diagnostic conversion risk than individuals with no/mild CSO-PVS (log-rank p < 0.001 for all) in the combined CN and MCI group. Further Cox regression analyses revealed that moderate and frequent/severe CSO-PVS were associated with a higher risk of diagnostic conversion (HR = 2.007, 95% CI = 1.382-2.914, p < 0.001; HR = 2.676, 95% CI = 1.830-3.911, p < 0.001, respectively). A higher CSO-PVS number was associated with baseline cognitive performance and longitudinal cognitive decline in all cognitive tests (p < 0.05 for all). CONCLUSIONS CSO-PVS were more common in MCI and AD and were associated with cognitive decline across the AD spectrum.
Collapse
Affiliation(s)
- Ming-Liang Wang
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Qiao-Qiao Zou
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Zheng Sun
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Xiao-Er Wei
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Peng-Yang Li
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Xue Wu
- Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yue-Hua Li
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|